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—— Abstract

Parallelization of SAT solvers is an important technique for improving solver performance. The
selection of the learnt clauses to share among parallel workers is crucial for its efficiency. Literal block
distance (LBD) is often used to evaluate the quality of clauses to select. We propose a new method,
Parallel Clause sharing based on graph Structure (PaCS), to select good clauses for sharing. First,
we conducted three preliminary experiments to assess the performance of LBD in parallel clause
sharing: a performance comparison between the LBD and clause size, an analysis of the utilization
of shared clauses, and a comparison of the LBD values of shared clauses at originating and receiving
workers. These experiments indicate that the LBD may not be optimal for learnt clause sharing.
We attribute the results to the LBD’s inherent dependency on decision trees. Each parallel worker
has a unique decision tree; thus, a sharing clause that is good for its originating worker may not be
good for others. Therefore, we propose PaCS, a search-independent method that uses the graph
structure derived from the input CNF of SAT problems. PaCS evaluates clauses using their edges’
weight in the variable incidence graph. Using the input CNF’s graph is effective for parallel clause
sharing because it is the common input for all parallel workers. Furthermore, using edge weight
can select clauses whose variables’ Boolean values are more likely to be determined. Performance
evaluation experiments demonstrate that our strategy outperforms LBD by 4% in the number of
solved instances and by 12% in PAR-2. This study opens avenues for further improvements in
parallel-solving strategies using the structure of SAT problems and reinterpretations of the quality
of learnt clauses.
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1 Introduction

Satisfiability (SAT) solvers are tools that determine whether the input Boolean formula is
satisfiable or not. Conflict-driven clause learning (CDCL) SAT solvers [28, 29] are widely
used because of their high efficacy in many industrial SAT problems. Clause learning [8] is an
important component of CDCL solvers. Clause learning generates new clauses (learnt clauses)
to prevent the solver from repeating the wrong assignments. Learnt clauses significantly
improve search efficiency by pruning the search space. Parallelization of SAT solvers is also
an important technique for improving solver performance. The information can be shared
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between parallel workers to enhance the overall parallel efficiency. In parallel SAT solvers,
workers exchange their acquired learnt clauses. However, because the solver often learns over
millions of clauses during its search, it is impractical to share all of them. Therefore, literal
block distance (LBD) [4] is often used for clause selection. LBD was originally proposed as
an evaluation metric of clause quality. LBD has been used by many successful solvers in SAT
competitions !, in both sequential and parallel solvers.

First, in this study, to assess the performance of the LBD in parallel clause sharing, we
conducted three preliminary experiments: (1) a comparison of solver performance using LBD
and clause size, (2) an analysis of the utilization ratio of shared clauses, (3) a comparison of
LBD values of shared clauses between originating and receiving workers. The results of the
experiments indicate that LBD may not be the optimal metric for learnt clause sharing; the
size of the clause performs competitively with (actually slightly better than) LBD, and the
utilization ratio of the shared clause is low. We attribute the results to the LBD’s inherent
dependency on the search state. The LBD value indicates the number of variable decision
levels in the clause. The decision level corresponds to the depth of the branching decision tree.
Several factors influence the tree, including the decision strategy, learned clauses, heuristics
status, and solver configurations. We call these varying conditions “search states” and say
LBD has an inherent dependency on the search state. However, each parallel worker has
a unique search state; particularly in portfolio-type parallel SAT solvers, they should be
different. Therefore, a sharing clause good for its originating worker, as measured by the
LBD, may not be good for others. According to Audemard and Simon, “LBD is relative
to the current search of each solver, and a good clause for one thread may not be good for
another one.” [5].

Therefore, we propose Parallel Clause sharing based on graph Structure (PaCS), a
search-independent method that uses the graph structure derived from the input CNF of
SAT problems. It evaluates clauses using a metric [21], that measures the strength of the
connection between variables in the clause and their neighboring variables. The weight of the
edge in the variable incidence graph (VIG) quantifies the strength of variables connection.
This metric was originally proposed for the deletion of learnt clauses and demonstrated
comparable performance to LBD. We assume that using the graph of input CNF is effective
for parallel clause sharing because it is a common input for all parallel workers, enabling it
to identify good clauses for all workers. Furthermore, using edge weight can select clauses
whose variables’ Boolean values are more likely to be determined. A heavy edge implies that
the pair of variables is contained in a short clause or many clauses. Thus, variables with
heavier edges have a better chance of undergoing propagation. Moreover, various studies
have shown a relationship between the quality of clauses and their graph structures [20, 35].

We implemented a parallel solver that uses our proposal clause sharing selection method
and conducted performance evaluation experiments to compare it with LBD. The contribu-
tions of our research are as follows:

1. Through three preliminary experiments, we have demonstrated that LBD may not be the
optimal solution for selecting learnt clauses to share among parallel workers.

2. We propose PaCS, which uses a metric that represents the strength of the connection in
the graph structure for parallel clause sharing.

3. We compared the performance of a parallel solver using PaCS with LBD and found that
it outperforms solvers using LBD by 4% in the number of solved instances and by 12% in

PAR-2.

L SAT competition http://www.satcompetition.org/
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The remainder of this paper is organized as follows: Section 2 introduces SAT solvers
and their techniques, including learnt clauses and the concept of the graph structure of SAT
problems. Section 3 discusses related work. Section 4 presents our empirical observations of
LBD for clause sharing. Section 5 defines the proposed method for parallel clause sharing
using PaCS. Section 6 presents the results of the PaCS performance evaluation. Finally,
Section 7 summarizes the study and suggests future research directions.

2 Preliminaries

2.1 Satisfiability problem and SAT solver

The SAT problem determines whether at least one Boolean variable assignment can satisfy
a given logical formula. If an assignment can satisfy all clauses, the formula is satisfiable;
otherwise, it is unsatisfiable (UNSAT). The formula is generally provided in conjunctive
normal form (CNF), wherein variables are combined into clauses with disjunctions, and
the clauses are combined with conjunctions. A formula is in CNF if it possesses the form
(C1 ANCy N -+ ANCy,), where C; represents a clause. Each clause is a disjunction of literals
(Lin VLoV ---VL;y,), where L; ; represents a literal in clause C;. A literal is a variable
or its negation. An example of a CNF formula is (z V y) A (-y V z). Here, (z V y) and
(—y V z) are clauses, and z, y, -y, and z are literals where y and —y represent the positive
and negative forms of variable y, respectively.

The SAT solvers are programs for solving SAT problems. It is used to solve real-world
problems encoded in SAT, such as computer-aided proof [18] and binary neural network
verification [11]. Davis-Putnam-Logemann-Loveland (DPLL) algorithm [13] is the basis of
most SAT solvers. The DPLL algorithm contains decisions — providing an assumption of
Boolean (True or False) value to a variable — and incorporates propagation — determining
other variables’ Boolean values as the logical consequences of the decision. A conflict occurs
when a clause becomes false due to a wrong decision. Then, the previous decisions are
canceled (called backtrack), and the solver makes another decision. Modern SAT solvers are

conflict-driven clause-learning (CDCL) solvers [28, 29] that are based on the DPLL algorithm.

The CDCL solvers incorporate various techniques and heuristics [15, 27, 29], making it
possible to solve large and complex SAT problems efficiently. Probabilistic algorithms [34]
are another approach that randomly changes the Boolean values of variables until a solution
is found. In this paper, we focus on the improvement of CDCL SAT solvers.

2.2 Clause Learning

Clause learning [8] is an essential technique for CDCL solvers, aiming at improving efficiency
by pruning the search space. When a solver finds a conflict, it analyzes the root cause
and derives the counter-example as a new clause (learnt clause) to avoid revisiting similar
unsatisfiable assignments in future searches. Modern solvers often learn over millions of
clauses during searches. However, it is difficult to maintain all of the clauses due to the cost of
checking these clauses during propagation. Clause evaluation is necessary to selectively retain
more valuable clauses for future searches. The clause size, literal block distance (LBD) [4],
and activity (or clause version of a variable state independent decaying sum, cVSIDS) 2 are
widely adopted metrics. The size of a clause represents the number of literals contained in

2 MiniSat http://minisat.se/
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the clause. Shorter clauses are more effective in reducing the search space. Given a clause ¢
and literals I, size(c) := |{l € c¢}|. The LBD [4] is a popular clause evaluation metric and is
widely adopted by many state-of-the-art SAT solvers. The LBD value of a clause is defined as
the number of different decision levels to which the literals in the clause belong. The decision
level indicates the depth of the branching decision tree. The LBD value of a clause ¢ can be
calculated as LBD(c) := |{d(l) : | € c}| where d(I) represents the decision level of literal .
A clause with a lower LBD is considered more valuable. In addition to clause evaluation,
the LBD is used in other heuristics such as restart strategy [9] and decision branching [12].
Activity (or ¢VSIDS) measures how frequently a clause is used in the conflict analysis. The
more used clauses are more valuable, and a higher score is provided for recently used ones.
Among these three, the results of evaluation by LBD and Activity are based on the current
search state, such as the decision tree and maintained learnt clauses. Therefore, these values
are different at different search states, while size shows constant values.

2.3 Parallel SAT solver

Parallelization of SAT solvers is an important technique for improving solver performance,
leveraging plentiful computing resources such as affordable multi-core processors and cloud
computing services. A parallel SAT solver simultaneously utilizes multiple cores to solve
SAT problems. It shares valuable learnt clauses among workers to enhance parallel efficiency.
This may potentially help to solve larger or more complex problems more efficiently. Two
main approaches are adopted in parallel solvers: divide and conquer [10] and portfolio [19].
The divide and conquer approach splits the problem into smaller sub-problems, solves them
independently, and then combines the solutions. This approach possesses excellent scalability
because assigning Boolean values to some variables can easily split the search space. However,
load balancing and UNSAT proof are the challenges of the approach. The portfolio approach,
on the other hand, does not split the problem; it uses multiple different strategies (i.e., search)
simultaneously for the same problem, and it subsequently selects the best solution among
these strategies. Although this may help resolve the issue of divide and conquer by design,
scalability is a challenge due to the difficulty of ensuring various search strategies. In the
recent SAT competition, most successful parallel solvers adopted the portfolio approach.

Sharing information between parallel workers is crucial to enhancing overall efficiency.
This is usually done by sharing learnt clauses among parallel workers. As each worker explores
different search spaces, they generate different learnt clauses. Sharing these clauses may
help other workers leverage collective knowledge and avoid redundant searches. However,
sharing many clauses increases communication overhead and propagation costs. Therefore, it
is essential to appropriately manage the volume and frequency of sharing. With regard to
these factors, the size and LBD values of clauses are often used as the selection criteria; the
clauses expected to be valuable for other workers are shared based on the evaluation of these
metrics. For example, ParKissat-RS ® and PRS *, which are the winner in the parallel track
of SAT competition 2022 and 2023, respectively, share the clauses with LBD values of one or
two by default. Section 3.1 gives a detailed explanation of the method.

3 ParKissat-RS https://github.com/shaowei-cai-group/ParKissat-RS
% PRS https://github.com/shaowei-cai-group/PRS-sc23
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2.4 Structure of SAT

Industrial SAT problems encoded from real-world problems exhibit unique structures and
patterns, which can differentiate them from randomly generated problems. For example,
the treewidth of the graph representation of the industrial SAT problem is notably small
[14]. The centrality of SAT refers to how central or critical a variable or clause is within the
problem’s structure [24]. Industrial problems exhibit a clear community structure [1, 31],
and some correlation between the degree of the community (modularity) and runtime of the
solver is known [30]. Additionally, many structural properties, such as mergeability [37] and
the role of backdoor variables [36], have been studied to understand the efficiency of SAT
solvers.

The graph of the SAT problem is often represented using a variable incidence graph
(VIG). In this graph, nodes represent variables, and edges indicate the existence of clauses
containing these variables. Each edge has a weight, and it is determined based on the
strength of the variable connection. Heavier weight is given to edges whose variables coexist
in more or shorter clauses. The definition of weight w(e,, ;) of the edge between v; and v;
is Zcec,vi,vjec 1/ (\gl) following the existing research [1]. A clause variable incidence graph
(CVIG) is a bipartite graph where variables and clauses are represented as nodes on each
side, respectively, and an edge exists between a clause and a variable if the variable exists in
the clause. In this study, we use VIG as the graph representation of the SAT problem.

3 Related work

3.1 Clause sharing between parallel workers

ManySAT [17], a portfolio-type parallel SAT solver, uses size as a metric for sharing learnt
clauses, where all clauses of size eight or less are shared. Then, they suggested dynamically
varying the criterion of the shared clauses [16]. Painless [26] is a parallelization framework
that has been recently used by many solvers. This involves running a process called Sharer
for clause sharing. The winners of the parallel track SAT competition 2022 and 2023,
ParKissat-RS and PRS, adopted the painless framework. They used LBD as the criteria to
determine the clauses to be shared. P-KISSAT [6], also based on the painless framework,
dynamically varies the criterion for sharing learnt clauses depending on the number of clauses
generated by the producer of clauses. Hordesat [7], and its derivative Mallob [33] are popular
in large-scale parallel environments (such as high-performance computing) In particular,
Mallob achieved excellent results in both the parallel track of the SAT competition 2023
and the cloud track. Hordesat is a large-scale parallel search solver designed for distributed
memory and compute node environments. In Hordesat’s learnt clause sharing, size is used as
a metric for all-worker-to-all clause sharing. Workers add their learnt clauses to a shared
buffer. The added clauses are sorted in ascending order of size, and the smaller ones are
shared with other parallel workers up to a certain number of clauses. Mallob merged buffers
according to the job tree of parallel workers to address problems related to this buffer-sharing
system in Hordesat, such as duplicate clauses and the sharing of blank spaces within the
buffer.

Several studies focused on the mechanism of sharing learnt clauses rather than just
the criterion to share. The ppfolio ® used an extreme strategy in which no learnt clauses
were shared and achieved excellent results in the 2011 SAT competition. Lazaar et al. [25]

5 ppfolio https://www.cril.univ-artois.fr/~roussel/ppfolio/
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proposed a sharing strategy that focuses on determining the workers to receive them rather
than on the selection of clauses. Audemard et al. [3] proposed psm, which measures the
usefulness of a clause in the current search context using variable assignments. Audemard et
al. [2] also proposed the psm-based “freeze and activate” strategy, which shares clauses but
freezes some that are deemed unnecessary in the current search. While most SAT solvers
operate on CPU, there have been efforts to use GPU for rapid and parallel evaluation of
clauses [32].

3.2 Clause quality evaluation using graph structure of SAT

Although LBD is more popular than size, size is also used as a secondary metric when
two clauses have identical LBD values. Size is a structural property of the SAT graph,
which is static in any search state; however, it is considered a poorer metric than LBD.
However, Jabbour et al. [22] refocused on the effectiveness of the size metric against LBD.
They showed that size-based evaluation with some randomness can improve the solver’s
performance. Vallade et al. [35] demonstrated the relationship in a clause between the LBD
value and the number of communities in the graph representation of SAT. They proposed a
novel clause evaluation method that combines the number of communities and the clause’s
LBD value. Jamali et al. [23] proposed using the structural properties of the SAT problem for
heuristics, such as decision and clause evaluation. They selected the betweenness centrality
of the variables in a learnt clause as an evaluation metric and demonstrated that the method
could improve the solver’s performance. We proposed a clause evaluation method using the
graph structure derived from the input CNF of the SAT problem, called WANCE [21]. Tt
favorably evaluated clauses with variables that had strong (heavy) edges to their neighboring
variables in VIG. Details of the definition are presented in Section 5.

4  QObservations

This chapter shows the results of preliminary experiments to assess the performance of the
popular method, LBD, in parallel clause sharing. Remember that the LBD value indicates
the number of literal blocks in the clause; thus, it depends on the search states. This allows
evaluation of the clause’s quality optimized according to the current search state. However,
in the parallel clause-sharing situation, this can be a disadvantage because the search state
of each parallel worker could be different; particularly in the portfolio approach, it should
be different in terms of efficiency. To test this hypothesis, we conducted the following
experiments.

4.1 Performance comparison of criteria for sharing clause selection

First, we compared the performance difference due to the clause-sharing criteria in a parallel
SAT solver. We selected ParKissat-RS, the state-of-the-art and champion parallel solver, in
the SAT competition 2022 parallel track. ParKissat-RS decides the clauses to share among
parallel workers, as follows. It adopts worker-sharer architecture. Worker generates learnt
clauses through search. Only learnt clauses with LBD values of either 1 or 2 are submitted to
the buffer. Next, the sharer broadcasts these clauses in the buffer to the other workers up to
1500 literal lengths per sharing cycle. In this experiment, we modified the submission criteria.
Size-based criteria submit all clauses with their size of or less than x, where we set = as
1,2,3,5,8,10. Also, no sharing policy (x = 0) is compared with LBD. The experimental setup
is as follows: We configured the number of parallel workers at 16, set the time limit to 5000
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s, and established a memory limit of 128 GB, all by specifying the options in ParKissat-RS.

For other settings, we adhered to the default configurations and implementations, including
the constraint of sharing literal lengths up to 1500. The benchmark is 400 instances from
the SAT Competition 2023. The experiments were conducted on a computer equipped with
an AMD Threadripper Pro 3995WX processor with 64 cores and 512 GB RAM (four 128
GB DDR4-3200 MHz slots).

Table 1 Performance comparison among clause sharing criteria using LBD, no sharing, and size.

Numbers in the table represent the count of instances in each satisfiability, where SAT denotes
instances identified as satisfiable and UNSAT as unsatisfiable within the time limit, respectively.

Criterion SAT UNSAT | SAT+UNSAT | PAR-2
LBD (< 2) 124 141 265 3715

No sharing | 126 131 257 3973

Size (< 1) 126 147 273 3631

Size (< 2) 126 141 267 3650

Size (< 3) 125 143 268 3619

Size (< 5) 125 144 269 3601

Size (< 8) 129 141 270 3528
Size (< 10) | 121 124 245 4300

The experimental results are shown in Table 1. The first column shows the solvers
with each sharing criteria. The numbers in the table represent the number of instances
in each satisfiability, where SAT denotes instances identified as satisfiable and UNSAT as
unsatisfiable. This experiment showed no significant difference in the performance between
LBD and Size-based criterion from 1 to 8 (actually, the performance of size is better than
that of LBD). The largest number of solved problems is by the size < 1 criterion, and the
lowest PAR-2 score is by the size < 8 criterion. LBD is generally an efficient metric for
evaluating learnt clauses compared to their size. However, the results of this experiment
suggest that in the task of sharing learnt clauses among parallel workers, LBD performs
similarly to size.

4.2 Analysis of utilization differences between imported and learned
clauses with same LBD value

Next, we compared the usefulness of shared clauses between “learned” and “imported.” A
clause is termed “learned” when a worker derives it during their search. When this clause is
shared with other workers (i.e., exported), it becomes “imported” for those other workers.
Therefore, the same clause will have a different term depending on the worker by which it
was acquired. Additionally, the worker that originally learned the clause is referred to as the
“learned” worker, while the worker that received the shared clause is called the “imported”
worker. In general, each worker shares the learnt clauses that are expected to be useful to
other workers. However, the LBD value can be different in each parallel worker because each
worker has a unique search state. In the ParKissat-RS implementation, the LBD value is
converted to the clause’s size when sharing. Then, it is updated (re-evaluated) according to
the search state of the imported worker when necessary. This subsection’s experiments aim
to analyze the difference in the degree of usefulness between learned and imported clauses.
This experiment used the notion of used% as below.

17:7
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4.2.1 Definition of used%

The utilization of the clause means that they were used in conflict analysis. We defined used
as a Boolean value of the clause utilization, which is 1 if the clause is used at least once in
conflict analysis and 0 otherwise.

used(c) :=

1 if ¢ is referred in conflict analysis
0 otherwise

In the context of this study, the following terms are defined:

C': the set of all learnt clauses in all parallel workers.

i: a worker ¢ € W where W represents all parallel workers.

:C'": the set of learned clauses acquired at worker i, V;C' C C.

;C'°™: the set of clauses learned by the worker i.

;O0TmPort: the set of clauses imported from another worker to i.

iCy: the set of learned clauses for which LBD value is x at worker 4.

iC(z,y)i the set of learned clauses for which LBD value is x and the clause size is y.

For example, ;O™ refers to the set of all clauses with LBD of 2 in worker i that are
learned at worker i. The LBD value of imported clauses C'™P°'t refers to the value at the
learned worker before sharing, not the re-evaluated value at the imported worker after sharing.
Furthermore, the percentage of used clauses within a set C' is defined as:

EiEW,CGiC U.SGd(C)
Uiy i€

where |C| represents the number of clauses in C.

We used ParKissat-RS as the base solver, with two parallel workers, a time limit of 1000
s, and a benchmark of 400 instances on the SAT competition 2023 benchmark. All learnt
clauses and their information were written to an external file, then used% was calculated
later. The clause was written when the clause was learned, used, deleted, its LBD value
was updated, and the search ended. We exclude clauses with a size equal to or less than 2
because they are always watched for propagation and don’t have the concept of being used
in ParKissat-RS. In its default setting, only the clauses of LBD value of less than or equal
to two are shared up to 1500 literal lengths. To analyze the utilization trends of imported
clauses using broader sets of clauses, we increased the LBD value criterion for clause sharing
from the default of 2 to 5, and we expanded the maximum shared literal size from the
default of 1,500 to 30,000. We performed experiments on the same computer as the previous
experiment.

used%(C) :=

4.2.2 Analysis of used% according to LBD values

We analyzed the differences of used% between imported and learned clauses for the same
LBD value. We specifically compared the used%(CmPort) and used%(C¥™), respectively,
for LBD values x ranging from 1 to 10. Remember that the LBD value of the imported
clause represents the LBD value being evaluated by the learned worker, not by imported
worker that was reevaluated after sharing. This setup is to observe the gap of use of the
same evaluation clauses — given a clause, is there any difference of use % at learned worker
and imported worker? There is no difference if the evaluation shows a common usefulness for
all parallel workers. Figure 1 shows the result of randomly selected four instances from all
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benchmark instances for further analysis. The horizontal and vertical axes present the value
of the clause’s LBD and the used% of these clauses, respectively. The yellow and blue lines
represent learned and imported clauses, respectively. The numbers in the line chart are the
number of clauses for each LBD value.
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358,96350,20818,27. 210
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
LBD LBD

118,492

20
32,25924,49719,06014,75!

Figure 1 Differences of used% at each LBD value between learned and imported clauses.

The yellow line consistently showed that the used% decreased as the LBD value increased
(i.e., worse clauses). In contrast, for the blue lines, the variation in used% with LBD value
was less. Furthermore, used% were much lower than those of learned clauses for the same
LBD value. This result indicates that a clause considered useful at an learned worker is not
necessarily useful for imported worker.

4.2.3 Analysis of used% according to LBD values and size

We plotted the data into a heatmap to better understand the relationship between LBD, size,
and used%. The used%(ngg)ortEd) and used%(Cég‘f;)"ed) of LBD of = and size of y clauses
are shown in Figure 2. Two instances out of the previous four are shown as examples owing
to the space limitation. The vertical and horizontal axes indicate the LBD value and size,
respectively. The cell color indicates the used%, where the closer the color is to dark blue, the
higher the used%, whereas the lighter the color, the lower the used%. Same to the previous
experiment, the LBD value of the imported clause is that at the learned worker, not after
sharing and at ¢mported worker. In the learned heatmap, higher used% was observed for
lower LBD values, and vice versa. The result indicates that the LBD value determines how
high or low the used% is, regardless of the size of the clause. In contrast, in the imported
heatmap, the used% seems to depend on the size rather than the LBD value. This suggests

17:9
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that the LBD value does not primarily indicate the usefulness of imported clauses, as deduced
from the used% metric. Instead, clause size seems to be associated with used%. This result
is consistent with that of the previous experiment. The dark blue cells whose LBD and size
are equal in the imported figure showed considerably high used%. However, the number of
these clauses was limited.

multiplier_13bits_miter_15

Imported

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Size

10 20 30 a0 50 60 70 80
Used %

asconhashv12_opt64_H9_M2-LSGbSPGEM_m2_7.c

Imported Learnt

8D

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Size Size

10 20 30 40 50 60 70 80
Used %

Figure 2 Used% heatmap of LBD and size, comparison of clauses learned and imported.

4.2.4 Distribution of used% on LBD among all instances

Figure 3 shows the statistical summary of all the benchmark instances as the box plot. The
box plot illustrates the distribution of used% among instances. The mean used% for each
LBD value was used as the value for an instance. The center line of the box represents
the median instance, and the ends of the box represent the first and third quartile points,
respectively. The edge lines represent the maximum and minimum values, respectively. We
excluded outliers from the figure for readability; instances that are 1.5 times smaller or larger
than the first and third quartile values. In addition, instances that generate no imported
clauses (e.g., the solver finds a solution before no sharing is conducted) are excluded from the
result. This figure substantiates that the trend observed in the example instances represents
the general trend across many instances.

4.3 Comparison of LBD values of shared clauses at learned and
imported workers

In the previous experiments, we compared the used% in learned worker and imported worker,
using the LBD value that is calculated at learned worker. Next, we quantify the changes
in LBD values after sharing; between the values at originating (learned) worker and at
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Figure 3 Distribution of used% for 400 benchmark instances at each LBD value.

receiving (imported) workers after reevaluation. We refer to the LBD value at learned worker
as learned LBD, and that at imported worker as imported LBD, respectively. The learned
LBD and imported LBD can be different because each worker uses a different decision tree.
We compared the change from learned LBD to imported LBD. This experiment aims at
investigating the extent to which the originally highly evaluated (and thus shared) clause
is evaluated in the imported worker after sharing. This experiment used the same setup as
those in the previous experiment. Table 2 shows the result. Each row represents the LBD at
the learned worker, and each column represents the imported LBD. The number in each cell
refers to the percentage of clauses defined by

| Clearned:a:,imported:y |

|Clearned=ac |
where x is the learned LBD, and y is the imported LBD. This indicates the ratio of clauses
C, (LBD = z) at learned worker that are re-evaluated to y at the imported worker. The
value is averaged for all instances. Remember that we excluded clauses with a size of one or
two following the previous experimental conditions.

Table 2 Comparison of LBD values of shared clauses at originating and receiving workers. 10+
denotes the sum of the percentages for clauses whose size is greater than or equal to 10. The sum of
the horizontal axis (rows) adds up to 100%.

imported LBD
1 2 3 4 5 6 7 8 9 10+
5% 8% 33% 16% 11% 7% 5% 3% 3% 2%
3% 6% 36% 14% 9% 6% 5% 4% 3% 3%
3% 5% 5%  25% 13% 9% 8% 6% 5% 4%
2% 2% 2% 3%  18% 10% 10% 8% ™% 5%
2% 2% 2% 2% 2%  13% 10% 9% 9% &%

learned LBD

T W N =

If LBD can measure the common quality for all parallel workers, imported LBD is expected
to be similar to learned LBD; A valuable clause for a learned worker is also valuable for
imported workers. However, the result reveals that more than 90% of learned clauses are
re-evaluated worse at imported worker. This means a significant change in the LBD values
after sharing. This observation can be explained with the previous used% analysis; The
possibility of the clause being updated is low because the utilization of imported clauses is
limited.
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Through these experiments, we conclude that LBD is not enough for the clause quality
evaluation in the parallel environment. We suggest that it is attributed to LBD’s search
state dependence. Under such conditions, we suggest using another clause evaluation metric
that is independent of the search state.

5 Proposal method and implementation

Our proposed method, PaCS, evaluates clauses using a metric originally proposed for the
clause deletion task [21]. The metric, namely average external edge weight (AEEW), measures
the weight of the edges in the VIG of the input SAT problem. The sequential solver that used
AEEW as its primary criterion for clause evaluation demonstrated competitive performance
with LBD. The value of AEEW for a clause c¢ is expressed as follows:

AEEW (¢) := avg({w(e)/|c| : e = (v;,v;) € E,v; € ¢c,v; ¢ c})

This concept denotes the strength (presented as the weight of edge) of the connection between
the nodes v; and v;, where v; belongs to the learnt clause ¢ (v; € ¢) and v; is the neighboring
variable of v; that does not belong to ¢ (v; ¢ ¢). E denotes all edges in G, Ve € E, and
e = (v;,v;) indicates that edge e connects to variables v; and v;. Function w(e) returns
the weight of edge e in G, which is defined in Section 2.4. |c| denotes the size of ¢, and the
function avg(X) calculates the arithmetic mean of set X, defined as avg(X) =1 Y"1 | a5,
where n denotes the count of elements in X (] X|). A higher AEEW value (heavier edge on
average or smaller size) indicates a higher quality.

We suggest that AEEW can measure a clause’s quality from a new perspective: “the
possibility of determining the Boolean values of variables in the evaluating clause”. A higher
AEEW value indicates either a heavier average edge weight or fewer variables in the clause.
A heavy edge implies that the pair of variables belonging to the edge is contained in a short
clause and/or many clauses as defined by the weight. When the Boolean value of one variable
is determined, the Boolean value of the other variable is more likely to be determined through
propagation. Also, the fewer variable clauses (shorter clauses) have a higher possibility of
determining all variables in the clause. Thus, higher AEEW clauses have a better chance
of determining their variables’ Boolean values easily. Consequently, this allows AEEW to
positively evaluate clauses that are more likely to be satisfied, initiate unit propagation, or
induce conflicts.

We focused on AEEW’s search-independent property, which is attributed to its definition
using the graph structure of INPUT CNF'. Thus, we propose PaCS using AEEW as a metric
for selecting sharing clauses in parallel SAT solvers. This has the potential to address
the challenges LBD faces in parallel environments. Algorithms 1 and 2 show how PaCS
determines which clauses to share. For implementation, we used ParKissat-RS as the base
solver. ParKissat-RS adopts a worker-sharer parallel architecture. Workers add acquired
learnt clauses that meet the criteria to a buffer for sharing. In the default configuration, the
criterion has an LBD value of two or less. The sharer broadcasts all clauses in the buffer
to the workers at regular intervals. We modified both procedures in the worker and sharer
and adopted a two-step selection in PaCS. Algorithm 1 describes the procedure in a worker,
the first-step selection. A clause is stored in buffer and forwarded to sharer if its size is
less than or equal to a predefined value limit_size or its LBD values less than or equal to
two. The limit_size and LBD < 2 serve as the initial screening criteria to decrease the
computational cost of calculating and sorting the AEEW values in the sharer procedure. In
the case of LBD and size, screening is not necessary by setting a constant threshold (e.g.
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size < 8) among instances. However, it is difficult to set a constant threshold by AEEW
since its value varies largely from instance to instance. Therefore, we set initial screening
to shortlist millions of obtained clauses by size to a manageable amount and then sort the
remaining clauses according to the value of AEEW. Furthermore, we added the LBD < 2
criterion for the following cnt implementation. Then, the procedure in sharer serves as the
second screening, as described in Algorithm 2. One worker constructed the instance graph
in a parallel environment on shared memory, and then, upon completion, other workers or

sharers used it. The AEEW values are calculated for all clauses in the buffer and then sorted.

The sorting is in descending order of AEEW, ascending order of LBD if the AEEW values
are equivalent, and ascending order of size if the LBD values are equivalent. Higher AEEW
clauses are shared more preferentially. The solver counts cnt as the number of clauses in
the buffer with an LBD value less than or equal to two. This e¢nt constrains the number of
clauses to be shared at line 6; this helps to exclude the effect of the total number of sharing
clauses and observe only the effect of the change in selection criteria.

This implementation allows us to isolate and compare the effects of changing the criteria
for selecting shared clauses. Subsequently, the sharer executes learnt clause sharing at
predetermined intervals every 0.5 s. The selected clauses are broadcast to parallel workers
from the top of the sorted clauses.

Algorithm 1 Clause sharing procedure of PaCS in worker.

Require: obtained learnt clause ¢, LBD criteria limit_size
1: if c.size < limit__size or c.lbd < 2 then
2: buffer < ¢
3: end if
4: submit ¢ to buffer

Algorithm 2 Clause sharing procedure of PaCS in sharer.

Require: all buffered learnt clauses C, counter cnt, instance graph G
1: for clause ¢ in C' do

2 calculate AEEW value for clause ¢ using G

3 if c.lbd < 2 then cnt++

4: end for

5: sort(buffer)

6: broadcast the top cnt clauses in the buffer according to the sorted order.

6 Performance Evaluation

6.1 Experiment setup

We evaluated the performance of the solver using the PaCS method and compared its
performance with that of the base solver, ParKissat-RS, using LBD. We compared four types
of solvers in 16 parallel environments (16 workers): Base — the default ParKissat-RS. Size
(size < 1 or 8) — share clauses whose size is less than or equal to eight (same as presented in
Section 4.1). Random — randomly select clauses from those whose sizes are less than 100,
up to the quantity corresponding to the number of clauses with LBD values of one or two;
PaCS (size < z) — select clauses using PaCS from those whose size is less than or equal to x
(limit__size), up to the quantity corresponding to the number of clauses with LBD values of
one or two.
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The benchmark comprised 1200 instances from the main tracks of SAT competitions
held between 2021 and 2023 (400 instances per year). We conducted the experiments on a
computer with an AMD Threadripper Pro 3995WX processor (64 core) and 512 GB (128
GB 4 slots, DDR4-3200 MHz) RAM. We used the default ParKissat-RS implementation,
adding the necessary functions for PaCS, and only changed the timeout option. No other
options for the running solvers. We evaluated the solver’s performance based on the number
of instances solved within a time limit of 5000 s on the CPU clock and the PAR-2 score,
which represents the mean time required to solve an instance with an additional penalty of
5000 s for each unsolved instance.

6.2 Evaluation result

Table 3 summarizes the results of our experiments, in which we compared base, random,
size < 1, 8, and PaCS, whose initial screening size is between 5 to 9. SC21, SC22, and
SC23 present the benchmark instance set from the SAT competition 2021-2023, respectively.
SAT and UNSAT indicate the number of instances identified as satisfiable and unsatisfiable,
respectively. Therefore, a higher number indicates a better result. The cactus plot in Figure
4 demonstrates the same results; however, the PaCS results are limited to size < 5,7 for
readability.

Table 3 Performance evaluation results corresponding to each solver.

SC21 SC22 SC23 Total | PAR-2
Criterion SAT UNSAT | SAT UNSAT | SAT TUNSAT
Base 153 162 158 153 124 141 891 2934
Random 154 156 159 148 125 137 879 3170
Size (size < 1) 155 160 160 151 126 147 899 2931
Size (size < 8) 154 167 159 160 129 141 910 2754
PaCS (size < 5) 155 170 162 164 128 148 927 2612
PaCS (size < 6) 155 169 163 164 124 150 925 2634
PaCS (size < 7) 157 169 160 166 127 150 929 2595
PaCS (size < 8) 154 168 161 164 127 148 922 2659
PaCs (size < 9) 156 168 163 164 124 150 925 2642

The size-based selection solver performed marginally better than the LBD, which is
consistent with the results of Section 4.1. However, the random one worsened the performance.
The solver’s performance using PaCS is overall better than that of the base solver using
LBD, particularly with the initial size seven screenings. It solved 38 more instances (+4.2%)
and achieved an average PAR-2 score improvement of 339 (—11.6%). More improvement
was observed in the UNSAT instances. At a high level, UNSAT instances require good
learning for their proof, and we assume that PaCS contributed to the identification of these
valuable clauses for all workers. This improvement can be attributed to two properties of
PaCS. PaCS can share valuable clauses for all parallel workers irrespective of their search
states because it depends only on the graph structure converted from the CNF of the input
problem. This implies that PaCS can assess the general usefulness of clauses across parallel
workers, whereas LBD indicates the value of a worker’s search state. Furthermore, PaCS can
favorably select clauses whose variables are more likely to be propagated because it highly
values heavier edges in VIG. After determining the Boolean values of variables in the clauses,
it can identify the clauses that cause conflict more frequently.
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Figure 4 Performance evaluation results in cactus-plot. PaCS results are limited to size < 5,7
for readability.

7 Conclusion

This study focuses on the clause-sharing strategy for parallel SAT solvers to improve them.

First, we investigated the performance of LBD, the current popular metric, in parallel clause
sharing. Preliminary experiments showed that LBD is not optimal for clause evaluation in a
parallel environment. Therefore, we propose a novel clause-sharing method, Parallel Clause
sharing based on graph Structure, PaCS. It can evaluate the common quality for all parallel
workers using the graph structure derived from the input CNF of the SAT problems. The
performance evaluation experiments demonstrated that PaCS outperforms the state-of-the-art
parallel solver using LBD. These results showed the potential for enhancing the clause-sharing

strategy of parallel solvers by leveraging the graph structure inherent in SAT problems.

Furthermore, we believe that this study opens avenues to reinterpret and understand the
quality of learnt clauses more deeply. The quality of clauses has often been evaluated by their
size (including substantial size measured by LBD). We argue that AEEW is the extended
concept of size, which encompasses what size implies. Short clauses have a higher possibility
of determining Boolean values, which are more likely to induce unit propagation and conflict,
contributing to the search. The AEEW can assess the possibility directly using the weight of
edges in the VIG.

The following items are for future work. First, there is potential for improving performance
by refining the implementation. The construction of graphs entails a certain duration, which
may span up to several hundred seconds in one worker, depending on the problem. Further
enhancements to the data structures can contribute to performance improvements. The
current algorithm includes pre-defined parameters, such as initial screening before submission
to a buffer, which can be optimized. The second entails exploring adaptive strategies,
such as altering selection criteria or the number of clauses to be shared. Third, large-scale
parallel experiments may be studied further. Conducting these experiments may validate the

17:15

SAT 2024



17:16

Parallel Clause Sharing Strategy Based on Graph Structure of SAT Problem

scalability and practical applicability of our proposal method. The fourth is to replace LBD
with PaCS for all use in parallel solvers, for example, clause deletion strategy in each parallel
worker and optimization of the number of sharing clauses without LBD. Fifth, we would like
to explore the theoretical justification and investigation of the implications of AEEW values,

the possibility of propagation. Finally, in-depth investigations of the relationship between

clause quality and graph structure from a broad perspective can contribute to understanding

the behavior of SAT solvers and the quality of learnt clauses. These future works aim to

optimize and expand the application of PaCS and explore new frontiers of clause evaluation.
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