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Abstract
We study the symbolic approach to the propositional satisfiability problem proposed by Aguirre
and Vardi in 2001 based on OBDDs and symbolic quantifier elimination. We study the theoretical
limitations of the most general version of this approach where it is allowed to dynamically change
variable order in OBDD. We refer to algorithms based on this approach as OBDD(∧, ∃, reordering)
algorithms.

We prove the first exponential lower bound of OBDD(∧, ∃, reordering) algorithms on unsatis-
fiable formulas, and give an example of formulas having short tree-like resolution proofs that are
exponentially hard for OBDD(∧, ∃, reordering) algorithms. We also present the first exponential
lower bound for natural formulas with clear combinatorial meaning: every OBDD(∧, ∃, reordering)
algorithm runs exponentially long on the binary pigeonhole principle BPHPn+1

n .
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1 Introduction

The Boolean satisfiability problem (SAT) is the decision problem, where given a CNF formula
we are to decide whether it is satisfiable or not. The symbolic approach to SAT is to gradually
transform the input formula into a special representation model in which the satisfiability
problem can be easily solved. In our case, the representation model is an ordered binary
decision diagram (OBDD) due to Bryant [4]. An ordered binary decision diagram (OBDD)
represents a Boolean function as a branching program with two sinks such that on every
path from the source to a sink, variables appear in the same order. This restriction on the
order of variables allows handling of the diagrams very efficiently.

Assume that the input formula is φ =
∧m

i=1 Ci. The naive symbolic approach is to
choose some permutation σ of the set [m] and iteratively compute OBDD representing∧k

i=1 Cσ(i) for k = 1, 2, . . . ,m. Algorithms implementing this approach vary in the way of
choosing a permutation σ (for example, it can be chosen dynamically and not straightaway)
and in the way of choosing the order of variables in OBDD. Algorithms that choose the
one order of variables in OBDD and do not change it during the execution we denote by
OBDD(∧) algorithms. Algorithms that dynamically change the order in OBDD we denote
by OBDD(∧, reordering) algorithms.

Aguirre and Vardi suggested a smarter symbolic approach called symbolic quantifier
elimination [1, 19]. The key idea is that we have to obtain OBDD representation not of
the formula φ(x1, x2, . . . , xn) itself but rather ∃x1∃x2 . . . ∃xnφ. On one hand, the exterior
quantifiers are not necessary to be applied since the satisfiability testing is easy for OBDD.
But in some cases, one can move the quantifier in the middle of the formula. Namely, if all
occurrences of a variable xj are among clauses Cσ(i) for i ∈ [k], then the quantifier for xj
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19:2 On Limits of Symbolic Approach to SAT Solving

can be put in front of
∧k

i=1 Cσ(i) and we can apply projection over xj to the current OBDD.
In other words, now the current OBDD represents not a conjunction of clauses

∧k
i=1 Cσ(i)

but rather ∃xi1 . . . ∃xiℓ

∧k
i=1 Cσ(i), where the variables xi1 , . . . , xiℓ

do not appear in Cσ(i) for
i ∈ {k + 1, . . . , n}. Algorithms implementing this approach vary on how they can choose the
permutation σ (possibly in a dynamic way), variables orders in OBDDs, and also on the way
of moving existential quantifiers inside the formula if it is permitted. Similarly, we call such
algorithms by OBDD(∧,∃) and OBDD(∧,∃, reordering) algorithms depending on whether it
is allowed to change variable orders in OBDDs.

In this paper, we study theoretical lower bounds on the running time of
OBDD(∧,∃, reordering) algorithms. The running time of every such algorithm can be
bounded below by the maximal size of constructed OBDDs. Our goal is to construct hard
formulas for which any algorithm must construct an OBDD of exponential size not depend-
ently on choosing a permutation σ, variable orders in OBDDs, and moving of existential
quantifiers.

Previous results. The study of OBDD algorithms is highly connected with the study of
OBDD-based proof systems initiated by Atserias, Kolaitis, and Vardi [3] and then continued
by other researchers [14, 6, 5]. Lower bounds for OBDD algorithms follow from the derivation
size lower bounds in corresponding proof systems (if such lower bounds are known). In
contrast with DPLL and CDCL algorithms [2, 17] proving lower bounds on satisfiable
instances for OBDD algorithms is not harder than proving lower bound of unsatisfiable
instances. Indeed, if we know that φ is a hard unsatisfiable formula for OBDD(∧, . . . )
algorithms then the formula x ∨ φ that is obtained from φ by addition of the new variable x
to all clauses of φ is a hard satisfiable formula for the same class of OBDD(∧, . . . ) algorithms.
However, we do not know such a reduction in the other direction.

Lower bounds for OBDD(∧, reordering) algorithms on satisfiable formulas are rather easy
to prove. Indeed, since at the end, the algorithm necessarily represents the initial formula, it
is enough to construct a family of Boolean functions that have small CNF representations but
require OBDD of exponential size for every order of variables. For example, satisfiable Tseitin
formulas have such property [10]. Proving a lower bound for OBDD(∧, reordering) algorithms
on unsatisfiable formulas is harder since at the end of the execution the OBDD represents
the constant false and hence it has a constant size. However, exponential lower bounds for
OBDD(∧, reordering) algorithms on unsatisfiable formulas are implied from the lower bound
for corresponding OBDD based proof system; for example, unsatisfiable Tseitin formulas on
expanders and the pigeonhole principle are hard for OBDD(∧, reordering) algorithms [14].

At the same time unsatisfiable and satisfiable Tseitin formulas [14] and the pigeonhole
principle [7, 18] are easy for OBDD(∧,∃) algorithms.

Lower bounds for running time of OBDD(∧,∃) algorithms on unsatisfiable formulas follow
from the lower bounds of the derivation complexity in dag-like and tree-like OBDD based
proof systems [15, 20]. Unfortunately, the mentioned lower bounds’ proofs rely significantly
on the fact that all OBDDs use the same variable order. One more disadvantage of these
results is that the hard formulas are very artificial and they were constructed especially for
the proof of lower bounds.

Buss, Itsykson, Knop, and Sokolov showed that the ability to change order in OBDDs
makes OBDD proof systems stronger [6]. One can use the same technique to show that the
same is true for OBDD algorithms.

The paper [14] gives an exponential lower bound on the running time of
OBDD(∧,∃, reordering) algorithms on satisfiable formulas encoding that x is a codeword
of the specific linear code. The question about lower bounds for OBDD(∧,∃, reordering)
algorithms on unsatisfiable formulas was open before this paper.
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Some restricted lower bounds follow from the result of the paper [5] for corres-
ponding restricted proof systems. Namely, unsatisfiable Tseitin formulas are hard for
OBDD(∧,∃, reordering) algorithms if we bound the number of quantifiers that can be moved
inside the formula; recall that such formulas are easy without this restriction. Also, the
paper [5] gives an example of unsatisfiable formulas that are hard for OBDD(∧,∃, reordering)
algorithms if it is allowed to use only a small number (at most c logn, where c is a small
constant and n is the number of variables) of orders.

Our results. In this paper, we give two families of unsatisfiable formulas and we prove for
them that they require exponential running time of OBDD(∧,∃, reordering) algorithms.

The first family is based on a combination of hard satisfiable formulas for
OBDD(∧,∃, reordering) algorithms and hard unsatisfiable formulas for OBDD(∧, reordering)
algorithms. The proof strategy is the following. The algorithm either does not apply
projections and, thus, it simulates an OBDD(∧, reordering) algorithm on the hard unsat-
isfiable formula, or it applies projection and then it has to simulate the running of an
OBDD(∧,∃, reordering) algorithm on the hard satisfiable formula.

Using this approach we can get a stronger result. Namely, we construct hard formulas for
1−NBP(∧,∃) algorithms that use non-deterministic read-once branching programs (1−NBP)
instead of OBDDs as the base representation model. 1−NBP extends OBDD and is strictly
more efficient. We should stress that 1−NBP(∧,∃) algorithms have no practical sense since
for 1−NBP we cannot efficiently compute the result of the conjunction with a clause. But
a lower bound on the size of 1−NBP trivially implies the same lower bound on the size of
OBDD. We apply this extension in Theorem 20 to get that 1−NBP(∧,∃) algorithms and,
thus, OBDD(∧,∃, reordering) algorithms do not polynomially simulate tree-like resolution.
This result extends the result of Segerlind that OBDD(∧,∃) algorithms do not simulate
dag-like resolution [20]. The separation formula can be obtained from the hard formula for
1−NBP(∧,∃) algorithms by adding several extension axioms. In Lemma 18 we show that
adding extension axioms can not make the input formula simpler for 1−NBP(∧,∃) algorithm;
the proof essentially exploits non-determinism in 1−NBPs. On the other hand, it is known
that tree-like resolution with extension axioms is equivalent to the exceptionally strong proof
system Extended Frege.

The disadvantage of the first family of hard formulas is that they are very artificial. So
we prove the second lower bound for the formulas with a clear combinatorial meaning. The
second family of hard formulas is the binary pigeonhole principle BPHP2ℓ+1

2ℓ that encodes
that there are 2ℓ + 1 distinct binary strings of length ℓ. In Theorem 21 we show that every
OBDD(∧,∃, reordering) algorithm runs exponential time on BPHP2ℓ+1

2ℓ . The proof of the
lower bound is rather technically involved.

2 Preliminaries

2.1 Branching programs

Let X = {x1, . . . , xn} be a set of Boolean variables.
A branching program is a directed acyclic graph with one node with in-degree 0 and

out-degree 2 (source), several inner nodes with out-degree 2, and two nodes with out-degree
0 (sinks). Every node except sinks is labeled with some variable from X, one of its outgoing
edges is labeled with 0 and the other one is labeled with 1. One sink is labeled with 0 and
the other with 1.

SAT 2024
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Each node v in a branching program computes a Boolean function fv. The function fv is
defined recursively for v from sinks to the source. If v is a sink labeled with k ∈ {0, 1} then
fv ≡ k. Otherwise, suppose that v is labeled with a variable xi its outgoing edge labeled
with 0 goes to a node v0 and its outgoing edge labeled with 1 goes to a node v1. Then
we define fv(x1, . . . , xn) = fv0(x1, . . . , xn) if xi = 0 and fv(x1, . . . , xn) = fv1(x1, . . . , xn) if
xi = 1. Since the corresponding graph is acyclic the definition is correct for each node v. We
say that a branching program computes the function that corresponds to its only source.

A branching program is called read-once (denoted 1-BP) if each its path contains at most
one occurrence of each variable.

A branching program is called an ordered binary decision diagram (OBDD) if variables
on every path from the source to sinks appear according to some fixed order of variables.

Sometimes we write π-OBDD instead of OBDD to emphasize that variables appear
according to the order of variables π.

A nondeterministic branching program (NBP) is a directed acyclic graph with one node
with in-degree 0 and out-degree 2 (source) several inner nodes with out-degree 2 and two
nodes with out-degree 0 (sinks). Each node except sinks is either common and is labeled
with some variable from X as in the definition of branching programs or guessing and is not
labeled. Each common node has two outgoing edges. One of them is labeled with 0 and the
other one is labeled with 1. Each guessing node has two non-labeled outgoing edges. One
sink is labeled with 0 and the other with 1.

As in the definition of a branching program, each node v of NBP computes a Boolean
function fv. If v is a common node or a sink node then fv is defined as in the case of
deterministic branching programs. If v is a guessing node then it has two outgoing edges.
Denote heads of the edges as {v0, v1}. Then we define fv = fv0 ∨ fv1 .

A NBP is called read-once (1-NBP) if each of its path contains at most one occurrence of
each variable.

Let B be a deterministic or nondeterministic branching program. Then the size of B
denoted by |B| is the number of nodes in the corresponding graph.

Let f(x1, . . . , xn) be a Boolean function and let B be a deterministic or nondeterministic
branching program that computes f . Let ρ be a partial substitution into X. Then f |ρ =
f(ρ(x1), . . . , ρ(xn)) is a Boolean function that depends only on variables that are not in the
ρ’s domain. We denote by B|ρ the result of the following (syntactic) transformations of
B: we perform the transformation from bottom to top. Suppose node v is labeled with a
variable xi such that ρ(xi) = a ∈ {0, 1} and its outgoing edge labeled with 0 is going to a
node v0 and its other outgoing edge is going to v1. Then we delete v from the graph and
redirect edges that are going into v to the node va.

It is easy to see that B|ρ computes f |ρ.
Also, note that the size of B|ρ is at most the size of the B.

▶ Lemma 1 ([4], [22]).
1. Let A and B be two π-OBDDs for some order of variables π. And let ⊙ be a binary

operation e.g ∧, ∨, ⊕, etc. There exists an algorithm that takes A and B as inputs and
returns a π-OBDD that computes A⊙B. Moreover, the algorithm runs in time O(|A||B|).
Therefore its output has size O(|A||B|) (see Section 4 from [4]).

2. Let A be a π-OBDD and let x be its arbitrary variable. Then there exists an algorithm
that takes A as an input and returns a π-OBDD that computes ∃xA in time O(|A|2).
Therefore the size of the output is also bounded by O(|A|2). (see Section 4 from [4])

3. Let A be a π1-OBDD for some variables order π1 and let π2 be an another arbitrary
variables order. There exists an algorithm that takes A as an input and returns a minimal
size π2-OBDD B such that A ≡ B i.e. it computes the same Boolean function. Moreover,
this algorithm runs at most poly(|A| + |B|) steps (see Section 5 from [22]).
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▶ Lemma 2 (Lemma 4.2 from [11]). Let D be a 1-NBP computing a Boolean function
f : {0, 1}n → {0, 1} and let 1 ≤ i ≤ n. If we change every node in D labeled with the variable
xi by a guessing node and remove all labels of all its outgoing edges, then we obtain a valid
1-NBP that computes ∃xif(x1, x2, . . . , xn).

2.2 Proof systems
A resolution refutation of an unsatisfiable CNF formula φ is a sequence of clauses
C1, C2, . . . , Cs such that (1) Cs is the empty clause (identically false), (2) for all i ∈ [s], the
clause Ci is either a clause of φ, or can be obtained by the resolution rule from two clauses
with lesser numbers, where the resolution rule allows to derive A∨B from A∨ x and B ∨ ¬x.
A resolution refutation is tree-like if every derived clause can be used as a premise of the
resolution rule at most once.

Let φ =
∧
i

Ci be an unsatisfiable CNF formula. An OBDD refutation [3, 14] of φ is a

sequence of OBDDs D1, D2, . . . , Dt such that Dt is the constant false OBDD and for all
1 ≤ i ≤ t the diagram Di either represents a clause of φ or is obtained from the previous
Dj ’s by one of the following derivation rules.

Conjunction (or join) rule allows deriving a π-OBDD for D1 ∧D2 from π-OBDDs D1
and D2. We emphasize here that the conjunction rule can be only applied to OBDDs
with the same order of variables.
Projection (∃) rule allows deriving a π-OBDD represented ∃xA from a π-OBDD
represented A, where x a Boolean variable.
Weakening rule allows deriving a π-OBDD represented B from a π-OBDD represented
A if A semantically implies B, i.e. if every satisfying assignment of A also satisfies B.
Reordering rule allows deriving an OBDD represented B from an OBDD represented A
if A and B semantically equivalent (note that A and B may use different variable orders).

We consider several OBDD-based proof systems that use the rules defined above. We
specify the allowed rules in the brackets e.g. the proof system OBDD(∧) uses only the
conjunction rule meanwhile the proof system OBDD(∧,weakening) uses both the conjunction
and the weakening rules, etc. All proof systems use the conjunction rule.

Note that the projection rule is a special case of the weakening rule, thus, both of them
are usually not included in the brackets simultaneously.

The size of a refutation is the sum of the sizes of the OBDDs from it.
We also need to define 1-NBP semantical proof systems [5] that extends OBDD proof

systems.
Let φ =

∧
i

Ci be an unsatisfiable CNF formula. A 1-NBP refutation of φ is a sequence of

1-NBPs D1, D2, . . . , Dt such that Dt is the constant false 1-NBP and for all 1 ≤ i ≤ t the
diagram Di either represents a clause of φ or obtained from the previous Dj ’s by one of the
following derivation rules.

Conjunction (or join) rule allows deriving a 1-NBP for D1 ∧D2 from 1-NBPs D1 and
D2.
Projection (∃) rule allows deriving a 1-NBP represented ∃xA from a 1-NBP represented
A where x is one of φ’s boolean variables.
Weakening rule allow deriving a 1-NBP represented B from a 1-NBP represented A if
A semantically implies B.

SAT 2024
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As in the definition of OBDD proofs, 1-NBP proof systems can be defined with different
sets of inference rules. For example NBP(∧,∃) uses only the conjunction and the projection
rules.

We emphasize that 1-NBP proof systems are not proof systems in the sense of Cook-
Reckhow [8] unless P = NP since it is NP-hard to verify the correctness of a given proof.

Let G(V,E) be a graph. Let c : V → {0, 1} be a charge function. A Tseitin formula
T(G, c) depends on the propositional variables xe for e ∈ E. For each vertex v ∈ V we
define the parity condition of v as Pv :=

(∑
e∋v xe ≡ c(v) mod 2

)
, where e ∋ v means that

an edge e is incident to the vertex v. The Tseitin formula T(G, c) is the conjunction of parity
conditions of all the vertices:

∧
v∈V Pv. Tseitin formulas are represented in CNF as follows:

we represent Pv in CNF in the canonical way for all v ∈ V .

▶ Theorem 3 (Theorem 3.11 from [5]). There exists a family of constant degree graphs
Gn with n vertices such that any 1-NBP(∧) refutation of an unsatisfiable Tseitin formula
T(Gn, f) contains a 1-NBP of size at least 2Ω(n).

2.3 OBDD algorithms for SAT
The algorithm gets as an input a CNF formula ϕ, it chooses some order π on the variables
and creates both a π-ordered OBDD D (which initially is equal to the constant true function)
and a set of clauses S (which initially consists of all clauses of the formula ϕ). While S is
not empty the algorithm applies one of the following three operations:

Conjunction (or join) delete some clause C from S and replace D by a π-OBDD that
represents the conjunction D ∧ C;
Projection (∃) choose a variable x that has no occurrences in the clauses from S and
replace D by a π-OBDD for the function ∃xD;
Reordering choose a new order on variables π′ and replace D by the equivalent π′-OBDD.
Assign π := π′.

After every step of the algorithm, the following invariant is maintained: ϕ is satisfiable if and
only if

∧
C∈S

C ∧D is satisfiable. After the termination of the algorithm, the set S is empty; if

the diagram D has a path from the source to a sink labeled by 1, then the algorithm returns
“Satisfiable”, otherwise it returns “Unsatisfiable”.

We refer to the algorithms of this type as OBDD(∧,∃, reordering) algorithms. Besides,
we use a similar notation for algorithms that use some of the operations: we just enumerate
the used operations in the brackets. For example, the OBDD(∧) algorithms use only
the conjunction operation, and the OBDD(∧,∃) algorithms use only the conjunction and
projection operations.

Since join and projection for OBDDs may be performed in polynomial time and reordering
may be performed in time polynomial in the sizes of the input and the output, the running
time of an OBDD(∧,∃, reordering) algorithm is polynomially related to the sum of the sizes
of all states of the diagram D (here we ignore the time spent on choosing the next step of
the algorithm).

We also define a purely theoretical notion of 1-NBP algorithms for SAT that naturally
extends OBDD algorithms.

The algorithm gets as an input a CNF formula ϕ. It creates both a 1-NBP D (which
initially is equal to the constant true function) and a set of clauses S (which initially consists
of all clauses of the formula ϕ). While S is not empty the algorithm applies one of the
following two operations:
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Conjunction (or join) delete some clause C from S and replace D by a 1-NBP that
represents the conjunction D ∧ C;
Projection (∃) choose a variable x that has no occurrences in the clauses from S and
replace D by a 1-NBP for the function ∃xD.

An execution track of a 1-NBP (OBDD) algorithm is the sequence of all 1-NBPs (OBDDs)
constructed by the algorithm during its runtime. A total size of an execution track is the
total size of 1-NBP (OBDDs) in it. By the running time of 1-NBP algorithms, we mean
the sum of the sizes of all branching programs from its execution track. We will mainly
use the lower bound of the running time of 1-NBP algorithms as a lower bound for OBDD
algorithms.

▶ Lemma 4. From every execution track of an OBDD(∧,∃, reordering) algorithm one can
remove several diagrams to get an execution track of a correct 1−NBP(∧,∃) algorithm.

Proof. Since OBDD is a special case of 1−NBP, applications of conjunction and join opera-
tions of OBDD(∧,∃, reordering) algorithm are legal operations for 1-NBP(∧,∃) algorithms.
Notice that the reordering rule does not change the Boolean function, so we can just remove
the larger of two OBDDs representing the same Boolean function. ◀

2.4 Quantified Boolean formulas
An ∃-CNF formula is a formula of type ∃xi1∃xi2 , . . .∃xik

ϕ(x1, x2, . . . , xn), where
ϕ(x1, x2, . . . , xn) is a CNF formula, {i1, i2, . . . , ik} ⊆ [n] and k is non-negative integer.
The formula ϕ is called the matrix of the ∃-CNF formula.

▶ Lemma 5. Let φ be an ∃-CNF formula. Assume that a partial assignment ρ satisfies φ.
Then for every variable x, ρ satisfies ∃xφ.

Proof. If x does not have occurrences in φ, then ∃xφ is equivalent to φ and, therefore, it is
satisfied by ρ. Otherwise ∃xφ is semantically equivalent to φ|x:=ρ(x) ∨φ|x:=1−ρ(x). By trivial
reasons ρ satisfies φ|x:=ρ(x), hence it satisfies ∃xφ. ◀

2.5 Error-correcting codes
We will use error-correcting codes to construct hard formulas and analyze the running time
of the OBDD algorithms.

By a code we mean a subset of binary strings with a fixed length. A code C has a distance
d if for any two codewords c1, c2 ∈ C the Hamming distance between c1 and c2 is at least d.
A code C ⊆ {0, 1}n has a relative distance δ if it has the distance δn.

A linear code is a set of all n-bits vectors x = (x1 . . . xn) from some linear subspace in Fn
2 .

A linear code can be specified by a system of linear equations. For a code of dimension
k this system should consist of m ≥ n − k linear equations involving n variables. The set
of all solutions of the system should give exactly our code, so the rank of the system must
be equal to n − k. If we require in addition that the equations in the system are linearly
independent, then the number of equations is equal to m = n− k. The matrix of this linear
system is called a checksum matrix of the code.

▶ Lemma 6 (Hamming code [13]). There is a linear code C ⊆ {0, 1}n of size 2Ω(n/ log n) with
distance 3.

For 0 < p < 1 the binary entropy is H(p) = p log 1
p + (1 − p) log 1

1−p . We will use the
binary entropy to estimate the size of a linear code with the given relative distance.

SAT 2024
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▶ Lemma 7 (Gilbert-Varshamov Bound [9], [21]). Let 0 < ε < 1
2 . Then there exists a linear

code C ⊆ {0, 1}n of size at least 2(1−H(ε))n with relative distance ε.

2.6 Communication complexity
Communication complexity is one of the ways to estimate the size of OBDD representation
of Boolean functions.

Let f : A×B → C be a function. Two players Alice and Bob want to compute f(a, b)
for some a ∈ A and b ∈ B. However, Alice knows only a and Bob knows only b. In order to
compute the value they can use a two-sided communication channel. They agreed in advance
on a protocol; at each step of the protocol, one of them sends a bit string to the other, at
the end of the protocol both Alice and Bob should know f(x). The cost of the protocol is
the maximal number of bits they sent to each other. The communication complexity of f is
equal to the minimal cost of the protocols for f (for the formal definition see [16]).

Let f : A × B → C be a function. A set S ⊆ A × B is called a fooling set if exists
z ∈ C such that for all (a, b) ∈ S, f(a, b) = z. But for all a1 ̸= a2 ∈ A and b1 ̸= b2 ∈ B if
(a1, b1) ∈ S and (a2, b2) ∈ S, then f(a1, b2) ̸= z or f(a2, b1) ̸= z.

▶ Lemma 8 (Lemma 1.20 from [16]). If S is a fooling set of size k for a function f : A×B → C.
Then the communication complexity of f with respect to partition (A,B) is at least log k.

▶ Lemma 9 (Lemma 12.12 from [16]). Let f : A×B → {0, 1} be a Boolean function. Assume
that t is the deterministic communication complexity of f with respect to partition A and
B. Then for every variable order π that respects this partition (i.e. all variables from A are
π-less then all variables from B or vice versa), the size of any π− OBDD computing f is at
least 2t.

3 Lower bounds for 1−NBP algorithms

In this section, we give a construction of a hard unsatisfiable formula for 1−NBP(∧,∃)
algorithms. In Subsection 3.1 we show how to get it from a hard satisfiable formula for
1−NBP(∧,∃) algorithms and a hard formula for 1−NBP(∧) proofs. In Subsection 3.2 we
show that satisfiable formulas from [14] that are hard for OBDD(∧,∃, reordering) algorithms
are also hard for 1−NBP(∧,∃) algorithms. In Subsection 3.3 we show that 1−NBP(∧,∃)
algorithms do not polynomially simulate tree-like resolution.

3.1 Hard unsatisfiable formula
Let Φ be a CNF formula and let x be a Boolean variable that does not appear in Φ. We
denote by x ∨ Φ the CNF formula that is obtained from Φ by adding x to each of its clauses.

Let Φ and Ψ be CNF formulas in m and n Boolean variables respectively. We define a
formula F(Φ,Ψ) in n+ 2mn variables X = {xi, y

(i)
j , z

(i)
j | i ∈ [n], j ∈ [m]} as follows:

F(Φ,Ψ) := Ψ(x1, . . . , xn) ∧ T (X),

where

T (X) :=
n∧

i=1

(
xi ∨ Φ

(
y

(i)
1 , y

(i)
2 , . . . , y(i)

m

))
∧

n∧
i=1

(
¬xi ∨ Φ

(
z

(i)
1 , z

(i)
2 , . . . , z(i)

m

))
.

Note that if Ψ is unsatisfiable then so is F(Φ,Ψ).
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▶ Theorem 10. Let Φ be a satisfiable CNF formula in n variables and let Ψ be an unsatisfiable
CNF formula in m variables. Suppose that the execution track of every 1−NBP(∧,∃) algorithm
on the input Φ(y1, . . . , ym) contains a 1−NBP of size at least S1 and every 1-NBP(∧)
refutations of Ψ(x1, . . . , xn) contains a 1−NBP of size at least S2 and S2 > n+ 1. Then any
execution track of a 1-NBP(∧,∃) algorithm on the input F(Φ,Ψ) contains a 1−NBP of size
at least min(S1, S2).

Proof. Consider an 1-NBP(∧,∃) algorithm. Let B1, B2, . . . , Bℓ be its execution track on
the input F(Φ,Ψ). For all i ∈ [ℓ], Bi represents a ∃-CNF formula whose matrix is the
conjunction of a subset of clauses of the input formula; we denote this ∃-CNF formula by Fi.

We consider two cases of what happened earlier: the matrix of Fj contains an unsatisfiable
set of clauses from Ψ(x1, . . . , xn), or Fj is quantified over some variable xi for i ∈ [n].

Case 1. There exists k ∈ [ℓ] such that the matrix of Fk contains an unsatisfiable set of
clauses from Ψ(x1, . . . , xn) and Fk itself is not quantified over xi for all i ∈ [n].

Since the formula Φ is satisfiable, there exist an assignment ρ of the variables y(j)
i , z

(j)
i

for 1 ≤ i ≤ n, 1 ≤ j ≤ m such that all copies of Φ in F(Φ,Ψ) are satisfied by ρ.
Consider the sequence B1|ρ, . . . , Bk|ρ. For every i ∈ [k − 1]:
if Bi+1 ≡ Bi ∧ C, where C is a clause of Ψ, then Bi+1|ρ ≡ Bi|ρ ∧ C; here and after ≡
means the semantical equivalence of Boolean functions;
if Bi+1 ≡ Bi ∧ C, where C is a clause of T (X), then Bi+1|ρ ≡ Bi|ρ;
if Bi+1 ≡ ∃zBi, where z ∈ X \ {x1, x2, . . . , xn}, then Bi+1|ρ = Bi|ρ;

Let C̃1, C̃2, . . . , C̃s be 1−NBP representations of all clauses of Ψ. It is easy to see that
|C̃i| ≤ n + 1 for all i ∈ [s]. Then C̃1, C̃2, . . . , C̃s, B1|ρ, . . . , Bk|ρ is the correct 1-NBP(∧)
refutation of Ψ. By the properties of the formula Ψ, any refutation should contain a 1−NBP
of size at least S2. Since S2 > n+ 1, there is j ∈ [k] such that |Bj |ρ| is at least S2, hence,
|Bj | ≥ S2.

Case 2. Let p be the minimal number such that Fp is quantified with some variable xi for
i ∈ [n] (we denote this variable by xi0). In the considered case, the matrix of Fp does not
contain an unsatisfiable set of clauses from Ψ. Notice that Fp = ∃xi0Fp−1.

For j ∈ [p], Fj is equivalent to Ψ′
j ∧ Θj , where Ψ′

j is the satisfiable conjunction of several
clauses of Ψ and Θj is the ∃-CNF formula whose matrix is the conjunction of several clauses
from T (X). Let α : {x1, x2, . . . , xn} → {0, 1} be a satisfying assignment of Ψ′

p−1. Notice that
α satisfies all Ψ′

j for j ∈ [p− 1]. Let β : {t1, t2, . . . , tm} → {0, 1} be a satisfying assignment
of Φ(t1, t2, . . . , tm).

Let us define a partial assignment ρ to the variables X.
ρ(xi) = α(xi), for i ∈ [n];
ρ(z(j)

i ) = β(ti), for i ∈ [m], j ∈ [n] \ {i0};
ρ(y(j)

i ) = β(ti), for i ∈ [m], j ∈ [n] \ {i0}.

▷ Claim 11. It is possible to delete several 1−NBPs from the sequence B1|ρ, . . . , Bp−1|ρ
to get a correct execution track of 1-NBP(∧,∃) algorithm executed on Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
if

α(xi0) = 0 and on Φ
(
z

(i0)
1 , . . . , z

(i0)
m

)
, otherwise.

Claim 11 and the property of the formula Φ imply that there exists i ∈ [p − 1] such that
|Bi|ρ| ≥ S1, therefore, |Bi| ≥ S1.

Proof of Claim 11. W.l.o.g. assume that α(xi0) = 0. Since α satisfies Ψ′
p−1, α satisfies Ψ′

j

for all j ∈ [p− 1]. Hence ρ satisfies Ψ′
j for all j ∈ [p− 1].
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Let us represent Θj =
∧n

i=1 U
(i)
j ∧H(i)

j , where U (i)
j is ∃-CNF formula whose matrix is the

conjunction of several clauses from
(
xi ∨ Φ

(
y

(i)
1 , . . . , y

(i)
m

))
and H(i)

j ∃-CNF formula whose

matrix is the conjunction of several clauses from (¬xi ∨ Φ(z(i)
1 , . . . , z

(i)
m )). For all i ̸= i0, the

matrices of U (i)
j and H

(i)
j are satisfied by ρ, hence by Lemma 5, U (i)

j and H
(i)
j themselves

are satisfied by ρ.
Since α(xi0) = 0, ρ satisfies H(i0)

j . Hence, Fj |ρ = U
(i0)
j and the matrix of U (i0)

j is the
conjunction of several clauses of Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
. Since Fp is quantified over xi0 , all

clauses from F(Φ,Ψ) containing xi0 should be in the matrix of Fp−1, hence the matrix of
Fp−1|ρ is exactly Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
.

For every j ∈ [p− 2],
if Bj+1 ≡ Bj ∧ C and C = xi0 ∨ C ′, where C ′ is a clause of Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
, then

Bj+1|ρ ≡ Bj ∧ C ′;
if Bj+1 ≡ ∃y(i0)

k Bj and k ∈ [m], then Bj+1|ρ ≡ ∃y(i0)
k Bj |ρ.

In all other cases Bj+1|ρ ≡ Bj |ρ. For such j, Bj+1 will be deleted from the sequence as
required by the claim. ◁

◀

The following lemma is proved in Subsection 3.2.

▶ Lemma 12 (cf. Corollary 5.4 from [14]). For all large enough n there exists a satisfiable
CNF formula with n Boolean variables, of size O(n) such that the execution track of every
1−NBP(∧,∃) algorithm running on this formula contains a 1−NBP of size at least 2Ω(n).
Moreover, for a given n such a formula can be constructed by a deterministic algorithm in
time poly(n).

▶ Corollary 13. In poly(n) time one can construct an unsatisfiable formula Fn in poly(n)
variables such that the execution track of every 1−NBP(∧,∃) algorithm running on the
formula Fn contains 1−NBP of size at least 2Ω(n).

Proof. Let Ψn be a Tseitin formula T (Gn, f) based on the graph Gn from Theorem 3. By
Theorem 3, any 1−NBP(∧) refutation of Ψn contains a 1−NBP of size at least 2Ω(n). Let
Φn be a satisfiable formula from Lemma 12. Then we can take Fn = F(Ψ,Φ) and it has the
required property by Theorem 10. ◀

3.2 Hard satisfiable formulas for 1−NBP(∧, ∃) algorithms
In this section, we prove Lemma 12. The proof is mainly repeating the proof from [14] for
the case of OBDD(∧,∃, reordering) algorithms.

We say that a code C ⊆ {0, 1}n recovers a ρ fraction of erasures by a list of size L (or
C is (ρ, L)-erasure list-decodable) if for any w ∈ {0, 1, ?}n such that the number of ? in w

does not exceed ρn, there exist at most L elements in C that are consistent with w. A string
s ∈ {0, 1}n is consistent with w if for all i, wi ∈ {0, 1} implies si = wi.

▶ Theorem 14 ([12, Lemma 2]). If C is a code with relative distance δ, then for every ϵ > 0
the code C is ((2 − ϵ)δ, 2

ϵ )-erasure list-decodable.

The following theorem states that every 1−NBP for a characteristic function of a good
enough code has at least exponential size. It extends Theorem 5.2 from [14] which claims
the same lower bound on the size of OBDDs.
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▶ Theorem 15 (cf. Theorem 5.2 from [14]). Let C ⊆ {0, 1}n be a ( 1
2 + ϵ, L)-erasure list-

decodable code with relative distance more than 2ϵ. Any 1−NBP representation of the
characteristic function of C (i.e. function χC : {0, 1}n → {0, 1} : ∀x ∈ {0, 1}n χC(x) = 1 ⇔
x ∈ C) has size at least |C|

L2 .
Moreover, for every tuple of k different indices i1, . . . , ik ∈ [n] (0 ≤ k ≤ 2ϵn) size of any

1−NBP representation of the Boolean function ∃xi1 . . . ∃xik
χC(x1, . . . , xn) is at least |C|

L2 .

Proof. It is enough to prove the “moreover” part of the statement since the first part is its
special case (with k = 0).

Notice that since any string of size ⌈( 1
2 − ϵ)n⌉ has at most L prolongation to an element

of C, |C| ≤ 2⌈( 1
2 −ϵ)n⌉L. We may assume that L < 2⌊( 1

2 −ϵ)n⌋, since otherwise |C|
L2 ≤ 2 and the

theorem is trivial.
Let D be a 1−NBP computing ∃xi1 . . . ∃xik

χC(x1, . . . , xn).
Consider |C| codewords, for each of them there is a path in D from the source to 1-sink

that is consistence with the codeword. For each such path, we mark a node v such that
between the source and v there are queried exactly ⌈ n−k

2 ⌉ variables (the query in v is
not included). We claim that such vertex always exists. Indeed, assume for the sake of
contradiction that there is an accepting path p corresponding to a codeword c ∈ C that
queries t variables and t < ⌈ n−k

2 ⌉ variables. There are at least 2⌊ n−k
2 ⌋ partial assignments

from {xi | i ∈ [n] \ {i1, i2, . . . , ik}} → {0, 1} such that each of them is consistent with c

in the values of at least ⌈ n−k
2 ⌉ positions including all variables from the path p. Since all

these assignments are consistent with p, they are accepted by D, hence each of them may be
continued to a codeword. Hence there are at least 2⌊ n−k

2 ⌋ codewords that agree with c in at
least ⌈ n−k

2 ⌉ positions. Hence, 2⌊( 1
2 −ϵ)n⌋ ≤ 2⌊ n−k

2 ⌋ ≤ L. This contradicts our assumptions on
the size of L.

Let us estimate from the above the number of times that the same node can be marked.
We claim that every marked node v can be marked at most L2 times. Assume for the sake
of contradiction that there is a node v that is marked at least L2 + 1 times. Let S ⊆ C be
a set of codewords such that the node v was marked on the paths corresponding to them.
Consider a codeword s ∈ S and the path which is consistence with s, let between the source
and v (not including the query in v) the set of queried variables be equal to {xi | i ∈ I}.
Let J = ([n] \ {i1, i2, . . . , ik}) \ I. Since the relative distance of C is more than 2ϵ, no two
codewords coincide on ([n] \ {i1, i2, . . . , ik}). Hence, by the pigeonhole principle, the set S
contains at least L + 1 elements with different projections on the set I, or at least L + 1
elements with different projections on J . Consider these cases separately.

Assume that S contains L + 1 elements with different projections on I: s, s1, . . . , sL.
Consider partial assignments τ1, τ2, . . . , τL : {xi | i ∈ I ∪ J} → {0, 1}, where for all j ∈ [L]
and for all i ∈ I, τj(xi) equals the ith bit of sj and for all i ∈ J and τj(xi) equals the ith
bit of s. Since s is a codeword, it is accepted by D; for all i ∈ [L], τi is also accepted by D
by the following accepting path: from the source to v we follow the path corresponding si

and from v to 1-sink we follow the path corresponding s. Hence for every j ∈ [ℓ], τj can be
extended to a codeword tj . By the construction s, τ1, . . . , τL coincide in the set of positions
J , i.e., in n−k

2 ≥ ( 1
2 − ϵ)n bits, hence there exists L+ 1 different codewords that coincide in

( 1
2 − ϵ)n positions, this contradicts the property of the code.

In the second case, S contains L+ 1 elements with different projections on J : s, s1, . . . , sℓ.
This case can be handled analogously to the previous one. The only difference is the definition
of τj for j ∈ [ℓ]. For i ∈ I, τ(xi) equals the ith bit of s and for j ∈ I, τ(xi) equals the ith bit
of sj .

So we get that there are at least |C|
L2 distinct marked nodes in D. ◀
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Using Theorem 15 we extend Theorem 5.3 from [14] from OBDD(∧,∃, reordering) al-
gorithms to 1−NBP(∧,∃) algorithms.

▶ Theorem 16 (cf. Theorem 5.3 from [14]). Let C ⊆ {0, 1}n be a linear code with the relative
distance 1

3 such that the checksum matrix H of the code C has the following properties:
H is a binary matrix of size αn× n, where α ∈ (0, 1) is a constant;
every row of H contains at most t(n) ones, where t is some function;
in every 1

6n columns of H we can find ones in at least (α − δ)n different rows of the
matrix, where δ ∈

(
0,min{α, 1−α

2
}

) is a constant.
Denote by Fn the canonical CNF representation of the system of linear equations H(x) = 0;
Fn is in t(n)-CNF, hence the size of Fn is at most αn2t(n)−1t(n). Then the execution track
of every 1−NBP(∧,∃) algorithm running on Fn contains a 1−NBP of size at least 2Ω(n).

Proof. The proof resembles the proof of Theorem 5.3 from [14]. The only source of OBDD
size lower bound in that proof is the usage of Theorem 5.2 from [14]; we will use Theorem 15
instead to get a lower bound on the size of 1−NBP. ◀

Lemma 12 follows from Theorem 16 applied to the codes constructed in [14].

3.3 Comparison with tree-like Resolution
▶ Definition 17. Let P be a proof system used to derive refutations of CNF formulas. A
set E of extension axioms for a set of propositional variables x⃗ is a set of clauses expressing
zi := ψi(x⃗, z1, . . . , zi−1), where each ψi is a conjunction of literals and z1, . . . , zℓ are new
variables. Let φ(x⃗) be a CNF formula. Then, an extension-P refutation of φ(x⃗) is by
definition a refutation of φ ∧ E where E is a set of extension axioms for x⃗.

For example, a definition by extension of the form z := (y1 ∧ y2) is represented by the
three clauses ¬z ∨ y1, ¬z ∨ y2, and ¬y1 ∨ ¬y2 ∨ z.

▶ Lemma 18. Let φ be a CNF formula and let E be a set of extension rules represented in
CNF. Then for any execution track of 1−NBP(∧,∃) algorithm on the input φ ∧ E exists a
correct execution track of 1−NBP(∧,∃) algorithm on the input φ of not greater total size.

Proof. It is sufficient to show it for the case when E contains just one extension rule. We
assume that E contains the only rule z := ψ(y1, . . . , yk), where yi are variables of φ. Let
D1, D2, . . . , Ds be an execution track of an 1−NBP(∧,∃) algorithm on the formula φ ∧ E.

Every Di represent a ∃-CNF formula with a matrix (Φ ∧ Ψ), where Φ is a conjunction of
clauses of φ, and Ψ is a conjunction of several clauses from E.

Notice that since E is a CNF representation of z := ψ(y1, . . . , yk), then ∃zΨ is identically
true. Since z has no occurrences in φ, ∃zDi is equivalent to ∃xi1 . . . ∃xiℓ

Φ.
By Lemma 2 there exists a 1−NBP representing ∃Di of size at most the size of Di.

It is easy to see that ∃zD1,∃zD2, . . . ,∃zDs may be considered (possibly after deletion of
several extra 1−NBPs) as a correct execution track of a 1−NBP(∧,∃) algorithm on the
formula φ. ◀

▶ Lemma 19 (Lemma 4.6 from [5]). Let Gn be an undirected graph with n vertices, with
all vertices of degree at most d. Let fn be a labeling function for Gn such that the Tseitin
formula T(Gn, fn) is unsatisfiable. Then there is a set E of extension axioms for T(Gn, fn)
of size poly(n) such that there is a tree-like resolution refutation of T(Gn, fn) ∧ E of size
poly(n).
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▶ Theorem 20. There is a family of CNF formulas φn of size poly(n) such that φn has
poly(n) tree-like resolution refutation but any execution track of 1−NBP(∧,∃) algorithm on
φn contains a 1−NBP of size 2Ω(n).

Proof. Consider a hard formula Fn from Corollary 13. Fn has a form T(Gn, fn)∧ψ, where ψ
is a satisfiable formula. By Lemma 19, there exists a set E of extension axioms for T(Gn, fn)
of size poly(n) such that there is a tree-like resolution refutation of T(Gn, fn) ∧ E of size
poly(n). Notice that T(Gn, fn) ∧ E ∧ ψ also has a tree-like resolution refutation of size
poly(n). By Corollary 13 and Lemma 18, the execution track of any 1−NBP(∧,∃) algorithm
on the formula T(Gn, fn) ∧ E ∧ ψ contains a 1−NBP of size 2Ω(n). ◀

4 Binary pigeonhole principle is hard for OBDD(∧, ∃, reordering)
algorithms

The Binary Pigeonhole Principle represents in CNF that it is impossible to have 2l +1 distinct
binary strings of length l. Let X = {Xi,j | i ∈ [2l + 1], j ∈ [l]} be a set of propositional
variables. For every i ∈ [2l + 1] we denote the vector of variables (Xi,1, . . . , Xi,l) as Xi.
For all distinct i and j from [2l + 1] and for all binary strings a ∈ {0, 1}l we define a
clause Ca

i,j that encodes that at least one of the strings Xi or Xj differs from a as follows

Ca
i,j =

l∨
m=1

(Xi,m ̸= am ∨Xj,m ̸= am), where for a propositional variable x, x ̸= 0 denotes

x and x ̸= 1 denotes ¬x. Let us denote [Xi ̸= Xj ] :=
∧

a∈{0,1}l

Ca
i,j the CNF formula that

encodes that Xi ̸= Xj . We finally define BPHP2l+1
2l :=

∧
i,j∈[2l+1]:i ̸=j

[Xi ̸= Xj ].

It is convenient to consider X as a (2l + 1) × l matrix of propositional variables. In this
paper, we refer to X as the variables matrix or simply the matrix and to Xi for i ∈ [2l + 1]
as the ith row of the matrix.

The main result of this section is the following.

▶ Theorem 21. Let n = 2l and 0 < ε < 1 be a solution of the equation ε = 1 − H(ε)
(ε ≈ 0.227092). Then the execution track of any OBDD(∧,∃, reordering) algorithm on the
input BPHPn+1

n contains an OBDD of size at least 2Ω(nε/ log n).

Proof. Consider an OBDD(∧,∃, reordering) algorithm A and its execution on the input
BPHPn+1

n .
We consider several cases:

Case 1. Suppose that during its running the algorithm A applied projections to variables
that all lie in at most n/2 different rows of the variables matrix X. Consider the state of
the diagram D before the last application of the conjunction operation. In this moment
D represents an ∃-CNF formula whose matrix is the conjunction of all but one clauses of
BPHPn+1

n . The following lemma implies that in this case |D| ≥ 2Ω(n/ log n).

▶ Lemma 22. Let C be the strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Assume that there is a set Y ⊆ [n+ 1] such

that
1. for all i ∈ Y , Xi does not contain variables from Z;
2. |Y | ≥ n/ logn;
3. for all i, j ∈ Y , C contains all clauses representing [Xi ̸= Xj ].

Then any OBDD representing φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2Ω(n/ log n).

We prove Lemma 22 in Subsection 4.1.
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Case 2. The algorithm A applied projection operation over variables from more than n/2
rows of the variables matrix X. Since A applies projection operations one by one, one of the
following events happens before the other:
1. There is a row of the variable’s matrix X such that there are ⌊εl⌋ − 3 variables in this

row for which A applied projection operations.
2. A applies projections over variables from ⌊nε/100 logn⌋ rows of the variables matrix X.

Case 2.1. Assume that the first event happened before the second. Consider the state of
the diagram D right after A first time has applied projection over ⌊εl⌋ − 3 variables from
some row. Since ε < 1/4, the next lemma implies that |D| ≥ 2Ω(nε/ log n).

▶ Lemma 23. Let C be a proper subset of clauses from BPHPn+1
n . Let Z = {z1, . . . , zb} ⊆ X

be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all occurrences of variables of Z

in BPHPn+1
n are in clauses from C. Suppose also that:

1. There exists a row of X containing exactly k variables from Z.
2. Variables from Z occur in at most n/2 rows of X.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least

min
{

2Ω(2k/k), 2Ω(2l−3k/l2)
}

.

We prove Lemma 23 in Subsection 4.2.

Case 2.2. Now assume that the second event happened before the first. Consider the
state of the diagram D right after A first time has applied projection over variables from
⌊nε/100 logn⌋ different rows.

▶ Lemma 24. Let C be a strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all clauses

BPHPn+1
n having variables from Z are in C. Let d ∈ [l − 1] and T ∈ [2l] be such that

1. variables from Z occur in exactly T rows of the variables matrix X;
2. each row of X contains at most d variables from Z;
3. there exists a code ECC ⊆ {0, 1}l with distance d+ 3 and size |ECC| = T + 1;
4. 1 + (l + 1) · T · 2d+1 < n/2.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2T .

The proof of Lemma 24 is given in Subsection 4.3.
By Lemma 7, there exists a code ECC ⊆ {0, 1}l with distance εℓ and size 2(1−H(ε))ℓ =

n1−H(ε) = nε, hence there exists code with the same distance of size T := ⌊nε/(100 logn)⌋+1.
It is straightforward that 1 + (l + 1) · T · 2d+1 < n/2. Hence, Lemma 24 implies that
|D| ≥ 2Ω(nε/ log n). ◀

4.1 Proof of Lemma 22
▶ Lemma 25. Let C be a subset of clauses from BPHPn+1

n , where n = 2l. Assume that
i0, j0 ∈ [n + 1] and a0 ∈ {0, 1}ℓ are such that the clause (Xi0 ̸= a0 ∨ Xj0 ̸= a0) does not
belong to C. Let Z = {z1, . . . , zb} ⊆ X be a set of variables of BPHPn+1

n . Let the set of
variables X be partitioned into two parts X(1) and X(2). There are 2t rows of the variables
matrix: s1

1, s
2
1, s

1
2, s

2
2 . . . , s

1
t , s

2
t ∈ [n+ 1] \ {i0, j0} such that

1. for all i ∈ [t], the rows s1
i and s2

i does not contain variables from Z.
2. for all i ∈ [t], the row s1

i contains at least one variable from the first part X(1) and the
row s2

i contains only variables from the second part X(2);
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3. There are t binary strings a1, a2, . . . , at ∈ {0, 1}ℓ \ {a0} such that the Hamming distance
between ai and aj is at least 3 and for all i ∈ {0, 1, . . . , t} the clause (Xs1

i
̸= ai ∨Xs2

i
̸= ai)

belongs C.

Then the communication complexity of computing φ := ∃z1, . . . , zb

∧
C∈C C with respect

to the partition (X(1) \ Z,X(2) \ Z) is at least t.

Proof. Let us construct a fooling set of size 2t. The elements of our fooling set are indexed
by a binary string r ∈ {0, 1}t. Let us construct an assignment σr : X → {0, 1} corresponding
to r.

Let for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ− 1 zeros and the only one on the
kth place.

Let for i ∈ [t], k(i) := min{j : Xs1
i
,j} ∈ X(1).

σr(Xs1
i
) := ai + (ek(i) · ri) (here we add vectors in Fl

2);
σr(Xs2

i
) := ai + (ek(i) · (1 + ri));

σr(Xi0) := a0 and σr(Xj0) := a0.
There are n− 2t− 1 other rows of the variables matrix X, let us choose some bijection
between them and {0, 1}ℓ \ {a1, a1 + ek(1), a2, a2 + ek(1), . . . , at, at + ek(1), a0} (the two
sets have the same size since {a0, a1, . . . , at} is a code with distance at least 3 and hence
all binary strings in {a1, a1 + ek(1), a2, a2 + ek(1), . . . , at, at + ek(1), a0} are distinct) and
σr substitutes values of the variables from these rows according to this bijection.

We claim that {σr restricted to X \ Z | r ∈ {0, 1}t} is a fooling set for φ. Indeed, since
{a0, a1, . . . , at} is a code with distance at least 3, for all r ∈ {0, 1}t, σr satisfies all clauses of
BPHPn+1

n but (Xi0 ̸= a0 ∨ Xj0 ̸= a0). Hence, σr satisfies
∧

C∈C C and, then by Lemma 5,
σr satisfies φ.

Let p and q be different strings from {0, 1}t. W.l.o.g. assume that there exists m ∈ [t]
such that pm = 0 and qm = 1. Let σ′ be an assignment that coincides with σp on X(1)

and coincides with σq on X(2). Notice that σp(Xs1
m

) and σq(Xs1
m

) differs only on k(m)th
bit corresponding to the variable from X(1), hence σ′(Xs1

m
) = σp(Xs1

m
) = am. Analogously,

σ′(Xs2
m

) = σq(Xs1
m

) = am. Hence σ′ falsifies clause (Xs1
m

̸= am ∨Xs2
m

̸= am). This clause is
in C and all the variables of this clause are not in Z. Hence σ′ falsifies φ.

So we have verified that {σr restricted to X \ Z | r ∈ {0, 1}t} is a fooling set of size 2t.
Hence, by Lemma 8, the communication complexity of φ is at least t. ◀

▶ Lemma 22. Let C be the strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Assume that there is a set Y ⊆ [n+ 1] such

that
1. for all i ∈ Y , Xi does not contain variables from Z;
2. |Y | ≥ n/ logn;
3. for all i, j ∈ Y , C contains all clauses representing [Xi ̸= Xj ].

Then any OBDD representing φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2Ω(n/ log n).

Proof of Lemma 22. Let D be an OBDD computing φ. Let π be an extension of the
variables order of D to X. Consider a partition of X on two parts with respect to π such
that there are exactly ⌈|Y |/2⌉ rows from Y that have at least one variable from the first part.
Let i0, j0 ∈ [n+ 1] and a0 ∈ {0, 1}ℓ be such that the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0) does not
belong to C. Let H ⊆ {0, 1}l be a Hamming code (see Lemma 6), |H| ≥ Ω(n/ logn). H + a0
is also a code of distance at least 3 and a0 ∈ H + a0. So we can choose distinct strings
a1, a2, . . . , at ∈ H + a0 \ {a0} such that t = Ω(n/ logn). There are at least ⌈|Y |/2⌉ − 2 rows
in Y \ {i0, j0} that have at least one variable from the first part. And also there are at least
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⌈|Y |/2⌉ − 2 rows in Y \ {i0, j0} with all variables lying in the second part. Since C contains
all clauses representing [Xi ̸= Xj ] for i ̸= j ∈ Y , we can apply Lemma 25 and get that the
communication complexity of φ with respect to the partition is at least t. Since the partition
respects the variable order of D, by Lemma 9, |D| ≥ 2t = 2Ω(n/ log n). ◀

▶ Corollary 26. Any OBDD representing
∧

1<i<j≤n+1[Xi ̸= Xj ] has size at least 2Ω(n/ log n).

4.2 Proof of Lemma 23
▶ Lemma 27. Let F (X2, . . . , Xn+1) = ∃X1

∧n+1
i=2 [X1 ̸= Xi]. Then the size of any OBDD

for F is at least 2Ω(n/ log n).

Proof. For all s2, . . . , sn+1 ∈ {0, 1}l the equality F (s2, . . . , sn+1) = 1 holds if and only if
there exists a binary string s1 ∈ {0, 1}l that differs from s2, . . . , sn+1 ∈ {0, 1}l. Such string
exists if and only if there exist two equal strings among s2, . . . , sn+1. Hence F (X2, . . . , Xn+1)
is semantically equivalent to ¬

∧
1<i<j≤n+1[Xi ̸= Xj ]. Hence, by Corollary 26, size of any

OBDD representing F is at least 2Ω(n/ log n). ◀

▶ Lemma 23. Let C be a proper subset of clauses from BPHPn+1
n . Let Z = {z1, . . . , zb} ⊆ X

be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all occurrences of variables of Z

in BPHPn+1
n are in clauses from C. Suppose also that:

1. There exists a row of X containing exactly k variables from Z.
2. Variables from Z occur in at most n/2 rows of X.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least

min
{

2Ω(2k/k), 2Ω(2l−3k/l2)
}

.

Proof of Lemma 23. Let Y be the set of rows of X that do not contain variables from Z.
By the condition of the lemma, |Y | ≥ n/2 + 1. We consider two cases.

Case 1. Assume that there is T ⊆ Y such that |T | = 2k and the set AT := {a ∈ {0, 1}l |
∃i, j ∈ T such that the clause (Xi ̸= a) ∨ (Xj ̸= a) belongs to C} has size less than 2l−k.

In this case, we show that there exists a partial substitution ρ such that φ|ρ is exactly
the formula from Lemma 27 applied to variables of BPHP2k+1

2k . Hence, size of any OBDD
computing φ|ρ is at least 2Ω(2k/k) and, thus, any OBDD computing φ has size at least
2Ω(2k/k).

Without loss of generality, assume that the row containing exactly k variables from Z is
the first row of the variables matrix and X1,1, . . . , X1,k ∈ Z.

Since |AT | < 2l−k, there exists b ∈ {0, 1}l−k such that there are no elements in AT with
the suffix b. Let us define ρ as follows:

For all i ∈ T ∪ {1}, ρ assigns b to (Xi,k+1, Xi,k+2, . . . , Xi,l).
For i ∈ [n + 1] \ (T ∪ {1}), ρ assigns to Xi different elements of {a ∈ {0, 1}l |
b is not the suffix of a}.

We split C into three parts C1, C2 and C3, where
C1 consists of all clauses of C with all variables from the set of rows T ;
C2 consists of all clauses of C containing variables from the first row and from some row
from T ;
C3 consists of all clauses of C containing variables from the set of rows [n+ 1] \ (T ∪ {1}).
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By the properties of φ, φ is equivalent to∧
C∈C1

C ∧ ∃X1,1 . . . ∃X1,k

( ∧
C∈C2

C ∧ ∃
z∈Z\{X1,1,...,X1,k}

z
∧

C∈C3

C

)
.

Since the support of ρ does not contain variables from {X1,1, . . . , X1,k}, φ|ρ is equivalent
to ∧

C∈C1

C|ρ ∧ ∃X1,1 . . . ∃X1,k

 ∧
C∈C2

C|ρ ∧

(
∃

z∈Z\{X1,1,...,X1,k}
z
∧

C∈C3

C

)∣∣∣∣∣
ρ

 .

Since all a ∈ AT do not have suffix b, for all C ∈ C1, C|ρ = 1.
Consider a clause C := (Xi ̸= a) ∨ (Xj ̸= a) ∈ C3. If i, j ∈ [n + 1] \ (T ∪ {1}),

then ρ substitute to Xi and Xj different values, hence C|ρ = 1. If i ∈ (T ∪ {1}) and
j ∈ [n+1]\ (T ∪{1}), then ρ substitutes b to (Xi,k+1, . . . Xi,l) and something different from b

to (Xj,k+1, . . . Xj,l), hence C|ρ = 1. Thus, ρ satisfies
∧

C∈C3
C, hence by Lemma 5, ρ satisfies

∃
z∈Z\{X1,1,...,X1,k}

z
∧

C∈C3
C.

So we get that φ|ρ is equivalent to ∃X1,1 . . . ∃X1,k

∧
C∈C2

C|ρ.
Since C contains all clauses of BPHPn+1

n with variables from Z, C2 =
∧

i∈T,a∈{0,1}l(X1 ̸=
a∨Xi ̸= a). If b is not a suffix of a, then ρ satisfies (X1 ̸= a∨Xi ̸= a). Hence,

∧
C∈C2

C|ρ is
equivalent to

∧
i∈T,a∈{0,1}k ((X1,1, . . . , X1,k) ̸= a ∨ (Xi,1, . . . , Xi,k) ̸= a). So φ|ρ satisfies the

conditions of Lemma 27.
Case 2. Assume that for all T ⊆ Y such that |T | = 2k, the set AT := {a ∈ {0, 1}l | ∃i, j ∈
T such that the clause ((Xi ̸= a) ∨ (Xj ̸= a)) belongs to C} has size at least 2l−k. Hence,
for every T ⊆ Y such that |T | = 2k there are i, j ∈ T such that the set Ai,j := {a ∈ {0, 1}l |
the clause ((Xi ̸= a) ∨ (Xj ̸= a)) belongs to C} has size at least 2l−3k.

In this case, we will obtain a lower bound by Lemma 25.
Let i0, j0 ∈ [n+ 1] and a0 ∈ {0, 1}ℓ be such that the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0) does

not belong to C.
Let D be an OBDD computing φ. Let π be an extension of the variables order of D to X.

Let W = Y \ {i0, j0}; |W | ≥ n/2 − 1. Consider the following order on the set of rows [n+ 1]:
we say that ith row is less than jth row if the π-minimal variable of Xi is π-less than the
π-minimal variable of Xj . Let us order W according to this order: W = {w1, w2, . . . , w|W |}.
Let d :=

⌊
|W |
2k

⌋
. For every i ∈ [d], consider the set Li = {wi, wi+d, wi+2d, . . . , wi+(2k−1)d}.

Since for all i ∈ [d], |Li| = 2k and Li ⊆ Y , hence there are ei, fi ∈ [2k] such that ei < fi

and |Awi+(ei−1)d,wi+(fi−1)d
| ≥ 2l−3k. By the pigeonhole principle, there is f ∈ [2k] such that

|{i ∈ [d] | fi = f}| ≥ d
2k . Let us denote I := {i ∈ [d] | fi = f}; |I| ≥ d

2k ≥ 2l−2k−1 − 1.
Let us split the set X into two parts according to π: the first part consists of all variables

that are π-less than the π-minimal variable of the row w1+(f−1)d and the second part consists
of all other elements. By the construction for all i ∈ I, the row s1

i := wi+(ei−1)d contains at
least one variable from the first part (π-minimal variable of this row) and all variables from
the row s2

i := wi+(f−1)d are in the second part.
To apply Lemma 25, we need to show that there exist ai ∈ As1

i
,s2

i
such that a0 and ai

for i ∈ I are on the pairwise Hamming distance at least 3. We will choose them one by one;
assume that we have already chosen a0, a1 ∈ As1

i1
,s2

i1
, . . . , aq ∈ As1

iq
,s2

iq
such that Hamming

distance between each pair is at least 3. If (1 + l + l(l − 1)/2)q < 2l−3k, then we can choose
aq+1 ∈ As1

iq+1
,s2

iq+1
. So we can choose t elements if t =

⌊
2l−3k

1+l+l(l−1)/2

⌋
− 1.

Hence, by Lemma 25, the communication complexity of φ with respect to the descried
partition of X is at least Ω

(
2l−3k/l2

)
. Then by Lemma 9, the size of D is at least 2Ω(2l−3k/l2).

◀
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4.3 Proof of Lemma 24
▶ Lemma 24. Let C be a strict subset of the set of clauses of BPHPn+1

n . Let Z =
{z1, . . . , zb} ⊆ X be a set of BPHPn+1

n variables. Suppose that for all z ∈ Z all clauses
BPHPn+1

n having variables from Z are in C. Let d ∈ [l − 1] and T ∈ [2l] be such that
1. variables from Z occur in exactly T rows of the variables matrix X;
2. each row of X contains at most d variables from Z;
3. there exists a code ECC ⊆ {0, 1}l with distance d+ 3 and size |ECC| = T + 1;
4. 1 + (l + 1) · T · 2d+1 < n/2.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2T .

Proof of lemma 24. There exist i0, j0 ∈ [n+ 1] and a binary string a0 ∈ {0, 1}l such that C
does not contain the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0).

Let ECC ⊆ {0, 1}l be a code with distance at least d + 3 such that |ECC| = T + 1.
W.l.o.g. assume that a0 ∈ ECC. Let us denote A = ECC \ {a0} and A = {a1, . . . , aT }.

Consider an ordered binary decision diagram D computing φ. Let π be the variables
order using in D extended to all variables X. We say that a variable x ∈ X is π-first if x /∈ Z

and it has the minimal π-number among all such variables in its row.
As in Lemma 23 we define an order on the set of rows of the variables matrix X (or

equivalently on the set [n+ 1]): ith row is less than the jth if the π-first variable of Xi is
π-less the π-first variable of Xj . Let us order the elements of [n+ 1] \ {i0, j0} according to
this order: {s1, . . . , sn−1}.

Now we split the variables of X into two parts such that all variables in the first part
precede all variables in the second part according to the order π. The first part consists of
all variables that are π-less-or-equal to the π-first variable of the row number s⌊(n−1)/2⌋. The
second part consists of the other variables.

To prove the lower bound we will define 2T partial substitutions ρα defined on the variables
from the first part such that for α ̸= β, φ|ρα

and φ|ρβ
are different Boolean functions. Hence

the paths in D corresponding to different ρα should end in different nodes. Hence, the size
of D is at least 2T .

We call a row of X as special if it contains at least one variable from Z. There are
exactly T special rows in X. Notice that the rows i0 and j0 are not special, since all clauses
containing variables of special rows should be in C.

We consider two cases depending on whether all special rows lie in {s1, . . . , s⌊(n−1)/2⌋} or
there exists at least one special row in {s⌊(n−1)/2⌋+1, . . . , sn}.

For convenience we denote Si...j = {si, . . . , sj}.

Case 1. All special rows are in S1...⌊(n−1)/2⌋. We denote the set of special rows by
{w1, . . . , wT } ⊂ S1...⌊(n−1)/2⌋.

For every α ∈ {0, 1}T we define a substitution ρα into the variables of the first part.
Let k(i) denote the index of π-first variable of the with row. ρα substitutes to the variables
of Xwi

from the first part corresponding values of the binary string ai + ek(i) · αi; recall
that for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ− 1 zeros and the only one on the
kth place. We notice that the variable Xwi,k(i) is necessarily in the first path.
If i ∈ {i0, j0} ∩ S1...⌊(n−1)/2⌋, then ρα substitutes to the variables from Xi in the first
path corresponding values from the binary string a0.
Let Ji := {j ∈ [ℓ] | Xwi,j ∈ Z}. For every non-special row j from S1...(n−1)/2 we choose a
unique string bj such that bj ̸= a0 and for all i ∈ [k] there exists r ∈ [ℓ]\ (Ji ∪{k(i)}) such
that the rth bit of bj differs from the rth bit of ai. Since |Ji| ≤ d and T2d+1 + 1 < n/2,
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such strings indeed exist. We assume that the choice of bj does not depend on α. For all
j ∈ S1...(n−1)/2, ρα substitutes to the variables from Xj in the first path corresponding
values from bj .
Notice that rows from S⌊(n−1)/2⌋+1...n−1 do not contain variables from the first part.

Now we show that for every α ̸= β ∈ {0, 1}T functions φ|ρα and φ|ρβ
are different. To do

it we construct a substitution ρ to the variables of the second part such that ρ sets one of
the functions to zero and the other to one. Since ρα ̸= ρβ then, without loss of generality,
we assume that there exists row m ∈ [T ] such that αm = 0 and βm = 1.

We define ρ as follows:
For each non-special row j ∈ S1...⌊(n−1)/2⌋, ρ substitutes to the second part variables
from Xj values from bj .
For each special row wi for i ∈ [T ], ρ substitutes to the second part variables from Xwi

values from ai.
For each row from S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+2|Jm| , ρ substitutes to the variable of the
second part corresponding values of an element from V (am, Jm) := {s ∈ {0, 1}l |
s agrees with am on [l] \ Jm}. Since both the sets S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+2|Jm| and
V (am, Jm) have 2|Jm| elements, we can assume that for different rows ρ uses differ-
ent elements of V (am, Jm).
The definition of ρ is not finished yet but we already can show the following.

▷ Claim 28. φ|ρα∪ρ = 0

Proof. Let τ be the restriction of ρα ∪ ρ to X \ Z. If we apply τ to Xwm
and then

substitute any values into the variables of Xwm
from Z, we obtain a string from V (bm, Jm).

But all such strings are substituted by ρα ∪ ρ into other rows of the variables matrix.
Since C contains all the clauses of BPHPn+1

n that forbid the row Xwm
to be equal to any

other row, there do not exist values for variables from {Xwm,j | j ∈ Jm} such that all
clauses of C are satisfied and hence φ|ρi∪ρ = φ|τ = ∃z1, . . . , zb

∧
C∈C C|τ = 0. Note that

we heavily rely on the fact that all clauses containing variables from special rows are in C.
◁

Now we have to define ρ on other variables i.e. variables from the rows
S⌊(n−1)/2⌋+2|Jm|+1...n−1 such that φ|ρβ∪ρ = 1. Note that:

All strings substituted by ρβ ∪ ρ to rows from S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+1+2|Jk| are
different.
Since {a0, a1, . . . , aT } is a code with distance at least d+ 3 and |Jm| ≤ d, strings from
V (am, Jm) that are substituted by ρβ ∪ ρ to rows S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+1+2|Jk| differ
from the strings substituted by ρj ∪ ρ to rows {wj |j ∈ [T ] \m} and a0.
All strings from V (am, Jm) are different from am + ek(m) · βm = am + ek(m) in the
k(m)th bit.
No string from V (am, Jm) can be substituted by ρβ ∪ ρ to non-special rows.

So far ρβ ∪ ρ substitutes values to variables from several rows. Notice that every binary
string except a0 is used at most once and a0 is used twice (for rows i0 and j0). First of
all, we can extend ρj ∪ ρ to all variables such that we will have only two equals rows (i0
and j0 equals a0). Hence, ρβ ∪ ρ satisfies

∧
C∈C C, thus by Lemma 5, ρβ ∪ ρ satisfies φ.
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Case 2. There exists wk0 ∈ S⌊(n−1)/2⌋+1...n−1 for some k0 ∈ [T ]. We fix an arbitrary T

non-special rows f1, f2, . . . , fT from S1...⌊(n−1)/2⌋ (it can be done since T < n/4).
For every α ∈ {0, 1}T we define a substitution ρα to the variables of the first part:
Let now k(i) denote the index of π-first variable of the fith row. For every i ∈ [T ], ρα

substitutes to the variables of Xfi
from the first part corresponding values of the binary

string ai + ek(i) · αi; recall that for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ − 1
zeros and the only one on the kth place. We notice that the variable Xfi,k(i) is necessarily
in the first part.
If i ∈ {i0, j0} ∩ S1...⌊(n−1)/2⌋, then ρα substitutes to the variables from Xi in the first
part corresponding values from the binary string a0.
We say that a binary string s ∈ {0, 1}l is bad if s = a0 or there exist b ∈ {0, 1}l with the
Hamming distance at most 1 from s and i ∈ [T ] such that b agrees with ai on the set of
bits Jk0 ∪ {k(i)}. The number of bad strings is at most 1 + (l+ 1) · T · 2d+1 < n/2. So for
every row i ∈ S1...⌊(n−1)/2⌋ \ {f1, . . . , fT , i0, j0} we can choose not bad string bi by some
fixed way that is not dependent on α. ρα substitutes to the first part variables from Xi

corresponding values from bi.

For every distinct α, β ∈ {0, 1}T we build a substitution ρ into the variables of the second
part that separates φ|ρα

and φ|ρβ
. Without loss of generality assume that there exists index

m ∈ [T ] such that αm = 0 and βm = 1.
We choose arbitrarily 2|Jk0 |−1 non-special rows g1, . . . , g2|Jk0 |−1 in S⌊(n−1)/2⌋...n−1. Recall

that k(m) is the index of the π-first variable of the row fm. Consider two sub-cases:

Case 2.1. k(m) ̸∈ Jk0 . Let us define a partial substitution ξ; the substitution ρ will be an
extension of ξ.

For every i ∈ [T ], ξ substitutes to the variables of Xfi from the second part corresponding
values of the binary string ai

If i ∈ {i0, j0}, then ξ substitutes to the variables from Xi in the second part corresponding
values from the binary string a0.
For i ∈ S1...⌊(n−1)/2⌋ \ {f1, . . . , fT , i0, j0}, ξ substitutes to the second part variables from
Xi corresponding values from bi.
ξ substitutes to variables from Xwk0

corresponding values from am.
To the rows g1, . . . , g2|Jk0 |−1, ξ substitutes distinct values from V (am, Jk0)\{am}. (Notice
that both sets have the same cardinality 2|Jk0 | − 1).

▷ Claim 29. φ|ρα∪ξ = 0.

Proof. The proof is similar to the proof of Claim 28. Recall that Jk0 are indices of Z-variables
from wk0 . Let τ be restriction of ρα ∪ ξ to non-Z variables; τ substitutes to non-Z variables
of wk0 values from am. All strings from V (am, Jk0) are already substituted by ρα ∪ ξ to the
rows g1, . . . , g2|Jk0 |−1 and fm. So, for every fixed values of Z-variables, ρα ∪ ξ falsifies some
clause from C. Hence by the same reasons as in Claim 28, φ|τ = φ|ρi∪ξ = 0. ◁

Now we have to define ρ by extending ξ on other variables to ensure that φ|ρβ∪ρ = 1.
Since k(m) ̸∈ Jk0 , ρβ ∪ ξ does not substitutes an element of V (am, Jk0) to Xfm

, hence all
strings that are substituted by ρβ ∪ ξ so far are distinct except a0 that is substituted two
times: to rows Xi0 and Yi0 . But C does not forbid to have Xi0 and Xj0 with value a0. So we
can continue ξ to ρ to satisfy ϕ as we did in Case 1.
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Case 2.2. k(m) ∈ Jk0 . We first try to define ρ as an extension of ξ as in Case 2.1:
By Claim 29, φ|ρα∪ξ = 0. But now we have a problem with extending ξ to ρ such that

φ|ρβ∪ρ = 1 since in this case ρβ ∪ ξ substitutes to Xfm
the string am + ek(m) from V (am, Jk0)

and, hence, ρβ ∪ ξ substitutes the same string into two different rows of the matrix: fk

and some row from {g1, . . . , g2|Jk0 |−1}. If it is not forbidden by clauses from C then we can
continue ξ to ρ such that φ|ρj∪ρ = 1 as in the previous case.

Otherwise, we redefine ξ in the following way: we flip the value of ξ on some non-Z
variable from Xwk0

. Now all strings that are substituted by ρi ∪ ξ are different (except a0)
since only am and a0 were substituted two times by the old version of ξ. Here we use the fact
that the new string substituted to wk0 is bad since it is within distance 1 from am. Hence we
can continue ξ to ρ such that φ|ρα∪ρ = 1. But now φ|ρβ∪ρ = 0 since two different non-special
rows are substituted with am + ek(m) and it is forbidden by a clause from φ. ◀

5 Further Research

In this section, we would like to highlight a few open questions that naturally follow from
our current research:
1. Prove a super-polynomial lower bound for the OBDD(∧,∃, reordering) proof system.
2. Is BPHPn+1

n hard for the OBDD(∧,∃) proof system?
3. Is it possible to separate the OBDD(∧,∃) proof system and OBDD(∧,∃) algorithms?
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