
Dynamic Blocked Clause Elimination for Projected
Model Counting
Jean-Marie Lagniez #Ñ

Univ. Artois, CNRS, CRIL, France

Pierre Marquis # Ñ

Univ. Artois, CNRS, CRIL, IUF, France

Armin Biere #Ñ

University Freiburg, Germany

Abstract
In this paper, we explore the application of blocked clause elimination for projected model counting.
This is the problem of determining the number of models ∥∃X.Σ∥ of a propositional formula Σ after
eliminating a given set X of variables existentially. Although blocked clause elimination is a well-
known technique for SAT solving, its direct application to model counting is challenging as in general
it changes the number of models. However, we demonstrate, by focusing on projected variables
during the blocked clause search, that blocked clause elimination can be leveraged while preserving
the correct model count. To take advantage of blocked clause elimination in an efficient way during
model counting, a novel data structure and associated algorithms are introduced. Our proposed
approach is implemented in the model counter d4. Our experiments demonstrate the computational
benefits of our new method of blocked clause elimination for projected model counting.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Projected model counting, blocked clause elimination, propositional logic

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.21

Supplementary Material Software: https://zenodo.org/records/11854002

Funding This work has benefited from the support of the AI Chair EXPEKCTATION (ANR-19-
CHIA-0005-01) of the French National Research Agency.

1 Introduction

Propositional model counting consists determines the number of models of a propositional
formula Σ, typically represented in conjunctive normal form (CNF). Many applications however
require a projected variant focusing on a specific set X of variables of interest: given a
propositional formula Σ and a set X of propositional variables to be forgotten, the projected
model counting problem consists in computing the number of interpretations over the variables
occurring in Σ but not in X, which coincide on X with a model of Σ. In other words, the goal
is to count the number of models of the quantified Boolean formula ∃X.Σ over its variables
(i.e., those present in Σ but absent in X).

The projected model counting problem is significant for various application domains
of artificial intelligence (AI). For instance, in planning scenarios, it helps to evaluate the
robustness of a plan by determining the number of initial states from which the plan execution
leads to a goal state [4]. Additionally, its applicability extends beyond AI to formal verification
problems [19] and database operations [1]. As a generalization of the standard model counting
problem #SAT, for the special case X = ∅, the projected model counting problem is at least
as complex as #SAT (#P-hard). However, the possibility to eliminate some variables actually
also might simplify the problem, such as when all variables in Σ belong to X, reducing the
problem to simply determining the satisfiability of Σ. However, in practice projected model

© Jean-Marie Lagniez, Pierre Marquis, and Armin Biere;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lagniez@cril.fr
https://www.cril.univ-artois.fr/~lagniez/
https://orcid.org/0000-0002-6557-4115
mailto:marquis@cril.fr
https://www.cril.univ-artois.fr/~marquis/
https://orcid.org/0000-0002-7979-6608
mailto:biere@cs.uni-freiburg.de
https://cca.informatik.uni-freiburg.de/biere/
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.SAT.2024.21
https://zenodo.org/records/11854002
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Dynamic Blocked Clause Elimination for Projected Model Counting

counting often turns out to be more challenging than the standard model counting problem.
This can be explained by the additional constraints imposed on the branching heuristic, i.e.,
in which order variables can be used as decisions, making the problem inherently harder.
This is also reflected for instance in upper known bounds in the literature [9] on the time
complexity of model counting even formulas with fixed treewidth k, i.e., O(2k) for standard
and O(22k) projected model counting.

One way to speed up model counting is to employ preprocessing which simplifies the
formula before tackling the model counting task. Preprocessing methods have shown to be
effective across various automated reasoning tasks, notably in SAT solving and QBF solving
[6]. Among these preprocessing techniques, blocked-clause elimination (BCE) [15] signific-
antly improves solver performance by emulating several other, more complex preprocessing
techniques [16]. Blocked clauses, initially introduced by Kullmann [20] as a generalization
of extended resolution clauses, are pivotal in propositional preprocessing techniques. In
essence, a clause α is deemed blocked within a CNF formula Σ if it includes a literal ℓ for
which all conceivable resolvents of α over ℓ yield tautologies. Removal of blocked clauses can
significantly enhance the performance of SAT solvers [15]. Furthermore, generalized forms of
BCE have demonstrated remarkable performance improvements in solving problems beyond
NP, such as QBF [12], DQBF [31] and even first-order theorem proving [18].

However, while several preprocessing techniques used for SAT solving can be adapted to
improve model counting [25, 22], others, such as the blocked clause elimination technique,
are unsuitable due to their inability to preserve the number of models. In this paper, we
address this challenge by delineating conditions under which the use of BCE is correct in
projected model counting. Specifically, we demonstrate that focusing on projected variables
during the blocked clause search is correct, i.e., gives the same projected count. The rationale
behind this lies in the fact that when concentrating on sub-formulas containing only projected
variables, the requirement boils down to ensure satisfiability. Consequently, clauses blocked
on projected variables can safely be removed.

When used for model counting, simplification techniques are typically applied up-front
during preprocessing and even though modern SAT solvers make heavily use of interleaving for-
mula simplification with CDCL search, also called inprocesssing [17], this form of simplification
is currently performed only at the root-level (decision level zero). In this paper we go beyond
root-level simplification and propose to dynamically apply the blocked clause elimination
technique dynamically during search at every decision level in the form of dynamic blocked
clause elimination. In this sense our approach is similar to look-ahead solving [14], which use
simplification techniques during search, i.e., probing techniques, at every decision level.

To accomplish this, we introduce novel data structures and associated algorithms tailored
for dynamic inprocessing. Our method efficiently identifies clauses eligible for elimination by
employing a mechanism akin to watched literals. Importantly, this methodology is not tied
to a specific model counter; it seamlessly integrates into any state-of-the-art model counter.

To assess the efficiency of our approach, we conducted experiments using the model
counter d4 [24], modified to integrate our newly developed data structures and algorithms
for projected model counting. We evaluated the performance of this new version of d4
across various benchmarks from recent model counting competitions (available at https:
//mccompetition.org/). Our experimental results underscore the computational advantages
of employing blocked clause elimination for projected model counting. For certain benchmarks,
the adoption of BCE dynamic inprocessing led to a substantial reduction in computation time,
with time savings of up to one order of magnitude compared to the baseline version of d4.
To ensure that the improvements are indeed attributable to the use of BCE inprocessing, we
also examined a version of d4 that implements BCE dynamically during preprocessing only.

https://mccompetition.org/
https://mccompetition.org/

J.-M. Lagniez, P. Marquis, and A. Biere 21:3

Interestingly, our findings indicate that employing BCE in preprocessing had no discernible
impact on the effectiveness of the model counter d4, underscoring the possibility to take
advantage of BCE eagerly during the model counting process.

The remainder of the paper is structured as follows. The next section provides formal
preliminaries. Following this, we delve into theoretical insights and give implementation
details on how to perform BCE dynamically during search. Then, we outline the experimental
protocol adopted for our empirical evaluations, along with the corresponding results. Finally,
we conclude the paper, offering insights into potential avenues for future research. The source
code and benchmarks utilized in our experiments are provided as supplementary materials.

2 Preliminaries

Let L be a propositional language built up from a finite set of propositional variables P and
the standard logical connectives. The symbols ⊥ and ⊤ represent the Boolean constants for
falsehood and truth, respectively. A literal ℓ is either a propositional variable (e.g., x) or its
negation (¬x). For a literal ℓ defined over variable x, its complementary literal ℓ is defined
as ℓ = ¬x if ℓ = x, and ℓ = x if ℓ = ¬x, with Var(ℓ) = x denoting the variable of ℓ. A term
is a conjunction of literals. A clause is a disjunction of literals. Terms and clauses are also
interpreted as their sets of literals whenever convenient.

A clause is a tautology if it contains ⊤, or both x and ¬x for some variable x. A CNF
formula Σ is a conjunction of clauses, also viewed as set of clauses when needed. The set
of propositional variables occurring in Σ is denoted Var(Σ). If a variable x ∈ X does not
belong to Var(Σ), then x is said to be free in Σ. Each clause is associated with a unique
identifier represented as an integer. A clause αi of a CNF formula Σ can be accessed using its
identifier through square bracket notation, denoted as Σ[i]. Thus αi is also noted Σ[i]. We
denote by Sℓ(Σ) the set of clauses of Σ that contain literal ℓ. When no ambiguity about Σ is
possible, we simply use the shorthand notation Sℓ instead of explicitly writing Sℓ(Σ).

▶ Example 1. Consider the CNF formula Σ = {α1, α2, . . . , α11} with

1 : x1 ∨ x2 2 : ¬x2 ∨ x3 3 : ¬x1 ∨ ¬x2 ∨ ¬y1 4 : x1 ∨ ¬x3 ∨ y1

5 : x2 ∨ ¬x3 ∨ y2 6 : x1 ∨ ¬x3 ∨ ¬y2 7 : y3 ∨ x2 8 : ¬y3 ∨ ¬x2 ∨ ¬x3

9 : ¬y3 ∨ x1 10 : ¬y3 ∨ ¬y2 ∨ x3 11 : y3 ∨ y2 ∨ x2

Var(Σ) = {x1, x2, x3, y1, y2, y3}, Sx1(Σ) = {α1, α4, α6, α9}, and Σ[2] = α2 = ¬x2 ∨ x3.

An interpretation (or world) over P, denoted by ω, is a mapping from P to {0, 1}.
Interpretations ω are often represented by sets of literals (one per variable in P), of exactly
those literals set to 1 by ω. The collection of all interpretations is denoted by W. An
interpretation ω is a model of a formula Σ ∈ L if and only if it satisfies the formula in
accordance with the usual truth-functional interpretation. The set of models of the formula
Σ is denoted by mod(Σ), defined as {ω ∈ W | ω |= Σ}. The symbol |= denotes logical
entailment, while ≡ denotes logical equivalence. For any formulas Σ, Ψ ∈ L, we have Σ |= Ψ
if and only if mod(Σ) ⊆ mod(Ψ) and Σ ≡ Ψ if and only if mod(Σ) = mod(Ψ). The notation
∥Σ∥ indicates the number of models of Σ over Var(Σ).

▶ Example 2 (Example 1 cont’d). ∥Σ∥ = 9 and the models of Σ are:
{¬x1, x2, x3, y1, ¬y2, ¬y3} {x1, ¬x2, x3, y1, y2, y3} {x1, ¬x2, x3, ¬y1, y2, y3}
{x1, ¬x2, ¬x3, ¬y1, y2, y3} {x1, ¬x2, ¬x3, y1, ¬y2, y3} {x1, ¬x2, ¬x3, y1, y2, y3}
{x1, ¬x2, ¬x3, ¬y1, ¬y2, y3} {x1, x2, x3, ¬y1, y2, ¬y3} {x1, x2, x3, ¬y1, ¬y2, ¬y3}

SAT 2024

21:4 Dynamic Blocked Clause Elimination for Projected Model Counting

For a formula Σ ∈ L and a subset X ⊆ P , ∃X.Σ represents, up to logical equivalence, the
most general consequence of Σ that is independent of the variables in X (see for instance [28]
for details). We note Var(∃X.Σ) = Var(Σ) \X.

▶ Example 3 (Example 1 cont’d). Let X = {y1, y2, y3}. We have ∥∃X.Σ∥ = 4 and the models
of ∃X.Σ over V ar(∃X.Σ) are {{¬x1, x2, x3}, {x1,¬x2, x3}, {x1,¬x2,¬x3}, {x1, x2, x3}}.

The conditioning of a CNF formula Σ by a consistent term γ results in the formula denoted
by Σ|γ , where Σ|γ is obtained from Σ by removing each clause from containing a literal of γ

and simplifying the remaining clauses, by removing from them complementary literals to
those in γ. If, during the simplification, a clause becomes empty, then Σ|γ is unsatisfiable.

The conditioning of Σ on ℓ is equivalent to the formula ∃Var(ℓ).(Σ ∧ ℓ). When ℓ is a unit
clause of Σ, Σ|ℓ is satisfiable if and only if Σ is satisfiable. Boolean Constraint Propagation
(BCP) [29] is the algorithm that, given a CNF formula Σ, returns a CNF formula closed under
unit propagation, i.e., that does not contain any unit clauses. The resulting formula is
obtained by repeating the unit propagation of a unit clause of Σ in the formula Σ while
such a unit clause exists. The identifiers assigned to clauses in Σ remain unaltered by BCP.
Consequently, BCP(Σ)[i] will retrieve the clause αi resulting from the application of BCP on
Σ, which could be ⊥, ⊤, or a subset of αi.

▶ Example 4 (Example 1 cont’d). The formula BCP(Σ|¬x1) = (x2)∧(x3)∧(y1)∧(¬y2)∧(¬y3) is
the result of conditioning Σ with the literal ¬x1 and applying BCP to Σ|¬x1 . BCP(Σ|¬x1)[1] = ⊤
and BCP(Σ|¬x1)[4] = y1.

The resolution rule asserts that given two clauses α1 = {ℓ, a1, . . . , an} and α2 =
{ℓ, b1, . . . , bm}, the resulting clause α = {a1, . . . , an, b1, . . . , bm}, is the resolvent of α1 and α2
on the literal ℓ. This operation is denoted as α = α1⊕α2. This concept extends naturally to
sets of clauses: for two sets Sℓ and Sℓ containing clauses that all involve ℓ and ℓ, respectively,
we define Sℓ ⊕ Sℓ = {α1 ⊕ α2|α1 ∈ Sℓ, α2 ∈ Sℓ, and α1 ⊕ α2 is not a tautology}.

▶ Example 5 (Example 1 cont’d). Let S¬x1 = {(¬x1 ∨ ¬x2 ∨ ¬y1)}, Sy3 = {(y3 ∨ x2), (y3 ∨
y2∨x2)} and S¬y3 = {(¬y3∨¬x2∨¬x3), (¬y3∨x1), (¬y3∨¬y2∨x3)}. We have Sy3⊕S¬y3 =
{(x1 ∨ x2), (¬y2 ∨ x3 ∨ x2), (y2 ∨ x2 ∨ x1)} and {(x1 ∨ x2)} ⊕ Sx1 = ∅.

The simplification technique known as Blocked Clause Elimination (BCE) [15, 12], targets
the removal of specific clauses termed blocked clauses from CNF formulas [20]. In the context
of a CNF formula Σ, a literal ℓ within a clause α is termed a blocking literal if it blocks α

with respect to Σ. This occurs when, for every clause α′ in Σ containing ℓ, the resulting
resolvent α ⊕ α′ on ℓ is a tautology. In essence, for a given CNF and its clauses, a clause
is considered blocked if it contains a literal that can effectively block it. Applying BCE to
Σ leads to remove every clause containing a blocking literal and by repeating the process
iteratively until no blocked literal exists. [15, 12] illustrates that the outcome of BCE remains
satisfiable equivalent regardless of the sequence in which blocked clauses are eliminated. More
generally, blocked clause elimination converges to a unique fixed point for any CNF formula,
establishing the confluence of the method.

▶ Example 6 (Example 1 cont’d). Above we have shown that the clause (x1∨x2) is blocked by
x1 and therefore can be eliminated. Following this, both (¬x1∨¬x2∨¬y1) and (x1∨¬x3∨y1)
can be removed interchangeably, as they are respectively blocked by y1 and ¬y1. Subsequently,
(¬y3 ∨ ¬y2 ∨ x3), blocked by ¬y2, is eliminated, along with the two clauses, (¬y3 ∨ x1) and
(x1 ∨ ¬x3 ∨ ¬y2), both blocked by x1. Next, (y3 ∨ x2) is removed as it is blocked by y3.
Following this, both (x2 ∨ ¬x3 ∨ y2) and (y3 ∨ y2 ∨ x2), blocked by y2, can be eliminated.
Then, (¬y3 ∨ ¬x2 ∨ ¬x3) is removed because it is blocked by y3, and finally, the last clause
(¬x2 ∨ x3) is removed because it is blocked by both ¬x2 and x3. Thus, BCE(Σ) = ∅.

J.-M. Lagniez, P. Marquis, and A. Biere 21:5

As highlighted in [20], the removal of any blocked clause ensures the preservation of
unsatisfiability. However, as illustrated by the previous example, utilizing blocked clause
elimination (BCE) on a CNF formula Σ does not ensure that the resulting formula BCE(Σ)
has the same number of models as Σ. In the next section, we will delve into the specific
conditions under which BCE can be effectively used for projected model counting.

3 Blocked Clause Elimination for Projected Model Counting

Our goal is to use blocked clause elimination dynamically during search in projected model
counting. The primary challenge is to identify conditions under which such simplification is
allowed. Section 3.1 provides novel theoretical insights permitting the removal of blocked
clauses and Section 3.2 introduces new algorithms to efficiently identify them.

3.1 Theoretical Insights
As illustrated by Example 6, the BCE rule cannot be applied indiscriminately. When applied
to the formula Σ provided in Example 1, the result is a tautological formula, indicating that
∥BCE(Σ)∥ = 1 (since V ar(BCE(Σ)) = ∅ this correspond to 26 = 64 models over V ar(Σ)),
which differs from ∥Σ∥ = 9. It is essential to note that blocked clause elimination guarantees
the preservation of satisfiability but not necessarily equivalence or the number of models.
However, the picture changes when addressing the projected model counting problem. As
we will demonstrate in Proposition 7, it is feasible to eliminate clauses that are blocked on
projected variables. The rationale behind this lies in the fact that when focusing on sub-
formulas containing only projected variables, the requirement is only to ensure satisfiability.
Consequently, clauses blocked on projected variables can be removed in this case:
▶ Proposition 7. Let ∃x.Σ be an existentially quantified CNF formula. If a non-tautological
clause α ∈ Σ is blocked by a literal ℓ ∈ α with V ar(ℓ) = x, then ∃x.Σ is logically equivalent
to ∃x.Σ′, where Σ′ = Σ \ {α}.
Proof. To establish the logical equivalence ∃x.Σ ≡ ∃x.Σ′, we need to demonstrate both
(1) ∃x.Σ |= ∃x.Σ′ and (2) ∃x.Σ′ |= ∃x.Σ. For condition (1) since Σ |= Σ′ it follows directly
that ∃x.Σ |= ∃x.Σ′. Now, let us demonstrate the second condition. We have to prove for any
interpretation ω satisfying ∃x.Σ′, that ω also satisfies ∃x.Σ. Consider an interpretation ω

satisfying ∃x.Σ′. This means that ω satisfies (Σ′
|x ∨ Σ′

|¬x). We need to address two scenarios
depending on whether ω satisfies Σ′

|x or Σ′
|¬x. If ω satisfies Σ′

|x, then Σ′
|x ≡ Σ|x. Since Σ|x

entails Σ|x ∨ Σ|¬x, we conclude that ω satisfies ∃x.Σ. Let us consider the second scenario
where ω satisfies Σ′

|¬x but not Σ′
|x (the case when ω |= Σ′

|x has just been discussed). First,
both Σ′

|x and Σ′
|¬x contain clauses from Σ′ that do not involve variable x. Therefore, if ω

does not satisfy Σ′
x but satisfies Σ′

¬x, there must be a clause β ∈ Σ′ with ¬x ∈ β and ω��|= β|x.
Now, let us demonstrate that ω satisfies Σ|¬x. Since Σ|¬x ≡ (Σ′ ∧ α)|¬x ≡ Σ′

|¬x ∧ α|¬x, we
only need to show that ω satisfies α|¬x. As α is blocked on x in Σ, each resolvent between α

and a clause of Σ containing ¬x is a tautology. Particularly, β ⊕ α is a tautology, implying
that there exists a literal ∃y ∈ β such that ¬y ∈ α and x ̸= y. Since we have established that
ω ��|= β|x, this implies that ω satisfies ¬y, hence ω satisfies α|¬x. This demonstrates that ω

satisfies Σ′
¬x ∧ α¬x, and consequently, ω satisfies Σ|¬x. Using similar reasoning as before, we

can show that ω satisfies ∃x.Σ. Therefore, for any interpretation ω that satisfies ∃x.Σ′, it
follows that ω satisfies ∃x.Σ, proving ∃x.Σ′ |= ∃x.Σ. ◀

Proposition 7 only considers formulas with a single existentially quantified and thus
projected variable. This can be extended to sets of variables:

SAT 2024

21:6 Dynamic Blocked Clause Elimination for Projected Model Counting

▶ Corollary 8. Let ∃X.Σ be an existentially quantified CNF formula. If a non-tautological
clause α ∈ Σ is blocked by a literal ℓ ∈ α such that V ar(ℓ) ∈ X, then ∃X.Σ is logically
equivalent to ∃X.Σ′, where Σ′ = Σ \ {α}.

Proof. The proof is straightforward. Proposition 7 establishes ∃x.Σ ≡ ∃x.Σ′. Therefore, we
directly deduce that ∃X \ {x}.(∃x.Σ) ≡ ∃X \ {x}.(∃x.Σ′). ◀

Corollary 8 demonstrates the potential of utilizing blocked clause elimination to enhance
projected model counters. Our objective is not only to identify the set of blocked clauses in
preprocessing but also to perform this operation during search dynamically. However, naive
algorithms for blocked clause elimination are in the worst case at least quadratic in the size
of the formula, which is clearly infeasible for dynamic blocked clause elimination. In the
following section, we capitalize on the observation that model counters typically follow the
trace of DPLL solvers. To efficiently detect blocking literals and remove blocked clauses, a
dedicated data structure along with associated algorithms are designed.

3.2 Implementation Details
To improve the efficiency of identifying clauses eligible for removal through the blocked
clause elimination rule, we introduce the BlockedClauseManager object in this section. This
specialized utility integrates efficient structures and algorithms crafted for this purpose, and
is not exclusive to the projected model counter d4. It can be seamlessly employed in any
state-of-the-art projected model counter.

To identify clauses eligible for elimination due to being blocked by a literal, we use a
mechanism akin to the concept of watched literals. Given a formula ∃X.Σ, we aim to capture
scenarios where a clause α cannot be eliminated via the blocked clause elimination rule,
which occurs when there is no literal ℓ ∈ α such that α is blocked on x, and Var(ℓ) ∈ X.
Specifically, a clause α is not blocked on a literal ℓ̄ ∈ α if there exists another clause α′ such
that ℓ̄ ∈ α′ and α⊕ α′ is not a tautology. Consequently, the invariant we adopt stipulates
that for each literal ℓ ∈ α such that Var(ℓ) ∈ X, either ℓ is assigned or there must exist a
clause α′ where ℓ̄ ∈ α′, and α⊕ α′

�≡⊤.

▶ Example 9 (Example 1 cont’d). When evaluating α3, it is not feasible to associate the
literal ¬y1 with a clause from Σ without resulting in a tautology. Therefore, α3 can be safely
removed from Σ. Conversely, when examining α11, it is feasible to associate the literal y3
with clause α9 and the literal y2 with clause α6, demonstrating that α11 cannot be eliminated
from the formula using the blocked clause elimination rule.

Since blocked elimination can ignore (implied) learned clauses [17], the set {α} ⊕ Sℓ̄,
representing possible resolutions on a literal ℓ concerning a clause α ∈ Σ, can be computed
once at the outset. Consequently, when the watched clause to assess whether α is blocked
on ℓ is deactivated, it suffices to consider clauses in {α} ⊕ Sℓ̄ rather than re-evaluating each
clause of Sℓ̄ to determine if the resolution rule yields a tautology. The first data structure
incorporated into our BlockedClauseManager is thus a set of triples (ℓ, α, {α}⊕Sℓ̄), referred
to as protectedTriple.

The function initProtectedTriple, outlined in Algorithm 1, is designed for this purpose.
When provided with the existentially quantified CNF formula ∃X.Σ, it begins by enumerating
all variables x in X (lines 2–5). Subsequently, it iterates through each possible triple
(ℓ, α, {α} ⊕ Sℓ̄) such that ℓ ∈ {x,¬x}, ℓ ∈ α, and α ∈ Sℓ (lines 3–5), adding them into
protectedTriple (line 5). Moving forward, we will primarily work with clause identifiers
rather than the clauses themselves. Therefore, when referring to a clause α in the following
discussions, we are actually addressing its identifier. This applies similarly to sets of clauses;
we will focus on the set of identifiers corresponding to the clauses within the set.

J.-M. Lagniez, P. Marquis, and A. Biere 21:7

Algorithm 1 initProtectedTriple.

Input: ∃X.Σ an existentially quantified CNF formula.

1 protectedTriple← ∅
2 for x ∈ X do
3 for ℓ ∈ {x,¬x} do
4 for α ∈ Sℓ(Σ) do
5 protectedTriple← protectedTriple ∪ {(ℓ, α, {α} ⊕ Sℓ̄(Σ)}

▶ Example 10 (Example 1 cont’d). Upon invoking the function initProtectedTriple on
the existentially quantified formula ∃X.Σ provided in Example 1, the set protectedTriple
contains the following triples: (y1, 4, {}), (¬y1, 3, {}), (y2, 5, {6}), (y2, 11, {6}), (¬y2, 10, {}),
(¬y2, 6, {5, 11}), (y3, 7, {9, 10}), (y3, 11, {9}), (¬y3, 8, {}), (¬y3, 9, {7, 11}), (¬y3, 10, {7}).

For each triple (ℓ, α, C) in protectedTriple, we need to watch a clause from C to ensure
that clause α is not blocked by ℓ. To achieve this, we incorporate into BlockedClauseManager
a map of watching lists, denoted as watches. This structure associates each clause α ∈ Σ
with a set of triples watches[α] that are being watched by α.

Algorithm 2 presents the pseudo-code for the function initWatchList. Given an exist-
entially quantified CNF formula ∃X.Σ, this function initializes the watches structure and
returns the indices of blocked clauses U , which are the clauses for which it is impossible to
associate a sentinel. The function begins by initializing the set of blocked clauses as empty
(line 2). Then, it initializes the map watches by associating an empty set with each clause
of Σ (lines 2–3). Next, it iterates over the triples in the protectedTriple set to associate a
sentinel with each of them (lines 4–6). For each triple t = (ℓ, α, C), where C represents the
set of non-tautological clauses, the algorithm checks whether C is empty. If it is, α is added
to the set of blocked clauses (line 5). Otherwise, a clause α′ from C is selected, and the triple
t is added to the watching list of α′ (line 6).

Algorithm 2 initWatchList.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: B is a set of identifiers of clauses that are blocked.

1 U ← ∅
2 Let watches an empty map
3 for α ∈ Σ s.t. V ar(α) ∩X ̸= ∅ do watches[α] = {}
4 for t = (ℓ, α, C) ∈ protectedTriple do
5 if C = ∅ then U ← U ∪ {α}
6 else watches[α′]← watches[α′] ∪ {t} with α′ ∈ C
7 return U

▶ Example 11 (Example 1 cont’d). Upon calling the function initWatchList on the exist-
entially quantified formula ∃X.Σ provided in Example 1, the following represents a potential
initialization of the watched structure:

watches[6] = {(y2, 5, {6}), (y2, 11, {6})} watches[5] = {(¬y2, 6, {5, 11})}
watches[9] = {(y3, 7, {9, 10}), (y3, 11, {9})} watches[7] = {(¬y3, 9, {7, 11}), (¬y3, 10, {7})}
watches[3] = watches[4] = watches[8] = watches[10] = watches[11] = ∅

SAT 2024

21:8 Dynamic Blocked Clause Elimination for Projected Model Counting

To finalize the initialization of the BlockedClauseManager object, we incorporate two
arrays for maintaining records of assigned variables and satisfied clauses. The first array,
named isAssignedVar, associates each variable in X with a Boolean value set to true if
the variable is assigned, and false otherwise. The second array, named isActiveClause,
associates each clause of Σ (identified by their identifier) with a Boolean variable set to true if
the clause is active, and false otherwise. The arrays isAssignedVar and isActiveClause
are initialized with false and true, respectively, for all their elements. We also need a stack
S of pairs, each consisting of variables and clauses. This stack is used to track the changes
made to isAssignedVar and isActiveClause during each call of the function propagate.

Algorithm 3 outlines all the necessary steps for the initialization process. It begins by
initializing the two arrays (lines 1–2). Then, the set of triples is initialized by invoking
the function initProtectedTriple on ∃X.Σ. Next, the watches structure is initialized by
calling the function initWatchList on ∃X.Σ, and the set of blocked clauses is collected in
U . We initialize S as an empty stack of pairs, where each pair consists of a set of variables
and a set of clauses. Finally, the function propagate is called to gather all the initially
blocked clauses. This function, described afterwards, takes a set of inactive clauses and a
set of freshly assigned variables as input, and returns a set of clauses that are identified as
blocked (further details will be provided later).

Algorithm 3 init.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: B is a set of identifiers of clauses that are blocked.

1 Let isAssigned be an array s.t. isAssigned[x] = false for each x ∈ X

2 Let isActiveClause be an array s.t. isActiveClause[α] = true for each α ∈ Σ
3 initProtectedTriple(∃X.Σ)
4 U ← initWatchList(∃X.Σ)
5 S is an empty stack of pairs of the form (variables, clauses)
6 return propagate(U, ∅)

Before delving into the specifics of how the function propagate operates, it is important
to highlight that when conditioning a formula by a literal x, without rendering it unsatisfiable,
there is no need to consider clauses shortened by this assignment. Consider a clause α ∈ Σ
with ℓ̄ ∈ α. We aim to demonstrate that α \ {ℓ̄} ∈ Σ|ℓ cannot be blocked by any literal
ℓ′ ∈ α \ {ℓ} in Σ|ℓ. Given that α is not blocked in Σ, for every ℓ′ ∈ α \ {ℓ̄}, there exists
α′ ∈ Σ such that ℓ̄′ ∈ α′ and α⊕α′

�≡⊤. Firstly, note that ℓ /∈ α′; otherwise, α⊕α′ would be
a tautology. We then consider two cases based on whether ℓ̄ belongs to α′. In the first case
when ℓ̄ ∈ α′, we have α′ \ {ℓ̄} ∈ Σ|ℓ, and since the resolution between α \ {ℓ̄} and α′ \ {ℓ̄} is
not a tautology, it follows that α \ {ℓ} is not blocked on ℓ′. In the second case where ℓ̄ /∈ α′,
α′ ∈ Σ|ℓ, and once more, α \ {ℓ} is not blocked on ℓ′ because α′ \ {ℓ} ⊕ α′

�≡⊤.

▶ Example 12 (Example 9 cont’d). Let us examine the formula Σ|¬x2 . It is evident that α11
remains an unblocked because, with the literals present in the resulting clauses y3 ∨ y2, we
can still reference the same clauses from Σ|¬x2 to maintain the invariant.

There are two scenarios where it becomes pertinent to evaluate whether a clause can
be eliminated due to being blocked: when an active clause has been satisfied by a literal,
or when an active clause has been blocked by a literal. Thus, once certain clauses become
inactive, that are clauses satisfied or blocked, it becomes imperative to update the watches

J.-M. Lagniez, P. Marquis, and A. Biere 21:9

structure accordingly. The process for this update closely resembles the mechanism for
updating watched literals in modern SAT solvers. Specifically, for each newly inactive clause
α, we need to iterate through the list of triples from watches[α] associated with α. For each
triple t = (ℓ, α, C) of watches[α], if ℓ is not assigned and α is active, we must search for
another sentinel in C – that is, an active clause. The concept here is to ensure that each
triple t = (ℓ, α, C) is linked with a clause. Additionally, if t is active, meaning α is active,
it should be watched by an active clause. Otherwise, if t is watched by an inactive clause
α′, we must ensure that when we reactivate α, α′ is also made active again. This aspect is
crucial as it guarantees the backtrack freeness of our structure.

Algorithm 4 outlines the pseudo-code for the function propagate, which fulfills the
aforementioned requirements. It takes as input a set of clauses identified by their identifiers,
denoted as U , that have become inactive, and a set of freshly assigned variables Y . The
function returns the set B of clauses detected as being blocked. The algorithm begins by
updating the two arrays isAssignedVar and isActiveClause to reflect the assignment of
variables in Y and the inactivation of clauses in U (lines 1–2). Next, the set of blocked
clauses B is initialized to be empty (line 3). Then, for each inactive clause α stored in U , the
watches map is updated (lines 4–18). To accomplish this, an inactive clause α is selected
and removed from U (lines 5–6). Subsequently, the set tmpWatch is initialized to be empty,
and it is used to store triples that will be watched by α, containing triples with assigned
variables or inactive clauses (line 18). Since α is now inactive, active triples associated with
α need to be redistributed to other active clauses.

This operation is conducted in the for loop where each triple t = (ℓ, α′, C) from watches[α]
is considered (lines 8–17). If ℓ is assigned or if α′ is inactive (line 9), α can continue to
watch t, and thus t is added to tmpWatch (line 10). However, if there exists an active clause
α′′ in C (line 11), then triple t is added to the watch list of α′′ (line 12). Lastly, if it is
impossible to associate t with an active clause (lines 13–17), then clause α′ is considered
blocked, implying that α can continue to watch α′ since they will both become active together
upon backtracking (line 14). Moreover, α′ is added to B, α′ is added to U to handle α′ later
(line 16), and clause α′ is marked as inactive (line 17). Upon completing the update of the
watches map, the assigned variables and inactivated clauses are pushed onto stack S (line
19). Finally, the set of clauses identified as blocked is returned at line 20.

▶ Example 13 (Example 1 cont’d). Consider the scenario where the literal x1 is assigned
to true. In this case, clauses 1, 4, 6, 9 become satisfied. Invoking the function propagate
with this information will result in the function returning {11} as the set of detected blocked
clauses. The various structures within our BlockedClauseManager object will be updated
as follows:

watches[7] = {(¬y3, 9, {7, 11}), (¬y3, 10, {7})} watches[5] = {(¬y2, 6, {5, 11}), (¬y2, 10, {5})}
watches[9] = {(y3, 11, {9})} watches[6] = {((y2, 11, {6})}
watches[10] = {(y2, 5, {6, 10}), (y3, 7, {9, 10})}
watches[3] = watches[4] = watches[8] = watches[11] = ∅ S = ({x1}, {1, 4, 6, 9, 11})
isActiveClause = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0] isAssignedVar = [1, 0, 0]

As mentioned earlier, our structure is designed to be backtrack-free. Therefore, the only
operation needed during backtracking is to retrieve from the stack S the elements of the
two arrays isAssignedVar and isActiveClause that require reinitialization. Algorithm 5
outlines the steps involved in the backtracking process.

To conclude this section, let us illustrate how BlockedClauseManager is used within a
DPLL-style projected model counter, such as the one employed in the model counter d4 [24].
It is worth noting that our proposed approach can also be applied to other types of projected

SAT 2024

21:10 Dynamic Blocked Clause Elimination for Projected Model Counting

Algorithm 4 propagate.

Input: U represents a set of clause identifiers corresponding to the newly inactive
clauses, and Y denotes the set of variables that have been newly assigned.

Output: B is a set of identifiers of clauses that are blocked.

1 for x ∈ Y do isAssigned[y] = true
2 for α ∈ U do isActiveClause[α] = false
3 B ← ∅
4 while U ̸= ∅ do
5 Let α ∈ U

6 U ← U \ {α}
7 tmpWatch = ∅
8 for t = (x, α′, C) ∈ watches[α] do
9 if isAssigned[x] or not isActiveClause[α′] then

10 tmpWatch← tmpWatch ∪ {t}
11 else if ∃α′′ ∈ C s.t. isActiveClause[α′] then
12 watches[α′′]← watches[α′′] ∪ {t}
13 else
14 tmpWatch← tmpWatch ∪ {t}
15 B ← B ∪ {α′}
16 U ← U ∪ {α′}
17 isActiveClause[α′]← false

18 watches[α]← tmpWatch

19 push the couple (Y, B ∪ U) in S

20 return B

model counters, such as those discussed in [30, 26, 8, 7, 10]. Algorithm 6 outlines the count
function, which is invoked on ∃X.Σ, an existentially quantified CNF formula, returning the
number of models of ∃X.Σ over V ar(Σ) \ X. Specifically, this function creates a global
variable named bce, which is a BlockedClauseManager object (line 1), initializes it (line 2),
removes the detected blocked clauses (line 3), and calls the recursive algorithm count_main
on the simplified formula (line 4). It is important to note that while this function initializes
the object necessary for enforcing BCE during model counting, the actual computation of
the number of models is performed within the count_main function, which is described
afterwards.

Algorithm 7 outlines the recursive function count_main, which serves as a pseudo-code
representation of a DPLL-style projected model counter. This function operates on ∃X.Σ,
an existentially quantified CNF formula, and computes the number of models of ∃X.Σ over
V ar(Σ) \X. The blue portion of the algorithm, which differs from the baseline due to the
inclusion of BCE management, will be discussed later.

The function begins by invoking BCP on the input formula Σ at line 1. For simplicity, we
assume that BCP returns a triple consisting of the set of unit literals units, the set of satisfied
clauses S, and the simplified formula Σ without clauses from S and the unit literals from
units. If the formula returned by BCP contains an empty clause, indicating unsatisfiability,
the function returns 0 (line 3). At line 5, the algorithm visits a cache to determine whether
the current formula Σ has been previously encountered during the search. The cache, which

J.-M. Lagniez, P. Marquis, and A. Biere 21:11

Algorithm 5 backtrack.

1 (X, C)← top(S)
2 pop(S)
3 for x ∈ X do isAssignedVar[x] = false
4 for α ∈ C do isActiveClause[α] = true

Algorithm 6 count.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: the number of models of ∃X.Σ over V ar(Σ) \X

1 global bce is an BlockedClauseManager object
2 B ← init(bce)
3 Σ← Σ \ {Σ[i] s.t. i ∈ B}
4 return count_main(Σ)

starts empty, stores pairs comprising a CNF formula and its corresponding projected model
count with respect to X. Whenever Σ is found in the cache, instead of recalculating ∥∃X.Σ∥
from scratch, the algorithm retrieves cache(Σ) (line 7) to streamline the computation. If the
formula is satisfiable, connectedComponents is called (line 8) on Σ to partition it into a set
of CNF formulae that are pairwise variable-disjoint. This procedure is a standard method
employed in model counters. It identifies connected components of the primal graph of Σ and
returns a set comps of CNF formulae, ensuring that each pair of distinct formulae in comps

does not share any common variable. The variable cpt, used to accumulate intermediate
model counts, is initialized to 1 (line 9). Then, the function iterates over the connected
components Σ′ identified in comps (lines 10–14) to count the number of models of each
component. If the considered component Σ′ only contains variables from X, the model count
accumulated in cpt is multiplied by 1 if Σ′ is satisfiable and 0 otherwise. If V ar(Σ′)\X is not
empty, a variable v from this set is chosen, and the function count_main is recursively called
on Σ′ where v is assigned true and on Σ′ where v is assigned false. The results returned
by the two recursive calls are then summed up and multiplied by the variable cpt (line 14).
Before returning the accumulated model count in cpt (line 17), the formula Σ is added to
the cache associated with the corresponding projected model count cpt (line 15).

To integrate BCE into the search process (blue part), we first call the function propagate
on S and units to update the information managed by the bce object and compute the set
of blocked clauses B (line 3). Then, at line 4, we eliminate the stored set of blocked clauses
B. To maintain consistency between the BCE manager information and the ongoing recursive
call, the backtrack function must be executed before returning the calculated model count
(lines 6 and 16).

4 Experimental Evaluation

Our aim was to empirically assess the advantages of employing blocked clause elimination
in solving instances of the projected model counting problem. For our experimentation, we
used 500 CNF instances from the three recent model counting competitions (the 2021, 2022,
and 2023 editions documented at https://mccompetition.org/). We excluded instances
from the 2020 competition due to incompatibility with our software caused by changes in

SAT 2024

https://mccompetition.org/

21:12 Dynamic Blocked Clause Elimination for Projected Model Counting

Algorithm 7 count_main.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: the number of models of ∃X.Σ over V ar(Σ) \X

1 (units, S, Σ)← bcp(Σ)
2 if ⊥ ∈ Σ then return 0
3 B ← bce.propagate(S, {x|ℓ ∈ units and V ar(ℓ) = x})
4 Σ← Σ \ {Σ[i] s.t. i ∈ B}
5 if cache(Σ) ̸= nil then
6 bce.backtrack()
7 return cache(Σ)
8 comps← connectedComponents(Σ)
9 cpt← 1

10 for Σ′ ∈ comps do
11 if V ar(Σ′) \X = ∅ then cpt← cpt× (SAT(Σ′)?1 : 0)
12 else
13 Let v ∈ V ar(Σ′) \X

14 cpt← cpt× (count_main(Σ′ ∧ v) + count_main(Σ′ ∧ ¬v))

15 cache(Σ)← cpt

16 bce.backtrack()
17 return cpt

the input format. The instances were categorized into three datasets: 200 from the 2021
competition, 200 from the 2022 competition, and 100 from the 2023 competition. Notably,
as the full set of 2023 instances was unavailable at the time of writing, we only included the
100 public instances provided by the organizers.

The projected model counter used for the evaluation was d4 [24]. Our experiments were
conducted on Intel Xeon E5-2643 processors running at 3.30 GHz with 32 GiB of RAM,
operating on Linux CentOS. Regarding the model counting competition, each instance was
subject to a time-out of 3600 seconds and a memory limit of 32 GiB. For each instance, we
measured the computation times required by three different versions of d4 for counting the
numbers of projected models. These versions include:

d4: This is the standard version of d4, as given at https://github.com/crillab/d4v2.
d4+BCEp: This version of d4 incorporates blocked clause elimination performed once
during a preprocessing phase.
d4+BCEi: In this version of d4, blocked clause elimination is performed dynamically
throughout the search achieved by the model counter.

For all the versions under consideration, a preprocessing step of 60 seconds was conducted.
This preprocessing involves running BiPe [27], followed by the occurrence elimination and
vivification preprocessing for 10 iterations as described in [23] (we only replace the gate
simplification with BiPe).

Table 1 presents the number of instances for which different versions of d4 terminated
within the specified time and memory constraints. The correctness of the extended versions
of d4 was verified by comparing their returned model counts with those of the baseline
version. For all instances solved by the baseline version, the extended versions returned
the same model counts. The table clearly demonstrates that leveraging dynamical blocked

https://github.com/crillab/d4v2

J.-M. Lagniez, P. Marquis, and A. Biere 21:13

Table 1 The table shows the numbers of instances solved by different versions d4 within a time
limit of 3600 seconds and a memory limit of 32 GiB. The number of memory out (MO) are reported
between brackets.

2021 (200) 2022 (200) 2023 (100) All (500)
d4 139 (56 MO) 149 (24 MO) 73 (9 MO) 361 (89 MO)

d4+BCEp 139 (56 MO) 149 (25 MO) 73 (9 MO) 361 (90 MO)
d4+BCEi 172 (23 MO) 163 (8 MO) 78 (4 MO) 413 (35 MO)

clause elimination significantly improves the performance of the model counter in practice.
Furthermore, regardless the benchmark set considered, the version of d4 equipped with
dynamic blocked clause elimination systematically solved more instances than the two other
versions. This indicates that the improvement is not limited to specific benchmark sets.
Moreover, Table 1 shows that using blocked clause elimination solely during preprocessing
phase did not lead to increase the number of instances solved. This demonstrates that for
effective results, blocked clause elimination needs to be performed eagerly.

100 101 102 103

baseline (d4)

10 1

100

101

102

103

bl
oc

ke
d

cla
us

e
el

im
in

at
io

n
(d
4
+
BC

E i
)

instance

(a) Comparing the run times of d4 and d4+BCEi.

0.0 0.5 1.0 1.5 2.0 2.5
baseline (d4) 1e8

0.0

0.5

1.0

1.5

2.0

2.5

bl
oc

ke
d

cla
us

e
el

im
in

at
io

n
(d
4
+
BC

E i
)

1e8
instance

(b) Comparing the number of decisions made
by d4 and d4+BCEi on the instances solved by
both.

0 50 100 150 200 250 300 350 400
Number of instances solved

10 2

10 1

100

101

102

103

104

Cl
au

se
 d

el
et

io
n-

to
-d

ec
isi

on
 ra

tio

(c) Plot used to estimate the extent of clause
deletion relative to the number of decisions made
for instances solved by d4+BCEi.

Figure 1 Experimental results.

Figure 1a presents a pairwise comparison between d4 and d4+BCEi on a scatter plot. Each
data point represents an instance, with the x-axis indicating the time (in seconds) required
to solve it using the baseline version of d4, and the y-axis representing the time for the

SAT 2024

21:14 Dynamic Blocked Clause Elimination for Projected Model Counting

enhanced version d4+BCEi. The experimental results unequivocally demonstrate that the
version of d4 with dynamic blocked clause elimination generally outperforms the baseline
version of d4. Furthermore, the figure reveals instances where d4+BCEi achieves speeds one
order of magnitude faster than the baseline version d4.

Focusing on instances solved by both approaches and exhibiting a solving time difference
of more than five seconds, the baseline version d4 beat d4+BCEi for 75 instances, achieving an
average speedup of 4%. This speedup is calculated as the ratio between the running times of
the methods, with a peak improvement of 14% and the third quartile indicating a speedup of
7%. We investigated the factors contributing to the greater efficiency of the baseline version
compared to the one employing dynamic blocked clause elimination, but we were unable to
identify a definitive reason. It is hypothesized that the removal of clauses may negatively
impact branching, potentially leading to a slightly larger search space explored by the model
counter. On the contrary, we discovered 150 instances for which d4+BCEi outperformed the
baseline version of d4. For them, d4+BCEi exhibits an average speed increase of 40 times
compared to the baseline, with a peak improvement of up to 3000 times. The second quartile
of the time distribution demonstrates a 50% improvement, while the third quartile shows a
remarkable 600% enhancement.

Figure 1b showcases the number of decisions made by d4 and d4+BCEi on instances solved
by both methods. This visualization sheds light on the fact that the performance enhancement
cannot be solely attributed to a reduction in memory usage, which might otherwise account
for the observed decrease in memory consumption with d4+BCEi. It is widely recognized
that the cache structure frequently serves as the primary memory bottleneck. Consequently,
removing clauses reduces the size of cache entries, which typically results in decreased memory
consumption and associated memory overhead. Nevertheless, as depicted in Figure 1b, the
use of blocked clause dynamic elimination also results in a decrease in the number of decisions
required by the model counter to complete its task. This underscores that the performance
gain is not solely a consequence of an inadequate memory limit setting. Thus, even with a
significant increase in the memory limit, employing dynamic blocked clause elimination proves
highly advantageous in practice. Specifically, for 71 instances, d4 required fewer decisions
than d4+BCEi, with an average difference of 6460 decisions in favor of d4. The second quartile
exhibited a difference of 102 decisions, while the third quartile showed a difference of 306
decisions across these instances. Conversely, d4+BCEi required fewer decisions than d4 for
231 instances, with an average difference of 12,249,678 decisions in favor of d4+BCEi. The
second quartile exhibited a difference of 33,005 decisions, while the third quartile showed a
difference of 1,602,452 decisions across these instances.

Figure 1c gives the proportion of clauses removed through dynamic blocked clause relative
to the number of decisions made for instances solved by d4+BCEi. As observed in the plot,
for approximately 300 instances, the average number of blocked clauses removed at each
decision is at least 10. For about 100 of these instances, the average number of blocked
clauses removed at each decision is at least 100. Additionally, for certain benchmarks, more
than 1000 clauses where removed at each decision. While there is some variation in the extent
of deletion across different steps, the plot clearly demonstrates that a substantial number of
clauses are generally eliminated when employing dynamic blocked clause elimination.

5 Conclusion and Perspectives

In conclusion, this paper has explored the utilization of the blocked clause elimination
dynamically during projected model counting. Despite its widespread application in the
satisfiability problem, the blocked clause elimination rule posed challenges for model counting

J.-M. Lagniez, P. Marquis, and A. Biere 21:15

due to its inability to maintain the number of models unchanged. However, through focused
attention on projected variables during the search for blocked clauses, we have demonstrated
the feasibility of leveraging this rule while preserving the correct model count. To achieve
this, we introduced a new data structure and corresponding algorithms tailored for leveraging
blocked clause elimination dynamically during search. This innovative machinery has
been integrated into the projected model counter d4, enabling us to conduct comprehensive
experiments that showcase the computational benefits of our approach. Our results underscore
the efficacy of leveraging the blocked clause elimination rule technique for projected model
counting, opening avenues for further exploration and refinement in this domain.

Exploring extensions of blocked clause elimination (BCE) in the context of projected model
counting is interesting future work. This particularly includes considering the elimination
of resolution asymmetric tautologies (RAT) [17], or even covered [11, 5] or propagation
redundant (PR) [13] clauses. These approaches hold the potential to uncover additional
redundant clauses, that can be eliminated and thus improve efficiency of projected model
counting. In addition, we envision the development of novel branching heuristics designed to
prioritize the elimination of clauses that prevent removal of blocked clauses. These improved
decision heuristics, could create more instances where clauses become blocked and thus
eliminated, again with the goal to improve solver efficiency. Furthermore, we want to explore
the applicability of blocked clause elimination to other reasoning tasks, particularly to the
weighted Max#SAT problem [3, 2] or counting tree models of QBF formulas [21].

References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. URL: http://webdam.inria.fr/Alice/.

2 Gilles Audemard, Jean-Marie Lagniez, and Marie Miceli. A new exact solver for (weighted)
max#sat. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,
volume 236 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPICS.SAT.2022.28.

3 Gilles Audemard, Jean-Marie Lagniez, Marie Miceli, and Olivier Roussel. Identifying soft cores
in propositional formulæ. In Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik, editors,
Proceedings of the 14th International Conference on Agents and Artificial Intelligence, ICAART
2022, Volume 2, Online Streaming, February 3-5, 2022, pages 486–495. SCITEPRESS, 2022.
doi:10.5220/0010892700003116.

4 Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J. Stuckey. #∃sat: Projected
model counting. In Marijn Heule and Sean A. Weaver, editors, Theory and Applications
of Satisfiability Testing – SAT 2015 – 18th International Conference, Austin, TX, USA,
September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes in Computer Science, pages
121–137. Springer, 2015. doi:10.1007/978-3-319-24318-4_10.

5 Lee A. Barnett, David M. Cerna, and Armin Biere. Covered clauses are not propagation
redundant. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning
– 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I, volume 12166 of Lecture Notes in Computer Science, pages 32–47. Springer, 2020.
doi:10.1007/978-3-030-51074-9_3.

6 Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in SAT solving. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability
– Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages
391–435. IOS Press, 2021. doi:10.3233/FAIA200992.

SAT 2024

http://webdam.inria.fr/Alice/
https://doi.org/10.4230/LIPICS.SAT.2022.28
https://doi.org/10.5220/0010892700003116
https://doi.org/10.1007/978-3-319-24318-4_10
https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.3233/FAIA200992

21:16 Dynamic Blocked Clause Elimination for Projected Model Counting

7 Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting with
algebraic decision diagrams. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1468–1476. AAAI Press, 2020.
doi:10.1609/AAAI.V34I02.5505.

8 Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. DPMC: weighted model counting by
dynamic programming on project-join trees. In Helmut Simonis, editor, Principles and Practice
of Constraint Programming – 26th International Conference, CP 2020, Louvain-la-Neuve,
Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer
Science, pages 211–230. Springer, 2020. doi:10.1007/978-3-030-58475-7_13.

9 Johannes Klaus Fichte, Markus Hecher, Michael Morak, Patrick Thier, and Stefan Woltran.
Solving projected model counting by utilizing treewidth and its limits. Artif. Intell., 314:103810,
2023. doi:10.1016/J.ARTINT.2022.103810.

10 Markus Hecher, Patrick Thier, and Stefan Woltran. Taming high treewidth with abstraction,
nested dynamic programming, and database technology. In Luca Pulina and Martina Seidl,
editors, Theory and Applications of Satisfiability Testing – SAT 2020 – 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 343–360. Springer, 2020. doi:10.1007/978-3-030-51825-7_25.

11 Marijn Heule, Matti Järvisalo, and Armin Biere. Covered clause elimination. In Andrei
Voronkov, Geoff Sutcliffe, Matthias Baaz, and Christian G. Fermüller, editors, Short papers for
17th International Conference on Logic for Programming, Artificial intelligence, and Reasoning,
LPAR-17-short, Yogyakarta, Indonesia, October 10-15, 2010, volume 13 of EPiC Series in
Computing, pages 41–46. EasyChair, 2010. doi:10.29007/CL8S.

12 Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere. Clause
elimination for SAT and QSAT. J. Artif. Intell. Res., 53:127–168, 2015. doi:10.1613/JAIR.
4694.

13 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems. J.
Autom. Reason., 64(3):533–554, 2020. doi:10.1007/S10817-019-09516-0.

14 Marijn J. H. Heule and Hans van Maaren. Look-ahead based SAT solvers. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability – Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 183–212.
IOS Press, 2021. doi:10.3233/FAIA200988.

15 Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 129–144. Springer,
2010. doi:10.1007/978-3-642-12002-2_10.

16 Matti Järvisalo, Armin Biere, and Marijn Heule. Simulating circuit-level simplifications on
CNF. J. Autom. Reason., 49(4):583–619, 2012. doi:10.1007/S10817-011-9239-9.

17 Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, Automated Reasoning – 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes
in Computer Science, pages 355–370. Springer, 2012. doi:10.1007/978-3-642-31365-3_28.

18 Benjamin Kiesl, Martin Suda, Martina Seidl, Hans Tompits, and Armin Biere. Blocked clauses
in first-order logic. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, volume 46 of EPiC Series in Computing, pages 31–48. EasyChair, 2017.
doi:10.29007/C3WQ.

https://doi.org/10.1609/AAAI.V34I02.5505
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1016/J.ARTINT.2022.103810
https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.29007/CL8S
https://doi.org/10.1613/JAIR.4694
https://doi.org/10.1613/JAIR.4694
https://doi.org/10.1007/S10817-019-09516-0
https://doi.org/10.3233/FAIA200988
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/S10817-011-9239-9
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.29007/C3WQ

J.-M. Lagniez, P. Marquis, and A. Biere 21:17

19 Vladimir Klebanov, Norbert Manthey, and Christian J. Muise. Sat-based analysis and
quantification of information flow in programs. In Kaustubh R. Joshi, Markus Siegle, Mar-
iëlle Stoelinga, and Pedro R. D’Argenio, editors, Quantitative Evaluation of Systems – 10th
International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013. Pro-
ceedings, volume 8054 of Lecture Notes in Computer Science, pages 177–192. Springer, 2013.
doi:10.1007/978-3-642-40196-1_16.

20 Oliver Kullmann. On a generalization of extended resolution. Discret. Appl. Math., 96-97:149–
176, 1999. doi:10.1016/S0166-218X(99)00037-2.

21 Jean-Marie Lagniez, Florent Capelli, Andreas Plank, and Martina Seidl. A top-down tree
model counter for quantified boolean formulas. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, 3rd-9th August 2024, Jeju, South
Korea. ijcai.org, 2024.

22 Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Definability for model counting.
Artif. Intell., 281:103229, 2020. doi:10.1016/J.ARTINT.2019.103229.

23 Jean-Marie Lagniez and Pierre Marquis. Preprocessing for propositional model counting. In
Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 2688–2694.
AAAI Press, 2014. doi:10.1609/AAAI.V28I1.9116.

24 Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In Carles
Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 667–673. ijcai.org,
2017. doi:10.24963/IJCAI.2017/93.

25 Jean-Marie Lagniez and Pierre Marquis. On preprocessing techniques and their impact
on propositional model counting. J. Autom. Reason., 58(4):413–481, 2017. doi:10.1007/
S10817-016-9370-8.

26 Jean-Marie Lagniez and Pierre Marquis. A recursive algorithm for projected model counting.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 – February 1, 2019, pages 1536–1543. AAAI Press, 2019. doi:
10.1609/AAAI.V33I01.33011536.

27 Jean-Marie Lagniez and Pierre Marquis. Boosting definability bipartition computation using
SAT witnesses. In Sarah Alice Gaggl, Maria Vanina Martinez, and Magdalena Ortiz, editors,
Logics in Artificial Intelligence – 18th European Conference, JELIA 2023, Dresden, Germany,
September 20-22, 2023, Proceedings, volume 14281 of Lecture Notes in Computer Science,
pages 697–711. Springer, 2023. doi:10.1007/978-3-031-43619-2_47.

28 Jérôme Lang, Paolo Liberatore, and Pierre Marquis. Propositional independence: Formula-
variable independence and forgetting. J. Artif. Intell. Res., 18:391–443, 2003. doi:10.1613/
JAIR.1113.

29 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

30 Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. GANAK: A scalable
probabilistic exact model counter. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pages 1169–1176. ijcai.org, 2019. doi:10.24963/IJCAI.2019/163.

31 Ralf Wimmer, Karina Gitina, Jennifer Nist, Christoph Scholl, and Bernd Becker. Preprocessing
for DQBF. In Marijn Heule and Sean A. Weaver, editors, Theory and Applications of
Satisfiability Testing – SAT 2015 – 18th International Conference, Austin, TX, USA, September
24-27, 2015, Proceedings, volume 9340 of Lecture Notes in Computer Science, pages 173–190.
Springer, 2015. doi:10.1007/978-3-319-24318-4_13.

SAT 2024

https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1016/J.ARTINT.2019.103229
https://doi.org/10.1609/AAAI.V28I1.9116
https://doi.org/10.24963/IJCAI.2017/93
https://doi.org/10.1007/S10817-016-9370-8
https://doi.org/10.1007/S10817-016-9370-8
https://doi.org/10.1609/AAAI.V33I01.33011536
https://doi.org/10.1609/AAAI.V33I01.33011536
https://doi.org/10.1007/978-3-031-43619-2_47
https://doi.org/10.1613/JAIR.1113
https://doi.org/10.1613/JAIR.1113
https://doi.org/10.1145/378239.379017
https://doi.org/10.24963/IJCAI.2019/163
https://doi.org/10.1007/978-3-319-24318-4_13

	1 Introduction
	2 Preliminaries
	3 Blocked Clause Elimination for Projected Model Counting
	3.1 Theoretical Insights
	3.2 Implementation Details

	4 Experimental Evaluation
	5 Conclusion and Perspectives

