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Abstract
Motivated by the application of quality assessment of logic locking we introduce Hierarchical
Stochastic SAT (HSSAT) which generalizes Stochastic SAT (SSAT). We look into the complexity
of HSSAT and for solving HSSAT formulas we provide a prototype solver which computes exact
evaluation results (i.e., without any approximation and without any imprecision caused by numerical
rounding errors). Finally, we perform an intensive experimental evaluation of our HSSAT solver in
the context of quality assessment of logic locking.
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1 Introduction

Introducing Hierarchical Stochastic SAT (HSSAT) in this paper is motivated by the logic
locking technique. Logic locking has been proposed to protect Integrated Circuits (ICs) from
unauthorized usage. Such protection techniques have become necessary as the globalization
of manufacturing of ICs may lead to trust issues between the various parties involved in
the manufacturing process. Logic locking is a technique to prevent counterfeiting and
overproduction by an untrusted foundry. Logic locking introduces additional logic to the
IC which is connected to gates in the original IC as well as to a set of newly introduced
inputs, the so-called key inputs, see Fig. 1 for an overview. The key inputs are stored in a
tamper-proof memory and – at least ideally – the modified IC (i.e. “locked” IC) produces
correct outputs only if the key inputs are set correctly. The correct key is not revealed to the
foundry. The foundry just manufactures the ICs according to the mask data provided by the
design house and delivers them to the design house. The design house loads a tamper-proof
memory which is connected to the key inputs with the correct key value, thus it “activates”
or “unlocks” the IC and delivers the activated IC to the end-users [31].

Numerous methods have been proposed for implementing logic locking schemes, see e.g.
[23, 1, 21, 9, 22, 38, 37, 36, 40, 39]. Attacks against logic locking assume both an attacker
model and an attack model. For the attacker, we assume that the design house is trusted,
but the foundry and the end-user may be untrusted. This includes that the design house
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Figure 1 Logic locking.

keeps the unlocking key secret. If the workflow involves transferring the secret key, then the
key is secured using cryptographic methods [23, 7] which is an orthogonal problem and is
not considered in this paper. For the attack model, most attacks described in the literature
assume that the locked netlist is known to the attacker and that the attacker either also has
access to the original netlist [23] or at least to an unlocked device [21, 31, 38]. However, an
untrusted foundry usually has only access to the mask data and not to the locked netlist.
Thus, for such an attack it has to re-build the netlist from the mask data which is difficult
and very expensive. Reverse engineering of the netlist based on a physical device is even
harder or almost impossible for complex designs with small feature sizes and a non-trivial
number of design layers. Therefore we assume here that the attacker does not have access
to the locked netlist and we ask for the security of logic locking techniques against attacks
without knowing the locked netlist. (Nevertheless, our attack model may assume that the
attacker has an unlocked working device to check whether key guesses for the locked device
have been successful.) Possible weaknesses of logic locking techniques could be: The IC may
be unlocked not only with the original (intended) key, but also with other keys, or there may
be many keys which “almost unlock” the IC which means that the IC produces for “almost
all” input combinations the correct output combinations such that the IC can be used in
practice with incorrect keys as well. This danger is real, since current logic locking methods
like the one proposed by Yasin et al. [37] achieve resistance against SAT-based attacks [31] by
keeping the fraction of input combinations with erroneous output combinations intentionally
minimal for each incorrect key.

The goal of this paper is to provide formally precise methods for the quality assessment of
logic locking without resorting to imprecise estimations based on simulation like in [19]. This
is achieved by reducing the problem to known formalisms like Quantified Boolean Formulas
(QBF), (Weighted) Model Counting, Projected (Weighted) Model Counting or Stochastic
SAT (SSAT). However it turns out that answering certain interesting questions for quality
assessment cannot be expressed naturally by those existing formalisms. For this, we introduce
Hierarchical Stochastic SAT (HSSAT) which generalizes Stochastic SAT (SSAT). Note that
a similar formalism called SSAT(Θ) has been developed by Fan and Jiang [11] in parallel to
and independently from our work. Their motivation did not come from an application such
as the quality assessment of logic locking, but from the theoretical question of generalizing
counting formulas (CFs) that characterize the Counting Hierarchy [34] (as QBFs characterize
the Polynomial Hierarchy [30]). We define syntax and semantics of HSSAT, we show that it is
PSPACE complete (like QBF and SSAT), and we provide a prototype solver HSSATSolve
for HSSAT which is based on ROBDDs [5] and is both algorithmically and numerically exact.
In our experimental evaluation we apply our solver to several quality assessment problems.
In cases where only (Weighted) Model Counting, Projected (Weighted) Model Counting, or
SSAT is needed, we compared it to existing solvers like SharpSAT-TD [15], d4 [17], gpmc [32],
arjun-ganak [26, 29], DC-SSAT [18], ClauSSat [6], ElimSSAT [35], and SharpSSAT [10]. The
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experiments show that HSSATSolve is capable of answering interesting questions that arise
in quality assessment of logic locking and could not be mapped to already existing formalisms;
for other questions it often outperforms existing solvers in our application domain.

The paper is structured as follows: We start with basic notations in Sect. 2. In Sect. 3
we introduce details on logic locking, quality assessment of logic locking and mapping it to
known problems, whereas in Sect. 4 we discuss Hierarchical Stochastic SAT (HSSAT). We
present experimental results in Sect. 5 and conclude with a summary and future research
directions in Sect. 6.

2 Preliminaries and Notations

As usual a Boolean formula over the variable set X is either 0, 1, some variable x ∈ X, the
negation ¬ϕ of a Boolean formula ϕ over X, the conjunction ϕ1 ∧ ϕ2, or the disjunction
ϕ1 ∨ ϕ2 of two Boolean formulas ϕ1 and ϕ2 over X. A literal is a variable or its negation. A
clause is a disjunction of literals, a cube is a conjunction of literals. A conjunctive normal
form (CNF) is a conjunction of clauses. An assignment α over X ′ ⊆ X is a mapping from
X ′ to B = {0, 1} which is called partial, if X ′ ⊂ X, and full, if X ′ = X. Sometimes we
represent an assignment like α(x) = 0, α(y) = 1 by the corresponding cube ¬xy. The set of
all assignments over X is denoted as [[X]]. Given a formula ϕ and an assignment α over X, let
ϕ[α] denote the result of substituting every occurrence of variables x ∈ X in ϕ with α(x) and
evaluating the obtained boolean expression using the standard rules for the operators ¬, ∧,
and ∨. The Boolean formula ϕ represents a Boolean function fϕ : [[X]] → B by fϕ(α) = ϕ[α]
for α ∈ [[X]]. 0 (resp. 1) represents the constant 0 (resp. 1) function. The cofactor ϕ|α of
a Boolean formula ϕ wrt. some (full or partial) assignment α over X ′ ⊆ X is a formula
resulting from substituting every x ∈ X ′ in ϕ with α(x).

Boolean functions can also be represented by Reduced Ordered Binary Decision Diagrams
(ROBDDs) [5], see Fig. 5 for an example of an ROBDD. An ROBDD R over a set X of
variables is a directed, acyclic graph G = (V,E) having exactly one root R.root with the
following properties: V consists of terminal nodes (represented by squares in Fig. 5) and non-
terminal (decision) nodes (represented by circles). The set of terminal nodes is a non-empty
subset of { 0 , 1 }. The remaining non-terminal nodes n ∈ V are labeled with variables
n.var := x ∈ X and they have exactly two outgoing edges, whose targets are denoted by
n.low resp. n.high ∈ V . The edge to n.low is called the low edge (represented by a dashed
line in Fig. 5), the edge to n.high is called the high edge (represented by a solid line in Fig. 5).
An ROBDD R is ordered which means that there is a global order π : {1, . . . , |X|} → X

such that on each path from the root R.root to a terminal the variable labels of the non-
terminal nodes occur in the order π(1), . . . , π(n). An ROBDD is reduced, i.e., it satisfies the
following conditions: There is no pair of non-terminal nodes n ≠ m ∈ V with n.var = m.var,
n.low = m.low, and n.high = m.high (“isomorphism reduction”). For each non-terminal
node n ∈ V it holds n.low ̸= n.high (“Shannon reduction”). The reduction property
makes ROBDD representations more compact and together with the ordering property it
turns ROBDDs into canonical representations for given Boolean functions [5]. The Boolean
function eval(R.root) : [[X]] → B defined by an ROBDD R can be computed recursively:
eval( 0 ) = 0, eval( 1 ) = 1, and eval(n) = (¬n.var∧eval(n.low))∨(n.var∧eval(n.high))
for a non-terminal node n. It easily follows from this rule that the function value of
eval(R.root) for a full assignment α can be computed by following a path through the
ROBDD starting from R.root: At each node n on the path one follows the edge to n.low iff
α(n.var) = 0 and the edge to n.high iff α(n.var) = 1. The function value of eval(R.root)
for assignment α is then given by the reached terminal.

SAT 2024
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Figure 3 Locked circuit.

A Stochastic Boolean Satisfiability (SSAT) formula Φ in prenex form over variable set X
is expressed by

Φ = Q1x1, . . . , Qnxn : ϕ, (1)

where ϕ is a Boolean formula over X = {x1, . . . , xn}, for 1 ≤ i ≤ n Qi is either an existential
quantifier ∃ or a random quantifier

Rpi with pi ∈ [0, 1]. Q1x1, . . . , Qnxn is called the prefix
and ϕ is called the matrix of Φ. The random quantifier

Rpi on variable xi indicates that
xi = 1 with probability pi ∈ [0, 1] (resp. xi = 0 with probability 1 − pi). The semantics of
an SSAT formula Φ in the optimization version is a satisfying probability Pr[Φ] recursively
computed as follows:
1. Pr[Φ] = 0, if the matrix of Φ represents the 0 function,
2. Pr[Φ] = 1, if the matrix of Φ represents the 1 function,
3. Pr[Φ] = max(Pr[Φ′|¬xi ],Pr[Φ′|xi ]), if Φ = ∃xiΦ′,
4. Pr[Φ] = (1 − pi) · Pr[Φ′|¬xi

] + pi · Pr[Φ′|xi
], if Φ =

RpixiΦ′.
Note that by the notion Φ′|α above we mean the SSAT formula where the prefix of Φ′ is
unchanged and its matrix ϕ′ is replaced by the cofactor ϕ′|α.

The decision version of an SSAT formula Φ = Q1x1, . . . , Qnxn : ϕ has the form Φ op q
with op ∈ {<,≤, >,≥,=, ̸=}, q ∈ [0, 1] and it evaluates to 1 (true), if Pr[Φ] op q holds, and
to 0 (false) otherwise.

If all quantifiers are random quantifiers, then SSAT corresponds to (weighted) model
counting with weight(xi) = pi, weight(¬xi) = 1 − pi.

The syntax of Quantified Boolean Formulas (QBFs) is as given by Eqn. (1) with the
difference that in contrast to SSAT formulas Qi is either an existential quantifier ∃ or a
universal quantifier ∀. For the semantics of QBF, the item 4. from the semantics definition
above has to be replaced by Pr[Φ] = min(Pr[Φ′|¬xi

],Pr[Φ′|xi
]), if Φ = ∀xiΦ′.

3 Logic Locking

As already mentioned in Sect. 1, logic locking changes an existing netlist by adding extra
gates and extra key inputs, see Fig. 1. The circuit should only work correctly, if the correct
key is applied to the key inputs. In the literature numerous logic locking schemes have
been presented, see [23, 1, 21, 9, 22, 38, 37, 36, 40, 39], e.g.. The logic locking methods
either modify the whole IC or only critical modules. Here we consider logic locking for
combinational circuits without memory elements. For sequential circuits, we assume that
logic locking modifies the combinational part.

▶ Example 1. Let us consider the very simple example of an original (non-locked) circuit
in Fig. 2. Here we assume a simple logic locking method which randomly selects internal
signals of the circuit and modifies them with logic locking. In the example the outputs of G1
and G2 are selected. An exor gate with key input k1 is inserted at the output of G1 and an
exnor gate with key input k2 is inserted at the output of G2, see Fig. 3. It is easy to see that
the key value (k1, k2) = (0, 1) unlocks the circuit, since the Boolean functions implemented
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Figure 5 ROBDD for inver-
ted miter circuit.

by the original circuit and the locked circuit with (k1, k2) = (0, 1) are the same. In contrast,
(k1, k2) = (1, 0) does not unlock the circuit, since e.g. for input (x1, x2, x3) = (1, 1, 1) the
output of the original circuit is (y1, y2) = (1, 1), but the output of the locked circuit is
(y′

1, y
′
2) = (0, 0).

Now we are interested in a quality assessment of logic lockings for combinational circuits.
For such a quality assessment we consider an inverted miter circuit for the original and
the locked circuit. As usual, an inverted miter circuit connects the primary inputs of two
circuits (in our case of the original and the locked circuit), connects the pairs of corresponding
primary outputs of the two circuits with exnor (equivalence) gates, and connects the outputs
of all exnor gates at the primary outputs with an and gate. I.e., the inverted miter circuit
between the original and the locked circuit outputs a 1 for some assignment to the primary
inputs (and key inputs) iff the corresponding outputs of the original and the locked circuit
are identical. Fig. 4 shows the inverted miter circuit for the circuits of Figs. 2 and 3. Note
that an assessment of logic locking quality is done by the (trusted) design house which owns
both the original and the locked netlist. In this section we reduce several quality metrics
to problems which are known in the formal reasoning community. The last metric then
motivates the definition of a new problem called Hierarchical SSAT.

Key Existence

A very basic question is the question of key existence. If fIM is the Boolean function at the
output of the inverted miter, X⃗ is the input vector and K⃗ the key bit vector, then there
exists an unlocking key iff the QBF

∃K⃗∀X⃗ : fIM (2)

is satisfied (as already observed in [23]). Of course, the QBF should be satisfied, if logic
locking was done correctly.

Key Uniqueness

The key existence does not imply security of logic locking however. It could be the case that
the existing unlocking key is not the only unlocking key, but there are several unlocking keys.
Therefore the uniqueness of the unlocking key is of interest as well. Let K⃗orig be the original
(intended) unlocking key. Key uniqueness can simply be reduced to the QBF

∃K⃗∀X⃗ : (fIM ∧ (K⃗ ̸= K⃗orig)). (3)

SAT 2024
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Fraction of Unlocking Keys

We cannot assume that logic locking methods always produce unique keys. Nevertheless,
they may be appropriate in practice, if the number of unlocking keys is not too high. In
this case the probability of guessing an unlocking key would be so low that an attack that
randomly guesses keys will not have a high chance of success, especially if the size |K⃗| is
large enough. Thus, we are interested in the fraction of keys which are unlocking. This
question can easily be reduced to the formula

R0.5K⃗∀X⃗ : fIM . (4)

Since existing SSAT solvers often do not support universal quantification, we have to
transform Eqn. (4) into a version which removes ∀-quantification. This is not a trivial task
for arbitrary SSAT formulas containing both ∃- and ∀-quantifiers, but in our special case it
is easy. It is clear that a given fixed key K⃗fix does not unlock the locked circuit iff there is
an input assignment which produces a 1 at the output of the non-inverted miter circuit, i.e.,
iff ∃X⃗¬fIM |K⃗=K⃗fix

holds. Thus, the fraction of keys which do not unlock the circuit is given
by

R0.5K⃗∃X⃗ : ¬fIM . (5)

If this fraction is given by pw, then the fraction of unlocking keys is pc = 1 − pw. After
multiplying the result by 2|K⃗| we obtain the number of unlocking keys. If the original key is
unlocking and we are interested in the fraction of unlocking keys among the remaining keys,
then we simply have to correct pc by computing pc·2|K⃗|−1

2|K⃗|−1
.

Existence of Keys with High Criticality

The existence of (many) keys different from the original key which completely unlock the
circuit is of course a security issue. However, from an application perspective it is also critical,
if there is a key which is different from the original key and “almost” unlocks the circuit.
This is captured by the notion of “criticality” of a key.

▶ Definition 2. The criticality of a key is defined as the quotient of the number of input
assignments for which the key produces a correct output and the total number of input
assignments.

Given a criticality bound c ∈ [0, 1], we are interested in the question whether there exists
a key different from the original key K⃗orig with criticality > c. Keys with an extremely
high criticality are considered to be dangerous, because with such a key an IC may possibly
be operated for a long time without observing an error. Note that there are (as already
mentioned in Sect. 1) logic locking methods [37] tailored towards resistance against SAT-based
attacks [31] (which make the assumption that the locked netlist is at the attacker’s disposal)
where all keys have almost maximal criticality. This is of course undesirable from a practical
point of view and therefore we consider it to be necessary to include criticality as a metric
for assessing the quality of logic locking. For a fixed key K⃗fix,

R0.5X⃗ : fIM |K⃗=K⃗fix
computes

the criticality of K⃗fix and thus the existence of a key (different from the original one) with
criticality > c can be checked by the SSAT formula(

∃K⃗

R0.5X⃗ : (fIM ∧ (K⃗ ̸= K⃗orig))
)
> c. (6)
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According to the semantics definition reviewed in Sect. 2 the existential quantifier ∃K⃗
performs a maximization over all criticality values

R0.5X⃗ : fIM |K⃗=K⃗fix
for different fixed

keys K⃗fix (the evaluation for the original key is forced to 0 by the additional constraint
“K⃗ ̸= K⃗orig”). This maximal value is finally compared to the criticality bound c.

Average Criticality of Keys

Again, it is not very dangerous, if there are only a few keys with high criticality, since the
probability is not high that an attacker guesses a critical key. So we are also interested in
the average criticality of all possible keys. This can be computed by the SSAT formula

R0.5K⃗

R0.5X⃗ : fIM , (7)

since the quantification

R0.5K⃗ just averages over all possible criticalities of the key values.
Eqn. (7) may be interpreted as a model counting problem.

Fraction of Keys with High Criticality

A high average criticality may be regarded as a security problem at first sight. Unfortunately,
it is not a perfect metric for assessing the quality of logic locking, since there may be several
reasons for a high average criticality. Let us look into two extreme cases: In case 1 all keys
(except the original one) have criticality 0.5. This leads to a (rather high) average criticality
of (about) 0.5 (the original key contributes 1, all other keys 0.5 to the average). In case 2,
one half of the keys have criticality 1, the other half have criticality 0. Here the average
criticality is again 0.5. Case 1 is not really critical, since the user most probably cannot
work with a key with criticality 0.5, since half of the input assignments produce erroneous
values. The probability of guessing a key with criticality > 0.5 is as low as possible ( 1

2|K⃗| ).
On the other hand, case 2 with almost the same average criticality is highly critical from
an application point of view. On average, every second guessed key completely unlocks the
circuit.

This observation shows that we should look for a different criticality-based metric. We
would like to ensure that the number of keys (or the fraction of keys) with a criticality larger
than a given criticality bound c ∈ [0, 1] is as low as possible. If we choose the criticality
bound c in a way that the circuit is supposed to be of no use, if it is operated with a key
with criticality ≤ c, then this fraction immediately gives the probability of guessing a key
which can be used in practice. From a conceptional point of view, the task is to compute for
each fixed key K⃗fix the probability

R0.5X⃗ : fIM |K⃗=K⃗fix
(i.e. the criticality of K⃗fix), evaluate

“

R0.5X⃗ : fIM |K⃗=K⃗fix
> c” for the given criticality bound c, and then just to compute the

fraction of keys for which this evaluation returns “true”. In the end we have to compare
this fraction again with a bound which specifies how large the computed fraction is allowed
to be. However, this approach does not seem to be feasible, since it leads to a number of
SSAT (or model counting) problems which is exponential in the number of key bits K⃗. The
problem cannot naturally be reduced to an SSAT formula, since the comparison with the
criticality bound c has to be performed for each key value individually instead of a single
comparison as in Eqn. (6). This situation leads us to the definition of a new generalization of
SSAT called Hierarchical Stochastic SAT (HSSAT). HSSAT allows to hierarchically include
several comparison operators within the formula instead of only one at the end as in the
decision version of SSAT.

SAT 2024
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4 Hierarchical Stochastic SAT

4.1 Definition of HSSAT
Here we define our new formalism of HSSAT which has been motivated in the previous
section. In contrast to usual definitions of SSAT we also allow universal quantifiers in HSSAT,
since (1) allowing them does not change the complexity class of HSSAT and (2) we can easily
process universal quantifiers in our solver as well, so there is no reason to forbid universal
quantifiers.

▶ Definition 3 (Syntax of HSSAT formulas). A Boolean Formula ϕ over variable set X is
also an HSSAT formula Φ with matrix matrix(Φ) = ϕ, the set FV(Φ) = X of free variables,
the set BV(Φ) = ∅ of bound variables, the quantifier order π(Φ) : {1, . . . , |BV(Φ)|} → BV(Φ),
and hierarchy level hlevel(Φ) = 0.

Now let Φ be an arbitrary HSSAT formula with matrix matrix(Φ), the set FV(Φ) of free
variables, the set BV(Φ) of bound variables, the quantifier order π(Φ) : {1, . . . , |BV (Φ)|} →
BV (Φ), and hierarchy level hlevel(Φ). Let x ∈ FV(Φ), p, q ∈ [0, 1], op ∈ {<,≤, >,≥,=, ̸=}.
Then the following formulas are HSSAT formulas as well:
(a) Φ′ = (∃xΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},

hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) = ∃.
(b) Φ′ = (∀xΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},

hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) = ∀.
(c) Φ′ = (

RpxΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},
hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) =

Rp.
(d) Φ′ = (Φ op q) is an HSSAT formula with FV(Φ′) = FV(Φ), BV(Φ′) = BV(Φ), hlevel(Φ′) =

hlevel(Φ) + 1, op(hlevel(Φ) + 1) = op, prob(hlevel(Φ) + 1) = q.
In all cases (a) - (d) we have matrix(Φ′) = matrix(Φ). In cases (a) - (c) the quantifier
order is π(Φ′) : {1, . . . , |BV (Φ′)|} → BV (Φ′) with π(Φ′)(1) = x, π(Φ′)(i) = π(Φ)(i− 1) for
all 2 ≤ i ≤ |BV (Φ′)|. In case (d) π(Φ′) = π(Φ).

An HSSAT formula Φ is called closed, if FV(Φ) = ∅.

In a closed HSSAT formula all variables in the matrix are bound by ∃, ∀, or

R

quantifiers.
We define the semantics only for closed HSSAT formulas and assume that non-closed formulas
are made closed by using leading existential quantifiers.

Note that SAT formulas can be seen as closed HSSAT formulas of hierarchy level 0
with ∃-quantifiers only, QBFs as closed HSSAT formulas of hierarchy level 0 with only ∃-
and ∀-quantifiers, SSAT formulas in the optimization version as closed HSSAT formulas of
hierarchy level 0 with only ∃- and

R

-quantifiers, and SSAT formulas in the decision version
as closed HSSAT formulas of hierarchy level 1 with only ∃- and

R

-quantifiers.
Before we look into the semantics of HSSAT, we consider how to express the motivating

example from the last section with an HSSAT formula.

Fraction of Keys with High Criticality

The problem of deciding whether the fraction of keys with criticality > c, c ∈ [0, 1] is larger
than d ∈ [0, 1] (see Sect. 3) can be reduced to the following closed HSSAT formula:

((

R0.5K⃗((

R0.5X⃗ : fIM ) > c)) > d). (8)

▶ Example 4. For Example 1 (see Figs. 2, 3, 4) the corresponding closed HSSAT formula is

Φ :=
[( R0.5k1

R0.5k2
[( R0.5x1

R0.5x2

R0.5x3 : fIM
)
> c

])
> d

]
.1 (9)
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Φ is a closed formula with an empty set FV(Φ) of free variables, the bound variables are
BV(Φ) = {k1, k2, x1, x2, x3}. For all variables x ∈ BV(Φ) quantor(x) =

R0.5. The quantifier
order is given by π(Φ)(1) = k1, π(Φ)(2) = k2, . . ., π(Φ)(5) = x3. The hierarchy level
hlevel(Φ) is 2, hlevel(x1) = hlevel(x2) = hlevel(x3) = 0, hlevel(k1) = hlevel(k2) = 1.
The probability value for comparison at hierarchy level 1 is prob(1) = c and at hierarchy
level 2 it is prob(2) = d. The operands at hierarchy levels 1 and 2 are >: op(1) = op(2) = >.

The formula checks whether the fraction of keys with criticality greater than c is greater
than d.

The semantics of HSSAT formulas can be formally defined using an evaluation function
Eval(·). The result is a value from [0, 1] which may be interpreted as a probability value or
– if the HSSAT formula is a comparison with some number from [0, 1], i.e., if we are in case
(d) of Def. 3 – as a logical value 0 (false) or 1 (true).

▶ Definition 5 (Semantics of HSSAT formulas). Let Φ′ be a closed HSSAT formula. Φ′ is
evaluated by a function Eval(·).
(1) If BV(Φ′) = ∅, hlevel(Φ′) = 0, and fΦ′ = 0, then Eval(Φ′) = 0.
(2) If BV(Φ′) = ∅, hlevel(Φ′) = 0, and fΦ′ = 1, then Eval(Φ′) = 1.
(3) If Φ′ = ∃xΦ, then Eval(Φ′) = max(Eval(Φ|¬x),Eval(Φ|x)).
(4) If Φ′ = ∀xΦ, then Eval(Φ′) = min(Eval(Φ|¬x),Eval(Φ|x)).
(5) If Φ′ =

RpxΦ, then Eval(Φ′) = (1 − p) · Eval(Φ|¬x) + p · Eval(Φ|x).
(6) If Φ′ = (Φ op q), then Eval(Φ′) = 1 in case Eval(Φ) op q holds, Eval(Φ′) = 0

otherwise.
The notion Φ|α above means that the matrix of Φ is replaced with its cofactor (matrix(Φ))|α.

4.2 Complexity of HSSAT
Now we come to the complexity of the HSSAT problem. It is pretty easy to see that HSSAT
is PSPACE complete – just as SSAT.

▶ Lemma 6. HSSAT is PSPACE hard.

Proof. Since we allow ∀-quantifiers in HSSAT, each QBF is a closed HSSAT formula of
hierarchy level 0 with ∃- and ∀-quantifiers only. Thus the hardness proof easily follows from
the PSPACE hardness of QBF. If ∀-quantifiers would not be allowed in HSSAT, a polynomial
time reduction from QBF would replace in a QBF Φ all ∀-quantifiers by

Rp-quantifiers with
arbitrary p ∈ (0, 1), leading to some Φ′, and it would consider “Φ′ = 1”. The QBF Φ is
satisfied iff Φ′ = 1 evaluates to 1 (true). (This is just as in the reduction for SSAT [18].) ◀

▶ Lemma 7. HSSAT is in PSPACE.

Proof (Sketch). Similar to the SSAT case, Def. 5 immediately suggests an evaluation of
a closed HSSAT formula Φ with quantified variables from X by an “implicit depth-first
traversal of the decision tree” of all assignments over X. The decision tree considers the
variables in the order they occur in the prefix of Φ. Of course, it is not necessary to store
the decision tree explicitly, but it is only necessary to store the currently considered path.
Whenever a node has been evaluated, it is not necessary anymore to store the evaluation
values for its successors. Thus, it is never needed to store more than O(|X|) values during the
depth-first traversal. Moreover, it is easy to see that the size of the number representations
occurring during the evaluation is polynomially restricted by the input size of the problem
instance. Thus, HSSAT is in PSPACE. ◀

1 Parentheses according to Def. 3 which are clear from the context are omitted.
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Algorithm 1 evalHSSAT.
Input: HSSAT formula Φ with matrix(Φ) = ROBDD R, FV(Φ) = ∅
Output: rational number evaluating Φ

1: return evalEdge(evalNode(R.root), hlevel(Φ), hlevel(R.root));

Algorithm 2 evalNode.
Input: ROBDD node n
Output: rational number evaluating n

1: if n = 0 then return 0;
2: if n = 1 then return 1;
3: if n.value ̸= undefined then return n.value;
4: plow := evalEdge(evalNode(n.low), hlevel(n), hlevel(n.low));
5: phigh := evalEdge(evalNode(n.high), hlevel(n), hlevel(n.high));
6: if quantor(n.var) = ∃ then p := max(plow, phigh);
7: if quantor(n.var) = ∀ then p := min(plow, phigh);
8: if quantor(n.var) =

Rq then p := (1 − q) · plow + q · phigh;
9: n.value := p;

10: return p;

Lemma 6 and Lemma 7 imply Theorem 8.

▶ Theorem 8. HSSAT is PSPACE complete.

4.3 Solving HSSAT
Here we present a prototype algorithm for solving HSSAT which is based on the computation
of ROBDDs for the matrix of the formula. The prototype algorithm also gives an indication
of how to design a generalization of DPLL-based SSAT algorithms like DC-SSAT [18], Prime
[24], or SharpSSAT [10] to HSSAT.

We will start with an algorithm which first builds for an HSSAT formula Φ an ROBDD
R = (V,E) for matrix(Φ) with the variable order π := π(Φ). Then the evaluation of Φ
is reduced to an evaluation of the ROBDD R by Algs. 1, 2, and 3. Alg. 2 is a recursive
algorithm computing the evaluation values at the different ROBDD nodes and Alg. 3 takes
care of edges in the ROBDD, especially long edges crossing several levels in the variable order.
Alg. 1 just reads out the correct value from the root of the ROBDD. To simplify notations
in the definition of Algs. 1 and 2 we define for n ∈ V : hlevel(n) = 0, if n ∈ { 0 , 1 },
hlevel(n) = hlevel(n.var) otherwise. We will consider the correctness of the algorithms
first and we will show an example afterwards.

For the time being, we assume that the HSSAT formula does not contain hierarchical
comparisons with values p ∈ [0, 1], i.e., we first neglect case (d) of Def. 3. This means that
the hierarchy level of Φ as well as of all variables is 0. It is easy to check that in this case
Alg. 3 does not have any effect, i.e., it returns its input probability without any change.

I.e., with our initial assumption the algorithm works like an ROBDD-based algorithm
for SSAT. We briefly discuss its correctness. First we assume that the “Shannon reductions
are reverted” in the ROBDD. This means the following: As long as there exists a “long”
edge from a node n to node m = n.dir, dir ∈ {low, high}, with either m ∈ { 0 , 1 } and
π−1(n.var) < |X| or π−1(m.var) > π−1(n.var) + 1, we introduce a new successor n′ of n



C. Scholl, T. Seufert, and F. Siegwolf 24:11

Algorithm 3 evalEdge.
Input: rational number ptarget evaluating the target node of an edge, hierarchy level hlsource

of source node, hierarchy level hltarget of target node of the edge
Output: rational number evaluating the edge between source and target node

1: p := ptarget; hl := hltarget;
2: while hl < hlsource do
3: if p op(hl + 1) prob(hl + 1) then p := 1 else p := 0;
4: hl := hl + 1;
5: return p;

with n.dir = n′, n′.low = m, n′.high = m. We perform a similar transformation for the
root of R, if π−1(R.root) > 1. The resulting ROBBD is then essentially a decision tree with
variable order π (with the only difference that there are shared nodes in the ROBDD due
to “isomorphism reduction”). Now it is clear that Alg. 2 does exactly the same evaluation
steps as given in Def. 5, since following an edge from some node n labelled with n.var in
the ROBDD exactly corresponds to a cofactor computation (remember that Alg. 3 does
not have an effect for now). Alg. 2 additionally caches values which have already been
computed in the variable n.value. It only remains to show that re-introducing Shannon
reductions does not change the evaluation. Consider a node n with n.low = n.high. From
v = max(v, v) = min(v, v) = (1 − p) · v + p · v it easily follows by case distinction with
the cases quantor(n.var) = ∃,∀,

Rp that the evaluation of n gives the same value as the
evaluation of n.low = n.high, i.e., removing n does not change the evaluation.

Now that it is clear that the algorithm is correct, if Φ does not contain hierarchical
comparisons according to case (d) of Def. 3, we only have to consider what changes, if we
re-introduce case (d). Intuitively, Rule (6) of Def. 5 with Φ′ = (Φ op q) and hierarchy level
hlevel(Φ′) = hl says the following: If we are at a node n with hierarchy level hlevel(n) = hl

and read a value v from a node m with hierarchy level hlevel(m) = hl−1, then we should not
take v itself, but we have to replace v with the outcome of the comparison v op q which is 0
or 1. The while loop in Alg. 3 just accounts for the case that there may be “long edges” from
a node n with hlevel(n) = hln to node m with hlevel(m) = hlm and hln ≥ hlm + 1 in the
ROBDD, crossing several hierarchy levels. Then several evaluations are needed, comparing
with op(hlm + 1) prob(hlm + 1) first, and finally with op(hln) prob(hln). In a similar way,
the call to evalEdge in Alg. 1 considers the case that hlevel(Φ) > hlevel(R.root), i.e.,
the outer formula contains comparisons according to case (d) of Def. 3.

▶ Theorem 9. Algorithm 1 correctly evaluates an HSSAT formula Φ according to Def. 5.

▶ Example 10. Consider the ROBDD in Fig. 5 for the inverted miter circuit in Fig. 4.
Let us consider the HSSAT formula

[( R0.5k1

R0.5k2
[( R0.5x1

R0.5x3

R0.5x3 : fIM
)

≥ c
])

≥ 0.3
]
,

see also Example 4. Let us first assume c = 1
2 . The nodes in the ROBDD are annotated

with their evaluation values. The evaluation for the xi-nodes just uses the formula 1
2 ·

evalNode(n.low) + 1
2 · evalNode(n.high). However, the evaluation of the right k2-node,

e.g., has to consider the comparison with c = 1
2 . For the low–successor we have 1

8 <
1
2 , thus

we have to replace its value by 0. For the high–successor we have 1
2 ≥ 1

2 , thus we have to
replace its value by 1. This leads to 1

2 · 0 + 1
2 · 1 = 1

2 at the right k2-node. The upper (red)
annotations at the ki-nodes give the node values for c = 1

2 with the final value of 1
2 at the

root, leading to 1 in the final comparison with 0.3. The lower (green) annotations at the
ki-nodes give the node values for c = 0.99 with the final value of 1

4 at the root, leading to 0
in the final comparison with 0.3.
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Improvements

Here we consider two improvements to the basic algorithm.
The first improvement concerns the variable order in the ROBDD. For this improvement

we define quantifier blocks for HSSAT, similar to SSAT or QBF. For an HSSAT formula
Φ with bound variables BV(Φ) = X, we define a partition P = {X1, . . . , Xk} on X by
the following rule: P is the (unique) partition where for all 1 ≤ i ≤ |X| − 1 π(Φ)(i)
and π(Φ)(i + 1) are in the same set Xj iff quantor(π(Φ)(i)) = quantor(π(Φ)(i + 1)) and
hlevel(π(Φ)(i)) = hlevel(π(Φ)(i+ 1)) (random quantors

Rp and

Rq are considered to be
equal even if p ̸= q). Thus P partitions the variables in the prefix into groups of consecutive
variables with the same quantor and the additional condition that comparisons according to
case (d) of Def. 3 introduce cuts into those groups. It is easy to see by a simple computation
that the value of an HSSAT Φ does not change, if neighboring variables π(Φ)(i) and π(Φ)(i+1)
belonging to the same group Xj are exchanged in Φ. Thus, all variables within some group
Xj can be arbitrarily exchanged without changing the value of Φ. This also means that for
the ROBDD-based evaluation we do not need to choose exactly the variable order π(Φ), but
we can choose a variable order which is “compatible with π(Φ)”. “Compatible” means here
that variables within groups Xj of {X1, . . . , Xk} can be arbitrarily exchanged in the variable
order of the ROBDD without affecting the value of the evaluation. In our implementation we
choose π(Φ) as the initial order when we build the ROBDD for matrix(Φ), but we activate
the dynamic reordering technique of “group sifting” [20] which dynamically tries to change
the variable order within the blocks with the goal of minimizing the number of needed
ROBDD nodes to represent matrix(Φ).

The second improvement comes into play when the matrix of the HSSAT formula Φ is given
in CNF, especially when it was produced from a circuit representation by a transformation
like Tseitin transformation [33]. In our implementation we use the “interpolation-based
gate extraction” by Slivovsky [27] which is based on the replacement of so-called “defined
variables” by their “definition”.

▶ Definition 11 ([27]). Let ϕ be a Boolean formula over X, X ′ ⊆ X. x ∈ X is defined in
terms of X ′ in ϕ iff α(x) = β(x) for any two full assignments α and β that satisfy ϕ and
agree on X ′. A definition of x by X ′ in ϕ is a formula ψ over X ′ with α(x) = ψ[α] for any
assignment α that satisfies ϕ.

Slivovsky [27] looks into QBF and considers existential defined variables and universal
defining variables. We adjust the approach of [27] to HSSAT by the following lemma:

▶ Lemma 12. Let x be an existential variable of a closed HSSAT formula Φ and for all hl
with 1 ≤ hl ≤ hlevel(x) the equation “0 op(hl) prob(hl)” does not hold. Let x be defined
in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in matrix(Φ) and let ψ be a corresponding
definition. Then Eval(Φ) = Eval(Φ[x := ψ]) where Φ[x := ψ] results from Φ by replacing x
with ψ in the matrix and omitting ∃x in the prefix.

On the one hand, Lemma 12 does not only allow universal variables to the left of existential
variables as defining variables, but all variables to the left. (A similar approach has been
already proposed in [27] as an improvement for the restricted case of QBFs.) On the other
hand, we need an additional restriction on the choice of defined existential variables that is
specific to Hierarchical Stochastic SAT. We prove the correctness of Lemma 12 in Appendix A.

The transformation of Lemma 12 is useful, since the replaced variables do not occur as
input variables in the ROBDD later on and the computed ROBDDs are smaller in most
cases. Semantic gate extraction has already been used in the context of SSAT solving [35].
Similar ideas have also been used in [16, 14] for model counting.
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5 Experiments

We implemented our prototype solver HSSATSolve with the ROBDD package CUDD
[28] using dynamic group sifting [20] for optimizing the variable orders. For all number
representations we use rational numbers from the GNU Multiple Precision Arithmetic Library
(GMP) [12]. All experiments were performed on one core of an Intel Xeon CPU E5-2650v2
CPU with 2.6 GHz using 16 GB of memory with a timeout of 30 CPU minutes. All
benchmarks and the code of our tool can be found at [25].

For our experiments we added logic locking to the combinational ISCAS’85 benchmarks [4]
and to the combinational parts of the ITC’99 benchmarks [8]. For logic locking we used the
method from [23] which randomly selects signals in the circuit and replaces them randomly
either with exor or exnor gates having a key bit as a side input (see also Figs. 2 and 3). We
considered key bit lengths of 4, 8, 16, 32, and 64. We generated the inverted miters of the
original and the locked circuits and generated HSSAT formulas of types

R

∃,

R

, ∃

R

, and H.
Formulas of type

R

∃ compute the fraction of unlocking keys (Eqn. (5)), formulas of typeR

the average criticality of keys (Eqn. (7)), formulas of type ∃

R

the existence of keys with
high criticality (Eqn. (6)), and formulas of type H the fraction of keys with high criticality
(Eqn. (8)). For all random quantifiers we considered input probabilities of 0.5.

To be able to evaluate the general quality of our prototype solver we first compared it
with existing tools. For this we translated the formulas of types

R

∃,

R

, and ∃

R

into CNFs by
Tseitin transformation [33]. Formulas of type

R

are Model Counting problems, formulas of
type

R

∃ are Projected Model Counting problems. For their comparisons, we considered the
best exact solvers of the Model Counting Competition 2023 [13]. We used SharpSAT-TD [15],
d4 [17], gpmc [32], and arjun-ganak [26, 29]. Formulas of type ∃

R

are SSAT formulas. Here
we compared with DC-SSAT [18], ClauSSat [6], ElimSSAT [35], and SharpSSAT [10].

For formulas with matrix in CNF we use a version HSSATSolvecnf of our tool. Here we
first apply the tool UNIQUE [27] which was adapted according to Lemma 12 to transform
the CNF into a circuit format, then we optimize the circuit using ABC [2, 3], and finally we
build ROBDDs for the matrix using CUDD with dynamic group sifting activated. Then we
evaluate the ROBDDs using Alg. 1. For formulas with matrix in circuit format we use a
version HSSATSolvecirc of our tool where the application of UNIQUE is of course omitted.

Fig. 6 shows a cactus plot for the comparisons using formulas of type

R

∃, Fig. 7 a cactus
plot for the comparisons using formulas of type

R

, and Fig. 8 a cactus plot for the comparisons
using formulas of type ∃

R

.
Overall, it turns out that our prototype solver competes well with the already existing

tools on formulas from our application domain of logic locking. Comparing HSSATSolvecnf

and HSSATSolvecirc the results show that HSSATSolvecirc clearly outperforms HS-
SATSolvecnf. The gap between HSSATSolvecnf and HSSATSolvecirc proves that the
semantic gate extraction procedure of UNIQUE is apparently not able to reconstruct the
original circuit structure from the CNF – although for our benchmarks this is easily possible
with a simple syntactic gate extraction method. Based on those observations we believe that
it will be possible to extend UNIQUE with certain improvements, but this will be the subject
of future work.

There are apparent differences between the results of Figs. 6 and 7, e.g.. Whereas gpmc
and arjun-ganak solve more formulas than HSSATSolvecirc on formulas of type

R

∃ (Fig. 6),
the situation is the other way round for SharpSAT-td and d4 on formulas of type

R

(Fig. 7).
In particular, HSSATSolvecirc solves more formulas of type

R

than formulas of type

R

∃.
To analyze the reason for this, we added an experiment with HSSATSolvecirc,ns which is a
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.

version of HSSATSolvecirc where group sifting during ROBDD construction is deactivated.
One can see that the cactus plots for HSSATSolvecirc,ns are pretty similar in Figs. 6, 7, and
8. This can be easily explained: The variables in the formulas of types

R

∃,

R

, and ∃

R

occur
in the same order, see Eqns. (5), (7), and (6), they only differ from their quantifier types.
The matrices of the formulas are (almost) identical (¬fIM for Eqn. (5), fIM for Eqn. (7),
fIM ∧ (K⃗ ̸= K⃗orig) for Eqn. (6)). Thus, HSSATSolvecirc,ns builds similar ROBDDs with
the same variable order which is not changed during the construction. Since the run times
of our approach are dominated by the ROBDD construction and evaluation is very fast in
comparison, the differences between the results of HSSATSolvecirc in Figs. 6 and 7 can be
explained by the fact that group sifting with a single group of variables in formulas of typeR

(Fig. 7) has more degrees of freedom than with two groups of variables for formulas of
type

R

∃ (Fig. 6).
For our formulas of type ∃

R

, HSSATSolvecirc outperforms the existing solvers, see
Fig. 8. Among the other solvers ElimSSAT performs best. ElimSSAT is well suited for our
formulas with input probabilities of 0.5. In general, it is only suited for input probabilities
which are a sum of negative powers of two [35]. If we have other probabilities for the inputs
X⃗ in Eqn. (6), then the input probabilities have to be rounded and ElimSSAT produces
errors of unknown and uncontrollable size. HSSATSolve can work with arbitrary rational
numbers as input probabilities and it works with unlimited precision.

Formulas of type H compute the fraction of keys with high criticality, see Eqn. (8). Here
we first investigate the effect of group sifting and of using logic synthesis by ABC before
building ROBDDs. In HSSATSolvecirc,nABC ABC is omitted, in HSSATSolvecirc,ns group
sifting is omitted, and in HSSATSolvecirc,nsnABC both techniques are omitted. For this
evaluation we fixed the criticality bound c to 0.999. (Note that there is basically no run time
difference for our method with different criticality bounds. Different values of c do change
the value of the result, of course, but not the evaluation steps which have to be performed
by Alg. 1.) Results for formulas of type H can be found in Fig. 9. The results show that the
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effect of ABC is less significant than the effect of group sifting. Whereas ABC apparently
accelerates the overall run times of the tool, it does not change the number of benchmarks
which are solved before the timeout. Group sifting helps on the other hand, as already shown
in the other experiments. Formulas of type H also lie in the class SSAT(Θ) recently proposed
by Fan and Jiang [11]. They presented the prototype tool ClauSSat(Θ) for solving SSAT(Θ)
formulas. However, Fig. 9 shows that ClauSSat(Θ) is currently not well suited for formulas
from our application domain.

In Figs. 10 and 11 we demonstrate how our tool can be used for quality assessment in
logic locking.

In a first experiment the criticality bound c of the keys is again fixed to 0.999 (which
would mean for an application that we consider a key only as highly critical, if it produces
correct outputs for at least 99,9% of the possible input combinations). We investigate how
increasing the key lengths influences the average fraction of keys with high criticality. Fig. 10
shows results for benchmark circuits b01, b03, b05, b06, and b13. For the chosen logic
locking method and the considered circuits the fraction of keys with high criticality rapidly
decreases with increasing key lengths (chosen in steps from 4 to 32). Since there is at least
one unlocking key, the fraction of highly critical keys can of course not be lower than 1

2kl with
key length kl. The results show e.g. that for circuit b05 the logic locking is not absolutely
perfect, since for key length 16 there is not only one, but there are 4 critical keys (out of
216 = 65536 possible keys), for key length 32 there are 32 critical keys (out of 232 possible
keys).

Fig. 11 shows (for a fixed key length of 16) how the fraction of keys with high criticality
changes, if we change our notion of “high criticality”. If we choose a criticality bound c = 80%,
then circuit c3540, e.g., still has 1138 keys (a fraction of approximately 1.7%) with high
criticality. Nevertheless, all of the considered circuits reach the lowest possible fraction of

1
216 for key length 16, if we consider a key only as critical, if it unlocks the circuit completely
(c = 1.0).
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6 Conclusions and Future Work

We introduced the problem of Hierarchical Stochastic SAT, we presented a prototype solver
for HSSAT, and we used the solver to investigate interesting questions in quality assessment
for logic locking methods. For some subclasses of HSSAT formulas for which solvers already
exist, the new solver compares favorably with the existing solvers. In the future, we plan to
use our new tool to compare the quality of different existing logic locking schemes. We also
plan to develop HSSAT algorithms going beyond ROBDD construction. Finally, we plan to
add certification to the solver.
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A Proof of Lemma 12

Proof. Let Φ be a closed HSSAT formula with matrix matrix(Φ) = ϕ which is recursively
evaluated according to Def. 5 and let x be an existential variable in its prefix.

Let α be an assignment over {y ∈ BV(Φ) | π−1(y) < π−1(x)}. Here we use the notation
Φ|α for the closed HSSAT formula which replaces matrix(Φ) by its cofactor matrix(Φ)|α,
removes all comparisons according to case (d) of Def. 3 at hierarchy levels > hlevel(x), and
removes all variables yi ∈ {y ∈ BV(Φ) | π−1(y) < π−1(x)} together with their quantifiers
Qi ∈ {∃,∀,

Rpi} from the prefix of Φ.
Φ|α = (∃xΦ′) is a subproblem occurring during the recursive evaluation of Φ according

to Def. 5 with matrix(Φ|α) = ϕ|α.
Let x be defined in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ and for all hl with

1 ≤ hl ≤ hlevel(x) the equation “0 op(hl) prob(hl)” does not hold.
We make a case distinction wrt. the cofactors (ϕ|α)|x and (ϕ|α)|¬x of ϕ|α:
Case 1: Both (ϕ|α)|¬x and (ϕ|α)|x do not represent the constant 0 function.
This means that there are two full assignments β : BV(Φ) → {0, 1} and β′ : BV(Φ) → {0, 1}
with β(y) = β′(y) = α(y) for all y ∈ BV(Φ) with π−1(y) < π−1(x), β(x) = 1, β′(x) = 0,
and β[ϕ] = β′[ϕ] = 1. This is a contradiction to the assumption that x is defined in
terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ, since β and β′ both satisfy ϕ and agree
on {y ∈ BV(Φ) | π−1(y) < π−1(x)}, but β(x) ̸= β′(x). Thus, the case assumption cannot
hold, if x is defined in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ.
Case 2: (ϕ|α)|¬x represents the constant 0 function, (ϕ|α)|x not.
Since matrix(Φ′|¬x) = (ϕ|α)|¬x represents the constant 0 function and for all hl with 1 ≤
hl ≤ hlevel(x) the equation 0 op(hl) prob(hl) does not hold, we obtain Eval(Φ′|¬x) = 0.
We show Eval(Φ′|¬x) = 0 by proving Eval(Ψ) = 0 for all subproblems Ψ of Φ′|¬x

occurring during the recursive evaluation of Φ′|¬x according to Def. 5. We show this
by induction over the sum s := hlevel(Ψ) + |BV(Ψ)|. If s = 0, then either case (1) or
case (2) of Def. 5 applies to Ψ. Since f(ϕ|α)|¬x

= 0 by case assumption, case (2) of Def. 5
cannot occur. We are in case (1) and Eval(Ψ) = 0.
For cases (3), (4), and (5) of Def. 5 we have Ψ = ∃zΨ′, Ψ = ∀zΨ′, or Ψ =

RpzΨ′. We can
assume Eval(Ψ|¬z) = Eval(Ψ|z) = 0 by induction hypothesis and thus Eval(Ψ) = 0.
For case (6) we consider Ψ = (Ψ′ op(hlevel(Ψ)) prob(hlevel(Ψ)). We can assume by
induction hypothesis that Eval(Ψ′) = 0. Now we need our additional restriction on the
choice of defined existential variables to ensure that the comparison according to Def. 5,
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case (6), is not able to change the value 0 of Eval(Ψ′) into a different value. We have
1 ≤ hlevel(Ψ) ≤ hlevel(x), therefore 0 op(hlevel(Ψ)) prob(hlevel(Ψ)) does not hold
and thus Eval(Ψ) = 0 .
Now we have Eval(Φ′|¬x) = 0. According to Def. 5

Eval(∃xΦ′) = max(Eval(Φ′|¬x),Eval(Φ′|x)) = max(0,Eval(Φ′|x)) = Eval(Φ′|x).

Altogether we have

Eval(Φ|α) = Eval(∃xΦ′) = Eval(Φ′|x). (10)

Consider a definition ψ of x by {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ and a full assignment
β : BV(Φ) → {0, 1} with β(y) = α(y) for all y ∈ BV(Φ) with π−1(y) < π−1(x), β(x) = 1
and β[ϕ] = 1. Such an assignment β exists, since (ϕ|α)|x does not represent the constant
0 function. Since ψ is a definition, we have ψ[β] = β(x) = 1. Since ψ only depends on
variables from {y ∈ BV(Φ) | π−1(y) < π−1(x)}, we also have ψ[α] = β(x) = 1. Thus, we
have

Eval(Φ[x := ψ]|α) = Eval(Φ′[x := ψ[α]]) = Eval(Φ′|x). (11)

From Eqns. (10) and (11) we conclude

Eval(Φ|α) = Eval(Φ[x := ψ]|α). (12)

Case 3: (ϕ|α)|x represents the constant 0 function, (ϕ|α)|¬x not.
We conclude Eval(Φ|α) = Eval(Φ[x := ψ]|α) similar to Case 2.
Case 4: Both (ϕ|α)|¬x and (ϕ|α)|x represent the constant 0 function.
Similar to Case 2 we obtain Eval(Φ′|¬x) = 0 and Eval(Φ′|x) = 0. This leads to

Eval(Φ|α) = Eval(∃xΦ′) = 0. (13)

We have

Eval(Φ[x := ψ]|α) = Eval(Φ′[x := ψ[α]]) = 0 (14)

for arbitrary formulas ψ over {y ∈ BV(Φ) | π−1(y) < π−1(x)} and thus also for each
definition of x.

Case 1 cannot occur and in the remaining cases we have Eval(Φ|α) = Eval(Φ[x := ψ]|α)
for arbitrary assignments α over {y ∈ BV(Φ) | π−1(y) < π−1(x)}. This proves Eval(Φ) =
Eval(Φ[x := ψ]). ◀


	1 Introduction
	2 Preliminaries and Notations
	3 Logic Locking
	4 Hierarchical Stochastic SAT
	4.1 Definition of HSSAT
	4.2 Complexity of HSSAT
	4.3 Solving HSSAT

	5 Experiments
	6 Conclusions and Future Work
	A Proof of Lemma 12

