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Abstract
eSLIM is a tool for circuit minimization that utilizes Exact Synthesis and the SAT-based local
improvement method (SLIM) to locally improve circuits. eSLIM improves upon the earlier
prototype CIOPS that uses Quantified Boolean Formulas (QBF) to succinctly encode resynthesis of
multi-output subcircuits subject to don’t cares. This paper describes two improvements. First, it
presents a purely propositional encoding based on a Boolean relation characterizing the input-output
behavior of the subcircuit under don’t cares. This allows the use of a SAT solver for resynthesis,
substantially reducing running times when applied to functions from the IWLS 2023 competition,
where eSLIM placed second. Second, it proposes circuit partitioning techniques in which don’t cares
for a subcircuit are captured only with respect to an enclosing window, rather than the entire circuit.
Circuit partitioning trades completeness for efficiency, and successfully enables the application of
exact synthesis to some of the largest circuits in the EPFL suite, leading to improvements over the
current best implementation for several instances.
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1 Introduction

Modern integrated circuits have grown increasingly large and complex, making their design
and optimization a significant challenge. Automation has become indispensable for the
process of circuit design, including logic optimization and logic synthesis, which collectively
lead to substantial reductions in the number of gates and circuit depth [6, 10].

Applying exact methods for computing provably minimum size circuits is computationally
intractable. Recently, it was shown that for a (multi-output) Boolean function given as a
truth table, the task of finding a minimum size circuit consisting of and, or and not gates is
NP-complete [17]. This is reflected by the observation that in practice, we can generally not
compute minimum size circuits with many more than 10 fanin-2 gates [9, 21]. To deal with
larger circuits, one can first partition them into smaller subcircuits, and then minimize these
using exact techniques [39].
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In practice, this approach is typically restricted to single-output subcircuits [25, 31].
Although efficient, this does not fully exploit the implementation flexibility of multi-output
subcircuits. Recently, we proposed a high-effort method for resynthesizing multi-output
subcircuits based on Quantified Boolean Formulas (QBFs) [30]. Our prototype CIOPS
has shown success in minimizing circuits from the IWLS’22 competition and the EPFL
combinational benchmark suite. Specifically due to increasing prices of silicon wafers in
recent years [15] such high-effort methods are gaining importance.

In this paper, we describe two improvements for this approach, which we implemented
in the new tool eSLIM. First, we present a workflow purely based on SAT instead of QBF.
The new SAT workflow relies on computing an input-output relation that yields permissible
output assignments for each input assignment. These relations allow representing don’t cares
– input/output combinations of the subcircuit where the outputs can be modified without
altering the function computed by the encompassing circuit. In contrast, the QBF encoding
captures don’t cares implicitly. Our rationale is that the ability to use a SAT solver instead
of a QBF solver will more than make up for this extra step when the relation is reasonably
small. Second, we incorporate windowing to handle very large circuits. For such circuits,
the QBFs encoding the existence of replacements for subcircuits become too hard for QBF
solvers, and computing the input-output relation needed for the new SAT encoding takes
too much time. To address this, we adapt a strategy from prior work on computing don’t
cares of single-output subcircuits [25]. Instead of ensuring that a resynthesized subcircuit
preserves the Boolean function computed by the full circuit, we only require that it preserves
the function computed by a “window” containing the subcircuit to be replaced. In theory,
this means don’t cares of a subcircuit are no longer fully captured. In practice, with windows
containing hundreds of gates, we expect that generally don’t cares within the window still
allow substantial improvements.

We performed an experimental evaluation of these improvements. The SAT-based work-
flow proved to be substantially faster for small circuits, showing a significant performance
increase for instances from the IWLS’23 competition. For circuits from the EPFL com-
binational benchmark suite, the SAT and the QBF-based approach showed comparable
performance. Using windowing, we were able to scale both approaches to the largest circuits
in this set, which had previously been unmanageable.

1.1 Related Work
Methods that fully capture the properties of Boolean functions implemented by circuits
(rather than considering them as polynomials, for instance) are deemed the most effective in
logic synthesis [39]. However, these methods are also the most computationally expensive, and
their application to large circuits is limited to resynthesizing small subcircuits. SAT-based
exact synthesis [16, 21] and SAT-based resubstitution [26, 32], which aim to represent the
function implemented by a specific gate as a function of a few existing gates in the circuit, are
examples of this approach. Many of these methods are implemented in the industrial-strength
tool ABC [7].

A SAT-based method for capturing don’t cares close to ours has been previously considered
for single-output subcircuits, including the use of windowing to improve scalability [25].
Boolean relations have been proposed as a means of representing don’t cares of multi-output
subcircuits [23]. The corresponding optimization workflow relies on a simulation-based
under-approximation of don’t cares in combination with a divide-and-conquer algorithm for
resynthesis, whereas we use a SAT solver for both don’t care computation and resynthesis.
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Exact resynthesis of subcircuits has also been explored for finding optimal circuits
for symmetric functions in circuit complexity research, but without incorporating don’t
cares [22]. This is an instance of the SAT-based Local Improvement Method (SLIM), a general
optimization framework that has been applied to various AI problems [11, 24, 27, 34, 35, 36].

In the realm of logic synthesis, QBFs have been employed for bi-decomposition [8],
reversible quantum circuit synthesis [41], and lookup table (LUT) synthesis [12, 13, 14]. The
latter two problems impose more constraints than the setting considered in this work, as they
maintain a fixed circuit topology. In contrast, our synthesis tasks also involve determining a
suitable topology.

2 Preliminaries

A Boolean circuit is a directed acyclic graph. We denote the set of source nodes of a circuit C
as the set of primary inputs in(C) and the non-source nodes as gates. The set of primary
outputs out(C) is a subset of the set of nodes in C. If there is a directed edge from node n to
node m then n is an input of m. Each gate corresponds to a Boolean function on its inputs.
This means that each Boolean circuit naturally induces a Boolean function. Let x be a node
in C. Then the transitive fanin cone of x, TFI (x) is the set of all nodes in C from which x

is reachable. Similarly, the transitive fanout cone of x TFO(x) is the set of all nodes in C
which can be reached from x. A node x depends on a node y if y ∈ TFI (x). Two circuits C
and D are logically equivalent (C ≡ D) if they compute the same Boolean function. Don’t
cares of a subcircuit S of a circuit C are certain patterns of its inputs or outputs that do
not have an effect on the function computed by the encompassing circuit C. We distinguish
between two types of don’t cares. Controllability don’t cares are patterns of the inputs of S
which cannot be attained within C, and observability don’t cares are patterns of the inputs
of S for which its outputs do not have an effect on C [10].

A Quantified Boolean formula (QBF) is of the form ∀X1∃X2 . . . ∀Xk−1∃Xk.φ, where
the Xi are pairwise disjoint sets of variables, and φ is a propositional formula called the
matrix. The quantifiers range over the Boolean domain B = {0, 1}, so that existential (∃)
quantifiers can be understood as abbreviating a disjunction (∃x.φ ≡ φ[x← 0] ∨ φ[x← 1]),
and universal (∀) quantifiers as encoding a conjunction (∀x.φ ≡ φ[x ← 0] ∧ φ[x ← 1]).
Evaluating QBFs is a PSPACE-complete task, and QBFs can succinctly encode problems
arising in many areas [37]. For an overview of QBF, including solving techniques and proof
complexity, see [2].

3 Exact Synthesis of Subcircuits

Our approach involves replacing a subcircuit with a smaller one, ensuring that the function
computed by the encompassing circuit remains unchanged. For a fixed value ℓ, we use a
SAT or QBF solver to determine whether there is a replacement circuit of size ℓ. To find a
smallest possible circuit, the value ℓ is decremented until the encoding becomes unsatisfiable.

Throughout this section, let C denote the encompassing circuit, S one of its subcircuits,
and T the replacement circuit. Further, n is the number of inputs of the subcircuit S and m

the number of outputs. Moreover, we assume that C is k-regular, i.e., each gate in C has k

inputs. Let C[S ← T ] denote the result of substituting the circuit T for the subcircuit S
in C. Our goal is to find a circuit T of size ℓ with n inputs and m outputs such that C and
C[S ← T ] are logically equivalent. This means that T and S do not necessarily need to be
equivalent. In particular this also means that the solver can assign an arbitrary behavior
to T for input/output combinations of the subcircuit that do not have an influence on the
entire circuits – i.e., we can make use of don’t cares implicitly.

SAT 2024
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We initially set ℓ = |S| and then decrement ℓ until the solver determines that no such
circuit T exists, at which point we can conclude that the circuit T must have at least ℓ + 1
gates. A circuit T of this size can be constructed from a model of the last satisfiable encoding,
and used to replace S. It may seem unnecessary to initially ask the solver to come up with
a circuit of size ℓ = |S|, since we already know such a circuit exists. However, the new
circuit is typically not equivalent to S, and replacing S by T is often beneficial in the overall
minimization process even though it does not immediately decrease size [30].

Subsequently, we will describe both the QBF and the SAT encoding. Both are closely
related to and inspired by the multi selection variable SAT encoding for exact synthesis [16].

3.1 The QBF Encoding
The main advantage of a QBF encoding is that one can universally quantify over assignments
of primary inputs and encode the value computed by each gate using a single variable, rather
than introducing a variable for each line in the truth table representation of C. In addition
to these gate variables and primary inputs, the encoding contains the following groups of
existentially quantified variables that determine the structure of the circuit:
Selection variables Si = {sit | 1 ≤ t < i + n}. This set of variables determines the inputs of

the ith gate. If sit is true then the tth node is an input of the ith gate1.
Function variables Fi = {f i

a1...ak
| (a1, . . . , bk) ∈ Bk}. This set of variables describes the

Boolean function f at the ith gate, i.e., the assignment of f i
a1...ak

determines the value of
f(a1, . . . , ak).2

Output variables Oj = {otj | 0 ≤ t ≤ n + ℓ}. This set of variables fixes the output gates of
the circuit. If otj is true then the jth output is given by the constant value false if t = 0
and otherwise by the tth node.2

The matrix of the QBF encodes the following constraints:
Each gate must have exactly k inputs, i.e., at each gate i exactly k selection variables
must be true. This can be enforced by using a sequential counter [38]. We denote this
constraint by Count(Si, k).
Each output must correspond to a single gate, i.e., for each output j exactly one output
variable is true. We denote this constraint by Count(Oj , 1).
For each gate i the assignment of the gate variable must be compatible with the function
determined by the function variables. Assume that the assignment for the function
variables describes the function F and that the values of the inputs of i are given by
i1, . . . , ik. This constraint ensures that the gate variable for i is assigned to F (i1, . . . , ik).
We denote this constraint by Compi.
Replacing S by T must preserve the function computed by C. To express this, one can use
Tseitin transformation and two sets of gate variables to encode both the specification C
and the circuit C′ = C[S ← T ]. For an output gate o, let vo and v′

o denote the gate
variable in the encoding of C and C′, respectively. We add a constraint vo ⇔ v′

o and
denote their conjunction over all outputs by Corr .

1 We index gates from 1 to ℓ, and we index nodes from 1 to n + ℓ. The nodes with indices from 1 to n
correspond to the primary inputs. For n < i ≤ n + ℓ the ith node corresponds to the (i − n)th gate.

2 A Boolean function is normal if f(0, . . . , 0) = 0, and a circuit is normal if each of its gates corresponds
to a normal function. In a normal circuit, we can find minimum size normal replacement circuits [20].
We can always normalize a given circuit, reduce the size of the normalized circuit, and finally we can
reconstruct the original circuit by flipping output gates if necessary. Thus, f i

0...0 can be set to false, and
outputs yielding the constant value true don’t need to be considered.
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x1 x2 x3

∧

∧

∧S

i1 i3i2

o

i1 i2 i3 o

0 0 0 {0}
0 0 1 {0}
0 1 0 {0, 1}
0 1 1 {0}
1 0 0 {0}
1 0 1 {0}
1 1 0 {0, 1}
1 1 1 {1}

Figure 1 The table on the right gives a Boolean relation for the subcircuit S. One can see that
the input pattern i2 = 1, i3 = 0 is not possible within the entire circuit. The relation given in the
table makes use of this controllability don’t care by assigning {0, 1} to the corresponding assignments
of the inputs.

Let S =
⋃

1≤i≤k Si denote the set of selection variables, F the set of gate definition variables, O

the set of output variables, I the set of input variables, and G, G′ the two sets of gate variables.
The complete QBF encoding has the following form:

∃S, F, O ∀I ∃G, G′. Corr ∧
∧

1≤j≤m

Count(Oj , 1) ∧
∧

1≤i≤ℓ

(Count(Si, k) ∧ Compi)

In practice, we use the circuit-based QCIR format for the encoding. Thus, we can directly
define auxiliary variables by QCIR-gates and so we do not need to add these variables to
the prefix.

3.2 The SAT Encoding

While the QBF encoding handles don’t cares implicitly, the SAT-based approach outlined in
this subsection separates the tasks of computing don’t cares and synthesizing a subcircuit.
More specifically, it first computes a Boolean relation [6, 33] representing the input-output
behavior of the subcircuit S on the care set (the complement of don’t cares), and then uses
the multi selection variable SAT-encoding [16] to obtain a circuit.

A Boolean relation R for S maps each input assignment to a set of permissible output
assignments, formally R : Bin(S) → (P(Bout(S)) \ ∅). A circuit C implements the relation R

if C(σ) ∈ R(σ) for each σ ∈ Bin(C). In Figure 1 we illustrate a Boolean relation representing
a subcircuit S of a circuit C that takes the don’t cares of S into account.

The core idea for computing the relation is to determine the set Φ ⊂ Bin(S) × Bout(S)

of conflicting input/output behaviors. A conflicting input/output behavior is a pair of
assignments (σ, ρ), where σ is an assignment of Bin(S) and ρ is an assignment of Bout(S).
For each such pair we require that for any circuit D with inputs in(S), outputs out(S) and
D(σ) = ρ, we have C[S ← D] ̸≡ C. This means Φ describes all modifications of S that would
change the function computed by C. The relation R is then given by R(σ) = {ρ ∈ Bout(S) |
(σ, ρ) /∈ Φ}. One can easily verify that replacing S by any circuit implementing this relation
preserves the function computed by the entire circuit.

SAT 2024
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In order to obtain Φ, we first compute a circuit C′ by removing S from C.3 Due to the
removal of gates, C′ contains an additional primary input for each output of S. We denote
the set of these new inputs by I. Next, we compute every assignment σ for in(C) and ρ for I
such that C(σ) ̸= C′(σ ∪ ρ). Now let σ′ be the assignment of the inputs of S (in(S)), which
is attained by C under σ. Then Φ is the set of all pairs (σ′, ρ).

To realize this idea we first compute clausal encodings φ1 for C and φ2 for C′ by Tseitin
transformation, introducing a propositional variable for each node. For each node x in C we
denote the corresponding variable by v(x) and for each node x in C′ by v′(x). Similarly, we
define v / v′ for sets of nodes. Next we introduce for each common primary output o the
constraint v(o)⇔ v′(o), denoting the set consisting of all these clauses by equiv.

This encoding can now be used to compute the relation with incremental SAT solving.
The algorithm maintains a set B of blocking clauses, which is empty initially. We now ask
the SAT solver for an assignment σ that satisfies φ1 ∧ φ2 ∧B and falsifies equiv. Instead of
directly adding ¬σ|v(in(S)) ∨ ¬σ|v′(I) to the clausal representation of the relation, we first
try to reduce this clause. For this purpose, we apply a similar approach as it was used by
Ravi and Somenzi [28] for reducing the size of assignments. The formula φ1 ∧ φ2 ∧ equiv is
unsatisfiable under the assumption σ|v(in(C)) ∧σ|v′(I). Using the SAT solver, we can compute
a subset σ̂ of failed assumptions. As σ̂ suffices to make φ1 ∧ φ2 ∧ equiv unsatisfiable it is
rather easy to conclude that for each assignment µ with σ̂|v′(I) ⊆ µ, the pair (σ|v(in(S)), µ)
must not be contained in the relation. Thus, we can add ¬σ|v(in(S)) ∨ ¬σ̂|v′(I) to the clausal
representation of the relation. Moreover, to avoid the same inconsistency in subsequent
iterations, we add the blocking clause ¬σ|v(in(S)) ∨ ¬σ̂|v′(I) to B.

As mentioned above, a circuit implementing the relation R can be synthesized using a
slight adaptation of the SAT encoding for exact synthesis by Haaswijk et al. [16].

4 Minimization by Subcircuit Resynthesis

We use exact synthesis of subcircuits as a subroutine in a circuit minimization algorithm
that repeatedly selects subcircuits for resynthesis. To obtain a subcircuit for resynthesis, we
start from a root gate, and then expand by incorporating successors of previously chosen
gates until reaching a predetermined size. Root gates are chosen randomly from the circuit.
To expand the root gate, we visit gates that use previously selected gates as inputs in a
breadth-first-search manner. We then randomly decide whether to include this gate in the
subcircuit. Unlike previous work [30], we use a fixed bound for the size of subcircuits. This
bound is decreased in case individual checks timeout.

5 Window Selection

Both the SAT and the QBF-based rewriting approach do not only depend on the selected
subcircuits but also on the entire circuit. This is necessary to make use of don’t cares. Thus,
in general, rewriting subcircuits gets harder for larger circuits. To overcome this issue, we
only consider don’t cares with respect to a window (a subcircuit) [25]. The window is chosen
such that the size is still manageable for our QBF/SAT-based approach. In this manner,
we can minimize windows, and since the functions computed by windows are preserved, the
optimized implementation can be used to replace the original window.

3 Actually, it suffices to consider TFO(S) instead of a copy of the entire circuit
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Additionally, using windows allows us to rewrite subcircuits simultaneously. For this
purpose, we compute pairwise disjoint windows and rewrite them separately. In the end, we
then combine the optimized windows to obtain a new implementation for the original circuit.

6 Implementation

We implemented eSLIM mainly in Python and some parts in C++. For using C++ subroutines
in Python, we used pybind114. As backend solvers, we used QFUN [18] for QBF and
CaDiCaL [4] for SAT. To read and write files in the AIGER format, we used the AIGER
library [5]. To represent arrays of Boolean values, we used the python library bitarray5.
eSLIM is freely available6 under an MIT license.

Input/Output Formats

eSLIM can process circuits given in the Berkeley Logic Interchange Format (BLIF) [40] and
in the AIGER format [3]. The given circuits have to be purely combinational and thus must
not contain any sequential components. Circuits in the BLIF format are required to be
sorted topologically, i.e., fanins of a gate must be specified before the gate itself. For the
AIGER format, both the ASCII and the binary AIGER format are supported. Similar as
for circuits given in the BLIF format, also ASCII AIGER circuits are expected to be sorted
topologically. The main output format of eSLIM is BLIF. In case an AIG shall be reduced,
also the binary and ASCII AIGER format are supported.

Parameters of eSLIM

Our tool can be applied as follows.

eSLIM <circuit > <result > <budget > [ options ]

We first describe the mandatory arguments:
circuit The circuit to be processed in one of the supported formats.
result The destination for the minimized circuit (given in the BLIF format).
budget The available time in seconds.
Additionally, eSLIM accepts several optional arguments. We only list the most important
ones, and we refer to the help information provided by eSLIM for the remaining options.
--gs The number of fanins of the synthesized gates.
--size The upper bound for considered subcircuit sizes.
--aig Synthesize an AIG. This option requires that the fanin size is set to two.
--aig-out Write the minimized circuit to a binary or ASCII AIGER file.
--restarts Specify the number of applications of our method. Each application can use

budget seconds.
--abc Use ABC for inprocessing after each application of our method.
--syn-mode Specify whether the QBF- or the SAT-based approach shall be used.
--windows Specify the number of windows that shall be processed concurrently and the

reference size for each considered windows.

4 https://github.com/pybind/pybind11
5 https://pypi.org/project/bitarray/
6 https://github.com/fxreichl/eSLIM

SAT 2024
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Types of Logic Gates

In its default configuration, eSLIM computes replacement circuits composed of arbitrary
k-fanin gates – where k is specified by --gs. The set of available functions for each gate
can be constrained by restricting the assignments for the function variables. This, for
example, means that if the option --aig is used, then XOR gates are ruled out by requiring
¬f i

01 ∨ ¬f i
10 ∨ f i

11 for each 1 ≤ i ≤ ℓ, where ℓ denotes the considered circuit size. In addition
to computing AIGs, we also used eSLIM to compute XAIGs – AIGs that may contain XOR
gates. By adding appropriate constraints for the function variables, additional restrictions
can be placed on the set of available functions.

7 Experiments

We evaluated our tool on the instances from the IWLS’23 programming contest7 and the
instances from the EPFL benchmark suite [1]. All experiments were conducted on a cluster
with AMD EPYC 7402 processors at 2.8 GHz running 64-bit Linux. We used a memory
limit of 4 GB. For the parallelized minimization we used a memory limit of 4 GB per thread.

7.1 IWLS Instances
The IWLS’23 instances consist of 100 instances, given as truth tables. The goal is to compute
an And-Inverter Graph (AIG) with as few gates as possible. A preliminary version of eSLIM
participated in the competition and took the second place.

Since the instances are given as truth tables, and our tool requires that specifications are
given as circuits, we had to preprocess the instances using ABC [7]. As a naive transformation
of truth tables to circuits by using ABC results in relatively large circuits, we used ABC to
reduce the size of the initial circuit. For this purpose, we used the ABC command deepsyn
with a timeout of one hour8. We chose deepsyn as it is one of the most effective optimization
strategies for computing compact AIGs [9]. Additionally, unlike many other optimization
strategies in ABC, deepsyn allows any-time optimization.

In our evaluation setup, we considered our tool both in the QBF-based and the SAT-
based configuration. As only very few of the IWLS instances are sufficiently large for a
reasonable application of windowing, we did not evaluate it here. We compared eSLIM with
the prototype of the purely QBF-based approach CIOPS [30] and the deepsyn procedure9.

In our experiments, we alternated between 27-minute runs of eSLIM and 3-minute runs
of deepsyn for inprocessing. Similarly, we alternated between 30-minute runs of CIOPS
and exhaustive heuristic minimization with ABC. Here exhaustive minimization means that
the application of ABC is repeated until no further reductions can be found. We wanted
to compare eSLIM with the original version of CIOPS, thus we used different setups for
inprocessing in eSLIM and CIOPS. These combinations were applied eight times. We used
30-minute runs of CIOPS as the time needed for inprocessing cannot be controlled. As
inprocessing usually only takes a few seconds, still in total roughly 4 hours were available
per instance. Finally, deepsyn was run for four hours. In general, all tools benefited from

7 https://github.com/alanminko/iwls2023-ls-contest
8 To run deepsyn we used &deepsyn -T 3600. By using -T 3600 we enforced the timeout.
9 We could not compare our tool against the first and third ranked entry to the IWLS 2023 competition –

our tool ranked second – as they were not available to us.

https://github.com/alanminko/iwls2023-ls-contest
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Table 1 Average reduction (%) of gates compared to the preprocessed IWLS’23 instances, by
configuration and initial size and standard deviations of the average reductions per configuration.
The best results are marked in boldface.

CIOPS Deepsyn QBF SAT

#Gates mean stdev mean stdev mean stdev mean stdev

10-39 2.8 0.28 0.59 0.4 3.11 0.19 2.93 0.28
40-100 3.64 0.19 0.68 0.18 8.34 0.43 8.7 0.26
131-492 6.12 0.22 9.32 0.44 15.75 0.57 19.76 0.59
505-7839 4.79 0.13 12.64 0.47 10.85 0.39 15.61 0.52
Overall 4.34 0.11 5.82 0.22 9.51 0.25 11.75 0.17

10 – 39 40 – 100 131 – 492 505 – 7839 Overall
Instance class
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Figure 2 The left figure (a) visualizes the average reductions of gates per instance class and
configuration. The right figure (b) visualizes the average reductions among all instances for the SAT
and the QBF configuration over time. The areas marked in gray correspond to the application of
ABC.

longer runtimes. Nevertheless, we limited the runs to roughly four hours due to constraints
on the available computational infrastructure. Additionally, we set the initial bound for the
subcircuit size to 6 both for our tool and CIOPS (cf. Section 4).

Instances were grouped into four subsets of 25 based on the initial number of gates. For
each configuration and instance group, we determined the average size reduction (in %) for
circuits in that group. We performed 5 independent runs for each configuration. First, we
calculated the average reduction per run for each subset and for the entire set of instances.
Based on these values, we computed average reductions and standard deviations among the
individual runs of each configuration for each class of instances. Results are given in Table 1.
A visualization of the results is given in Figure 2a.

The experiments show that eSLIM with the QBF configuration clearly outperformed
CIOPS. This was mainly due to two simple but apparently effective changes. First, eSLIM
uses fixed bounds for the sizes of selected subcircuits, while CIOPS tries to increase the
initially given bounds as far as possible. Since larger circuits are usually harder to analyze,
this indicates that, in general, it is advantageous to consider more but simpler (smaller)
circuits. Second, eSLIM computes subcircuits by expanding root gates in a randomized
breadth-first-search manner, while CIOPS applies an expansion strategy that aims at keeping
the number of outputs low.

SAT 2024
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Moreover, the SAT-based strategy outperformed the QBF-based strategy. This was
possible as in general the SAT-based approach allowed a faster analysis of subcircuits. Thus,
more subcircuits could be analyzed in total. Furthermore, eSLIM could outperform deepsyn.
This indicates that the combination of deepsyn for preprocessing/inprocessing with eSLIM
is viable alternative to just applying deepsyn alone.

Furthermore, to illustrate the achieved reductions over time we give Figure 2b. The
figure shows the average reduction among all instances for the QBF- and the SAT-based
configuration over time. We can see that the achieved improvements diminish the longer the
tool ran, still on average both approaches could find new improvements until the end. For
the QBF- and the SAT-based configuration the deepsyn inprocessing steps were responsible
for 26%, respectively 18% of the total reductions.

Additionally, if we consider the best implementations for each instance among the 5 SAT
runs, we can observe an average reduction of about 14%. This indicates that it may be
advantageous to consider multiple runs of eSLIM. As our tool makes use of a randomized
subcircuit selection, different runs result in different sequences of replaced subcircuits. Thus,
a run might get stuck in a local minimum, which is difficult to escape.

7.2 EPFL Instances
To evaluate our tool for circuits with non-binary gates, we considered the EPFL Combinational
Benchmark Suite [1]. This benchmark set consists of twenty circuits.10 The goal is to find
6-input lookup table (LUT-6) implementations of the specifications with small size. In
addition to a specification given as a circuit with binary gates, the benchmark suite also
provides the best known LUT-6 realizations so far. We used the best known realizations as
of 2022 (commit 42c1f31 ) as initial specifications for our tool.11

We ran our reduction tool for 12 hours both with the SAT and the QBF configuration.
After each hour we applied the ABC command &mfs as an inprocessing step – we used
&mfs as it allows us to directly optimize an LUT-6 circuit. Additionally, we also applied
our tool with windowing enabled. Here, we recombined the windows for the inprocessing
step and computed new windows afterwards. We compared our tool with CIOPS. We want
to point out that the initial realizations have already been highly optimized by different
methods, so any improvement can be considered a success.

In addition to a bound on the size of subcircuits, we also used a limit of 10 on the number
of inputs of the subcircuits considered for resynthesis. Preliminary tests showed that such a
limit is required to reliably generate the Boolean relation for the SAT-based approach within
time and memory limits. Additionally, we always set the initial bound for the subcircuit
size to 4. In the experiments with windowing, we used two different window sizes, 500 and
1000. First we minimized single windows and second up to 8 windows concurrently. We only
applied windowing for instances with at least 1000 gates.

Results for instances with less than 1000 gates are given in Table 2a and results for
instances with at least 1000 gates are given in Table 2b. For the results with windowing we
selected the best results among the two different window sizes.

Since the initial circuits are already highly optimized by state-of-the-art methods, the
relative improvements for the EPFL instances were small compared to the IWLS instances,
and it is difficult to draw any definitive conclusion about the superiority of any configuration

10 We did not consider the MtM instances as the EPFL repository does not contain the best implementations
for these circuits.

11 We did not consider the best results of 2023 as half of them were provided by us. As it is difficult for our
tool to further reduce these circuits, we think the circuits from 2022 are better suited for the evaluation.
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Table 2 The table gives for each instance the number of LUT-6 gates of the initial circuit and of
the improved circuits per configuration. The best results are marked in boldface.

(a) Results for EPFL instances with less than 1000 gates.

Instance Initial CIOPS QBF SAT

Lookahead XY router 19 19 19 19
int to float converter 20 20 18 19
Alu control unit 25 25 25 25
Coding-cavlc 54 52 49 53
Priority encoder 94 94 93 92
Adder 129 129 129 129
I2c controller 182 178 179 177
Decoder 264 264 264 264
Round-robin arbiter 273 273 272 267
Max 511 511 511 511
Barrel shifter 512 512 512 512

(b) Results for EPFL instances with fewer than 1000 gates.

No Windowing Single Window Up to 8 Windows

Instance Initial CIOPS QBF SAT QBF SAT QBF SAT

Sine 1114 1111 1095 1085 1076 1069 1057 1036
Voter 1217 1217 1217 1179 1184 1166 1177 1172
Memory controller 1735 1731 1722 1727 1731 1730 1724 1731
Square-root 2994 2994 2994 2994 2991 2985 2992 2980
Square 3018 3018 3014 2997 2992 2994 2942 2943
Divisor 3096 3096 3096 3096 3096 3095 3096 3095
Multiplier 4360 4360 4358 4346 4346 4346 4326 4317
Log2 6133 6133 6132 6109 6127 6129 6078 6063
Hypotenuse 39452 39452 39452 39452 39230 39251 38459 38781

from these results. Nevertheless, the results suggest that parallel optimization was able to
beat single-threaded optimization. Similarly, the results indicate that both configurations of
our tool outperformed CIOPS. Moreover, our tool could improve on the best implementation
for the majority of instances.

8 Conclusion

The experimental analysis shows that eSLIM significantly improves upon CIOPS and that
eSLIM is a viable alternative to deepsyn. Additionally, the experiments show that the
SAT-based approach outperforms the QBF-based version for instances from the IWLS’23
programming contest. For circuits from the EPFL suite, the two variants perform very
similarly, with either approach having a slight edge in some instances. Moreover, the
experiments show that using windowing allows us to further reduce the largest circuits from
the EPFL suite.

The respectable performance of the QBF-based approach on larger circuits hints at
the potential of adopting techniques from QBF solving, such as counterexample-guided
expansion [19]. Computing the entire Boolean relation upfront can be prohibitive, and
generating constraints during the substitution process could be more efficient. Specifically,
constraints could be added on-the-fly when the substitution of a synthesized circuit alters
the function.
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