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—— Abstract

Boolean satisfiability (SAT) is an NP-complete problem with important applications, notably in
hardware and software verification. Characterising a SAT instance by a set of features has shown
great potential for various tasks, ranging from algorithm selection to benchmark generation. In this
work, we revisit the widely used SATZilla features and introduce a new version of the tool used to
compute them. In particular, we utilise a new preprocessor and SAT solvers, adjust the code to
accommodate larger formulas, and determine better settings of the feature extraction time limits.
We evaluate the extracted features on three downstream tasks: satisfiability prediction, running time
prediction, and algorithm selection. We observe that our new tool is able to extract features from
a broader range of instances than before. We show that the new version of the feature extractor
produces features that achieve up to 26% lower RMSE for running time prediction, up to 3% higher
accuracy for satisfiability prediction, and up to 15 times higher closed gap for algorithm selection on
benchmarks from recent SAT competitions.
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1 Introduction

The Boolean satisfiability problem (SAT) is an important problem in computer science from
both theoretical and practical viewpoints. Common usages of SAT include hardware and
software verification, cryptography, and more. However, as SAT is N'P-complete, it takes
substantial time and computing power to solve it, which becomes prohibitively expensive as
formulas become larger. In order to deepen our understanding of SAT itself and develop
better SAT solvers, it is of crucial importance to be able to describe SAT instances via an
informative set of features.

Some of the most widely adopted such features are the SATZilla features [13, 7]. These
are a fixed set of features that are calculated from the DIMACS CNF representation of
a SAT instance. The SATZilla features consist of multiple groups, ranging from basic
syntactic features describing the formula, such as its number of variables and clauses, to
more complicated features, such as probing features derived from short runs of SAT solvers.
Another type of features are based on statistics of graph representations of a given formula.
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The SATZilla features have been successfully used in various domains, such as empirical
performance models (EPMs; also known as performance or running time prediction) and
algorithm selection [17, 18], algorithm configuration [6], and benchmark generation [8]. The
features are also used for caching in CDCL-based model counting solvers [14] and in a variety
of SAT solvers that incorporate machine learning techniques [4] However, the SATZilla
features in their latest version date back to 2012. Since then, the SAT community has
undergone various changes. Most notably, SAT instances that we typically encounter today
have a larger number of variables and clauses, thus taking significantly more time and memory
to preprocess. Currently, the existing SATZilla feature extraction tool is unable to compute
many of these features because of time and memory limitations.

In this paper, we revisit the SATZilla features and introduce a new version of the feature
extraction tool. First, we replace the underlying solvers and the preprocessor with their
most up-to-date versions. We then fix compilation errors and other memory errors related
to dealing with larger formulas. Finally, we allow the user to set the time limits for feature
computation. We compare the performance of our new tool with the old one in two SAT
competitions. We measure the running times and the number of extracted features to check
for performance gains of our new tool. We then evaluate the extracted features on three
downstream tasks: satisfiability prediction, performance prediction and algorithm selection.
We show that our new tool yields an important advantage in performance compared to the
old tool across all three tasks.

The rest of the paper is organised as follows. We give a historical overview of the
development and applications of the SATZilla features in Section 2. We then introduce the
technical definitions, as well as the standard methodological pipeline in Section 3, wrapping
it up with the contributions of this study. The results are presented in Section 4, and
conclusions drawn in Section 5.

2 Related work

The SATZilla features were first introduced by Nudelman et al. [13] to construct EPMs, i.e.,
machine learning models that predict the running time of various SAT solvers given the
features representing SAT instances. The authors identified key features that contribute
the most towards having a good EPM prediction. Consequently, they used the EPMs as a
basis for algorithm selection, in which the algorithm that is selected corresponds to the one
with the lowest predicted running time. They leveraged the performance complementarity
phenomenon of SAT solvers, where no SAT solver dominates all others over all instances.
Therefore, selecting the best solver for each instance results in substantially better performance
compared to choosing any standalone solver for all instances. The SATZilla features were
also successfully used for the satisfiability prediction task for SAT instances from various
distributions [2].

Further developments in algorithm selection led to the 2007 version of the SATZilla
algorithm selector [17], which combined running time and satisfiability prediction with
other improvements. It won multiple medals in the SAT competition. This shows that
extracting features from SAT instances can also speed up the solving process, and not only
help understanding SAT. A newer version of the SATZilla algorithm selector was introduced
in 2012 [18], winning multiple awards as well. It used a random forest as a predictor, and
introduced an ensemble of pairwise classifiers to establish a ranking of the solvers, instead
of predicting the running times directly. Additional features were introduced thereafter,
revealing further important information about SAT instances.
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Another common usage of the SATZilla features is (model-based) algorithm configuration.
To this end, the hyperparameters of SAT solvers are optimised such that their performance
is as good as possible on all instances. As running SAT solvers is computationally expensive,
a surrogate model is employed; it takes as an input a configuration of hyperparameters and
instance features and predicts the performance of the SAT solver using a given configuration
on a given instance. The instance features boost the accuracy of the surrogate model. An
example of that is SMAC [6], which successfully used the SATZilla features to optimise the
performance of a wide range of SAT solvers on various benchmarks.

Last but not least, feature-based EPMs are proven to be useful for benchmark genera-
tion [8]. In this context, given a new instance, we compute the features, which is usually
cheaper than running a SAT solver, and use the EPM to predict whether the instance is
hard (or not) for the solvers at hand.

3 SATZilla features

The SATZilla features describe the SAT formula using various representations and statistics.
We briefly introduce three graph representations of a SAT formula, as undirected graphs are
a meaningful representation of SAT, maintaining the permutation invariance: a) variable
graph: nodes are variables, an edge exists if variables appear in the same clause; b) clause
graph: nodes are clauses, an edge exists when two clauses share a negated literal; and c)
variable-clause graph: nodes are variables and clauses, an edge exists between a variable
node and a clause node if the variable appears in the clause.

Feature computation starts with the preprocessing of the formula. This step, performed
before solving an instance, renders the formula more accessible for SAT solvers. This means
that the features are also computed on the version of the formula that is close to the one
seen by the solvers. We believe that all these aspects can be boosted by using a modern
preprocessor. Features are classically computed using the SATELITE preprocessor. We
instead use the SBVA preprocessor, suggested by the winning solver from the 2023 SAT
Competition. SBVA is also able to terminate after a set cutoff time, allowing for partial
preprocessing, while SATELITE does not include this functionality. The preprocessed formula
can then be directly used by a SAT solver without additional preprocessing within the solver,
which improves the performance of algorithm selection.

Following the preprocessing, the feature extraction begins. There are ten feature groups
that can be extracted. We note that we describe the feature groups according to their
implementation in the SATZilla feature extraction tool, not according to their definitions
from the corresponding paper [7]. We point out that all feature groups include the time
required to compute the features in the group.

Preliminary features include the number of variables and clauses before/after preprocessing.
The running time of this feature group includes the preprocessing time and the time required
to read the formula. This group contains 7 features.

Basic features are cheap features that provide a basic description of the formula. They
consist of the variable-clause ratio, the ratio between positive and negative literals in each
clause, the number of unary, binary and ternary clauses, as well as statistics on clause nodes
in the variable-clause graph. This group contains 15 features.

KLB are expensive features that include the node degree statistics of the variable nodes in
the variable-clause graph, and the ratio of positive to negative occurrences of each variable.
They also include measures for the proximity to Horn formula, such as the fraction of Horn
clauses and statistics on the number of times each variable appears in a Horn clause. This
group contains 21 features.
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Clause graph (CG) features are expensive features that contain statistics on the degree of
the nodes in the clause graph, as well as the clustering coefficient. This group contains 11
features.

Diameter features contain information on the diameter of the variable graph, which is the
shortest path between each pair of nodes in the graph. This group contains 6 features.
DPLL probing (or unit propagation) features are computed by running the DPLL algorithm
for various depths and measuring the number of unit propagations at each depth. This group
contains 6 features.

Lobjois features are an estimation of the size of the search space. They are computed by
running the DPLL algorithm multiple times until a contradiction is found. Then, the average
depth of the contradictions is the log-estimation of the search space. This group contains 3
features, which are all based on the work of Lobjois and Lemaitre [11].

Survey propagation features are based on computing statistics on the following probabilities
returned by the VARSAT [5] solver: a probability of each variable to be assigned to True, to
False, and to be unconstrained. This group contains 19 features.

Clause learning (CL) features are based on running a CDCL solver (ZChaff rand [12] in
the 2012 version, CadiCal [1] in our new version) for two seconds. We measure the number
and length of learned clauses for every 1000 decisions, and compute the statistics of those
values. This group contains 19 features.

Local search (LS) features are obtained by running two local search solvers many times,
each time up to 10000 steps, and computing statistics on those runs. In the 2012 version,
the local search solvers are GSAT and SAPS. We instead use GSAT and Sparrow 2011 in
our new version. This group contains 24 features.

Linear programming (LP) features are based on solving a relaxed version of the SAT
formula, where C7 A Cy A --- A Cy is a Boolean formula with N CNF clauses C7...Cxn
over Boolean variables z;. We now consider linear programming variables x; and solve the
following linear programming problem: Maximise Zfil > iec, v(l), where the value v(l) of
literal [ is defined as v(z;) = x;, v(=x;) = 1 — z;, while keeping » ;. v(l) > 0 for each C;
and 0 < z; <1 for each x;. This means that every variable has a value between 0 and 1, each
clause has a value which is the sum of values of all literals, and the value of the formula is the
sum of values of all clauses. The goal is to maximise the value of the formula, while keeping
the value of every clause positive. Finally, statistics on the linear programming solution are
extracted. In the new version, we upgrade the linear programming solver package, Ip solve.
This group contains 7 features.

We note that the basic, KLLB and clause graph features are computed sequentially, with
each feature group being dependent on the successful computation of the previous groups;
e.g., if the computation of the basic features fails, the KLLB and clause graph features will
not be computed at all.

Another change we applied to the feature extraction tool is allowing a more precise
timeout setting. In the 2012 version, the time limits were hard-coded and set to high values
(for example, 1200 seconds for preprocessing). This can cause many feature computations to
simply terminate without computing any features at all. To this end, we adjust the code in
the new version to allow the user to set the time limits through a command line argument.

4 Experiments

We evaluate our new SATZilla feature extraction tool on the formulas stemming from two
latest (2022 and 2023) SAT Competitions. We first look at the feature extraction times and
then evaluate the features on three downstream tasks: satisfiability prediction, running time



H. Shavit and H. H. Hoos

prediction, and algorithm selection. To assess the advantage of using the new version of the
extraction tool, we extract the features using both our new version and the 2012 version of
the tool, with a time limit of 180 seconds per feature group.

We use a cluster of 18 nodes, each equipped with 2 AMD EPYC 7543 32-core CPUs with
256 MB L3 cache. Each node also has 1TB of memory. The cluster is running on a Rocky
Linux 9.4 operating system. We measure running times using the runsolver tool [15].

4.1 Feature computation time
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Figure 1 Percentage of features computed by the old tool (SATZilla 2012; in red) and the new
tool (SATZilla 2024; in blue) over the available time budget for each feature group on the 2022 SAT
Competition. For most feature groups, the new tool extracts features from more instances than the
old one.

Figure 1 and Figure 2 show the percentage of features computed over the available time
budget using the old (depicted in red) and new (depicted in blue) SATZilla tool on the 2022
and 2023 SAT Competition data, respectively. For simplicity, due to the similarity of the
overall results between the two competitions, we draw more detailed insights based on plots
from the 2023 edition (Figure 2).

We first observe that the new tool is able to extract more features than the old one for
most feature groups. In particular, we highlight the performance gains on the preliminary
feature group (Figure 2a), for which the new tool can extract the features for all formulas,
compared to less than 80% of the formulas when using the the old tool. We note that for
some feature groups, like graph learning (Figure 2d), the old tool is able to extract more
features compared to the preliminary feature group. This is due to the fact that the old tool
extracts the preliminary, basic, KLB and CG feature groups together. Therefore, in case
computing one of those groups takes a long time, the whole feature extraction fails.
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Figure 2 Percentage of features computed by the old tool (SATZilla 2012; in red) and the new
tool (SATZilla 2024; in blue) over the available time budget for each feature group on the 2023 SAT
Competition. For most feature groups, the new tool extracts features from more instances than the

old one.

We also note that for KLB and CG features there is an advantage for the old version,
due to the new SBVA preprocessing method yielding larger formulas than its predecessor
SATELITE (as in many cases smaller formulas are not always easier to solve). Similarly, the
expensive graph-based features (e.g., Figure 2d and Figure 2i) require more time to extract
than smaller formulas. This is more apparent in the 2022 SAT Competition, where larger
instances were used than in the 2023 SAT Competition.

4.2 Satisfiability prediction

The first downstream task is satisfiability prediction, for which we measure the performance
when using features extracted by our tool. We use the random forest (RF) classifier from the
scikit-learn package to learn the mapping between features (representing SAT instances) and
outputs (satisfiable or unsatisfiable). We optimise the hyperparameters of the RF for one
hour using SMAC3 [9] on 10-fold cross-validation of the training data. We consider instances
from the 2022 and 2023 SAT Competitions for which we know the satisfiability result (put
differently, we omit instances for which the solution is unknown). On each competition, we
evaluate the performance of the RF model using 10-fold cross-validation. This results in
having outer cross-validation (for evaluation) and inner cross-validation (for training). Such
techniques have been previously used by AutoFolio [10].



H. Shavit and H. H. Hoos

We present the satisfiability prediction accuracy scores in Figure 3. We see that, by
using features extracted via the new tool, we achieve better performance across all instances
on both SAT competitions. Furthermore, we notice that the new tool leads to a higher
accuracy gain for satisfiable instances than for unsatisfiable instances. For the latter, the
accuracy remains very similar to the one achieved by using the old tool in the 2023 SAT
Competition and slightly dropped for the 2022 SAT Competition. This might be due to
the fact that the unsatisfiable instances are larger on average, thus being more prone to
timeouts even when using our new tool, which goes along with the worse performance in
the 2022 SAT Competition, where the unsatisfiable instances were larger than in the 2023
SAT Competition. We point out that such high accuracy was already achieved before for

industrial SAT instances [2].
100
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Accuracy %
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I
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(a) 2022 SAT Competition. (b) 2023 SAT Competition.

unsat

Figure 3 Accuracy of the satisfiability prediction task using a random forest with features
extracted by the old (SATZilla 2012) and the new tool (SATZilla 2024). We see an overall higher
accuracy for the new tool, which results from higher accuracy on satisfiable instances. On unsatisfiable
ones, the accuracy remains the same.

4.3 Performance prediction

The second downstream task we investigate is performance prediction, which has important
applications in algorithm selection, configuration and benchmark generation. We refer to the
methodology described in [7] and use a RF regressor as the EPM. It is important to note that
for an accurate running time prediction we need to perform a logig transformation of running
times prior to training the model, as done by Hutter et al. [7]. This transformation allows to
capture the order of magnitude rather than small variations in the running time. The EPM
then maps instance features to the log-transformed running times, and we aim to minimise

the root mean squared error (RMSE) of the model, which is defined as /1 - >"  (; — y;)?
for n predicted running times §; and ground truth running times y;. Lower RMSE scores are
better and 0 is the optimal value. In line with the previous task, we perform inner and outer
cross-validation and optimise the RF’s hyperparameters for one hour using SMAC3.

We look into the performance of the EPM for running time prediction on all solvers from
the 2022 and 2023 SAT Competitions. Here, we do not actually run solvers on instances to
record their running times, but rather use the running times reported by the competitions.
We display the results for the 10 best solvers from each competition in Figure 4 (the results
for all solvers can be found in the supplementary material). We see that using the features
extracted by the new tool leads to the lower RMSE for all solvers, compared to using those

extracted by the old tool. For some solvers, we observe a significantly lower RMSE, like
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Kissat_ MAB_ prop-no_ sym, where using the new tool decreases the RMSE from 0.84 to
0.69. Figure 5 shows the histogram of the error percentage for all solvers in the 2022 and 2023
SAT Competitions. We see that for the 2022 competition, the new tool has more instances
with error rate lower than 10% compared to the old version. For the 2023 competition, using
the features extracted with the new version, more instances are predicted with less than 1%
error. Histograms per solver are available in Appendix B.
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Figure 4 Root mean square error (RMSE) of (log-transformed) running time prediction using a
random forest with features extracted by the old (SATZilla 2012; in red) and the new tool (SATZilla
2024; in blue), on SAT solvers from the 2022 and 2023 SAT Competitions. The new tool achieves
lower RMSE for all solvers.

4.4 Algorithm selection

The third and final downstream task we consider is algorithm selection. In algorithm selection,
given a set of instances I, a set of solvers (i.e., algorithm portfolio) A and a performance
metric m : A X I — R, we build an algorithm selector S : I — A such that its performance
is optimal on the instance set I according to the metric m. We compare the performance
of algorithm selection to two standard baselines, the single best solver (SBS; i.e, the solver
with the lowest overall running time) and the virtual best solver (VBS; i.e., the theoretical
oracle which for each instance selects the actual best solver on it).

We measure the performance of algorithm selection using closed gap, which is computed
as —SBS=Ms . (j e the closed gap stands for how much of the gap between the SBS and the

MsBS —MVBS

VBS is closed by using the algorithm selector). We then use AutoFolio [10] as an algorithm
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Figure 5 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. The new tool achieves lower error percentages.

selector, which consists of multiple algorithm selection approaches, from which the best one
is suggested by using algorithm configuration. As algorithm portfolio for the selection, we
use the 10 best solvers from each SAT competition. We train the selector for 8 hours.

Figure 6 shows the closed gap results on the 2022 and 2023 SAT Competitions. Positive
closed gap values on both scenarios using both the old and the new tool indicate that, in
general, SATZilla features are useful for the algorithm selection task. Importantly, features
extracted with the new tool lead to better closed gap values on both scenarios. In Figure 7,
we provide ECDF plots showing the fraction of instances solved over time. In the 2022 SAT
Competition scenario, the old version of the tool performs worse than the SBS until a budget
of approximately 1000 seconds, while the new version of the tool performs similarly to the
SBS. After 1000 seconds, both versions of the SATZilla features perform similarly. In the
2023 SAT Competition scenario, the new tool performs better than the old one for budgets
between 100 and 1000 seconds. With a budget of less than 10 seconds, the old tool solves
more instances. Overall, the ECDF plots reflect well what is shown in Figure 6, where we
see that the new tool exhibits a few percents higher closed gap value.

0.5

Closed Gap

SAT2022-MAIN SAT2023-MAIN

Figure 6 Closed gap values for the algorithm selection task using the old (SATZilla 2012; in red)
and the new tool (SATZilla 2024; in blue) on the 2022 and 2023 SAT Competitions; higher is better.
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Figure 7 ECDF plots for the algorithm selection task using the old (SATZilla 2012) and the new
tool (SATZilla 2024) on the 2022 and 2023 SAT Competitions.

5 Conclusions

In this paper, we introduced an improved version of the well-known SATZilla feature extraction
tool, motivated by the need to facilitate the feature extraction process by incorporating better
user infrastructure and bug fixing. Our new version uses most up-to-date preprocessing
techniques and SAT solvers, which allow for better representation of SAT formulas. Our
experiments showed that, by using the new tool, we achieve a more accurate satisfiability
prediction, a lower error for running time prediction, and a better closed gap for algorithm
selection.

Our new SATZilla 2024 extraction tool aims to facilitate and promote the usage of SAT
features even beyond their current scope. It is easily extensible and thus encourages building
atop, e.g., by looking into features based on the recent developments in the explainability of
SAT solvers [3], or other advancements in SAT.
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A Running time prediction results

In this appendix, we present the full results of running time prediction for all solvers from
the 2022 and 2023 SAT Competitions. In Table 1 and Table 2 we show the results for the
2022 SAT Competition, where we see that our new tool constantly outperforms the old one.
Similarly, in Table 3 we show the results for the 2023 SAT Competition, where using the
features extracted by our new tool leads to lower RMSE than with the old one.

Table 1 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2022 SAT Competition using the old and new SATZilla features.

Solver SATZilla 2012 SATZilla 2024
CaDiCalL-watchsat-lto 0.70 0.63
CaDiCal._ DVDL_V1 0.73 0.65
CaDiCal._ DVDL_ V2 0.75 0.65

CadicalReorder 0.75 0.66
Cadical _ESA 0.75 0.66

IsaSAT 0.73 0.64
Kissat-MAB-rephasing 0.74 0.67
Kissat_ MAB-HyWalk 0.77 0.68

Kissat_ MAB__ESA 0.80 0.72
Kissat  MAB MOSS 0.79 0.69
Kissat MAB UCB 0.78 0.70
Kissat__adaptive_restart 0.72 0.68
Kissat__cfexp 0.79 0.71
LSTech CaDiCaL 0.77 0.63
LSTech_ Maple 0.74 0.66
LSTech_kissat 0.76 0.67
LStech-Maple-BandSAT 0.67 0.62
LStech-Maple-FPS 0.74 0.65
LStech-Maple-Hy Walk 0.72 0.64
MapleLCMDistChrBt-DL-v3 0.61 0.58
MergeSat 4.0-rc-rc3 0.65 0.61
SLIME SC-2022 0.70 0.65
SLIME SC-2022-alpha 0.70 0.66
SLIME SC-2022-beta 0.71 0.66
SLIME SC-2022-gamma, 0.73 0.69
SeqFROST-ERE-All 0.76 0.68
SeqFROST-NoExtend 0.77 0.67
cadical-hack-gb 0.73 0.62

cadical rel Scavel 0.71 0.61
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Table 2 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2022 SAT Competition using the old and new SATZilla features (contd.).

Solver

SATZilla 2012

SATZilla 2024

ekissat-mab-db-v1
ekissat-mab-db-v2
ekissat-mab-gb-db
glucose-reboot
hCaD_ V1-psids
hCaD_V2
hKis-psids
hKis-sat
hKis-unsat
kissat-els-v1
kissat-els-v2
kissat-els-v3
kissat-els-v4
kissat-mab-gb
kissat-sc2022-bulky
kissat-sc2022-hyper
kissat-sc2022-light
kissat-watchsat-lto
kissat inc
kissat_ pre

kissat relaxed

0.78
0.78
0.76
0.78
0.69
0.68
0.69
0.79
0.74
0.76
0.74
0.78
0.77
0.78
0.76
0.76
0.75
0.73
0.76
0.76
0.72

0.69
0.70
0.65
0.68
0.63
0.64
0.59
0.69
0.66
0.67
0.67
0.67
0.66
0.70
0.69
0.70
0.69
0.67
0.66
0.67
0.67
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Table 3 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2023 SAT Competition using the old and new SATZilla features.

Solver SATZilla 2012  SATZilla 2024
AMSAT 0.80 0.77
BreakID-kissat-low.sh 0.92 0.83
CaDiCal._ vivinst 0.84 0.73
Cadical ESA 0.85 0.74
Cadical rel 1.5.3.Scavel 0.80 0.74
IsaSAT 0.90 0.82
Kissat Inc_ESA 0.88 0.73
Kissat_ MAB_ Binary 0.89 0.72
Kissat. MAB_ Conflict 0.87 0.72
Kissat. MAB_Conflict+ 0.88 0.75
Kissat_ MAB_ DeepWalk+ 0.87 0.73
Kissat. MAB_ESA 0.91 0.74
Kissat_ MAB_ Rephases 0.84 0.71
Kissat_ MAB_ prop 0.89 0.71
Kissat_ MAB_ prop-no_ sym 0.93 0.72
Kissat_ MAB_ prop_ pr-no_ sym 0.83 0.68
MapleCaDiCaLl._ LBD-990_ 275 0.81 0.71
MapleCaDiCaL._ LBD-990_ 500 0.84 0.72
MapleCaDiCaL._ PPD-500_500 0.82 0.71
MapleCaDiCaLl._ PPD-950_950 0.84 0.73
MergeSat-bve_ gates 0.75 0.71
MergeSat-bve__semgates 0.74 0.73
MergeSat-threadl 0.68 0.67
MiniSat+XorEngine 0.79 0.77
PReLearn-kissat-PReLearn-kissat.sh 0.66 0.54
PReLearn-kissat-PReLearn-tern-kissat.sh 0.55 0.46
ReEncode-kissat-ReEncode-pair-kissat.sh 0.75 0.68
SBVA-sbva_ cadical 0.74 0.55
SBVA-sbva_ kissat 0.78 0.65
SeqFROST 0.81 0.73
SeqFROST-ERE-All 0.81 0.71
SeqFROST-NoExtend 0.79 0.74
hKis-psids 0.81 0.72
hKis-sat_ psids 0.80 0.79
hKis-unsat 0.86 0.69
hKissatInc-unsat 0.85 0.77
kissat-3.1.0 0.88 0.76
kissat-hywalk-exp 0.85 0.70
kissat-hywalk-exp-gb 0.89 0.74
kissat-hywalk-gb 0.88 0.72
kissat__incsp 0.95 0.80

tabularasat-1.0.0 0.88 0.76
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Running time prediction histograms

B

We present the histograms for the RMSE values per solver for running time prediction in
Figures 8-19.
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(a) 2022 Comp. CaDiCalL-watchsat-lto.

(c) 2022 Comp. CaDiCaL_DVDL_ V2.

(e) 2022 Comp. Cadical ESA.

(g) 2022 Comp. Kissat-MAB-rephasing.

Figure 8 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver.
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(f) 2022 Comp. LSTech_CaDiCalL.

(e) 2022 Comp. Kissat_ cfexp.

(=3
(=1
—

100%-1000%
0%-100%
0%-90%
70%-80%
60%-70%
50%-60%
40%-50%
30%-40%
20%-30%
10%-20%
5%-10%
2%-5%
1%-2%
[]

e 0%-1%
(=1 (=]

9
8|

N

100%-1000%
90%-100%
80%-90%
70%-80%
60%-70%
50%-60%
40%-50%
30%-40%
20%-30%
10%-20%
5%-10%
2%-5%
1%-2%
o§ 1%
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(g) 2022 Comp. LSTech Maple.

Figure 9 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 10 Histogram of the error percentage of the root mean square error (RMSE)
transformed) running time prediction using a random forest with features extracted by the old

(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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(g) 2022 Comp. ekissat-mab-db-v2.

Figure 11 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 12 Histogram of the error percentage of the root mean square error (RMSE)
transformed) running time prediction using a random forest with features extracted by the old

(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 13 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 14 Histogram of the error percentage of the root mean square error (RMSE)
transformed) running time prediction using a random forest with features extracted by the old

(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).

(g) 2023 Comp. Cadical rel 1.5.3.Scavel.
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Figure 15 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 16 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 17 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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(g) 2023 Comp. kissat-3.1.0.

of (log-

transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

Figure 18 Histogram of the error percentage of the root mean square error (RMSE)
and 2023 SAT Competitions. Results are presented per solver (contd.).
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Figure 19 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022

and 2023 SAT Competitions. Results are presented per solver (contd.).
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