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Abstract
Layout synthesis is mapping a quantum circuit to a quantum processor. SWAP gate insertions are
needed for scheduling 2-qubit gates only on connected physical qubits. With the ever-increasing
number of qubits in NISQ processors, scalable layout synthesis is of utmost importance. With large
optimality gaps observed in heuristic approaches, scalable exact methods are needed. While recent
exact and near-optimal approaches scale to moderate circuits, large deep circuits are still out of
scope. In this work, we propose a SAT encoding based on parallel plans that apply 1 SWAP and
a group of CNOTs at each time step. Using domain-specific information, we maintain optimality
in parallel plans while scaling to large and deep circuits. From our results, we show the scalability
of our approach which significantly outperforms leading exact and near-optimal approaches (up
to 100x). For the first time, we can optimally map several 8, 14, and 16 qubit circuits onto 54,
80, and 127 qubit platforms with up to 17 SWAPs. While adding optimal SWAPs, we also report
near-optimal depth in our mapped circuits.
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1 Introduction

The Quantum Layout Mapping problem takes as input a quantum circuit (logical design)
and a coupling map (connectedness between physical qubits). The result is an “equivalent”
quantum circuit mapped to the physical qubits, such that any binary operation only happens
on connected qubits. Besides an initial mapping of logical qubits to physical qubits, this also
involves the insertion of SWAP gates. Noise is inherent to qubits in Noisy Intermediate-Scale
Quantum (NISQ) processors. Additional SWAP gates increase both the 2-qubit gate count
and the circuit depth. In the current NISQ era, minimizing error is of utmost importance
for any practical quantum computing. The error rate depends on the number of gates, the
fidelity of gates, and the depth of the circuit. The Optimal Quantum Layout Synthesis is to
synthesize a mapping that optimizes one of the above metrics.

Optimal Layout Synthesis has been studied before. A nice overview is provided in [29].
Several heuristic approaches exist which optimize various metrics. The classical algorithm
for heuristic mapping is SABRE (in Qiskit) [15]. [27] use the MQT benchmarks for mapping
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and swapping, using a heuristic search space reduction with an O(n log n) algorithm. Other
approaches used include A* with cost metrics [32], MAXSAT [19], temporal planning [30],
and constraint programming [3] (minimizing circuit depth).

While heuristic approaches are fast and scalable, their suboptimal mappings may result
in high error rates [31, 29]. Optimizing fidelity with exact approaches can result in circuits
with the lowest error rate. However, as shown in [28], optimizing fidelity is extremely hard
and does not scale beyond small circuits. Circuit depth and 2-qubit gate count optimization
are better alternatives for scalability. The OLSQ tool1 optimizes circuit depth and is built
on [28]. A scalable variant OLSQ2 based on Z3 appeared in [16]. The QMAP tool2 optimizes
the number of SWAP gates and is based on [33, 31]. The same authors introduced the use of
subarchitectures [22]. Other ideas to improve quantum layout use quantum teleportation [10].
In [4], measurements are placed early so qubits can be reused.

In [26], we proposed a tool, Q-Synth v13, for SWAP gate optimization which outperformed
both QMAP and OLSQ tools. Q-Synth v1 reduces optimal quantum layout synthesis to
classical planning. For maintaining the optimality of the SWAP gates added, Q-Synth v1
adds exactly 1 CNOT or 1 SWAP gate at each time step. In such an approach, the hardness
increases with the plan length i.e., the number of CNOTs + SWAPs. Despite the recent
progress in Q-Synth v1 and OLSQ2, deep circuits that require many SWAPs are still out of
reach.

Contribution

In this paper, we provide a SAT encoding based on parallel plans with domain-specific
information. In particular, at each time step, we map one SWAP gate and a group of CNOT
gates. This reduces the make-span, and using domain-specific information we maintain the
optimality. We propose two-way constraints for CNOT dependencies for better dependency
propagation. In addition, we also provide variations of our encoding with bridges and relaxed
dependencies (via commutation). In all variations, we only add provably optimal number of
bridges+SWAPs.

For experimental evaluation, we consider two benchmark sets: 1) Standard benchmarks
from previous papers; and 2) Deep VQE benchmarks. For comparison, we consider leading
near-optimal tool TB-OLSQ2 [16] and heuristic SABRE [15]. For mapping, we consider
4 NISQ processors Melbourne (14 qubits), Sycamore (54 qubits), Rigetti (80 qubits), and
Eagle (127 qubits). We propose three experiments: in the first two experiments we map
both benchmark sets to the Sycamore, Rigetti, and Eagle platforms. In the first experiment,
we compare the number of SWAPs added by all three tools. In the second experiment, we
compare SWAP additions and circuit depth of the mapped circuits with TB-OLSQ2. In the
third experiment, we compare the effectiveness of bridges and relaxed dependencies in our
tool by mapping onto the Melbourne platform. Here we report the additional number of
(optimal) SWAPs+bridges.

We demonstrate that our encoding can optimally map deep circuits onto large platforms
with up to 127 qubits. Our tool outperforms the leading near-optimal tool TB-OLSQ2 up
to 100x while always adding the optimal number of SWAPs. We show that while adding
optimal SWAPs, we also report near-optimal depth in the mapped circuits. We also confirm
that heuristic approaches like SABRE add too many SWAPs.

1 OLSQ tool https://github.com/tbcdebug/OLSQ
2 Munich Quantum Toolkit QMAP https://github.com/cda-tum/qmap
3 Q-Synth v1 tool https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v1.0-ICCAD23

https://github.com/tbcdebug/OLSQ
https://github.com/cda-tum/qmap
https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v1.0-ICCAD23
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2 Preliminaries

2.1 Layout Synthesis for Quantum Circuits
A quantum circuit consists of a fixed number of (logical) qubits, and a number of quantum
gates (operations) that are applied to some qubits in a particular order. If the output qubit of
gate g1 is used as an input qubit of gate g2, we say g2 depends on g1. The dependencies form
a DAG (directed acyclic graph) between the gates. Gates that are (transitively) independent
are called parallel, and can be applied in any order.

Any quantum circuit can be decomposed to an intermediate representation with only
single-qubit gates and CNOT gates [7]. Viewed classically, the binary CNOT gate (controlled-
NOT, also known as CX) takes two qubits (a, b) as input and transforms them into (a, a ⊕ b),
i.e., the control qubit a determines whether the data qubit b is negated. We will also use the
SWAP gate, which transforms a qubit pair (a, b) into (b, a). A SWAP gate can be expressed
as a sequence of 3 CNOT gates.

The single-qubit gates will be treated as black-boxes in this paper; they are distinguished
by their name (X, Z, H, S, T, etc.) but we don’t make assumptions on their semantics
(except in an extension of our method in Section 3.1). We refer the interested reader to [21]
for a detailed introduction to quantum gates and quantum circuits in general.

Most physical quantum platforms have limited connectivity, in which the CNOT operations
can only be applied on physical qubits that are neighbors in the so-called coupling graph.
Given such a circuit and a coupling graph, Layout Synthesis consists of two phases: Initial
Mapping and Qubit Routing. In Initial Mapping, the logical qubits of the given circuit are
mapped to some physical qubits of the platform bijectively. In Qubit Routing, the following
constraints must be satisfied:

Every gate must be scheduled in an order that respects all dependencies;
Every gate must be applied to the correct qubits (taken the mapping into account);
The 2-qubit CNOT gates can only be mapped on connected physical qubits.

Additional SWAP gates may be required, to swap the values of connected physical qubits to
ensure all CNOT gates can be mapped. In this paper, we use gate count as an optimization
metric. In Layout Synthesis, the number of single-qubit gates and CNOT gates remain
unchanged. Optimal Layout Synthesis is thus minimizing the additional SWAP gates.

c2 c6
l0 : X T† • T •
l1 : T† T T T†

l2 : H • T† S† • • • H
c1 c3 c4 c5

Figure 1 3-qubit Or circuit with 6 CNOT gates.

For example, Figure 1 shows an Or-circuit with 3 logical qubits (horizontal lines {l0, l1, l2}).
The circuit has 11 single-qubit gates (boxes with names) and 6 CNOT gates (the dot indicates
the control qubit, while the ⊕ indicates the data qubit). Let us suppose we want to map
this circuit onto the linear 3-qubit platform as in Figure 2b. Regardless of physical qubit
connections, single-qubit gates can always be scheduled. Only the 2-qubit CNOT gates are
relevant for our optimal synthesis problem. Thus, we first remove the single-qubit gates
and only consider CNOT gates for the mapping. After finding the optimal mapping, the
single-qubit gates will be reinserted. Figure 2a shows the CNOT gates in the Or-circuit.

SAT 2024
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c2 c6
l0 : • •
l1 :
l2 : • • • •

c1 c3 c4 c5
(a) Or-circuit with only CNOT gates.

p0

p1

p2

(b) Coupling graph.

Figure 2 Reduced Or circuit and a 3-qubit linear platform.

In any valid mapping, the dependencies must be respected, for example, gates c1 and c3
can only be mapped before and after gate c2, respectively. In this example, the dependency
graph is a total order, but note that with 4 qubits, parallel CNOT gates are possible, which
can be scheduled in any order. One can observe that the connections of the CNOT gates
c1, c2 and c3 form a triangle (l0, l1), (l1, l2), (l2, l0). Since the coupling graph does not have a
triangle, one cannot map our example circuit to the linear platform. At least two SWAP
gates are needed for any valid mapping.

Figure 3 shows such a mapped Or-circuit where l0, l1, l2 are mapped to p0, p1, p2 respect-
ively. Intuitively, the SWAP gates slice the circuit such that the sub-circuits do not have any
triangles by CNOT connections.

t0
c2 c3

t1
c5

t2

l0 → p0 : • × l2

l1 → p1 : × • • • × • l0

l2 → p2 : • × l1

c1 c4 c6

Figure 3 Mapped Or-circuit with 2 additional SWAPs (optimal).

Finally, single-qubit gates can be inserted back respecting original DAG dependencies.
Figure 4 shows the final mapped circuit with optimal SWAP gates. Note that the number of
physical qubits can be more than logical qubits. In such cases, one can use so-called ancillary
qubits to avoid unnecessary swaps. Similar to Q-Synth v1, we allow ancillary swapping i.e.,
a mapped physical qubit can be swapped with an empty physical qubit.

c2 c3 c5
l0 → p0 : X T† • T × H l2

l1 → p1 : T† T × T† S† • • • × • l0

l2 → p2 : H • × T T† l1
c1 c4 c6

Figure 4 Final Mapped Or-circuit after inserting back single-qubit gates.

2.2 Optimal Layout Synthesis as Planning
In Q-Synth v1, we encoded optimal layout synthesis as a planning problem in the Planning
Domain Definition (PDDL) Specification. As discussed above, the reduced circuit with only
CNOT gates is mapped using additional SWAPs. Later single-qubit gates are inserted back
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to reconstruct the final mapped circuit. In such a planning problem, either exactly one
CNOT gate or one SWAP gate is scheduled at each time step. A plan with the optimal
number of actions corresponds to the optimal number of SWAP additions.

Planning as SAT

Given a boolean formula, a Satisfiability (SAT) problem is finding an assignment to the
boolean variables that makes it a true formula. A planning problem can be encoded as a
bounded reachability problem. Sequential encoding [14] is a standard SAT encoding where
each time step encodes a single action. Using a sequential encoding, one can obtain optimal
plans by incrementing the plan length by 1. For instance, one could use Q-Synth v1 with
Madagascar (a SAT-based planner) to find an optimal mapping. Since the optimal plan
length for the example, Or-circuit is 8 (6 CNOTs + 2 SWAPs), the SAT instance has a
make-span of 8. As shown in [26], sequential encoding scales well for moderate circuits
however deep circuits are still out of reach. It is consensus that a long optimal plan length
can severely impact the performance of SAT-based planners.

Parallel Plans

In literature, alternative parallel plan encodings like ∀-step [13] and ∃-step [23] were proposed
for scaling heuristic SAT-based planning. The key idea in a parallel plan is to group two or
more actions whose preconditions and effects do not conflict. While encodings like ∃-step
scale well, the optimality is not guaranteed. For a scalable optimal layout synthesis, one
needs a way to group CNOTs while still maintaining the optimality.

2.3 Parallel Plans in Optimal Layout Synthesis
Madagascar implements both ∀-step and ∃-step parallel plans. Directly using Q-Synth v1
with parallel plan encodings in Madagascar does not preserve optimality. In particular, there
are three main challenges:

More than one SWAP gate can be applied at each parallel step;
Planner needs to find a partial order in each parallel step satisfying dependencies;
Relaxing CNOT dependencies within a parallel step is not trivial in a PDDL specification.

In this paper, we directly encode Layout Synthesis as a SAT problem to circumvent the
encoding challenges in a PDDL specification. In our encoding, we allow exactly one SWAP
gate at each parallel step. Thus, the number of parallel steps corresponds to the optimal
SWAP additions. Further, we use domain-specific information from Layout Synthesis to
relax CNOT dependencies within a parallel step. In particular, we make two observations:

The qubit mappings do not change between two consecutive SWAP gates;
Given a set of CNOTs, one can always reconstruct a partial order with DAG dependencies.

We take advantage of the partial order reconstruction and drop dependency constraints
within a parallel step. The SAT solver can now choose exactly one SWAP and a group of
CNOTs in each parallel step. CNOT gates in different time steps still need to respect the
original DAG dependencies. The full SAT encoding is later discussed in detail in Section 3.

For our example, a parallel plan with a make-span of 3 is sufficient (see Figure 3) instead
of 8. At time step 0, along with the initial mapping, a group of CNOT gates are also mapped.
From time step 1, exactly one SWAP gate and a group of CNOT gates are mapped. Note
that the satisfying assignment returned by a SAT solver only specifies that:

Logical qubits l0, l1, l2 are mapped to p0, p1, p2, respectively;
SWAP gates on p1, p2 and p0, p1 are applied at time steps t1, t2 respectively;

SAT 2024
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c1, c2 gates are applied at t0;
c3, c4, c5 gates are applied at t1;
c6 gate is applied at t2;

In mapped circuit reconstruction, we use the DAG dependencies to order the group of CNOTs
in each time step. In the literature, an SMT based encoding is applied in TB-OLSQ(2) [28, 16]
which also groups CNOT gates between consecutive SWAP gates. They optimize make-span
of their defined problem. However, longer make-span may result in better SWAP count and
circuit depth. In our experiments, we indeed observe suboptimal solutions by TB-OLSQ2 in
both metrics.

2.4 Incremental SAT Solving

Conflict Driven Clause Learning (CDCL) [18] is a key part of state-of-the-art SAT solving.
When solving similar instances, one can reuse the learned clauses. Incremental SAT solving
allows solving a SAT instance given an assumption of a partial assignment. Essentially
by using different assumptions, multiple instances can be solved while reusing the learned
clauses. In problems like planning, one needs to refute up to k-1 plan length for optimal
plans. By adding assumptions encoding that the goal is reached in the current iteration, one
can solve a planning instance incrementally.

3 Two-Way Parallel SAT encoding

In this section, we implement the ideas discussed above. We provide an incremental SAT
encoding that applies the idea of parallel plans in Layout Synthesis. Table 1 describes the
main variables used in the encoding. Algorithm 1 describes the structure of our encoding. In
every time step, a group of CNOTs are applied. From time step 1, each incremental step
adds one extra SWAP. We generate a set of variables for CNOT and SWAP constraints at
each time step.

Table 1 Encoding variables and descriptions.

Variable Description
mt

l,p mapping var for logical l and physical p qubits at time step t

mpt
p if physical qubit p is mapped to some logical qubit at time step t

st
p,p′ SWAP variable for physical qubits p, p′ at time step t

stt
p SWAP-touched variable for physical qubit p at time step t

ct
i / act

i / dct
i current/advanced/delayed CNOT var for ith CNOT at time step t

lpt
l,l′ logic qubit pair variables for logical qubits l, l′ at time step t

In addition to specifying which CNOT gates are chosen in each time step, we also need
to specify the CNOT dependencies. We use the DAG generated from the original circuit
for computing the CNOT dependencies. We adapt the CNOT dependency constraints by
specifying that for every CNOT gate in time step t its predecessors (successors) can be
applied at time step t′, where t′ ≤ t (t′ ≥ t). We use two extra CNOT blocks, advanced and
delayed CNOTs, which specify if a CNOT gate is mapped in an earlier or later time step.
We call this Two-way SAT encoding to emphasize the bidirectional propagation of CNOT
dependencies. In the following paragraphs, we describe the main parts of the Algorithm and
provide the constraints.
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Algorithm 1 Incremental SAT Solving, starting with t=0.

1: for all l ∈ [1 . . . nl] do
2: ExactlyOne(mt

l,1, . . . , mt
l,np)

3: for all p ∈ [1 . . . np] do
4: AtmostOne(mt

1,p, . . . , mt
nl,p)

5: MappedPQubits
6: if t != 0 then
7: SwapConstraints and Ancillaries
8: CNOTConnections and CNOTDependencies
9: Assumptions

10: Solve instance with assumption asmt

11: if Instance not satisfied then
12: repeat from step 1 with t = t + 1

Initial Mapping

Let L (P) be a set of logical (physical) qubits in the circuit. Let nl (np) be the number of
logical (physical) qubits. In time step 0, we add requirements on the Initial Mapping for
logical and physical qubits. Lines 1 to 4 in the Pseudo code add constraints for mapping every
logical qubit to a unique physical qubit. We use one-hot encoding for specifying the mapping.
We apply ExactlyOne (AtmostOne) constraints for logical (physical) qubit mapping variables.
Adding these constraints only at the 0th time step is sufficient for correctness. However,
adding these constraints at every time step significantly improved the performance of SAT
solvers.

SwapConstraints

From time step 1, we use the same mapping variables for handling SWAPs. Adding a
SWAP gate changes the mapping between logical and physical qubits. Let CP be the set
of all connected physical qubit pairs. The following constraints must ensure that a SWAP
gate is only applied on a connected physical qubit pair. The logical qubits mapped on the
physical qubit pair must be swapped in the next time step. The qubit mappings for the
untouched physical qubits must be propagated. We define two sets of variables to satisfy such
constraints. For choosing a SWAP, we define one SWAP variable sp,p′ for each connected
physical qubit pair (p, p′). For propagation, we define SWAP-touch variables stp to specify if
the physical qubit p is touched by the SWAP. We specify that 1) Each SWAP variable forces
the SWAP-touched physical variables to True; 2) Exactly one of the SWAP variables is set
to True; 3) Every SWAP forces exactly two SWAP-touched variables to True. Let S be the
set of all SWAP variables. The corresponding boolean constraints are:∧

(p,p′)∈CP

(st
p,p′ → stt

p ∧ stt
p′) ∧ ExactlyOne(St) ∧ ExactlyTwo(stt

1, . . . , stt
np)

Based on the chosen SWAP variables, we update the mapping variables. For each SWAP
variable sp,p′ , we swap the p and p′ mapped variables from the previous to the current step.∧

(p,p′)∈CP

∧
l∈L

st
p,p′ → ((mt−1

l,p ↔ mt
l,p′) ∧ (mt−1

l,p′ ↔ mt
l,p))

If a SWAP-touch variable is False, we propagate the corresponding mapping variables.∧
p∈P

∧
l∈L

¬ stt
p → (mt−1

l,p ↔ mt
l,p)

SAT 2024
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MappedPQubits and Ancillaries

Using additional qubits, traditionally called ancillaries, can reduce the total number of
SWAPs needed. An ancillary SWAP exchanges a mapped qubit with an unmapped qubit.
To specify this, we need to keep track of mapped qubits (including at time step 0). We
specify that a physical qubit p is mapped to some logical qubit if and only if its mapped
variable mpp is True.∧

p∈P
mpt

p ↔ (
∨
l∈L

mt
l,p)

We restrict that at least one of the swapped physical qubits is a mapped qubit. With similar
constraints, we also provide an option for only non-ancillary SWAPs.∧

(p,p′)∈CP

st
p,p′ → (mpt

p ∨ mpt
p′)

CNOTConnections

Let CL be the set of all connected logical qubit pairs dervied from the CNOT connections
in the input circuit. We require CNOT gates to be applied only on connected physical
qubits. Since CNOT gates must be applied to specific logical qubits, we require that the
corresponding logical qubits be mapped to connected physical qubits. First, we specify that
logical qubit pair variables are true if and only if the physical qubits they are mapped are
connected.∧

(l,l′)∈CL

( ∧
(p,p′)∈CP

((mt
l,p ∧ mt

l′,p′) ∨ (mt
l,p′ ∧ mt

l′,p)) → lpt
l,l′ ∧

∧
(p,p′)∈CP

((mt
l,p ∧ mt

l′,p′) ∨ (mt
l,p′ ∧ mt

l′,p)) → ¬ lpt
l,l′

)
Using logical qubit pair variables, we specify that if a CNOT is mapped then its corresponding
logical qubits are connected. We define D as a dictionary of CNOT indices to logical qubit
pairs. Let nc be the number of CNOT gates. The corresponding boolean constraint is:

i=1∧
nc

ct
i → lpt

D[i]

CNOTDependencies

For a correct mapping, we need to respect the DAG dependencies of the CNOT gates in a
circuit. As discussed earlier, we use advanced and delayed CNOT blocks in each time step
to propagate local information globally. Every CNOT is mapped, advanced, or delayed in
all time steps, depending on the status of its predecessors (pre) and successors (suc) in the
dependency DAG. If at time step t a CNOT is:

Mapped: Its predecessors (successors) are either advanced (delayed) or mapped in the
same time step.
Advanced: 1) It is applied or advanced in t − 1; 2) Its predecessors are also advanced in t.
Delayed: 1) It is either applied or delayed in t + 1; 2) Its successors are also delayed in t;
3) In t, either its logical qubits are not connected or one of its predecessors is delayed.
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The corresponding boolean constraints are:
i=1∧
nc

(
ExactlyOne(ct

i, act
i, dct

i)∧∧
j∈pre(i)

ct
i → (act

j ∨ ct
j) ∧

∧
j∈suc(i)

ct
i → (ct

j ∨ dct
j)∧

act
i → (ct−1

i ∨ act−1
i ) ∧

∧
j∈pre(i)

act
i → act

j ∧

dct−1
i → (ct

i ∨ dct
i) ∧

∧
j∈suc(i)

dct
i → dct

j ∧ dct
i → (¬ lpt

D[i] ∨
∨

j∈pre(i)

dct
i)

)
Assumptions for Incremental solving

We specify that CNOT gates cannot be advanced at time step 0 i.e.,
∧i=1

nc ¬ ac0
i . For using

incremental solving in SAT, we use an assumption variable asmt. At every time step, if the
assumption variable is true then CNOT gates cannot be delayed i.e., asmt ↔

∧i=1
nc ¬ dct

i. For
each time step, we call the SAT solver with the assumption variable asmt as True.

Encoding Size

Let l be the number of logical qubits, p be the number of physical qubits, pe be the number
of edges in the physical coupling graph, le be the number of edges in the logical graph (from
CNOT gates), c be the number of CNOTs, and finally, let k be the make-span. The encoding
requires O(k(lp + pe + le + c)) variables. Usually, the physical coupling graphs are planar, so
the variables required is O(k(lp + le + c)). Note that, we use the sequential counter encoding
for exactly-one constraints, so it can add extra O(p) auxiliary variables. In total, the number
of variables is O(k(lp + le + c)). The encoding requires O(k(lp + lpe + lep2 + c)) clauses.
Again, for a planar physical coupling graph this is bounded by O(k(lp + lep2 + c)) clauses.

3.1 Additional Functionality
So far, we have not used the semantics of the unary or binary gates (except the SWAP gates).
The previous encoding could also be used to map circuits with for instance binary CZ gates
instead of CNOT gates. If we take the semantics of the gates into account, there are more
opportunities to optimize the circuits. While a complete re-synthesis of the circuit is beyond
the scope of this paper, we want to illustrate some known techniques that can further reduce
the number of SWAP gates. We emphasize that we now change the optimization problem
(by allowing more solutions), and that the extensions are specific for CNOT gates. Our main
purpose is to show that our proposed encoding can be easily extended to incorporate these
techniques, known as “bridges” and “relaxed dependencies”. We also note that the encoding
can be easily restricted to disallow the use of “ancillary qubits”.

Bridges

Using a bridge, one can apply a CNOT on disconnected physical qubits. For instance, the
bridge b1-b4 in Fig. 5 together implements a CNOT between p0 and p2 (which implements c4
after the preceding SWAP). We limit ourselves to bridges of distance 2. Observe that the
bridge introduces 3 extra CNOT gates, so the cost is the same as a SWAP gate. However,
the result is different, since a bridge does not swap the qubits. This might be an advantage,
depending on the rest of the circuit. In [11], it was shown that using bridges can reduce the
overall CNOT count.

SAT 2024
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c3 c5
l0 → p0 : • •
l2 → p1 : • • • •
l1 → p2 :

c1 c2 c4 c6
(a) CNOT gates after initial mapping.

t0 t1
c3 b1 b3

t2
c5

l0 → p0 : × • • • • l2

l2 → p1 : • × • • • • l0

l1 → p2 : l1

c1 c2 b2 b4 c6
(b) CNOT gates after adding a SWAP and a bridge gate.

Figure 5 Mapping reduced circuit using a SWAP and a bridge gate.

We adapted our optimal Two-Way SAT encoding, by allowing to add either a single
bridge or a single SWAP gate at each time step. If a bridge was added, the corresponding
CNOT gate is regarded as scheduled. So both options cost exactly 3 CNOT gates. The SAT
solver will find a solution with the minimal sum of bridge or SWAP gates. Our experiments
will show that we indeed find better solutions with bridges.

Relaxed Dependencies

c1 c3 c4 c5
l2 → p0 : • • • •
l1 → p1 :
l0 → p2 : • •

c2 c6
(a) CNOT gates after initial mapping.

t0
c4 c3 c5

t1

l2 → p0 : • • • • l2

l1 → p1 : × • l0

l0 → p2 : • × l1

c1 c2 c6
(b) CNOT gates after adding a SWAP with commutation.

Figure 6 Mapping reduced circuit using a SWAP and relaxed dependencies.

The authors of [12] consider gate commutation rules for quantum layout mapping.
Commutation and cancellation rules on RZ and CNOT gates are also used in [20], to reduce
the number of H-gates. For instance, two subsequent CNOT gates on the same control qubit,
or on the same data qubit, can be commuted without changing the semantics. Also, single
Z-like gates (like the Z-, S-, T- and RZ-gates) commute with the control bit of a CNOT,
while X-like gates (like the X- and RX -gates) commute with its data bit.

This added freedom can be exploited: by permuting the CNOT gates, they can be grouped
in a convenient manner, so less SWAP gates are needed. For instance, in Fig. 6a, c3 and c4
can be commuted, since they share their control bit. As a result, we can now find a solution
that requires only 1 SWAP gate (Fig. 6b), while still respecting the linear coupling graph.

The gate commutation rules can be incorporated in our optimal Two-way SAT encoding
by computing a “relaxed” dependency graph. In the example above, we consider c2 as a
dependency for c3 and c4, but c3 and c4 are considered independent. We stress that the
relaxed dependencies must also take the unary gates into account (for instance c2 and c4
cannot be commuted, since there is a T-gate in between, cf. Fig. 1).

In our tool, we compute the relaxed dependency graph before removing the unary gates.
We then generate the encoding as presented before, replacing the dependency graph with the
relaxed dependency graph. This guarantees an optimal Layout Mapping (minimal number
of SWAPS) given the specified commutation rules. Our experiments show that relaxed
dependencies can indeed provide better solutions.
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Non-Ancillary Mapping

The actual cost of ancillary qubits in practical quantum computing depends on the context.
We provide optimal layout synthesis without any ancillary SWAPs as an option. Note that
the resulting encoding may require more SWAP gates than when allowing ancillary qubits.
This option can be encoded in our Two-Way SAT encoding, by simply restricting the SWAP
gates to cases where both the physical qubits are already mapped.

3.2 Design Choices
Redundant Cardinality Constraints for Mapping Variables

Specifying Exactly-One constraints (EO) on logical qubits and At-Most-One constraints
(AO) on physical qubits in the initial time step would be sufficient for correctness. Note that
once the mapping variables are set in the initial time step, the information on bijectivity
is propagated to next time steps, based on the chosen SWAP variables. However, observe
that unrelated to the choice of SWAP variables, some invariants apply to mapping variables
in all time steps. Essentially, the EO and AO constraints are orthogonal to the SWAP
variable assignment. We observed that adding such redundant constraints at each time step
significantly improved solving times. Apparently, this local information can be exploited by
the SAT solver during clause learning or unit propagation. Since we added mostly binary
clauses, we conjecture that the improved solving time is due to improved unit propagation.

Two-Way Encoding vs Explicit CNOT Constraints

In this paper, we encoded CNOT constraints using a Two-Way encoding instead of explicit
CNOT constraints. We chose Two-Way encoding for two main reasons. First, we encode
transitive closure for predecessors/successors of CNOT gates. Explicit constraints for CNOT
dependencies result in two challenges:

Specifying that the predecessors (successors) of a CNOT gate can not be scheduled in
later (earlier) time steps results in a quadratic blow-up in the CNOT gates.
Specifying that the predecessors (successors) of a CNOT gate must be scheduled in earlier
(later) time steps results in long clauses.

On the other hand, the Two-Way encoding expresses this bidirectional propagation implicitly
using clauses linear in the number of CNOT gates. Second, in incremental solving, in each
iteration, we need to specify that the goal is reached in the final time step. Using the
Two-Way encoding, we can simply specify that no CNOTs are delayed in the final step. If
we encoded the CNOT constraints explicitly, we would need to specify that every CNOT is
scheduled at some time step. To avoid large clauses, one would need to use auxiliary variables
similar to advanced/delayed variables to keep track of the scheduled CNOTs across time
steps. In our tool, we provide the encoding with explicit CNOT constraints as an option.

4 Experimental Evaluation

4.1 Experiment Design
We have extended our tool Q-Synth v1 (Quantum Synthesizer) to include the Two-Way
Parallel SAT encoding. We provide an open-source tool Q-Synth24 that implements the
SAT encoding and the additional options. For any option chosen, our tool synthesizes

4 Q-Synth v2 tool with source code, benchmarks, and scripts https://github.com/irfansha/Q-Synth

SAT 2024
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a mapped circuit with the (provably) optimal number of additional SWAP+bridge gates.
We use pysat [9] for generating and solving SAT instances incrementally. For cardinality
constraints, we use the sequential counter from pysat. As a backend for our experiments, we
use Cadical-1.53 [2], a state-of-the-art SAT solver. One can easily experiment with other
SAT solvers in our tool using the pysat interface. When optimizing the SWAP count, our
tool refutes all k − 1 SWAP+bridge additions if k is optimal. We report a timeout if an
optimal solution is not found within the time limit. We check equivalence between the
original circuits and our mapped circuits with QCEC5 [5] for correctness.

We design 3 experiments. Our goal is to investigate the effectiveness of our SAT encoding
compared to the current leading tools. We also compare various additional techniques
discussed in 3.1. For comparison, we consider state-of-the-art tools TB-OLSQ2 (near-
optimal) [16] and Qiskit’s SABRE (heuristic). For TB-OLSQ2, we enable the best options
i.e., SWAP optimization and upper bound computation by SABRE, with z3 (v4.12.1.0) [8]
as the backend. TB-OLSQ2 can provide intermediate non-optimal results. We only report
the final (near-optimal) solution when it terminates. If the tool does not terminate within
the time limit, we report it as a timeout. For SABRE, we use the first 1000 seeds for the
SABRE layout and take the minimum SWAPs generated by any seed. We also compare our
results with other leading tools in Section 1.

Experiment 1: Standard Benchmarks on Large Platforms

We consider the standard benchmarks from papers [16, 26, 28] with 23 instances in total.
The benchmark set contains circuits of up to 54 qubits and 270 CNOT gates. The circuits
are mapped to the current NISQ processors, Sycamore with 54 qubits [1], Rigetti with 80
qubits6 and Eagle with 127 qubits [6]. We compare with the tools TB-OLSQ2 and SABRE,
with a time limit of 12000 seconds (3hr 20 minutes) for each instance and an 8 GB memory
limit.

Experiment 2: Deep VQE Benchmarks on Large Platforms

From our experiments and also consistent with the literature [16], most of the benchmarks
from Experiment 1 need at most 10 SWAPs on standard platforms. To investigate the
performance on deep circuits that need many SWAPs, we use a set of 10 random circuits
composed using operators from the Variational Quantum Eigensolver (VQE) algorithm
presented in [17]. Our second benchmark set consists of 10 (8 qubit) circuits with up to 79
CNOT gates. Due to many interactions between the qubits, the number of SWAPs needed
to map onto the standard quantum platforms is high. We use the same time and memory
limits as in Experiment 1. In both Experiments 1 and 2, we denote a timeout with TO. Here
we focus on comparison with TB-OLSQ2 and report both SWAP count and circuit depth.

Experiment 3: Effectiveness of Additional Functionality

In this experiment, we compare 4 combinations of SWAPs (S), bridges (B), and relaxed
dependencies (R): 1) S 2) S+B 3) S+R 4) S+B+R. From our two benchmark sets, we consider
all the circuits with 14 or fewer qubits and map them onto the standard Melbourne platform
of 14 qubits. We give a time limit of 600 seconds (or 10 minutes) and an 8 GB of memory.

5 Munich Quantum Toolkit QCEC https://github.com/cda-tum/mqt-qcec
6 Rigetti Computing https://www.rigetti.com

https://github.com/cda-tum/mqt-qcec
https://www.rigetti.com
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Of the 24 instances generated, we drop qft_8 which times out in all 4 combinations. For the
rest of the 23 instances, we report SWAPs+bridges for each combination. Note that every
additional SWAP or bridge adds exactly 3 extra CNOTs to the mapped circuit.

4.2 Results

Table 2 Experiment 1: Number of SWAPs required for mapping circuits with QS2: Q-Synth2
(SWAP-optimal), TO2: TB-OLSQ2 (near optimal), and SB: SABRE (heuristic) tools on different
platforms. Syc: Sycamore (54), Rig: Rigetti (80), Eagle (127) and label or(3/6) represents a circuit
“or” with 3 qubits and 6 CNOT gates.

platform (qubits): Sycamore (54) Rigetti (80) Eagle (127)

Circuit(q/cx) / Tool QS2 TO2 SB QS2 TO2 SB QS2 TO2 SB
or(3/6) 2 2 3 2 2 2 2 2 2
adder(4/10) 0 0 0 0 0 0 2 2 2
qaoa5(5/8) 0 0 1 0 0 0 0 0 1
4mod5-v1_22(5/11) 3 3 4 3 3 5 3 3 6
mod5mils_65(5/16) 6 6 7 6 6 7 6 6 8
4gt13_92(5/30) 10 10 15 10 10 15 13 TO 15
tof_4(7/22) 1 1 3 1 1 11 3 3 5
barenco_tof4(7/34) 5 5 18 6 6 17 8 8 17
qft_8(8/56) 9 TO 15 TO TO 12 TO TO 23
tof_5(9/30) 1 1 3 1 1 5 3 3 12
mod_mult55(9/40) 6 6 9 7 8 16 12 TO 20
barenco_tof5(9/50) 6 6 10 8 8 19 12 TO 20
vbe_adder3(10/50) 7 7 8 8 8 14 10 10 33
rc_adder6(14/71) TO 8 16 8 8 35 TO TO 51
ising_model10(16/90) 0 0 0 0 0 0 0 0 0
queko(16/15) 0 0 1 0 0 2 0 0 0
queko(16/29) 0 0 5 0 1 12 2 2 14
queko(16/44) 0 0 7 0 1 25 2 2 37
queko(16/58) 0 0 12 0 1 20 4 TO 41
queko(16/87) 0 1 10 0 1 30 4 TO 36
queko(16/101) 0 0 18 0 1 43 TO TO 36
queko(54/54) 0 1 12 1 1 31 TO TO 47
queko(54/270) 0 1 183 TO TO 302 TO TO 428
Total solved of 23 22 22 23 21 21 23 18 13 23

Experiment 1

Table 2 reports the number of SWAPs added. Both on Sycamore and Rigetti, TB-OLSQ2
mostly reports optimal SWAP count (while not proving optimality). There are 10 instances
where it reports near-optimal solutions i.e., only 1 extra SWAP gate or times out. The
difference is more significant on the larger 127-qubit Eagle platform. Q-Synth2 solved 5 more
instances optimally where TB-OLSQ2 times out. Figure 7a provides the scatter plot of the
time taken by Q-Synth2 and TB-OLSQ2. Except for two instances with rcadder6 (14 qubits)
on Sycamore and Rigetti, we significantly outperform TB-OLSQ2 on all three platforms. In

SAT 2024
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several instances, Q-Synth2 is one or two orders of magnitude faster while proving optimality.
In the case of two instances with rcadder6, being a 14 qubit circuit, our tool takes time to
refute the k-1 number of optimal SWAPs. While the heuristic tool SABRE always returns a
mapping within 2 minutes, it also adds too many additional SWAPs. This observation is
consistent with the literature [16].

Table 3 Experiment 2: Additional SWAPs (s.) and Depth (d.) of mapped VQE circuits on
different platforms with QS2: Q-Synth2 (SWAP-optimal) and TO2: TB-OLSQ2 (near optimal).

platform Syc (54) Rig (80) Eagle (127)

QS2 TO2 QS2 TO2 QS2 TO2

Circuit(q/cx) s. d. s. d. s. d. s. d. s. d. s. d.

vqe(8/18) 2 34 2 33 2 36 2 33 3 38 3 35
vqe(8/39) 4 65 5 62 6 68 7 63 7 65 9 64
vqe(8/40) 6 70 7 67 7 67 7 69 10 76 12 68
vqe(8/47) 8 85 10 83 10 84 10 83 14 92 17 86
vqe(8/48) 6 90 6 84 8 94 8 89 12 94 TO TO
vqe(8/52) 9 90 11 87 11 90 TO TO TO TO TO TO
vqe(8/63) 10 101 11 99 13 102 13 102 TO TO TO TO
vqe(8/71) TO TO 16 111 15 112 18 113 TO TO TO TO
vqe(8/78) 14 129 TO TO 17 136 TO TO TO TO TO TO
vqe(8/79) 11 149 11 146 16 151 TO TO TO TO TO TO

Solved (10) 9 9 10 7 5 4

100 101 102 103 104

Time taken in seconds by Q-Synth2

101

102

103

104

Ti
m

e 
ta

ke
n 

in
 se

co
nd

s b
y 

TB
-O

LS
Q2

sycamore-54
Rigetti-80
eagle-127

(a) Experiment 1.

100 101 102 103 104

Time taken in seconds by Q-Synth2

101

102

103

104

Ti
m

e 
ta

ke
n 

in
 se

co
nd

s b
y 

TB
-O

LS
Q2

sycamore-54
Rigetti-80
eagle-127

(b) Experiment 2.

Figure 7 Scatter plots of time taken by TB-OLSQ2 and Q-Synth2.

Experiment 2

Table 3 reports the number of SWAPs added and circuit depth for the mapped VQE circuits.
On all platforms, Q-Synth2 solves 15 more instances SWAP-optimally out of the 24 instances
solved by either of the tools. TB-OLSQ2 in general reports better circuit depth compared to
Q-Synth2. Interestingly in two instances, vqe(8/40) and vqe(8/71), Q-Synth2 reports better
circuit depth. This shows that TB-OLSQ2 is near optimal in both SWAP additions and
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circuit depth. Overall Q-Synth2 also reports near-optimal depth while optimizing additional
SWAPs. Figure 7b shows the scatter plot of time for Experiment 2. Except for two instances
with vqe(8/71) on Sycamore and Rigetti, Q-Synth2 significantly outperforms TB-OLSQ2.

Table 4 Experiment 3: Number of SWAPs+bridges required for mapping deep VQE circuits on
Melbourne platform (14-qubits) in 600 seconds with Q-Synth2 with combinations of S: Swaps, B:
bridges, and R: relaxed dependencies.

Circuit(q/cx) S SB SR SBR

or(3/6) 2 2 1 1
adder(4/10) 0 0 0 0
qaoa5(5/8) 0 0 0 0
4mod5_22(5/11) 3 2 2 2
mod5mils65(5/16) 6 4 4 4
4gt13_92(5/30) 10 8 8 8
tof_4(7/22) 1 1 1 1
barencof4(7/34) 5 5 5 5
tof_5(9/30) 1 1 1 1
modmult55(9/40) 7 7 7 7
barencof5(9/50) 6 6 6 6
vbe_adder(10/50) 8 8 6 6
rcadder6(14/71) 9 8 9 8

Circuit(q/cx) S SB SR SBR

vqe(8/18) 2 2 2 2
vqe(8/39) 6 6 6 6
vqe(8/40) 7 7 7 6
vqe(8/47) 8 8 8 8
vqe(8/48) 7 6 7 6
vqe(8/52) 10 10 10 10
vqe(8/63) 12 12 12 12
vqe(8/71) 13 12 13 12
vqe(8/78) 17 15 16 14
vqe(8/79) 15 13 14 13

Experiment 3

Table 4 reports the number of SWAPs+bridges on the Melbourne platform, with a time out
of 10 minutes. Both bridges and relaxed dependencies can reduce the optimal SWAP+bridge
additions. We observe that both techniques together can reduce CNOT count further. For
instance, vqe(8/78) only needs 14 SWAPs+bridges i.e., 9 fewer CNOTs compared to only
adding SWAPs. If we drop any of the options, the optimal CNOT count is higher.

4.3 Discussion
Comparison to OLSQ, OLSQ2 and TB-OLSQ2

In [16], authors showed that TB-OLSQ2 significantly outperforms both OLSQ and OLSQ2.
Because of the lack of grouping in OLSQ and OLSQ2, the make-span of SMT instances
generated is very large. Since our tool outperforms TB-OLSQ2, we do not report results
from the other two directly. TB-OLSQ2 optimization routines can also be used in our tool
to avoid hard unsatisfiable instances when optimality is not needed.

Comparison to Q-Synth v1 with Classical Planning

In [26], we showed that Q-Synth v1 based on Classical Planning outperformed both OLSQ
and QMAP. While the approach scales well for mapping circuits up to 9 qubits onto 14
qubits platforms, larger circuits are out of reach. For instance, Q-Synth v1 timed out on
rcadder6 (Table 4) with 3 hours. Q-Synth2 maps the same instance optimally within 5
minutes onto the 14-qubit Melbourne platform. Q-Synth v1 does not scale well to the other
larger quantum platforms. Mapping individual CNOTs in Q-Synth v1 results in long plan
length. As discussed in the same paper, long plan lengths increase the difficulty of planning.

SAT 2024
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Comparison to QMAP and SATMAP

QMAP [33, 31] employs an SMT encoding that grows exponentially with the number of
physical qubits. Even using subarchitectures, QMAP is unable to map circuits greater than
7 qubits. SATMAP [19] on the other hand, encodes the Layout Synthesis as a MAXSAT
problem to minimize the number of SWAPs. It allows the addition of one SWAP before every
CNOT and uses MAXSAT solvers to minimize the number of SWAPS. As shown in [16], it
produces suboptimal solutions and runs out of time even for moderate circuits.

Comparison with Dynamic Programming Approach

In [11], the authors provided an exact and a heuristic approach for adding SWAPs and
bridge gates. With commutation rules, they showed that using bridges can further reduce
the optimal CNOT additions. Our experiments are consistent with the authors’ observations.
Their exact approach already takes 12 minutes to map a 6-qubit circuit to 6-qubit platforms
and grows exponentially with the number of qubits.

Comparison to SABRE

As observed in Experiment 1, it is clear that heuristic approaches such as SABRE add too
many SWAPs. Adding many SWAPs not only increases the 2-qubit gate count but also
increases circuit depth. However, heuristic approaches have their place in the quantum
compilation pipeline. As the number of qubits on quantum processors increases, it is necessary
to employ a hybrid strategy with heuristic and exact approaches. For instance, one could
use SABRE to quickly find a reasonable initial mapping. Given such a mapping, one can
synthesize a SWAP-optimal mapped circuit using Q-Synth2. As in TB-OLSQ2, we could use
heuristic approaches to get quick upper bounds for near-optimal solving.

5 Conclusion

In this paper, we showed that parallel plans can be adapted to preserve SWAP optimality in
layout synthesis. We have encoded the parallel planning problem directly in SAT. We propose
a Two-Way encoding, in which information is propagated both forward and backward, for
efficiency. We also demonstrated that our Two-Way SAT encoding is compatible with other
techniques, like bridges and gate commutation rules.

The technique is implemented in the open-source tool Q-Synth2 for scalable and optimal
layout synthesis of deep circuits. We can optimally map 8-qubit circuits that require up to
14 SWAPs onto a 127-qubit platform. We significantly outperform leading near-optimal tools
while still guaranteeing that the resulting mapping is optimal.

References
1 Frank Arute et al. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019. doi:10.1038/s41586-019-1666-5.
2 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat,

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1, pages 51–53.
University of Helsinki, 2020. URL: https://api.semanticscholar.org/CorpusID:220727106.

3 Kyle E. C. Booth. Constraint programming models for depth-optimal qubit assignment
and swap-based routing (short paper). In 29th International Conference on Principles and
Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume
280 of LIPIcs, pages 43:1–43:10. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.CP.2023.43.

https://doi.org/10.1038/s41586-019-1666-5
https://api.semanticscholar.org/CorpusID:220727106
https://doi.org/10.4230/LIPICS.CP.2023.43


I. Shaik and J. van de Pol 26:17

4 Sebastian Brandhofer, Ilia Polian, and Kevin Krsulich. Optimal qubit reuse for near-term
quantum computers. In IEEE International Conference on Quantum Computing and Engin-
eering, QCE 2023, Bellevue, WA, USA, September 17-22, 2023, pages 859–869. IEEE, 2023.
doi:10.1109/QCE57702.2023.00100.

5 Lukas Burgholzer and Robert Wille. Advanced equivalence checking for quantum circuits.
IEEE TCAD, 40(9):1810–1824, 2021. doi:10.1109/tcad.2020.3032630.

6 Jerry Chow, Oliver Dial, and Jay Gambetta. Ibm quantum breaks the 100-qubit pro-
cessor barrier. IBM Research Blog, 2, 2021. URL: https://www.ibm.com/quantum/blog/
127-qubit-quantum-processor-eagle.

7 Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Lev Bishop, Colm A. Ryan, Steven
Heidel, Niel de Beaudrap, John Smolin, Jay M. Gambetta, and Blake R. Johnson. Open
quantum assembly language. ACM Transactions on Quantum Computing Journal, 2022. URL:
https://www.amazon.science/publications/open-quantum-assembly-language.

8 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In TACAS
Proceedings, LNCS 4963, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_
24.

9 Alexey gnatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for proto-
typing with SAT oracles. In SAT, pages 428–437, 2018. doi:10.1007/978-3-319-94144-8_26.

10 Stefan Hillmich, Alwin Zulehner, and Robert Wille. Exploiting quantum teleportation in
quantum circuit mapping. In ASPDAC ’21, pages 792–797. ACM, 2021. doi:10.1145/3394885.
3431604.

11 Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Optimization of
quantum circuit mapping using gate transformation and commutation. Integration, 70:43–50,
2020. doi:10.1016/j.vlsi.2019.10.004.

12 Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and Andrew W. Cross.
Quantum circuit compilers using gate commutation rules. In ASPDAC, pages 191–196. ACM,
2019. doi:10.1145/3287624.3287701.

13 Henry A. Kautz, David A. McAllester, and Bart Selman. Encoding plans in propositional
logic. In Proceedings of KR-96, pages 374–384, November 1996. URL: https://henrykautz.
com/papers/plankr96.pdf.

14 Henry A Kautz and Bart Selman. Planning as satisfiability. In ECAI, volume 92, pages 359–363,
1992. URL: http://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf.

15 Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-era
quantum devices. In ASPLOS, pages 1001–1014. ACM, 2019. doi:10.1145/3297858.3304023.

16 Wan-Hsuan Lin, Jason Kimko, Bochen Tan, Nikolaj Bjørner, and Jason Cong. Scalable optimal
layout synthesis for NISQ quantum processors. In DAC, 2023. doi:10.1109/DAC56929.2023.
10247760.

17 Marco Majland, Patrick Ettenhuber, and Nikolaj Thomas Zinner. Fermionic adaptive sampling
theory for variational quantum eigensolvers. Phys. Rev. A, 108:052422, November 2023.
doi:10.1103/PhysRevA.108.052422.

18 Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers.
Handbook of Satisfiability, 336:133–182, 2021. doi:10.3233/FAIA200987.

19 Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws Albarghouthi.
Qubit mapping and routing via MaxSAT. In MICRO, pages 1078–1091. IEEE, 2022. doi:
10.1109/MICRO56248.2022.00077.

20 Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Automated
optimization of large quantum circuits with continuous parameters. npj Quantum Information,
4(1), May 2018. doi:10.1038/s41534-018-0072-4.

21 Michael A. Nielsen and Isaac L. Chuang. Quantum circuits, pages 171–215. Cambridge
University Press, 2010. doi:10.1017/CBO9780511976667.008.

22 Tom Peham, Lukas Burgholzer, and Robert Wille. On optimal subarchitectures for quantum
circuit mapping. ACM Trans. on Quant. Computing, 2023. doi:10.1145/3593594.

SAT 2024

https://doi.org/10.1109/QCE57702.2023.00100
https://doi.org/10.1109/tcad.2020.3032630
https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle
https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle
https://www.amazon.science/publications/open-quantum-assembly-language
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1145/3394885.3431604
https://doi.org/10.1145/3394885.3431604
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/10.1145/3287624.3287701
https://henrykautz.com/papers/plankr96.pdf
https://henrykautz.com/papers/plankr96.pdf
http://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/DAC56929.2023.10247760
https://doi.org/10.1109/DAC56929.2023.10247760
https://doi.org/10.1103/PhysRevA.108.052422
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1109/MICRO56248.2022.00077
https://doi.org/10.1109/MICRO56248.2022.00077
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1017/CBO9780511976667.008
https://doi.org/10.1145/3593594


26:18 OLS for Deep QC on 100+ Qubit NISQ Processors

23 Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell., 170(12-13):1031–1080, 2006. doi:10.1016/J.
ARTINT.2006.08.002.

24 Irfansha Shaik and Jaco van de Pol. Q-Synth. Software, version 2.0., IFD (Innovation
Fund Denmark), swhId: swh:1:dir:be31c57364bd541c6b65afac80603e9004cf4008 (visited
on 2024-07-31). URL: https://github.com/irfansha/Q-Synth.

25 Irfansha Shaik and Jaco van de Pol. Q-Synth v2.0 release. Software, version 2.0., IFD (In-
novation Fund Denmark), swhId: swh:1:dir:be31c57364bd541c6b65afac80603e9004cf4008
(visited on 2024-07-31). URL: https://github.com/irfansha/Q-Synth/releases/tag/
Q-Synth-v2.0-SAT2024.

26 Irfansha Shaik and Jaco van de Pol. Optimal layout synthesis for quantum circuits as
classical planning. In IEEE/ACM International Conference on Computer Aided Design,
ICCAD 2023, San Francisco, CA, USA, October 28 - Nov. 2, 2023, pages 1–9. IEEE, 2023.
doi:10.1109/ICCAD57390.2023.10323924.

27 Amisha Srivastava, Chao Lu, Navnil Choudhury, Ayush Arunachalam, and Kanad Basu.
Search space reduction for efficient quantum compilation. In Proceedings of GLSVLSI-23,
pages 109–114. ACM, 2023. doi:10.1145/3583781.3590223.

28 Bochen Tan and Jason Cong. Optimal layout synthesis for quantum computing. In IEEE/ACM
ICCAD, pages 137:1–137:9. IEEE, 2020. doi:10.1145/3400302.3415620.

29 Bochen Tan and Jason Cong. Optimality study of existing quantum computing layout synthesis
tools. IEEE Trans. Computers, 70(9):1363–1373, 2021. doi:10.1109/TC.2020.3009140.

30 Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Temporal planning for
compilation of quantum approximate optimization circuits. In Proceedings of IJCAI-17, pages
4440–4446, 2017. doi:10.24963/ijcai.2017/620.

31 Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to IBM QX
architectures using the minimal number of SWAP and H operations. In DAC-19, page 142.
ACM, 2019. doi:10.1145/3316781.3317859.

32 Alwin Zulehner, Hartwig Bauer, and Robert Wille. Evaluating the flexibility of a* for mapping
quantum circuits. In Reversible Computation - 11th International Conference, RC 2019,
Lausanne, Switzerland, June 24-25, 2019, Proceedings, volume 11497 of Lecture Notes in
Computer Science, pages 171–190. Springer, 2019. doi:10.1007/978-3-030-21500-2_11.

33 Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for mapping
quantum circuits to the IBM QX architectures. IEEE TCAD ICS, 38(7):1226–1236, 2019.
doi:10.1109/TCAD.2018.2846658.

https://doi.org/10.1016/J.ARTINT.2006.08.002
https://doi.org/10.1016/J.ARTINT.2006.08.002
https://archive.softwareheritage.org/swh:1:dir:be31c57364bd541c6b65afac80603e9004cf4008;origin=https://github.com/irfansha/Q-Synth;visit=swh:1:snp:f376849e93533f1d9039b7cd543ed56b6edcf01d;anchor=swh:1:rev:553d54c9942b73a0246328d42565caaaaac38117
https://github.com/irfansha/Q-Synth
https://archive.softwareheritage.org/swh:1:dir:be31c57364bd541c6b65afac80603e9004cf4008;origin=https://github.com/irfansha/Q-Synth;visit=swh:1:snp:f376849e93533f1d9039b7cd543ed56b6edcf01d;anchor=swh:1:rev:553d54c9942b73a0246328d42565caaaaac38117
https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v2.0-SAT2024
https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v2.0-SAT2024
https://doi.org/10.1109/ICCAD57390.2023.10323924
https://doi.org/10.1145/3583781.3590223
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1109/TC.2020.3009140
https://doi.org/10.24963/ijcai.2017/620
https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1007/978-3-030-21500-2_11
https://doi.org/10.1109/TCAD.2018.2846658

	1 Introduction
	2 Preliminaries
	2.1 Layout Synthesis for Quantum Circuits
	2.2 Optimal Layout Synthesis as Planning
	2.3 Parallel Plans in Optimal Layout Synthesis
	2.4 Incremental SAT Solving

	3 Two-Way Parallel SAT encoding
	3.1 Additional Functionality
	3.2 Design Choices

	4 Experimental Evaluation
	4.1 Experiment Design
	4.2 Results
	4.3 Discussion

	5 Conclusion

