
Speeding up Pseudo-Boolean Propagation
Robert Nieuwenhuis
Barcelogic.com, Barcelona, Spain

Albert Oliveras
Technical University of Catalonia, Barcelona, Spain

Enric Rodríguez-Carbonell
Technical University of Catalonia, Barcelona, Spain

Rui Zhao
Technical University of Catalonia, Barcelona, Spain

Abstract
Unit propagation is known to be one of the most time-consuming procedures inside CDCL-based SAT
solvers. Not surprisingly, it has been studied in depth and the two-watched-literal scheme, enhanced
with implementation details boosting its performance, has emerged as the dominant method.

In pseudo-Boolean solvers, the importance of unit propagation is similar, but no dominant
method exists: counter propagation and watched-based extensions are efficient for different types of
constraints, which has opened the door to hybrid methods. However, probably due to the higher
complexity of implementing pseudo-Boolean solvers, research efforts have not focused much on
concrete implementation details for unit propagation but rather on higher-level aspects of other
procedures, such as conflict analysis.

In this paper, we present (i) a novel methodology to precisely assess the performance of
propagation mechanisms, (ii) an evaluation of implementation variants of the propagation methods
present in RoundingSat and (iii) a detailed analysis showing that hybrid methods outperform the
ones based on a single technique. Our final contribution is to show that a carefully implemented
hybrid propagation method is considerably faster than the preferred propagation mechanism in
RoundingSat, and that this improvement leads to a better overall performance of the solver.

2012 ACM Subject Classification Theory of computation

Keywords and phrases SAT, Pseudo-Boolean Solving, Implementation-level Details

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.22

Funding All authors are supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF: A way of making Europe”. Second and third authors are
supported by Barcelogic through research grants C-11423 and C-11422, respectively.

1 Introduction

CDCL-based SAT solvers [25] have become the method of choice to solve a variety of problems
coming from diverse areas such as system verification [10], security [17, 32], cryptography [31]
and even mathematics [22]. Nevertheless, theoretical results [4, 27] have identified problems
for which no polynomial CDCL execution exists. The reason for this is that resolution,
the proof system on which SAT solvers are based, does not provide polynomial proofs for
them [21]. This is particularly troublesome for problems, like the pigeon hole principle, which
frequently appear in real-world problems [2]. Another well-known limitation of SAT regards
the poor expressivity of its input language, which does not allow, for example, encoding
numerical constraints in a natural way.

Pseudo-Boolean (PB) solving, also known as 0-1 Integer Linear Programming, has emerged
as a remarkable alternative to SAT. The input language to PB solvers, consisting of 0-1
linear constraints, is an extension of propositional clauses, and allows for more compact

© Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6489-2138
https://orcid.org/0000-0002-5893-1911
https://orcid.org/0000-0003-1061-3954
https://doi.org/10.4230/LIPIcs.SAT.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Speeding up Pseudo-Boolean Propagation

encodings. In addition, CDCL-based PB solvers [28] are, at least from the theoretical point
of view, exponentially more powerful than SAT solvers because they can reason using the
cutting-planes proof system [13], which is exponentially stronger than resolution.

CDCL-based PB solvers incorporate many of the techniques that turned out to be essential
in SAT solvers. Among them, a crucial procedure is unit propagation, which, given a clause
where all literals are false except one that is unassigned, extends the assignment by adding
this literal. The efficiency of this procedure is paramount for the overall performance of
solvers, and hence efficient ways to implement it have been developed. Out of all these
methods, the two-watched literal scheme [26] has established itself as the dominant method
in SAT. It is based on a simple fact: if two non-false literals exist in a clause, no unit
propagation is possible. Hence, two non-false literals are watched, and only when one of
them becomes false, the clause is checked for propagation.

This idea is not so simple in PB constraints because the number of literals to be watched
depends on its coefficients. Due to this reason, PB watched-literal propagation and counter
propagation, the simpler version where all literals in every constraint are watched, have
co-existed in PB solvers with no strong evidence of one method clearly outperforming the
other: the PBS solver [3] used counter-based propagation without mentioning the possibility
of using watches. The Galena [11] authors mentioned that watches are effective when the
sum of the coefficients is large compared with the independent term. However, they opted
to always use counters. Initially, the Pueblo solver [29] used counters but later moved
to a version with watch propagation [30]. In the Sat4j [5] solver, both procedures are
implemented and, according to the authors, not much difference was observed among them,
with a slight preference for watches. Finally, RoundingSat [14] concluded that watched
propagation was more efficient but, when specialized procedures for clauses and cardinality
constraints are implemented, which is a standard technique used in all solvers, the difference
is fairly small.

Surprisingly, with the remarkable exception of RoundingSat, it is not possible to find
in the literature rigorous experimental evaluations that support any of these design decisions.
The situation is dramatically different when it comes to SAT-based unit propagation. As an
example, the cache behavior of watched-literal propagation has been thoroughly studied in a
number of papers [33, 12, 23, 24], where important propagation speedups are reported. This
caused solvers like MiniSAT [18], PicoSAT [6] or Lingeling [7] to incorporate carefully
designed implementations of watched propagation [8]. A very pedagogical reference is the
source code of CaDiCaL [9], where design decisions are discussed with pointers to the papers
on which they rely.

This type of research efforts are very delicate because minimal changes on the implement-
ation of propagation procedures can cause solvers to have dramatically different runtimes
that are not directly related with the propagation scheme. This makes improvements that
are not groundbreaking impossible to be perceived, because they are mostly blurred by the
chaotic behavior of the solver.

In this paper we leverage SAT-solver implementers’ knowledge and use that to improve
the performance of PB solvers. For that purpose, we considered RoundingSat and improved
the implementation of their propagation routines. We chose this solver because it is the most
successful and actively maintained PB solver: its team has recently devoted considerable
efforts to develop smart conflict analysis procedures [19], add core-guided techniques [16]
and integrate MIP solvers [15], which has led RoundingSat to be “the world’s fastest
pseudo-Boolean solver” [1]. This speed is particularly striking because, in our opinion, its
authors have focused more on the development of techniques that can give exponential
improvements than on lower-level implementation aspects.



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:3

In order to evaluate the impact of the improvements we introduce, we also present a novel
methodology that, by generating log files with the information of a solver execution, allows
us to guarantee that the solver always traverses the search space in the same way. With this
certainty, we can assess the precise impact of different unit propagation variants.

This paper is organized as follows. After some preliminaries in Section 2, we explain our
novel methodology to compare propagation procedures in Section 3. Sections 4 and 5 present
our improvements on counter and watched-based propagation, respectively. Section 6 reports
on the development of a hybrid method for propagation and we conclude in Section 7.

Contributions
(I) First, we present a novel methodology for experimentally evaluating different propaga-

tion schemes. This has allowed us to detect small improvements that otherwise would
have been unnoticed. It is well known in the solver developer community that by
joining the forces of many small improvements, significant speed-ups may be achieved.

(II) Second, we describe and evaluate improvements on the implementation of counter and
watch-based propagation in RoundingSat, giving concrete reasons for their impact.

(III) Third, we report on the use of hybrid approaches, where the decision to use counter or
watched propagation is done per constraint. Although this was already mentioned in
Galena and RoundingSat, where it was said to be not superior to counters in the
first solver, and left as future work in the second, here we show that a hybrid approach
clearly outperforms the virtual best solver that always chooses the best option between
using counters or watches for all constraints.

(IV) Finally, we show that improvements in unit propagation do not negatively affect other
components of the solver. That is, the improved solver is indeed faster and solves
more instances than the original one.

2 Preliminaries

Pseudo-Boolean Constraints. Let X be a set of propositional variables. A literal is either a
variable (x) or the negation of one (x). We will assume that x = x. A (pseudo-Boolean or PB)
constraint is a 0-1 linear inequality

∑
i cili ≥ d where the li’s are literals and, without loss of

generality, the ci’s (coefficients) and d (degree) are positive integers. When all coefficients
are 1 we say that the constraint is a cardinality constraint and if, in addition, d is also 1 we
say that it is a clause. A formula is a set of constraints.

Satisfiability. An assignment ρ is a set of non-contradictory literals. It is total if for any
x ∈ X either x ∈ ρ or x ∈ ρ, and partial otherwise. A literal l is true in ρ if l ∈ ρ, is
false if l ∈ ρ and is undefined otherwise. Given a constraint C of the form

∑
i cili ≥ d, an

assignment ρ satisfies it if
∑

i:li∈ρ ci ≥ d, and falsifies it if no extension of ρ can satisfy it.
If we define slack(C, ρ) = (

∑
i:li ̸∈ρ ci) − d, it can be seen that ρ falsifies C if and only if

slack(C, ρ) < 0. Note the slack expression sums the coefficients of all non-false literals, and
that is the maximum value that the left hand side of the constraint can reach. If even that
does not exceed d, no extension of ρ will do. An assignment that satisfies all constraints of a
formula is called a model. Sometimes, instead of looking for any model, we are interested in
finding one that minimizes a certain linear objective function

∑
i aili.

Unit Propagation. Given a constraint C =
∑

i cili ≥ d and an assignment ρ, we say that
C unit propagates li under ρ if li is undefined in ρ, but li is true in any total assignment
extending ρ that satisfies C. The latter is equivalent to checking whether slack(C, ρ) < ci,

SAT 2024



22:4 Speeding up Pseudo-Boolean Propagation

i.e., if we do not set li to true, the constraint becomes falsified. Given a formula F and an
assignment ρ, unit propagation of F under ρ is the outcome of applying the following two
rules until a fixpoint is reached: (i) if ρ falsifies a constraint C ∈ F , a conflict is found with
conflicting constraint C and we stop, (ii) if ρ unit propagates some literal l due to constraint
C, extend ρ := ρ ∪ {l} with reason C.

Conflict-Driven Pseudo-Boolean Solving. A generalization of the well-known CDCL [25]
algorithm for SAT can be applied to the pseudo-Boolean case [28]. The algorithm starts
with an empty assignment ρ and proceeds as follows: (1) Apply unit propagation, possibly
extending ρ. (2) If a conflict is found, a conflict analysis procedure derives a constraint C

(called lemma) that can be safely added to the formula. If C is the constraint 0 ≥ 1, the
formula is unsatisfiable, otherwise it is guaranteed that after removing some literals from ρ in
a last-in first-out way (backjumping), C allows some literal to be unit propagated. Hence, we
go to step 1. (3) If no conflict is found, and ρ is total, it is a model of the formula. Otherwise,
an undefined literal l (decision literal) is added to ρ and we go to step 1. The choice of l is
determined by sophisticated heuristics.

Since the set of constraints might grow too much, periodically a cleanup process that
deletes some lemmas is performed. Also periodically, the process restarts: roughly speaking,
ρ is reset to the empty set. Since all lemmas in the formula are still kept, the behavior of the
algorithm will change.

3 Design of a Fair Evaluation of Different Propagation Mechanisms

Developing a state-of-the-art PB/SAT solver not only consists in implementing and combining
the appropriate techniques. Optimizing its implementation is a critical task, which turns
out to be very complex due to the “chaotic” behavior of these solvers. On a single instance,
seemingly innocuous changes may have a strong impact on the overall solver runtime, but
this does not necessarily mean that this change is worth incorporating to the solver. One
prominent example of this phenomenon takes place when optimizing unit propagation. A
simple change in the order in which clauses are processed during this procedure drives the
solver towards finding one conflicting clause or another, which in turn, leads to different
learned lemmas and to completely different search space traversal. Hence, evaluating the
impact of a new implementation technique on a small set of benchmarks is hopeless. This is
usually fixed by performing exhaustive experiments on very large sets of benchmarks, hoping
that, by evaluating some measure over all the collected data, one will be able to conclude
whether this implementation method pays off or not. In our opinion, this has at least two
problems. Firstly, it makes the evaluation of these improvements a very time-consuming
task. Secondly, modest improvements are not observable with this methodology, because the
noise produced by the changes in search space exploration end up hiding their real impact.

In order to avoid this troublesome scenario, we want to force the solver to explore the
search space in the same way, independently of the unit propagation mechanism we implement.
The good news is that the outcome of the unit propagation procedure is almost unique. If
there is no conflict, any complete propagation procedure will add exactly the same literals to
the assignment. The only difference is that they may be added in a different order, or due
to different reasons, but we will see that this is not a problem for our method. Otherwise,
if unit propagation derives a conflict, any complete procedure will find it. However, since
propagation stops as soon as it finds the first conflicting clause, different propagation variants
may find different conflicting clauses, which will lead to the generation of different lemmas
by conflict analysis and subsequent different search space exploration.



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:5

Intuitively our methodology relies on an oracle that, after a conflicting clause is found,
tells the solver which lemma should be learned. In principle, that would allow the solver to
always explore the search space in the same way1. However, there are other ingredients in
the CDCL procedure that have a strong effect on the search behavior: decision heuristics,
cleanups and restarts. For that reason, our oracle will in addition have to inform the solver
about (i) which literal should be the next decision, (ii) when the next cleanup should be
applied and which constraints should be removed, and (iii) at which point a restart should
be applied.

In this paper, the role of the oracle will be played by a log, which is a file obtained from the
execution of a PB solver where all the previously mentioned information is written. It is not
difficult to modify a PB solver so that it reads these logs. The solver then mostly consists of
only the unit propagation procedure, since the outcome of all other computationally-expensive
tasks is provided by the oracle. With this infrastructure setup, we can change the unit
propagation procedure with the guarantee that the search behavior of the solver (i.e. number
of decisions, number of conflicts, etc.) will be the same.

Since RoundingSat2 is probably the fastest existing CDCL-based PB solver, we have
chosen it in order to conduct our work. In the rest of the paper, except in the very last
experiment, RoundingSat is always executed reading the logs we previously generated.
This experimentation3 was done on 3.3Ghz 16GB Intel Xeon E-2124 machines over a small
(about 100) set of benchmarks we selected from the OPT-SMALLINT-LIN (optimization
problems with small integers and linear constraints) category of the 2016 Pseudo-Boolean
Competition4, the last edition that took place. Benchmarks were chosen so as to contain a
variety of runtimes, ranging from easier (a few seconds) to more difficult ones (more than
one hour).

4 Counter-Based Propagation

RoundingSat follows the standard way to implement propagation in Conflict-Driven
Learning solvers: for each literal l, a vector wlist(l) (the watch list of l) contains a superset
of the constraints5 that might have become false or propagating due to adding l to the
assignment. Hence, even by visiting only these constraints, all propagations and conflicts are
detected. Let us see in detail how this is implemented in RoundingSat.

In counter-based propagation, every constraint C of the form
∑

i cili ≥ d has an element
of type Watch in wlist(li) for all i. This element is a pair ⟨ctrP tr, idx⟩, where ctrP tr can be
seen as a pointer to C and idx is the position of li in C. At some point after a literal l is
added to the assignment, l is checked for propagation: all elements of wlist(l) are traversed
and the function in Algorithm 1 is called, which assumes that constraints are always sorted
from largest coefficient to smallest.

1 In conflicting decision levels, the number of propagated literals may still be different due to the possibility
of finding different conflicting clauses. Fortunately, this had a negligible impact on propagation time.

2 In order to reproduce the results in [14] we have worked on the version used in that paper. However, we
want to remark that the newest version of RoundingSat has not changed its propagation routines.

3 Additional material can be found in https://github.com/dearzhaorui/speedup-roundingSat.
4 https://www.cril.univ-artois.fr/PB16/
5 Note that watch lists also contain clauses and cardinality constraints, which have specialized propagation

procedures, but we mostly ignore them in this paper. We added binary clauses as another particular
type of constraint, but this did not change the performance significantly.

SAT 2024

https://github.com/dearzhaorui/speedup-roundingSat
https://www.cril.univ-artois.fr/PB16/


22:6 Speeding up Pseudo-Boolean Propagation

Algorithm 1 Counter-based propagation procedure.

1 Function Propagate-Counter(Watch w):
2 Constraint ctr := w.ctrPtr
3 if isDeleted(ctr) then return
4 if not isPBCounter(ctr) then return
5 coef := ctr [w.idx].coef
6 maxCoef := ctr [0 ].coef
7 ctr .slack := ctr .slack − coef
8 if ctr.slack < 0 then return CONFLICT
9 if ctr.slack < maxCoef then // possible propagation

10 i := 0
11 while i < ctr.size and ctr.slack < ctr[i].coef do
12 if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
13 i := i + 1
14 return OK

Let us first remark that lines 3 and 4 are not part of a standard counter propagation
routine. However, for every element in the watch list, RoundingSat first checks whether it
is a deleted constraint, and then checks the type of the constraint in order to decide which
propagation mechanism is invoked. We added them to Algorithm 1 to make it evident that
in RoundingSat these two lines are always executed.

If we consider ρ̂ to be the set of literals in the current assignment ρ that have been
checked for propagation, the slack field in a constraint stores the sum of the coefficients of
the non-false literals w.r.t ρ̂ minus the degree, i.e. slack(C, ρ̂). Since ρ̂ ⊆ ρ, it holds that
slack(C, ρ) ≤ slack(C, ρ̂). If this is a negative value (line 8), the constraint is falsified by ρ̂

and hence by ρ.
In order to check for propagation, if maxCoef is the maximum coefficient in the constraint

we know that if slack(C, ρ̂) ≥ maxCoef , then slack(C, ρ̂) ≥ ci for all i and hence ρ̂ does
not propagate any literal. This is checked in line 9. Otherwise, the constraint is checked for
propagation w.r.t ρ̂. Note that since the constraint is ordered by coefficient, once a literal is
not large enough to be propagated, none of the subsequent literals will be (second condition
in line 11). A final remark is that eventually all literals are checked for propagation (ρ̂ = ρ)
and hence all conflicts and propagations w.r.t. ρ are finally computed.

Algorithm 1 is in fact a simplified version of the one in RoundingSat [14], which contains
an important optimization that allows the loop at line 11 to not always start with i = 0. More
concretely, if one execution of the loop stops at some position k < ctr.size and no backjump
is applied, the next traversal of the constraint can start at position k. This improvement
will be present in all our variations of counter-based propagation because we independently
confirmed that it does indeed improve the performance.

Minimizing the Number of Constraint Loads. As we have mentioned, when a literal l

becomes false, the watch list of l is traversed, checking constraints in that list for propagation.
This has no remarkable difference with what happens in SAT solvers. Since constraints are
consecutively accessed in the order in which they appear on the watch list, one would like to
keep them as close in memory as possible, so as to minimize the number of cache faults. This
is usually done with a class (ClauseAllocator in systems deriving from MiniSAT or Arena in
CaDiCaL or Kissat [9]) that encapsulates the clause memory management. However, due
to the huge number of clauses, this is still a bottleneck in SAT solvers. As the CaDiCaL
source code literally says: “the cache line with the clause data is forced to be loaded here
and thus this first memory access below is the real hot-spot of the solver”.



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:7

Hence, in a PB solver, when we visit constraints we should try to avoid loading the
constraint into memory as much as possible. This is something that, as we will see, was not
considered in RoundingSat, where priority was given to developing an extremely modular
and flexible system where all information is kept in their expected data type. This is a
very natural decision design that facilitates extending the system with more sophisticated
reasoning techniques, but has some impact on efficiency.

More concretely, a Constraint object in RoundingSat contains, among others, the
following fields: a C-like array of 32-bit integers with its coefficients and literals, a 64-bit
integer storing the degree, a 64-bit integer for the slack (where the 3 smallest possible values
are reserved to express that this constraint is a clause, a cardinality constraint or a PB
constraint), a 64-bit integer that uses 1 bit to express whether the constraint is deleted, 1 bit
to indicate whether counter or watch propagation is to be used for this constraint, 30 bits
for the size, and some others bits for information that is not relevant for our purposes.

A quick analysis of Algorithm 1 reveals that the solver always executes line 3, which
forces the constraint to be loaded into memory, because the deletion information is inside
the constraint. In order to minimize the number of times that the constraint is loaded (the
hot-spot of the solver) we suggest to store all necessary information about a constraint in
the watch list by modifying the structure Watch. More concretely:

The type of constraint (binary clause, clause, cardinality constraint, counter PB constraint,
watched PB constraint), needed in line 4 of Algorithm 1, will be stored in Watch.
The coefficient of the watched literal (line 5) will also be stored in Watch.
The slack of the constraint cannot be stored in Watch, because modifying it (line 7)
would require traversing all other watch lists where this constraint occurs. Hence, we
create a vector of 64-bit integers, indexed by a constraint identifier. This is much better
from the memory point of view, because all slacks are in contiguous memory, unlike what
happens with constraints.
The maximum coefficient of the constraint will not be stored anywhere. What we suggest
is that the slack vector contains an integer corresponding to the definition of slack(C, ρ̂)
minus the maximum coefficient. We call this vector slackMM and will be enough to
detect conflicts and propagations.
The information about whether a constraint is deleted or not could be stored in Watch.
However, that would make cleanup slightly slower since whenever a constraint is marked
for deletion, the corresponding watch lists should be traversed. What we suggest is
to keep this information in the slackMM vector, where 1 bit corresponds to deletion
information and the rest to the value we have described before.

Summing up, for PB constraints the Watch structure needs three pieces of information:
the identifier of the constraint, the index of the literal in the constraint, as well as the
coefficient6. The new structure will contain 3 integers in such a way that they also suffice
to also store all the additional information we need (type of constraint, the other literal in
binary clauses, a cached literal7 for long clauses, and the index of the literal in a cardinality
constraint):

internal_id: stores the identifier of the constraint, only needed for PB constraints.

6 The index is indeed not necessary for counter-based propagation. However, it will be needed for
watch-based propagation. Since our goal is to develop a hybrid method, we store the index here as well.

7 Sometimes called blocking literal, it is a well-known technique in SAT-based unit propagation that
prevents loading the clause in some situations.

SAT 2024



22:8 Speeding up Pseudo-Boolean Propagation

Algorithm 2 Improved counter-based propagation procedure.

1 Function Improved-Propagate-Counter(Watch w):
2 id := w.identifier()
3 if slackMM[id].isDeleted then return
4 if w.type() ̸= PB-counter then return
5 coef := w.coefficient()
6 slackMM [id].slack := slackMM [id].slack − coef
7 if slackMM[id].slack < 0 then // possible prop., but check conflict
8 Constraint ctr := constraints[id]
9 slack := slackMM [id].slack + ctr [0 ].coef // ctr sorted by coef.

10 if slack < 0 then return CONFLICT
11 i := 0
12 while i < ctr.size and slack < ctr[i].coef do
13 if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
14 i := i + 1
15 return OK

idx_type: this is used for storing the index of the literal and partially, the constraint type.
For binary clauses this integer is equal to −1; for longer clauses to an integer smaller
than −1; for cardinality constraints, the last bit of this integer is 1, and the rest of the
bits store the index of the literal in the constraint; finally, for PB constraints its last bit
is 0, and the rest of the bits contain the index. Note that this yet does not allow us to
distinguish between counter or watch-based constraints. This will be done using the sign
of the next field.
coef_lit: for bin clauses, it contains the other literal in the clause. For PB constraints,
it contains the coefficient of the literal for counter-based constraints, which is always
positive, and minus the coefficient for watch-based constraints. This field is not used for
long clauses or cardinality constraints.

The Constraint structure is the same except for the slack information, that has been
removed. All these changes allow us to implement the more efficient version of counter-based
propagation of Algorithm 2.

Note that lines 3, 4 and 5, that check for deletion, constraint type and retrieve the
coefficient, do not load the constraint yet and only require access to information in the Watch
element. If line 6 is executed, slackMM will be loaded into memory. Only if the check
in line 7, that corresponds to line 9 in Algorithm 1, succeeds we load the constraint into
memory in line 8. In this case, we recompute the actual slack of the constraint in line 9 and
check for conflict afterwards. The rest of the algorithm is unchanged.

We computed, for every benchmark in our suite, the percentage of Watch elements of
type PB for which we loaded the constraint, i.e, for which line 8 was executed and obtained
an average of 6.29% and a median of 1.26%. This is a remarkably low number that shows
that the number of constraint loads is reduced dramatically by Algorithm 2.

In addition, in [14] it is explained how to restore the slack information upon backjumping:
whenever a literal is removed from ρ, the watch list of l is visited and for every PB constraint
in that list, its slack is increased by the coefficient of l in the constraint. This again requires
accessing all constraints, whereas in our implementation, only the slackMM vector will be
loaded into memory.

An analysis of the impact of this improvement can be seen in the top-left scatter plot of
Figure 1. Plots of this type will always compare a baseline system with an enhancement, with
a caption of the form “Enhancement vs. Baseline”. A point (100, 2) represents a benchmark



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:9

for which the baseline version took 100 seconds and the enhancement took 100/2 = 50
seconds, whereas a point (100, −2) corresponds to a benchmark for which the baseline version
took 100 seconds and the enhanced one took 100 · 2 = 200 seconds. Hence, points with
positive y’s always represent benchmarks for which the enhancement was indeed faster. Note
the logarithmic scale on the x axis and that, for each plot, the scale on the y may be different.
For the top-left scatter plot in Figure 1, the baseline system (original counter) corresponds
to a variant of RoundingSat that uses counter-based propagation for all constraints except
for cardinality constraints and clauses.

Revisiting Garbage Collection Frequency. In order to evaluate the impact of each of the
improvements we present, we will always consider as a baseline the system that implements
all previous modifications. Hence, we now consider as the reference a system where most
information has been moved out of the Constraint class and we assess what is the gain
obtained by adding the new improvement we present next.

Whenever a cleanup is performed, RoundingSat does the following: the set of constraints
is traversed and some of them are marked as deleted, changing the bit allocated for this inside
slackMM . In this case, a variable that contains the amount of memory that is occupied
by deleted constraints is increased. If this variable exceeds a certain threshold, garbage
collection is applied: all surviving constraints are reallocated contiguously in the database
and watch lists are rebuilt with no reference to the deleted constraints.

In our opinion, this has two unwanted effects. First of all, watch lists are larger than
strictly necessary, and this can slow down the system. Secondly, the constraints database is
not as compact as possible and accesses to constraints will be more costly. We suggest to
apply garbage collection in every cleanup. This would probably not pay off in a system that
applies cleanups extremely often, because the extra cost of applying the garbage collection
procedure at every cleanup would exceed the speedups obtained during propagation. Since
after this change there will be no deleted constraints in any watch list, it is no longer necessary
to use one bit of slackMM to store this information. This will slightly speed up the access
to the slack information, that will now occupy all 64 bits of slackMM .

As the middle scatter plot in the first row of Figure 1 shows, this modification has
beneficial effects in almost all benchmarks. This is obviously a less remarkable improvement
than the first one, but our novel methodology has allowed us to detect that this indeed
enhances the runtime and, moreover, is extremely easy to implement.

Deletion of Elements in Watch Lists During Propagation. When performing propagation
in a counter-based system, no PB constraint is ever deleted from any watch list. This is
because all literals in every constraint are always “watched”. However, let us remember that
watch lists also contain clauses, for which the two-watched literal scheme is used. In this
method, literals are sometimes unwatched, and this forces the corresponding element in the
watch list to be deleted. The same phenomenon happens with watched-literal extensions for
propagating cardinality constraints.

In order to use contiguous memory, watch lists in RoundingSat, and in state-of-the-art
SAT solvers, are implemented as vectors. This makes it difficult to delete an element which
is not the last one. In RoundingSat, this is done by copying the last element of the vector
to the position of the element to be deleted, and then removing the last element. However,
in SAT solvers like MiniSAT, CaDiCaL and Kissat, another solution is proposed.

SAT 2024



22:10 Speeding up Pseudo-Boolean Propagation

Figure 1 Impact of several improvements on counter-based propagation.

The idea is to read the watch list and, at the same time, write in the same vector the
list that will result after the deletions have been performed. This is possible by keeping two
pointers, one pointing to the position we are reading, and the other one to the position where
we are writing. Since the first will always be to the right (or at the same position) of the
second one, both things can be done at the same time without the two processes interfering
with each other.

In terms of memory access this latter mechanism is better than the solution used in
RoundingSat which, in the presence of long lists, often accesses positions in the vector
that are very far away. This is what happens in counter-based propagation, where the fact
that all literals are watched creates watch lists that are very long. On the other hand, one
could argue that the solution used in SAT solvers incurs in some overhead due to performing
a larger number of write operations. This, for example, would occur in a list where only
the first element has to be deleted: RoundingSat would only perform one write operation
whereas the other solution has as many writes as elements in the vector.

The rightmost plot in the first row of Figure 1 shows that implementing the SAT approach
to deleting elements on top of the system that incorporates the two previous adjustments
results in improvements in almost all benchmarks. Again, gains are limited. However, the
addition of the last two small enhancements has some positive impact. This can be seen by
comparing the leftmost scatter plot in the second row (a comparison between the original
RoundingSat system and the one with all improvements) and the leftmost plot in the
first row (a comparison between the original RoundingSat versus the system that only
incorporates the first major improvement). Note that the distribution of the points is very
similar, but the y scale is larger.

All this is summarized in the cactus plot of Figure 1. Note that there was no time limit
in this experiment: we let all systems run until they processed the entire log. This is why
the cactus plot shows that all systems end up processing all benchmarks. However, if a more
strict time limit was given, the performance of the system with all improvements outperforms
the system with only the first one, which is of course the major contributor to the overall
speedup of the system.



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:11

Algorithm 3 Watch-based propagation procedure.

1 Function Propagate-Watch(Watch w):
2 Constraint ctr := w.ctrPr
3 if isDeleted(ctr) then return
4 if not isPBWatched(ctr) then return
5 coef := ctr [w.idx].coef
6 maxCoef := ctr [0 ].coef
7 ctr .wslack := ctr .wslack − coef
8 i := 0
9 while i < ctr.size and ctr.wslack < maxCoef do

10 Lit l := ctr [i].lit
11 if not isFalse(l) and not ctr[i].watched then
12 ctr [i].watched := true
13 wlist(l) := wlist(l) ∪ {⟨ctr , i⟩}
14 ctr .wslack := ctr .wslack + ctr [i].coef
15 i := i + 1
16 if ctr .wslack ≥ maxCoef then
17 ctr [w.idx].watched := false
18 wlist(ctr [w.idx].lit) := wlist(ctr [idx].lit) \ {⟨ctr , w.idx⟩}
19 return OK
20 if ctr.wslack < 0 then return CONFLICT
21 j := 0
22 while j < ctr.size and ctr.wslack < ctr[j].coef do
23 if isUndef(ctr[j].lit) then propagate(ctr [j].lit)
24 j := j + 1
25 return OK

5 Watch-Based Propagation

Watch-based propagation can be seen as a refinement of counter-based propagation. The idea
is to associate to each constraint a set of watched literals watches(C). In RoundingSat, for
each literal l ∈ watches(C), an entry of type Watch = ⟨ctrP tr, idx⟩ is added to wlist(l), and
only when l becomes false we will traverse wlist(C), and hence C, checking for a propagation
or a conflict. In counter-based propagation, watches(C) consists of all literals in C and
hence, whenever any literal in C becomes false a visit to the constraint is triggered. In
watch-based propagation, we will do so only when some literal in watches(C) becomes false.
Hence, a reduction in the size of watches(C) will reduce the amount of work to be done.

Following the notation in [14], if we define watchslack(C, ρ) = (
∑

i:li ̸∈ρ
li∈watches(C)

ci) − d we can

easily see that watchslack(C, ρ) ≤ slack(C, ρ) and hence if watchslack(C, ρ) ≥ maxCoef(C)
we can guarantee that C is neither conflicting nor propagating. Hence our goal is to watch a
small set of literals for which the previous inequality holds. Note also that watchslack(C, ρ)
only changes if some l ∈ watches(C) becomes false. All these remarks are the core of
watch-based propagation routine in RoundingSat that we show in Algorithm 3.

It starts by decrementing the watchslack in line 7. If, after that, it is still larger than the
maximum coefficient the algorithm skips the loop in lines 9–14 and executes lines 16–17: the
literal that became false is removed from the watches set by marking it as unwatched in ctr

and removing it from the corresponding watch list. Otherwise, the loop in lines 9–14 tries to
extend the set watches so that the watchslack is larger than the maximum coefficient. If this
is possible, lines 16–17 are executed. Otherwise, if the watchslack is negative, a conflict is
declared in line 19. Finally, if watchslack is not larger than the maximum coefficient, but it

SAT 2024



22:12 Speeding up Pseudo-Boolean Propagation

is not negative, a propagation might be possible. This is checked in lines 20–23 by traversing
the constraint and looking for literals to be propagated. For a more detailed description and
theoretical justification, we refer the reader to [14].

Again, this is a slightly simplified version of what is done in RoundingSat. In particular,
the same optimization that we mentioned in counter-based propagation that allows one to
not always start the loop in lines 20–23 at position 0 is applied. Also, if the function is
called on a certain constraint and the loop in lines 9–14 cannot extend watches so that
watchslack is larger than the maximum coefficient, we know that in any subsequent call to
this routine on the same constraint that is made with no backjump in between, we can skip
this loop because it will not succeed either. These two optimizations are present in all our
modifications of the algorithm.

Minimizing the Number of Constraint Loads. As we mentioned in the previous section,
our aim is to reduce the number of times when a constraint is loaded into memory, because it
is a very time-consuming task. If we analyze the code, we can see that, if after decreasing the
watchslack it is still large enough, we have to unmark the coefficient, which is information
stored in the constraint. In particular, RoundingSat uses the sign of the coefficient (which
we know are always positive) to indicate whether the literal is watched or not. Otherwise, if
we have to extend the set of watches we obviously have to load the constraint into memory as
well. Hence, there does not seem to be too much room for reducing the number of constraint
loads.

One could try to develop a sophisticated way to store outside of the constraint object
the information about who is watched in every constraint. That would allow us to avoid
loading the constraint when the watchslack is large enough even after we decrease it. Our
experimental analysis showed that this situation happens in around 20% of the cases. Hence,
we believe there is still some space for improvement by a major modification of the propagation
scheme.

Despite our initial analysis of this improvement was not very optimistic, our results show
that, by applying the same modification we described for counter-based propagation we still
obtain propagation speed-ups, as the leftmost plot in the first row of Figure 2 shows. This is
due to at least three reasons. First of all, for deleted constraints we do not have to load the
constraint into memory. Secondly, checking the type of constraint that the Watch element
contains, in order to decide which propagation routine should be called, does not require
loading the constraint. This is beneficial, for example, in constraints like clauses where the
propagation mechanism does not require to always load the constraint into memory. Finally,
backjumping traverses watch lists and updates the watchslack of the constraints appearing
in them. Having moved this information outside of the constraint prevents the system from
loading all these constraints into memory.

Revisiting Garbage Collection Frequency. Note that, as we did with counter-based propaga-
tion, we evaluate improvements by comparing them with a system that already incorporates
all previously proposed adjustments. As it happened with counter-based propagation, in-
crementing the garbage collection frequency only produces some moderate improvements.
The center plot in the first row of Figure 2 shows that the improvements are even more
limited than with counter-based propagation. The most plausible reason is that, since deleted
constraints only appear in the watch lists of its watched literals, which might be a very small
subset of them, the number of elements marked for deletion in these lists is not large enough
to be a problematic issue.



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:13

Deletion of Elements in Watch Lists During Propagation. It was unexpected to us that,
as the rightmost plot in the first row of Figure 2 indicates, modifying the deletion of elements
in watch lists to mimic the way it is done in SAT solvers slowed down the propagation
procedure. However, a more careful analysis allowed us to realize that this should not have
been such a big surprise.

The reason for this behavior is the length of the watch lists. As we mentioned, the original
way of RoundingSat to delete elements in watch lists accesses the last element of the list,
and this can be harmful due to memory access issues if the list is very long. For counters,
the average watch list length over the benchmarks we are considering was 2365, and the
median 564. For watch-based propagation, this figure was much lower: 203 on average and a
median of 71. Hence, our concerns about having too long lists do not apply in watch-based
propagation. However, since our goal is to develop a hybrid approach where some constraints
will be watched and some others will be counter-based, we will keep this modification.

Circular Search for Watched Literals. In [20], a simple but effective improvement on the
two-watched literal scheme for propagation in SAT solvers was described. The idea is that,
whenever the clause is traversed in order to find another literal to watch, instead of starting
from the beginning of the clause, as it was usually done, we search for it in a circular way.
More precisely, the novel procedure stores with every clause the position in which the last
search for new literals to be watched stopped. Next time the same operation is performed,
the search starts from that position instead of from the beginning.

The reason why that is beneficial is that it is known that one prefers to watch literals
that are inactive, i.e., that are rarely added to the assignment, because they cause almost no
work in propagation. By searching in a circular way, all literals have the same chances to be
watched and hence, if inactive literals exist, it will be more likely that the procedure ends up
watching them.

As the leftmost plot in the second row of Figure 2 shows, this also pays off in the case of
watch-based propagation for PB constraints. Note that, since we only wanted to evaluate the
impact of this modification in the propagation of PB constraints, it has not been incorporated
to the specialized propagation procedures for clauses or cardinality constraints.

A summary on the impact of all these improvements can be seen in the center scatter plot
in the second row of Figure 2, where quite a consistent improvement can be observed. We want
to remark that these are important speedups. We have to consider that we did not change
the algorithmic nature of the propagation algorithms, but rather modified implementation
details of them. Since we execute all systems on the same log, the search space is the same
and we cannot expect exponential improvements in time.

Once we have developed our improved version of counter and watch-based propagation,
it is worth comparing them and analyze whether one of them dominates the other. This is
done in the last row of Figure 2 where, in the leftmost plot, we compare the performance
of the two original methods in RoundingSat. It is clear that watch-based propagation
outperformed counters. This was already mentioned in [14], but our more precise evaluation
methodology allows us to conclude that the difference is probably larger than what it was
reported in that paper. The analysis for the improved versions, in the rightmost plot of the
same figure, reveals that they are quite similar. Since we now have two methods that are
comparable, it makes even more sense to try to combine them in a hybrid procedure that
determines which propagation method to use for each constraint.

SAT 2024



22:14 Speeding up Pseudo-Boolean Propagation

Figure 2 First two rows show the impact of several improvements on watch-based propagation.
Last row compares, for the original and the improved versions, the performance of counter with
respect to watched-based propagation.

6 A Hybrid Pseudo-Boolean Propagation Approach

The idea of using a hybrid approach where the propagation method is decided per constraint
is not a new one. Already in [11] it was mentioned that “Another experiment assessed the
performance of a hybrid BCP scheme. [...] The hybrid scheme was not found to be superior
to the simple counter scheme.”. Unfortunately, the results of that experiment are not reported
in the paper. In [14] this possibility is left as future work.

However, RoundingSat indeed incorporates a hybrid propagation mechanism: whenever
a constraint is added to the database, it is first sorted from largest to smallest coefficient.
After that, the smallest prefix of the constraint whose watchslack is larger than the maximum
coefficient is computed. If the percentage of literals not in this prefix (the literals that will
not be watched) is larger than a predefined threshold, watches are used. Hence, the larger
the threshold, the larger the number of constraints for which counter-based propagation will
be used. The rationale is that watches are preferred over counters when a sufficiently small
percentage of the literals are watched.

The default version in RoundingSat uses watch-based propagation. However, one can
instruct the solver to use the hybrid propagation mechanism, but a concrete percentage
threshold has to be given. An extensive evaluation allowed us to conclude that 0.8 was
the best threshold when using this hybrid method on top of the original RoundingSat



R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:15

Figure 3 Comparison between different hybrid methods. Leftmost plot uses the original counter
and watch-based propagation routines, whereas the center plot uses the improved ones. Rightmost
plot compares a hybrid method on top of them.

propagation routines. The leftmost plot in Figure 3 compares this method with a Virtual Best
Solver (VBS) that, for each benchmark, selects the best possibility between using counters
or watches for all constraints. When using the hybrid approach on top of our improved
propagation routines, 0.9 was the best threshold and a comparison with the improved VBS
is in the center plot. We want to remark that improving upon a VBS is always a challenging
task.

It might seem that 0.8 and 0.9 are very large values that leave no possibility for constraints
to be watched. This is definitely not the case. In the original system with threshold 0.8 the
median of the percentage of constraints that are watched was 72%, whereas it was 56% in
the improved version with threshold 0.9. Since our improvements had a larger impact on
counter-based propagation, it is not a surprise that the best improved hybrid version uses
counter-based propagation more often than the best original hybrid version.

Finally, we compare in the rightmost plot of Figure 3 the best hybrid methods that use
the original and the improved propagation mechanisms, respectively. We can see that, not
surprisingly, our improvements on these procedures also result in an improvement on the
corresponding hybrid methods.

The last contribution of this paper is to determine whether the improvements we have
shown in propagation speed translate into improvements on the overall runtime of Round-
ingSat. That is, we now run RoundingSat without reading the logs, but rather as a
complete PB solver that performs conflict analysis, cleanups, restarts, etc., in an autonomous
way, without relying on an external oracle. In Figure 4 we compare the best system using
the improved propagation routines, which is the hybrid approach with threshold 0.9 with
the best system using the original propagation routines, which is the hybrid approach with
threshold 0.8. Results are on all 1600 benchmarks in the category OPT-SMALLINT-LIN
with a time limit of 3600 seconds. We believe that the plot is very clear and leaves no doubt
that remarkable speedups are obtained thanks to the research presented in this paper.

Figure 4 Hybrid method on original and improved propagation. No logs are used.

SAT 2024



22:16 Speeding up Pseudo-Boolean Propagation

7 Conclusions and Future Work

We have presented a novel methodology to evaluate propagation procedures and applied it
to improve the implementation of these routines inside RoundingSat, currently the fastest
CDCL-based PB solver. This has resulted in important speedups in performance.

As future work, we plan to precisely analyze the impact of maintaining (an upper bound
on) the maximum coefficient of undefined literals in order to have a more precise filter
for propagation. Also, computing slacks with respect to the whole assignment, instead of
only considering the propagated literals is part of our future work. Additionally, we want
to develop hybrid methods that choose between counter or watched-based propagation by
dynamically evaluating how active the literals in a constraint are, as opposed to only focusing
on their coefficients.

References
1 RoundingSAT web page. https://gitlab.com/MIAOresearch/software/roundingsat. Ac-

cessed: 2024-03-11.
2 Roberto Javier Asín Achá and Robert Nieuwenhuis. Curriculum-based course timetabling

with SAT and maxsat. Ann. Oper. Res., 218(1):71–91, 2014.
3 Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic ILP versus

specialized 0-1 ILP: an update. In Proceedings of the 2002 IEEE/ACM international conference
on Computer-aided design, ICCAD ’02, pages 450–457, New York, NY, USA, 2002. ACM.
doi:10.1145/774572.774638.

4 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.
doi:10.1613/jair.3152.

5 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59–6,
2010. URL: http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf, doi:
10.3233/SAT190075.

6 Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008. URL: http://jsat.ewi.tudelft.
nl/content/volume4/JSAT4_5_Biere.pdf.

7 Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Technical report,
Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria, 2010. Technical Report 10/1, August 2010, FMV Reports Series.

8 Armin Biere. Lingeling essentials, A tutorial on design and implementation aspects of the the
SAT solver lingeling. In Daniel Le Berre, editor, POS-14. Fifth Pragmatics of SAT workshop, a
workshop of the SAT 2014 conference, part of FLoC 2014 during the Vienna Summer of Logic,
July 13, 2014, Vienna, Austria, volume 27 of EPiC Series in Computing, page 88. EasyChair,
2014. doi:10.29007/JHD7.

9 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

10 Armin Biere and Daniel Kröning. Sat-based model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
277–303. Springer, 2018. doi:10.1007/978-3-319-10575-8_10.

11 Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Trans.
on CAD of Integrated Circuits and Systems, 24(3):305–317, 2005.

12 Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. Cache conscious data structures
for boolean satisfiability solvers. J. Satisf. Boolean Model. Comput., 6(1-3):99–120, 2009.
doi:10.3233/SAT190064.

https://gitlab.com/MIAOresearch/software/roundingsat
https://doi.org/10.1145/774572.774638
https://doi.org/10.1613/jair.3152
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
https://doi.org/10.3233/SAT190075
https://doi.org/10.3233/SAT190075
http://jsat.ewi.tudelft.nl/content/volume4/JSAT4_5_Biere.pdf
http://jsat.ewi.tudelft.nl/content/volume4/JSAT4_5_Biere.pdf
https://doi.org/10.29007/JHD7
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.3233/SAT190064


R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and R. Zhao 22:17

13 W. Cook, C. Coullard, and Gy. Turan. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18:25–38, 1987.

14 Jo Devriendt. Watched propagation of 0-1 integer linear constraints. In Helmut Simonis, editor,
Principles and Practice of Constraint Programming - 26th International Conference, CP 2020,
Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes
in Computer Science, pages 160–176. Springer, 2020. doi:10.1007/978-3-030-58475-7_10.

15 Jo Devriendt, Ambros M. Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1
integer linear programming with pseudo-boolean conflict-driven search. Constraints An Int.
J., 26(1):26–55, 2021. doi:10.1007/S10601-020-09318-X.

16 Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting
to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes
reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 3750–3758. AAAI Press, 2021. doi:10.1609/AAAI.V35I5.16492.

17 Julian Dolby, Mandana Vaziri, and Frank Tip. Finding Bugs Efficiently With a SAT Solver.
In Proceedings of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
195–204, 2007. doi:10.1145/1287624.1287653.

18 Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tacchella,
editors, 6th International Conference on Theory and Applications of Satisfiability Testing,
SAT ’03, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

19 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving.
In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1291–1299.
ijcai.org, 2018. doi:10.24963/ijcai.2018/180.

20 Ian P. Gent. Optimal implementation of watched literals and more general techniques. J.
Artif. Intell. Res., 48:231–251, 2013. doi:10.1613/JAIR.4016.

21 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2 & 3):297–
308, 1985.

22 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2016. doi:10.1007/978-3-319-40970-2_15.

23 Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving resource-unaware SAT
solvers. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta,
Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Computer
Science, pages 519–534. Springer, 2010. doi:10.1007/978-3-642-16242-8_37.

24 Norbert Manthey and Ari Saptawijaya. Towards improving the resource usage of sat-solvers. In
Daniel Le Berre, editor, POS-10. Pragmatics of SAT, Edinburgh, UK, July 10, 2010, volume 8
of EPiC Series in Computing, pages 28–40. EasyChair, 2010. doi:10.29007/3VWV.

25 João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 133–182. IOS Press, 2021. doi:10.3233/FAIA200987.

26 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation
Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

27 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.2010.10.002.

SAT 2024

https://doi.org/10.1007/978-3-030-58475-7_10
https://doi.org/10.1007/S10601-020-09318-X
https://doi.org/10.1609/AAAI.V35I5.16492
https://doi.org/10.1145/1287624.1287653
https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.1613/JAIR.4016
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-642-16242-8_37
https://doi.org/10.29007/3VWV
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1016/j.artint.2010.10.002


22:18 Speeding up Pseudo-Boolean Propagation

28 Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in AI and Applications, pages 695–733. IOS Press, 2009. doi:10.3233/
978-1-58603-929-5-695.

29 Hossein M. Sheini and Karem A. Sakallah. Pueblo: A modern pseudo-boolean SAT solver.
In 2005 Design, Automation and Test in Europe Conference and Exposition (DATE 2005),
7-11 March 2005, Munich, Germany, pages 684–685. IEEE Computer Society, 2005. doi:
10.1109/DATE.2005.246.

30 Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver.
JSAT, 2(1-4):165–189, 2006.

31 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer,
2009. doi:10.1007/978-3-642-02777-2_24.

32 Yichen Xie and Alexander Aiken. Saturn: A SAT-Based Tool for Bug Detection. In Proceedings
of the 17th International Conference on Computer Aided Verification, CAV 2005, pages 139–143,
2005. doi:10.1007/11513988_13.

33 L. Zhang and S. Malik. Cache Performance of SAT Solvers: A Case Study for Efficient
Implementation of Algorithms. In E. Giunchiglia and A. Tacchella, editors, 6th International
Conference on Theory and Applications of Satisfiability Testing, SAT ’03, volume 2919 of
Lecture Notes in Computer Science, pages 287–298. Springer, 2004.

https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.1109/DATE.2005.246
https://doi.org/10.1109/DATE.2005.246
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11513988_13

	1 Introduction
	2 Preliminaries
	3 Design of a Fair Evaluation of Different Propagation Mechanisms
	4 Counter-Based Propagation
	5 Watch-Based Propagation
	6 A Hybrid Pseudo-Boolean Propagation Approach
	7 Conclusions and Future Work

