Strategy Extraction by Interpolation

Friedrich Slivovsky &

Department of Computer Science, University of Liverpool, UK

—— Abstract

In applications, QBF solvers are often required to generate strategies. This typically involves a

process known as strategy extraction, where a Boolean circuit encoding a strategy is computed from
a proof. It has previously been observed that Craig interpolation in propositional logic can be seen
as a special case of QBF strategy extraction. In this paper we explore this connection further and
show that, conversely, any strategy for a false QBF corresponds to a sequence of interpolants in
its complete (Herbrand) expansion. Inspired by this correspondence, we present a new strategy
extraction algorithm for the expansion-based proof system Exp+Res. Its asymptotic running time
matches the best known bound of O(mn) for a proof with m lines and n universally quantified
variables. We report on experiments comparing this algorithm with a strategy extraction algorithm
based on combining partial strategies, as well as with round-based strategy extraction.

2012 ACM Subject Classification Theory of computation — Automated reasoning
Keywords and phrases QBF, Expansion, Strategy Extraction, Interpolation
Digital Object Identifier 10.4230/LIPIcs.SAT.2024.28

Supplementary Material Software (Source Code): https://github.com/fslivovsky/ferpmodels
archived at swh:1:dir:ecf767c252fb45b1fbd12ebf83088d07c9025697

Funding Vienna Science and Technology Fund (WWTF) grant 10.47379/ICT19060.

1 Introduction

Due to continuous performance improvements over the last 30 years [8], SAT solvers have
become a standard tool in formal methods and electronic design automation [16, 39]. However,
the increasing complexity of specifications in these areas can lead to prohibitively large
encodings that are unmanageable even for the most efficient SAT solvers. This problem has
prompted research into more succinct logics, such as Quantified Boolean Formulas (QBF),
that can naturally encode a wide range of synthesis tasks [10, 11, 35, 37].

In many of these applications, QBF solvers cannot just answer “true” or “false”, they
are expected to provide a winning strategy as a solution. This typically involves strategy
extraction, where a Boolean circuit encoding a strategy is computed from a proof generated by
the solver. Determining whether a QBF proof system has efficient strategy extraction is thus
important for practical concerns. But improved strategy extraction can also serve a tighter
characterisation of proof systems. A seminal result in this context is linear-time strategy
extraction for Q-resolution [2]: one can show that the extracted strategies are decision lists,
and this leads to strong lower bounds against Q-resolution [4, 5].

Q-resolution is the proof system underpinning quantified CDCL, one of the main paradigms
in QBF solving. Another main paradigm is counter-example guided expansion [23], with
Exp+Res as its underlying proof system [24]. It has been shown that an Exp+Res refutation
of a QBF can guide the universal player to win the evaluation game, and since all operations
can be implemented in polynomial time, it follows that Exp+Res has polynomial-time
strategy extraction [5].

However, the simulation of player moves in the resulting round-based strategy extraction
algorithm incurs a significant overhead. In experiments, an implementation of this idea
struggled to generate strategies for many QBFs that could be solved quickly [19]. An

© Friedrich Slivovsky;
37 licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 28; pp. 28:1-28:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:f.slivovsky@liverpool.ac.uk
https://orcid.org/0000-0003-1784-2346
https://doi.org/10.4230/LIPIcs.SAT.2024.28
https://github.com/fslivovsky/ferpmodels
https://archive.softwareheritage.org/swh:1:dir:ecf767c252fb45b1fbd12ebf83088d07c9025697;origin=https://github.com/fslivovsky/ferpmodels;visit=swh:1:snp:2653030d083f6e99c96baec23706fb3996ed9025;anchor=swh:1:rev:8d64f81af8b5923ab370b07f1a9e898f8c3a7e6b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

Strategy Extraction by Interpolation

alternative is to simulate an operation for combining partial strategies [38] using circuits,
which leads to strategy extraction in time O(mn) for a proof with m lines and n universally
quantified variables [34]. But because this approach constructs a strategy tree for all universal
variables at once, the Herbrand functions for individual universal variables have no clear
interpretation.

This paper presents a new strategy extraction algorithm for Exp+Res based on Craig
interpolation [14]. An interpolant between two formulas ¢ and v such that oA is unsatisfiable
is a formula (or circuit) I in the shared variables var(¢) N var(¢) such that ¢ = I and
¥ = —I. Interpolation is an important and well studied concept in logic and automated
reasoning [15, 28]. For example, interpolants can be used to over-approximate the set of
reachable states in model checking [29]. In proof complexity, showing that an interpolant
can be efficiently extracted from a refutation of ¢ A ¢ can lead to strong lower bounds [27].

This technique, called feasible interpolation, can also be used to establish lower bounds
against QBF proof systems such as Exp+Res when the shared variables are existentially
quantified [6]. In this context, it was noted that, for certain formulas, any winning strategy
for a single universal variable corresponds to an interpolant. However, extending this idea to
multiple universal variables is challenging. In particular, simply computing the interpolants
between parts resulting from expansion with u; and parts resulting from expansion with
—w;, for each universal variable u;, does not work for arbitrary Exp+Res proofs (cf. [20], see
Section 4.1). This approach only works for local-first proofs [20], and bringing a proof into
this form generally requires rewriting that can lead to an exponential blowup [1, 22].

This paper presents a different solution that takes the order uq,...,u, of universal
variables in the quantifier prefix into account. For each universal variable u;, it computes
an interpolant between parts of the complete (Herbrand) expansion that are identified by
positive and negative occurrences of u; along with an assignment o of the preceding universal
variables. For u;, we simply compute the interpolant between the part resulting from
expansion with —u; and the part resulting from expansion with u;. For w; with 1 <i <mn,
we compute an interpolant between the expansion with o, ~u; and the expansion with o, u;.
This not only leads to strategies, it characterises them: every universal winning strategy
corresponds to such a sequence of interpolants in the complete expansion.

Following this idea, strategy extraction for Exp+Res can by implemented by generalising
a standard interpolation system for resolution [21, 27, 33]: interpolants for axioms become
functions in universal variables, since their assignment to a part depends on the values of
these variables; similarly, whether a variable is shared, or local to a specific part, depends
on the assignment of universal variables. The main technical difficulty is showing that an
interpolant for a bipartition of the complete expansion can be used as an interpolant between
specific parts of the expansion under a partial assignment. This step of the argument is only
proved for a specific interpolation system.

The interpolants can be computed in time O(mn) from an Exp+Res proof with m
lines and n universal variables, matching the bound of the algorithm that combines partial
strategies [34]. We implemented both algorithms within FERPMODELS [19], a certification
framework for Exp+Res proofs that uses round-based strategy extraction, and present an
experimental comparison of all three algorithms.

The rest of the paper is structured as follows. Section 2 introduces standard concepts
and notation. Section 3 offers a brief introduction to interpolation in propositional logic.
In Section 4, we establish the link between universal winning strategies and interpolants in
the complete expansion, and present the new strategy extraction algorithm for Exp-+Res.
Section 5 provides experimental results for an implementation of this algorithm. We discuss
related work in Section 6 and conclude in Section 7.

F. Slivovsky

2 Preliminaries

An assignment of a set V of propositional variables is a function o : V — {0,1}. A partial
assignment of V is an assignment of U C V. Given an assignment o : V — {0,1} and a
subset U C V of its domain, we write o|y for the restriction of o to U. We consider (Boolean)
circuits and formulas built up from variables, the constants 0 and 1, as well as the connectives
V, A, =. Sometimes, we think of if-then-else expressions ite(c, A, B), which can be expressed
as (cAA)V (—cA B), as atomic gates. We write var(p) for the set of input gates or variables
occurring in a circuit or formula . If ¢ is a circuit and o : V' — {0,1} an assignment such
that var(yp) C V, we write ¢(o) for the output of ¢ under the assignment. Note that o may

assign variables that are not input gates of ¢ — these are simply ignored in the evaluation.

Given a circuit (or formula) ¢ and variable assignment o : V' — {0, 1}, we write ¢[o] for
the circuit (or formula) obtained by replacing each input gate (or variable) v € var(p) NV
by the constant o(v). A literal is a variable v or a negated variable —w, and a clause is a
disjunction of literals. A CNF formula is a formula is a conjunction of clauses. We think of
clauses as sets of literals and formulas as sets of clauses whenever convenient. Similarly, we
may identify a variable assignment with a set, sequence, or conjunction of literals. If v is a
variable, ¢ a circuit, and 7: V — {0,1} an assignment such that var(¢) C V, then v = (1)
denotes the assignment {v — (7)}.

We consider Quantified Boolean Formulas (QBFs) ® = Q. in prenex conjunctive normal
form, where Q = Qqvy,...,Quv, is a sequence of quantifiers Q; € {V,3} and pairwise
distinct variables v;, called the (quantifier) prefix of ®, and ¢ is a CNF formula, called
the matriz of ®. We assume that the set var(y) of variables in the matrix is a subset
of the variables {v1,...,v,} in the prefix. The prefix induces a linear ordering <g on its
variables {v1,...,v,} where v; <g v; if i < j. We omit the prefix Q when it is understood.
Given a partial assignment 7 of the variables of ®, we write ®[r] = Q'.[r], where Q' is
obtained from Q by omitting variables assigned by 7 and their associated quantifiers. We
write Ug = {v; | Q; =V} for the set of universal variables of ®, and Eg = {v; | Q; = 3} for
the set of existential variables, dropping the subscript if the QBF & is understood. The set
of variables preceding variable v; in the prefix is denoted D(v;) = {vy,...,v;—1}. Given a
sequence u1, . . ., ug of universal variables, we may write D; = D(u;). In such cases, we define
Do = 0. Let v = (¢1,...,9) be a sequence of circuits, one for each universal variable u;,
such that var(vw;) C EUU. We say that assignments o of the universal variables and 7
of the existential variables are consistent with ¢ if o(u;) = ;(0c U T), for each 1 <14 < k.
The sequence v is a universal winning strategy if var(y) C D; for each 1 < ¢ < k, and
p(ocUT) = 0 for any assignments o of the universal variables and 7 of the existential variables
that are consistent with ¢. The QBF ® is false if there is a universal winning strategy, and
true otherwise.

2.1 QBF Expansion Proofs

QBF evaluation can be reduced to propositional satisfiability by repeatedly applying Shannon
expansion to get rid of universally quantified variables. The resulting propositional formula,
called the complete (Herbrand) expansion, is satisfiable if, and only if, the QBF is true. The
complete expansion can be obtained as a conjunction, taken over all assignments of universal
variables, of copies of the matrix instantiated with these assignments. Formally, let ® = Q.¢
be a QBF, let C' € ¢ be a clause, and let o : U — {0,1} an assignment that does not
satisfy C. We write Cl°l = {¢l°] | ¢ € C,var(¢) € E} for the annotated clause obtained by
instantiating clause C' with the assignment o, where (1% = ¢7lpeer@) is ¢ annotated with the
restriction of ¢ to universal variables preceding var(¢) in the prefix. Otherwise, if o satisfies
C, then Clol = T.

28:3

SAT 2024

28:4

Strategy Extraction by Interpolation

Civer —e” V Oy
Clol Cy Vv Oy
In the axiom rule (left), C' € ¢ is a clause and o an assignment of universal variables not

satisfying C. In the resolution rule (right), both C1 and C2 are annotated clauses and e”
is an annotated variable.

(Axiom) (Resolution)

Figure 1 The proof rules of Exp+Res for a QBF with matrix ¢.

The complete expansion is defined as

exp(P) = /\ /\ ol

o:U—{0,1} Ccyp

The complete expansion is satisfiable if, and only if, the QBF & is true. Given a partial
assignment p of universal variables, we write ¢ = {Cl?] € exp(®) | o C 6} for the subset
of clauses in the complete expansion whose annotation is compatible with o. Given an
assignment 7 of existential variables and o of universal variables, let 77! = Neer /1!, For a
partial assignment «, the expansion of the simplified QBF ®[a] essentially corresponds to
a subset of the complete expansion of exp(®) with a particular annotation. This is stated
formally in the following lemma (the proof is given in Appendix A).

» Lemma 1. Let & = Qqv1...Quupn.¢ be a QBF, and let « : {vy,...,v;} — {0,1} be a
partial assignment of its variables. Then exp(®[a]) and o A1) are equisatisfiable, where
oc=aly and T = a|g.

The proof system Exp+Res formally captures resolution refutations from a subset of
clauses in the complete expansion [24]. Its proof rules are shown in Figure 1. An Exp+Res
proof (or refutation) of a QBF & is a sequence of clauses ending with the empty clause L
such that each clause is either an axiom or derived by resolution from clauses appearing
earlier in the sequence.

3 Interpolation in Propositional Logic

The Craig interpolation theorem states that if ® = ¥ holds for first-order sentences ® and ¥,
then there exists a first order sentence I, called an interpolant, such that ® = I, I | ¥, with
the non-logical symbols in I shared by ® and ¥ [14]. Craig interpolation is an important
concept in logic and automated reasoning [28]. Given a propositional formula ¢ and a
clause C, we write C|,, for the restriction of C' to variables occurring in ¢. In the remainder
of this paper, we will adopt the following definition of an interpolant, commonly used in
model checking and verification [29] and sometimes referred to as a reverse interpolant [26].

» Definition 2 (Partial Interpolant). Let ¢ and v be formulas and C' a clause such that
e A | C. A partial interpolant between ¢ and ¢ for C' is a Boolean circwit I such that
var(I) C var(p) Nwar(y), ¢ = Cl, VI, and Y |=Cly VvV —I. If C =0 then I is called an
interpolant between ¢ and .

Equivalently, an interpolant between ¢ and 1 is a circuit that decides which of ¢ and ¥ is
unsatisfiable given an assignment of the shared variables.

» Proposition 3. Let ¢ and v be formulas such that ¢ A is unsatisfiable. A circuit 1
with var(I) C var(y) Nwvar(y) is an interpolant between ¢ and v if, and only if, ¢ AN T

is unsatisfiable whenever I(t) = 0, and ¥ A T is unsatisfiable whenever I(1) = 1, for any
assignment T : var(p) Nvar(y) — {0, 1}.

F. Slivovsky

c[o] Cev ol Ce
CiVvrzr [Il] -z V Oy [12]

C1 Vv Cy [[1 v IQ} x < Ua’l“(<p) \ UCL’I”(¢)
Cl \/.’L’[Il} ﬁwvcz [IQ]

Cy Vv Cy I AN x € var(y) \ var(p)
C1V z [I] 2V Cy [I)]

Crv G fite(om, Tr. o)) x € var(y) Nvar(p)

Figure 2 Symmetric interpolation system for resolution proofs [21, 27, 33].

Proof. Let I be an interpolant between ¢ and . If I(7) = 0, since ¢ |= I the formula ¢ A T
must be unsatisfiable. Otherwise, if I(7) = 1, since ¢ |= —I, the formula ¥ A 7 must be
unsatisfiable. The proves the “only if” direction.

For the converse, let I be a circuit defined on war(yp) N var(y) such that ¢ A 7 is
unsatisfiable whenever I(7) = 0, and ¢ A 7 is unsatisfiable whenever I(7) = 1, for any
assignment 7 : var(p) Nwar(y) — {0,1}. Consider a satisfying assignment 7 of ¢. Since
var(I) C var(p), the output I(7) of I under 7 is defined, and it must be 1, since ¢ A 7 is
satisfied by 7. We conclude that ¢ = I. A symmetric argument shows that ¥ = —1. |

An interpolation system computes circuits representing partial interpolants for each clause in
a proof. For the purposes of this paper, we will use the interpolation system for resolution
proofs shown in Figure 2 [21, 27, 33]. This interpolation system assigns 0 to initial clauses in
o, and 1 to initial clauses in . For derived clauses, it distinguishes three cases, depending
on whether the pivot variable z is local to ¢, that is, if it may appear in ¢ but not in 1, or
local to 1, or shared between ¢ and . We write I¢ (¢, 1)) for the circuit computed by the
system at a clause C' of a resolution refutation, and I(y,) = I?(p,4) for the circuit at the
empty clause. This circuit is an interpolant, as stated in the following theorem [21, 27, 33].

» Theorem 4. Let ¢ and v be formulas such that o A is unsatisfiable. For any resolution
refutation of ¢ and 1, the circuit I(p,) is an interpolant between ¢ and .

Further, the interpolation system is symmetric in the following sense [21].
» Lemma 5. Let I'(p,¢) = I(¢,) be the circuit computed by the system in Figure 2 where
the roles of ¢ and i are reversed. Then I(p,) +> —I'(p,).

4 Strategy Extraction by Interpolation

It is well known that the interpolant between two jointly unsatisfiable formulas identifies
which of these formulas is unsatisfiable given an assignment of their shared variables. In
particular, that applies to bipartitions of a QBF’s expansion induced by individual universal
variables, as stated in the following proposition.

» Proposition 6. Let ® = Q.p be a false QBF and let u be one of its universal variables.

Then o™ A @™ is unsatisfiable, and for any assignment 7 : var(p™*) Nvar(e*) — {0,1}, the
formula "=1") A 7 is unsatisfiable, where I is an interpolant between ™" and p*.

28:5

SAT 2024

28:6

Strategy Extraction by Interpolation

C{U‘ly“UZ] C?[)ul,w] Céﬁul.,uz] C£u1,u2]
(a) [T, 1] (ma Vv i) [T, T] (0) [L,T] (=b v —lte2) [T, T]
() [T.d () b, T)
L [b,a)

Figure 3 Exp+Res refutation of the QBF ¥ in the running example. Each clause C' is annotated
with partial interpolants [I€ (p ™1, 4"1), I (xp742,4)¥2)].

Proof. The formula ¢ A ¢ corresponds to the complete expansion, so it must be unsatis-
fiable because ® is false. By Proposition 3, for any assignment 7 : var(¢™*)Nvar(p*) — {0,1},
if I(7) =0, then ™ A 7 is unsatisfiable, and if I(7) = 1, then ¢“ A 7 is unsatisfiable. <

For the first universal variable u in the quantifier prefix, the variables shared between ™
and " are existential variables preceding u, every interpolant is a function in a winning
strategy, and vice versa [6]. However, generalising this correspondence between strategies
and interpolants to formulas with multiple universal variables is non-trivial. We first consider
a natural but unsuccessful approach in Section 4.1 before presenting a solution in Section 4.2.

4.1 A Naive Approach

An initially plausible idea for obtaining a winning strategy is to separately compute the
interpolant between ™% and "¢ for each universal variable u;. Unfortunately, that does
not work in general because functions obtained in this way lack coordination, as illustrated
by the following example [20].

» Example. Consider the QBF ¥ = Ja3bVuq, Vus3l.1), where

P =_(aV-u Vug) ANbVuV-uz)A(-aV-up V-oug VI)A (DY —ug V —ug V-l .

Cq Co Cs Cy

The QBF W is false, as witnessed by the Exp+Res refutation shown in Figure 3. Taking this
proof as a resolution refutation of the expansion exp(¥), we can apply the interpolation system
in Figure 2 to compute the interpolants (i)™, ¢¥1) = b and I(¢p"42,¢%?) = a. However,
(b,a) is not a universal winning strategy, since the satisfying assignment —a, —b, —uy, —us, |
of 1 is consistent with this strategy.

This issue can be circumvented by working with resolution refutations of the expansion
that are local-first, where resolution on shared pivot variables may occur only after local
variables have been removed by resolution [20]. However, imposing this kind of proof structure
may require rewriting and can lead to an exponential increase in proof size [1, 22].

4.2 Coordinated Interpolants are Strategies

To achieve coordination between interpolants, we will take the ordering of universal variables
in the quantifier prefix into account. To simplify notation, for the rest of this section, let
® = Q.p be an arbitrary but fixed, false QBF with n universal variables u, ..., u,, in their
left-to-right order in the quantifier prefix.

For the first variable uw;, we compute an interpolant I; between ¢! and %!, as
suggested above. Given an assignment 7 : var(p™"!) N wvar(p*) — {0,1} of the shared
variables, the interpolant computes an assignment I; (7) such that ¢**="1(") A7 is unsatisfiable.

F. Slivovsky

We generalise this to an inductive invariant for 1 < ¢ < n by requiring that the partial
assignment o : {uy,...,u;—1} — {0,1} of universal variables identifies a part ¢ of the
complete expansion that is unsatisfiable under the partial assignment 7 : D,_; N E — {0,1}
of existential variables. Technically, ¢ speaks about annotated existential variables, rather
than the original existential variables. Since their annotations are all consistent with o (by
definition of ¢7), this is not really an issue, but just to be formally precise, we add the
annotation to the assignment 7 and require that ¢ A 71°] is unsatisfiable.

To obtain a strategy function for u;, we now compute an interpolant within ¢°. Since

(o}

¢ is the union of ¢ % and ¢%% and ¢ A 719! is unsatisfiable, there is an interpolant

between ¢ % A 717 and %% A 711, We will call such an interpolant a o, T-interpolant.

» Definition 7 (o, 7-Interpolant). Let 1 <i < mn, let o : {uy,...,u;—1} — {0,1} be a partial
assignment of universal variables and T : D;_1NE — {0,1} a partial assignment of existential
variables such that ¢ A 7l is unsatisfiable. A o, T-interpolant is an interpolant between
XA 7ol and TN rlol.

Given an assignment of their shared variables, a o, 7-interpolant will determine which of

the two formulas %% A 7[] and %% A 719] is unsatisfiable, and maintain our invariant.

But it will only do that for the specific assignments o and 7. To obtain a strategy, we
need functions that compute o, 7-interpolants given assignments o, 7. Just like the formula
@7, a o, T-interpolant is defined on annotated existential variables. However, since the
interpolant can only use variables shared between 7" and 7", for each existential
variable e, the only annotated variable that can appear in the interpolant is el]. That allows
us to use circuits defined on the original variables to compute o, 7-interpolants by renaming
(annotating) the input variables. Extending our notation C [o] for annotated clauses, we write
1'% for the circuit obtained from I by replacing universal input gates u in the domain of ¢ by
the constant gate o(u), and replacing each existential input gate e by the annotated gate elol.
Following Hofferek et al. [20], we call a sequence of circuits computing o, T-interpolants an
n-interpolant.

» Definition 8 (n-Interpolant). An n-interpolant is a sequence I = (Iy,...,1I,) of circuits

with the following properties:

(a) Each I; is defined on variables D;, for 1 <i < n.

(b) For any pair of assignments o : U — {0,1} and 7 : E — {0,1} consistent with I, the
circuit Ii[oi’l] is a 0j_1,T;_1-interpolant whenever pl7i-11 A Ti[iifﬂ is unsatisfiable, for
each 1 <i<n.

Here, 0 = 0|{u,,...u;y and 7 = T|p,.

We first prove that an n-interpolant of a false QBF is a universal winning strategy.
» Proposition 9. An n-interpolant is a universal winning strategy.

Proof. Let I = (I3,...,I,) be an n-interpolant, and let o : U — {0,1} and 7 : E — {0,1}
be assignments consistent with I, formally I;(c U7) = o(u;) for 1 < ¢ < n. Further, for
1 <i<n,let 0y = 0|y, 4, and 7 = T|p, denote restrictions of these assignments as in
Definition 8.

We show that @7 A Ti[ai] is unsatisfiable for 0 < i < n. For o,, = 0, since o is a complete
assignment of universal variables, the annotated formula 7 is syntactically equivalent to
the restriction ¢[o] when annotations are dropped. So if ool A 7l9] is unsatisfiable, the
matrix ¢ must be falsified by o U 7. Since 7 was chosen arbitrarily, this would prove that

the n-interpolant is a universal winning strategy.

28:7

SAT 2024

28:8

Strategy Extraction by Interpolation

We proceed by induction on ¢. For ¢ = 0, the assignments ¢ and 79 are empty, and
P70 A T(EUO] coincides with the Herbrand expansion exp(®), which is unsatisfiable because the
QBF & is assumed to be false. Suppose the statement holds up to i — 1 < n. By definition,

Il-[g'i’l} b 1) is unsatisfiable by induction

[7«1] [7,1]

assigns all variables of IZ-[UZ 1]

is a 0;,_1,T;—1-interpolant, and since @7i-1 A T[

[tl]

hypothesis, I;” is an interpolant between 717" A7, and @7 1" A T Since

I; is defined on variables D;, the assignment 7'[i-1]

I[m 1](1[01 1]) = I;(0;_1 UT;) = o(u;). By Proposition 3, ¢ A T[Ui’l] /\T}Ui] is unsatisfiable,
[o4] [1]

, and

and since T[i J C 7, ", that is the same as saying that ¢ A7, " is unsatisfiable. |

The converse is true as well: every universal winning strategy is an n-interpolant. In
combination, we get the following result.

» Theorem 10. A sequence of circuits is a universal winning strategy if, and only if, it is
an n-interpolant.

Proof. The “if” direction follows from Proposition 9. For the “only if” direction, consider a
universal winning strategy S = (S1,...S5,), and let 0 : U — {0,1} and 7 : E — {0,1} be
assignments consistent with S. As before, let o; = 0|y, ... 4,3 and 7; = 7|p, for 0 < i < n.
Any strategy trivially satisfies property (a). To prove that S is an n-interpolant, we
additionally have to show (b) that for each 1 < 4 < n, the circuit S-[Ui’ll is an o;_1,Ti—1-

[01 1] [11

interpolant — that is, an interpolant between ¢7-17"" A7, 7" and % ~1% A7;" . Suppose

@7i=1 A 7'[=1} is unsatisfiable. We will prove that .S; [1] correctly identifies an unsatisﬁable

[L1] [L1]

formula among @7*=1""" AT, and @%i-v% AT.”' Y, given an assignment of the shared

variables. These are variables in Ti[iifl], as well as varlables shared between ¢?-1-"% and
p7i=1:% which are variables eloi-1l for some e € D; N E. Since 7;,_1 is an assignment
of D;,_1NE, and D;_1 C D,, every shared variable is an annotated variable eloi-1l for
e € D; N E. Now consider an arbitrary assignment v : D; N E — {0,1}, and its annotated
version vl7i-1l, If pl7i-1] is inconsistent with T[i1l , then both formulas @7i-17% A T[U’ 1]

[11]

and @%i-1% AT are unsatisfiable under thls assignment, so we can assume that v[7i-1]

O'
extends 7, i,

It follows that the responses of strategy S must coincide with as&gnment o
for universal variables preceding u;, formally S;(v) = o(u;) for each 1 < j < 4. Let ¢’ denote
the assignment o;_; extended by assigning o’(u;) = S;(v). The assignments ¢’ and v are
consistent with S, so like above, we can conclude that <p"/ A vl is unsatisfiable. Assume
first that o'(u;) = 0. Since v only assigns variables to the left of u;, variable u; does not
show up in annotations and plo'l = ploial, Further, recall that v[-1] extends T[U’ . Thus
@7 AVl = o A TZ-[TI DA Vo) = o g TZ-[TI A vloie1) is unsatisfiable. Similarly,

if o/(u;) = 1, then %% A 7'.[”"’1] A vl7i-1] is unsatisfiable. By Proposition 3, Sz[oi’l] is an

[11] [71]

interpolant between ¢7i-17% A1, and @71 AT, T, as claimed. <

4.3 Computing Coordinated Interpolants from Exp+Res Proofs

Theorem 10 does not refer to a proof system or interpolation algorithm. In this section, we
will show that an n-interpolant representing a universal winning strategy can be computed
from an Exp+Res refutation in time O(mn), where m is the number of clauses in the
refutation.

We use the interpolation system shown above in Figure 2, in combination with a function
that assigns clauses and variables to parts depending on a partial assignment of universal
variables. Let u; be a universal variable and o : {u,...,u;—1} — {0,1} an assignment

F. Slivovsky

of universal variables that precede it in the prefix, and let p € {0,1} be a truth value
for variable u;. We will compute an interpolant between % =P and its complement
exp(®) \ =P in the complete expansion. Such an interpolant must exist because the
complete expansion is unsatisfiable. Each clause C is assigned a partial interpolant I as
follows:
If C is an initial clause, then I¢ = 0 if C' € ¢7%=P and I¢ = 1 otherwise.!
If C is derived by resolution from clauses C7 V e* and —e* V Cy with partial interpolants
I' and I?, we distinguish two cases:
(1) If e < u;, then u; does not appear in the annotation y, and there are two options:
(a) If o is consistent with p, then e/ is a shared variable, and I¢ = ite(—e*, I, I?).
(b) Otherwise, if p is not consistent with o, then e* is local to exp(®) \ p7*=P and
I¢ =T N T2,
(1) TIf e > w;, then the annotation p contains a u;-literal, and again there are two cases:
(a) If p is consistent with o A (u; = p), then e is local to ¢®%=P and I¢ = I'V I?.
(b) Otherwise, if u is inconsistent with o A (u; = p), then e* is local to exp(®)\ pZ*i=P,
and I¢ = T' A T2,

Construction of Interpolant Circuits

The above definition lets us compute an interpolant between ¢?%=P and exp(®P) \ p7*=P
for a fixed assignment o of universal variables. By instead considering the universal variables
Up,...,u;_1 as inputs, we can construct circuits IC that take this assignment o as an input
and compute partial interpolants between %% =P and exp(®) \ p7*=P for each clause C.

For a given annotation p and index ¢ with 0 < ¢ < n, let HL denote a circuit that
compares p and with its input o : {uq,...,u;} — {0,1} and outputs 1 if p(u;) = o(u;) for
all1 <j<mn:

HL = /\ wuj) ¢ u;
j=1

With this, we define circuits Iic for each index 1 < i < n and clause C in the refutation,
where p € {0, 1} is a constant as above:

If 1 is an axiom, then I := — (Hffl A plu;) > p).

Otherwise, if C' is derived by resolution from clauses Cy V e and —e* V (s with partial

interpolants I} and I2, then we let IS¢ be one of the following two circuits, depending on

the order of e and w; (which is independent of the assignment o):

(1) If e < u;, let k be the maximum index such that uy < e, and
IY = ite(H) ite(—e, I} I7), I} N17?).

I1) Otherwise, if e > u;, let G := H'~' A u(u;) < p, and
I

IE =ite(G, I} v IZ I} N T?).

1907

We write I; := I for the circuits constructed at the empty clause.

Here, we assume that the complete assignment of universal variables used in the axiom rule is given. In
the implementation, where this full assignment is not part of the proof, we can assume that all universal
variables missing from annotations were assigned 0. A minor optimisation is to leave their assignments
open, and only fix them once we see a resolution step where the other premise has a partial interpolant
for such a variable.

28:9

SAT 2024

28:10

Strategy Extraction by Interpolation

cle cleve] ¢l clrve]
@) [T, 1] (maVview)[T,T] 0)[LT] (=bV ~lwe) [T, T]
(1“042) [T, a V —u] (=l“42) [b, T]
L[b,aV-u]

Figure 4 Exp+Res refutation of Figure 3, but each clause C is annotated with coordinated
interpolants [I7, IS].

» Example (continued). Figure 4 shows the circuits I, IS for each clause C of the Exp+Res re-
futation from Figure 3. The circuits IC are identical to the partial interpolants 1€ (1) ™"1, 1)%1)
computed before, but the circuits IS compute partial interpolants between ¢ "2 and
exp(P) \ 772 where o is an unknown assignment of u;. For instance, whether the ax-
iom Cgul’ﬂ”] is in ¥”7%2 or not depends on the assignment o(uq): if o(uy) = 1, then
clause C{ul’wz’] is in %72 and should receive the label 1; otherwise, the label should be T.
Accordingly, its partial interpolant is simply —u;. On the other hand, clause Cgul’uﬂ cannot
be in ¥ "2 simply because it was instantiated with literal us, so we can immediately set
its partial interpolant to T. The same is true of both axioms on the right side of the proof
tree. Similarly, the final resolution step on pivot {*1-“2 is local to ezp(¥) \ ¥ "2, and so the
partial interpolant for the resolvent is computed as (a V —u;) AT =a V —uy.

It is readily verified that the interpolants (b, a V —u4) are a universal winning strategy. In
particular, for the existential assignment —a A —b, which led to a counterexample for the naive

approach, it computes the assignment —u; A us, and the joint assignment falsifies clause Cs.

» Lemma 11. Let p € {0,1} be a constant. For every assignment o : {u1,...,u;—1} — {0,1}
and 1 < i < mn, the circuit Ii[a] is an interpolant between ¢” =P and exp(P) \ T "i=P,

o] that is equivalent

to the circuit I¢ computed by the symmetric interpolation system for clause C' and assign-

Proof. For each circuit Iic , applying the assignment o yields a circuit IiC

ment o, and this circuit I¢ is a partial interpolant between ™% =P and exp(®) \ @ *=P
for C. <

By sharing subcircuits, a circuit with one output for each I; can be computed from an
Exp+Res refutation in a single pass.

» Proposition 12. Let p € {0,1} be a constant. A circuit with n outputs computing I; for
each 1 <4 <mn can be constructed in time O(mn).

Proof. For each annotation u, a circuit computing HZL for each 1 < ¢ < n can be constructed
in time O(n) by using the fact that H/ ™ < H}, A (u(uiy1) <> uiq1) for 0 <i < n. For each
clause C, the circuit IiC can be constructed in constant time from HfL with 1 < j <iand
circuits IP for clauses B preceding C' in the refutation. So computing a circuit with outputs
representing I for a clause C takes time O(n), and there are m clauses in the refutation, so
it takes time O(mn) to construct a circuit with outputs representing I; for 1 <i < n. <

T, UG

Unless otherwise stated, we we let p = 0, and compute interpolants I; between
and exp(®P) \ 7. It remains to show that these can be used as interpolants between
@7 Al and %% A 717l That is not trivial, because an interpolant between ¢ % and
exp(P) \ %% may output 1 if exp(®) \ ¢ ™ is unsatisfiable even when % is satisfiable.
However, we can rule out this case for interpolants computed by the symmetric interpolation
system and prove the following result.

F. Slivovsky

» Proposition 13. The sequence I = (I1,...,1,) is an n-interpolant.

Proof. Each circuit I; takes variables from D; as inputs, thus satisfying Part (a) of Defin-
ition 8. For Part (b), let 7 : E — {0,1} be an assignment of existential variables and

o :{uy,...,up} — {0,1} an assignment of universal variables consistent with I. We have to

show that Ii[o“l] is a 0;_1,7_1-interpolant for each 1 < i < n, where 0; = 0|y, . u,}

and 7; = 7|p,. That is, we must demonstrate that Ii[ai’l] is an interpolant between
[oi-1]

@i A 717 and o A 7171 whenever o1 A 71701 s unsatisfiable.

Let J = (J1,...,Jn) be the sequence of “dual” interpolants for p = 1 between ¢
and ezp(®) \ ¢7*. By Lemma 11 and Proposition 3 in combination with unsatisfiability of
exp(®), if Il[gi‘l] outputs 0, then ¢ 7% A Ti[oi] is unsatisfiable, and if J~*) outputs 0, then

K2
PN Tl-[gi] is unsatisfiable. By induction on ¢, we will show that whenever the circuit I, i[ai’l]

]]

outputs 1, circuit Ji[[”‘1 outputs 0. Proposition 3 then tells us that Ii[c”‘1 is an interpolant

between 7i-1"%i A Ti[iifl] and @7i-1% A Ti[i'ifl], as required.

For i = 1, this follows from the symmetry of the interpolation system as stated in Lemma 5
and the fact that exp(®) \ ¢ ™% = ™. Let 1 < i < n and assume without loss of generality
that o(u;—1) = I;i—1(c UT) =0 (if o(u;—1) = 1, we simply apply the induction hypothesis to
obtain J;_1(0 U7T) =0 and work with J;_; instead). We now claim that Iz[”i‘l](Ti[ai‘l]) =1
and J}Ui’l](T}Ui’l}) =1 imply I}T{z](Ti[sz]) = 1. Since I;_1(cUT) = i[iile(ﬁ[iifﬂ) =0, it
would follow that whenever I; outputs 1, J; must output O.

To prove this claim, we compare the circuits I}Ui’l}, Ji[(”’l], and IZ-[T{ 2 Since they all
come from the same Exp+Res proof, they share its structure, and there is a one-to-one
correspondence between their gates. More specifically, we obtain gates in Ii[”i‘l] and Ji[‘”‘l]

from gates in Il-[iil’ 2] as follows:

]

1. 0-gates coming from initial clauses in ©?i-1% become 1-gates in [i[ai‘l and remain 0-gates

in JZ-[U"’I]. Symmetrically, 0-gates coming from initial clauses in ¢?¢-1""% become 1-gates

in Ji[(”’ll but remain 0-gates in Ii[gi’l].

2. 1-gates coming from initial clauses in exp(®) \ ¢?i-! remain 1-gates in both Il[gi’l] and
Ji[gi_l}, since exp(®) \ @71 C exp(®) \ @7i-1¢ for £ € {u;, ~u;}.

3. \/[-gat]es from resolution steps with pivots e?i-1% local to ¢?i-1'%i become A-gates in

I Oi—1

%

—U; —U;

, and V-gates from resolution steps with pivots e?i-1- local to Zi-1 become
. [0'171]
A-gates in J; .

4. V-gates from resolution steps with pivots e?:~! shared between ¢i-1""% and ¢

but local to ¢7¢~*, become ite-gates in Ii[oi’l] and JZ»[U""I].

Oi—1,Uq
’

5. A-gates coming from resolution steps local to exp(®) \ ¢7i~! remain A-gates.

6. ite-gates coming from resolution steps on variables shared between -t and exp(®)\p?i-1
remain ite-gates. That is because any such shared variable must be of the form e?* for
some k < i — 1, and so it will also be shared between ¢7-* and exp(®) \ ¢7~1¢ for
le {ui, _‘Ui}.

We now show, by induction on the position of a clause in the proof, that whenever its

corresponding gate outputs 1 under assignment 71%-1! in both Ii[gi’l] and Ji[a"’l]7 then the

] as well. We argue separately for each of the above cases:

gate must output 1 in Ii[cfl‘Q

1. If the clause is an axiom in %~ then we get contradicting constant gates in Ii[gi’l] and
Ji[ai’l], and the statement holds trivially.

2. For axioms in ezp(®) \ p%i-1, we get 1-gates in all three circuits, so the statement again

holds trivially.

28:11

SAT 2024

28:12

Strategy Extraction by Interpolation

3. For a clause derived by resolution on a pivot variable local to 7% or %% we get
an V-gate in Ii[[”’l] and an A-gate in Ji[g"’lk or vice versa. In either case, if both the
A-gate and the V-gate output 1, then there has to be an input that is 1 in both I}ai‘l}

and Ji[‘”’l]. By induction hypothesis, this input must also be 1 in Iz[iif 2}, and because

we have an V-gate for this clause in Il[i"fﬂ, its output must be 1 as well.

Oi—1,Uj5

4. If the pivot is shared between ¢?i-1-"%i and ¢ , but local to ¢?i-1, then we get
ite-gates in 7/~ and J17*~") that take their values from the same input under assignment
rl7i=1]If the output of the gate in both circuits is 1, that input must be 1 in both

circuits, and thus also in IZ»[Z"'I‘Z] by induction hypothesis. Since we get an V-gate for this

clause in IZ[a_il‘ﬂ, its output must be 1.

5. If the pivot is local to exp(®) \ i~ then we get an A-gate in all three circuits, and if
the gates in Ii[{”‘l] and Ji[”*‘l] output 1, we can again apply the induction hypothesis to
the inputs to conclude that the gate’s output has to be 1 in Ii[iif 2l as well.

6. Finally, if the pivot is shared between ¢7i-! and exp(®) \ ¢7i-1, we get ite-gates in all
circuits, taking their values from the same input under the assignment 717:-1. We can
once again apply the induction hypothesis to this input to conclude that the output of
the gate in IZ[Ujfz} has to be 1.

[oi-1]

This completes the induction argument. In particular, whenever the circuits I and

(3

JZ.[(””] both output 1, then Ii[ii{ 2l must output 1 as well, proving the claim. <

5 Experiments

We implemented the algorithm described in Section 4.2 within FERPMODELS,? a framework
for strategy extraction from Exp+Res proofs that supports round-based strategy extrac-
tion [19]. For reference, we also implemented strategy extraction based on combination of
partial strategies [34]. The modified version of FERPMODELS is available on GitHub.?

5.1 Setup

The pipeline for extracting and validating strategies for a false QBF in FERPMODELS
includes the following steps:

1. Solving the QBF with the expansion solver IJTIHAD [9)].

2. Using the SAT solver PICOSAT [7] to generate a proof of unsatisfiability of the final
expansion in the TRACECHECK format [36].

3. Generating and validating a FERP proof, which maps variables in the unsatisfiability
proof to annotated variables, and initial clauses to Exp+Res axioms.

4. Extracting the strategy as an AND-Inverter Graph (AIG) from the FERP proof.

5. Validating the strategy by conjoining its CNF encoding with the matrix of the QBF
using QBFCERT [30], and proving unsatisfiability of the resulting (propositional) formula.
Since these SAT calls are frequently a bottleneck, we decided to use CADICAL? here
instead of the default PICOSAT.

2 https://github.com/SFMV/ferp-models

3 https://github.com/fslivovsky/ferpmodels
1 https://github.com/arminbiere/cadical

https://github.com/SFMV/ferp-models
https://github.com/fslivovsky/ferpmodels
https://github.com/arminbiere/cadical

F. Slivovsky

The only step that varies between different versions used in our experiments is Step 4, so we
get an apples-to-apples comparison of strategy extraction algorithms. We refer to the three
versions as interpolant, combine, and round-based.

For our experiments, we used a cluster with AMD EPYC 7402 CPUs running 64-bit
Linux. We first identified 135 instances from the PCNF track of QBFEval 2020 that could
be solved by IJTIHAD within 15 minutes and with a memory limit of 8 GB. Of these, 92 are
false and were considered further for strategy extraction. For each of these formulas and
each strategy extraction algorithm, we ran the entire pipeline described above (including
QBF solving) once, using a time limit of 30 minutes and a memory limit of 32 GB.

5.2 Results

For 4 out of 92 instances, the strategy extraction step was not reached:

= For 3 instances, the proof generation in Step 2 failed. More specifically, for 2 instances,
PI1cOSAT was unable to solve the expansion (again) within the timeout. For 1 instance,
checking the UNSAT proof timed out.

= For 1 instance, the FERP trace generation in Step 3 ran out of memory.®

The numbers of extracted and verified strategies for the remaining 88 instances are shown in

Figure 5.

. Extracted . Verified

87 87
R0 82

@ 75
]
fas]
b7
= 50
3 42 41
[
()
£
g 25
Z

0

round-based combine interpolant

Figure 5 Number of extracted and verified strategies, by algorithm.

Strategies could be extracted by both interpolant and combine for 87 out of 88 instances
(for the remaining instance, Steps 1-3 take about 26 minutes, not leaving enough time
for strategy extraction), compared to 42 instances with round-based.® The numbers for
verified strategies follow a similar trend, with combine and interpolant seeing 80 and 82
verified strategies respectively, compared to 41 for round-based. Notably, the instances where

5 This could perhaps be addressed by switching from a binary resolution proof generated by TRACECHECK
to a more succinct proof format, but such optimisations are beyond of the scope of this work.

5 This number is slightly lower than the one reported in the original paper [19], probably because of a
more restrictive memory limit in our experiments (32 instead of 50 GB).

28:13

SAT 2024

28:14

Strategy Extraction by Interpolation

strategies could be extracted by interpolant and combine are the same, and these include
all instances where strategies could be extracted by round-based. Similarly, if a strategy for
an instance could be verified with round-based, it could be verified with combine, and every
instance verified with combine could be verified with interpolant.

As in previous experiments on strategy extraction [19, 30, 31], the validation step takes
up a significant fraction of the overall running time.

0-10s 10-100s 100-1800s

. Solving . TraceCheck Generation . FERP Generation . Strategy Extraction . Validation

Figure 6 Average fraction of running time spent on each step of the strategy extraction and
validation pipeline, grouped by overall running time.

Figure 6 shows that the longer the overall running time, the more time is spent on validation.
Figure 7 shows the number of instances for which strategies could be extracted within a
given time budget, for each algorithm. The running times for combine and interpolant are
very similar, and both algorithms can extract strategies for all but one instance within 250
seconds.

Figure 8 compares the number of nodes between AIGs for strategies extracted by the three
algorithms. As one would expect given the gap in running times, the strategies extracted by
round-based generally require much bigger AIGs than the strategies extracted by interpolant.
On average (geometric mean), the AIGs for round-based are about 30 times larger than for
interpolant. The biggest difference we saw was an instance where interpolant (and combine)
extract a strategy with 160 nodes, while the AIG for round-based required more than 100
million nodes. However, there was also an instance where the round-based strategy required
only about 600 nodes, compared to 20000 for interpolant. As the figure shows, the AIG
sizes are much more similar between interpolant and combine. On average, the strategies for
interpolant are larger by a factor of 1.6. There is an instance where the AIG for combine has
only about 2000 nodes, while the AIG for interpolant has 45000 nodes. Conversely, there is a
QBF where the strategy for interpolant requires 26000 nodes, while the strategy for combine
requires 48000 nodes. Finally, the strategy size achieved with combine was never larger than
the strategy size with round-based.

F. Slivovsky

75

Number of Instances

o~ round-based -4 combine -#- interpolant

200

400

Extraction Time (s)

600 800

Figure 7 Number of strategies extracted within a given time, by algorithm.

le+08

—

le+06

le4+04

AIG Size (Interpolant

le402

Interpolant vs. Round-Based

le+03 le+06

AIG Size (Round-Based)

le+09

le+08

le+06

le+04

le+02

Interpolant vs. Combine

s
o>
'
[]
[]
° @ o0
o
[]
&
[]
Az
(]
2

le+02 le+04 le+06 le+08

AIG Size (Combine)

Figure 8 Comparison of AIG Sizes for extracted strategies (logarithmic scale).

28:15

SAT 2024

28:16

Strategy Extraction by Interpolation

5.3 Discussion

The gap between round-based and the other two strategy extraction algorithms seen in our
results was expected. While the former performs multiple passes of the proof, one for each
quantifier block, the other two only require a single pass. However, given that the three
approaches are very different, it is surprising that combine and interpolant were consistently
better: there was no instance where strategies could be extracted with round-based, but not
with the other two algorithms, and the same is true for strategy verification. Even in terms
of AIG size, there was no example where round-based resulted in smaller strategies than
combine (there were a few instances where the AIGs were smaller with round-based compared
to interpolant, however).

Another surprise was the performance of combine compared to interpolant. While both
underlying algorithms have a running time of O(mn) for a proof with m lines and n universal
variables, a closer inspection shows that the hidden constant in this bound is about twice as
large for combine. In spite of that, combine closely matched interpolant, frequently leading
to smaller AIG sizes for strategies. One possible explanation for its good performance is that
combine works with local strategies that are immediately substituted for universal variables,
which in combination with hashing of AIG nodes may help compress strategies. By contrast,
during the construction of circuit I; for interpolant, universal variables u; with j < i are kept
as inputs. Only at the very end, the interpolant I; can be substituted for variable u;.

6 Related Work

Goultiaeva et al. first observed that winning moves for the universal player in the QBF
evaluation game can be efficiently extracted from Q-resolution refutations [18]. This result was
generalised to long-distance Q-resolution by Egly et al. [17], and to IRM-calc by Beyersdorff
et al. [5]. Efficient move extraction implies polynomial-time strategy extraction for proof
systems that are closed under restriction. Peitl et al. gave an explicit construction for
Q-resolution with a dependency scheme [32]. Balabanov and Jiang present a linear-time
strategy extraction algorithm for Q-resolution [2] that was adapted to long-distance Q-
resolution by Balabanov et al. [3]. Suda and Gleiss gave a local soundness argument for
many resolution-based QBF proof systems, including Exp+Res [38]. They interpret clauses
derived in these systems as abstractions of partial strategies, and show that resolution can
be understood as an operation for combining partial strategies. Schlaipfer et al. used this
interpretation of clauses as partial strategies, optimised for Exp+Res, to obtain an O(mn)
strategy extraction algorithm for a proof with m lines and n universal variables [34]. Chew
and Slivovsky generalised this approach to prove simulations of many clausal QBF proof
systems by extended QBF Frege [13].

Beyersdorff et al. lifted feasible interpolation as lower bound technique from propositional
logic to QBF proof systems [6]. They also observed that interpolants and winning strategies
coincide for the first universal variable in the quantifier prefix. Chew and Clymo extended
this observation by proving that feasible interpolation of the underlying propositional proof
system is necessary for polynomial-time strategy extraction in QBF expansion systems,
and that interpolation is sufficient for polynomial-time strategy extraction whenever the
propositional proof system is closed under restrictions [12].

Jiang et al. showed how to synthesise Boolean functions with a single output using
interpolation [25]. Their approach can handle multiple outputs (i.e., multiple universal
variables when applied to QBF strategy extraction) only by substituting functions and
computing interpolants one at a time. Hofferek et al. extended their approach to multiple

F. Slivovsky

outputs and described an interpolation system that simultaneously extracts n interpolants
from a single proof [20]. However, unlike the approach presented here, their interpolation
system only works with ordered (so-called local-first) proofs, and transforming a proof into
this shape may cause an exponential blowup.

7 Conclusion

This paper establishes a correspondence between strategy extraction, a key concept in QBF
solving and proof complexity, and interpolation, a well studied technique in logic: every
universal winning strategy of a QBF corresponds to a sequence of interpolants in its complete
expansion, and vice versa. This observation inspired a new strategy extraction algorithm for
QBF expansion proofs that performed well in our experiments. Correctness of this algorithm
is proved here only for a specific (symmetric) interpolation system [33]. To assess the
robustness of the correspondence between strategies and interpolants, it would be interesting
to know whether the algorithm also works with other interpolation systems. Another followup
question is whether it can be adapted to proof systems with partial annotations, such as IR-
calc [5]. Finally, and perhaps most importantly, we conjecture that the main idea presented
in this paper generalises beyond QBF to quantified SMT and instantiation-based first-order
theorem proving, where it might find applications in complex synthesis tasks [20].

—— References

1 Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. Theory Comput., 3(1):81-102, 2007.
doi:10.4086/T0C.2007.VO03A005

2 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Formal Methods Syst. Des., 41(1):45-65, 2012. doi:10.1007/810703-012-0152-6.

3 Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena Widl. Efficient
extraction of QBF (counter)models from long-distance resolution proofs. In Blai Bonet
and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 3694-3701. AAAI Press, 2015.
doi:10.1609/AAAT.V29I1.9750

4 Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, and Tomés Peitl. Hardness charac-
terisations and size-width lower bounds for QBF resolution. ACM Trans. Comput. Log.,
24(2):10:1-10:30, 2023. doi:10.1145/3565286.

5 Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory, 11(4):26:1-26:42, 2019. doi:10.1145/3352155.

6 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for QBF
resolution calculi. Log. Methods Comput. Sci., 13(2), 2017. doi:10.23638/LMCS-13(2:7)2017.

7 Armin Biere. Picosat essentials. J. Satisf. Boolean Model. Comput., 4(2-4):75-97, 2008.
doi:10.3233/SAT190039.

8 Armin Biere, Mathias Fleury, Nils Froleyks, and Marijn J. H. Heule. The SAT museum. In
Matti Jéarvisalo and Daniel Le Berre, editors, Proceedings of the 14th International Workshop
on Pragmatics of SAT co-located with the 26th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2023), Alghero, Italy, July 4, 2028, volume 3545

of CEUR Workshop Proceedings, pages 72-87. CEUR-WS.org, 2023. URL: https://ceur-us.

org/Vol-3545/paper6.pdf.

9 Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe Egly, Florian Lonsing, and
Martina Seidl. Two SAT solvers for solving quantified boolean formulas with an arbitrary
number of quantifier alternations. Formal Methods Syst. Des., 57(2):157-177, 2021. doi:
10.1007/S10703-021-00371-7.

28:17

SAT 2024

https://doi.org/10.4086/TOC.2007.V003A005
https://doi.org/10.1007/S10703-012-0152-6
https://doi.org/10.1609/AAAI.V29I1.9750
https://doi.org/10.1145/3565286
https://doi.org/10.1145/3352155
https://doi.org/10.23638/LMCS-13(2:7)2017
https://doi.org/10.3233/SAT190039
https://ceur-ws.org/Vol-3545/paper6.pdf
https://ceur-ws.org/Vol-3545/paper6.pdf
https://doi.org/10.1007/S10703-021-00371-7
https://doi.org/10.1007/S10703-021-00371-7

28:18

Strategy Extraction by Interpolation

10

11

12

13

14

15

16

17

18

19

20

21

Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Koénighofer, and Florian Lonsing. SAT-
based methods for circuit synthesis. In Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014, pages 31-34. IEEE, 2014. doi:10.1109/
FMCAD.2014.6987592.

Roderick Bloem, Robert Konighofer, and Martina Seidl. SAT-based synthesis methods for
safety specs. In Kenneth L. McMillan and Xavier Rival, editors, Verification, Model Checking,
and Abstract Interpretation — 15th International Conference, VMCAI 2014, San Diego, CA,
USA, January 19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer Science,
pages 1-20. Springer, 2014. doi:10.1007/978-3-642-54013-4_1.

Leroy Chew and Judith Clymo. How QBF expansion makes strategy extraction hard. In
Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning — 10th
International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I, volume 12166 of Lecture Notes in Computer Science, pages 66-82. Springer, 2020.
doi:10.1007/978-3-030-51074-9_5.

Leroy Chew and Friedrich Slivovsky. Towards uniform certification in QBF. In Petra Berenbrink
and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of
Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference),
volume 219 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik,
2022. doi:10.4230/LIPICS.STACS.2022.22.

William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log., 22(3):250-268, 1957. doi:10.2307/2963593.

Vijay Victor D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant
strength. In Gilles Barthe and Manuel V. Hermenegildo, editors, Verification, Model Checking,
and Abstract Interpretation, 11th International Conference, VMCAI 2010, Madrid, Spain,
January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Computer Science, pages
129-145. Springer, 2010. doi:10.1007/978-3-642-11319-2_{1}{2}.

Vijay Victor D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 27(7):1165-1178, 2008. doi:10.1109/TCAD.2008.923410.

Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation
and strategy extraction in search-based QBF solving. In Kenneth L. McMillan, Aart Mid-
deldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning — 19th International Conference, LPAR-19, Stellenbosch, South Africa, December
14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 291-308.
Springer, 2013. doi:10.1007/978-3-642-45221-5_21.

Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform approach for
generating proofs and strategies for both true and false QBF formulas. In Toby Walsh,
editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 546-553. IJCAI/AAALI,
2011. doi:10.5591/978-1-57735-516-8/IJCAI11-099.

Vedad Hadzic, Roderick Bloem, Ankit Shukla, and Martina Seidl. FERPModels: A certification
framework for expansion-based QBF solving. In Bruno Buchberger, Mircea Marin, Viorel
Negru, and Daniela Zaharie, editors, 24th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2022, Hagenberg / Linz, Austria, September
12-15, 2022, pages 80-83. IEEE, 2022. doi:10.1109/SYNASC57785.2022.00022.

Georg Hofferek, Ashutosh Gupta, Bettina Konighofer, Jie-Hong Roland Jiang, and Roderick
Bloem. Synthesizing multiple boolean functions using interpolation on a single proof. In Formal
Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pages 77-84. IEEE, 2013. URL: https://ieeexplore.ieee.org/document/6679394/.
Guoxiang Huang. Constructing Craig interpolation formulas. In Ding-Zhu Du and Ming Li,
editors, Computing and Combinatorics, First Annual International Conference, COCOON
’95, Xi’an, China, August 24-26, 1995, Proceedings, volume 959 of Lecture Notes in Computer
Science, pages 181-190. Springer, 1995. doi:10.1007/BFB0030832.

https://doi.org/10.1109/FMCAD.2014.6987592
https://doi.org/10.1109/FMCAD.2014.6987592
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/978-3-030-51074-9_5
https://doi.org/10.4230/LIPICS.STACS.2022.22
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-642-11319-2_{1}{2}
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-642-45221-5_21
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-099
https://doi.org/10.1109/SYNASC57785.2022.00022
https://ieeexplore.ieee.org/document/6679394/
https://doi.org/10.1007/BFB0030832

F. Slivovsky

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Mikolas Janota. On exponential lower bounds for partially ordered resolution. J. Satisf.
Boolean Model. Comput., 10(1):1-9, 2016. doi:10.3233/SAT190110.
Mikolas Janota, William Klieber, Jodo Marques-Silva, and Edmund M. Clarke. Solving QBF

with counterexample guided refinement. Artif. Intell., 234:1-25, 2016. doi:10.1016/J.ARTINT.

2016.01.004.

Mikolas Janota and Jodo Marques-Silva. Expansion-based QBF solving versus g-resolution.
Theor. Comput. Sci., 577:25-42, 2015. doi:10.1016/J.TCS.2015.01.048.

Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Interpolating functions from
large boolean relations. In Jaijeet S. Roychowdhury, editor, 2009 International Conference
on Computer-Aided Design, ICCAD 2009, San Jose, CA, USA, November 2-5, 2009, pages
779-784. ACM, 2009. doi:10.1145/1687399.1687544.

Laura Kovacs and Andrei Voronkov. Interpolation and symbol elimination. In Renate A.
Schmidt, editor, Automated Deduction — CADE-22, 22nd International Conference on Auto-
mated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 199-213. Springer, 2009. doi:10.1007/978-3-642-02959-2_
17.

Jan Krajicek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457-486, 1997. doi:10.2307/2275541.
Paolo Mancosu. Introduction: Interpolations — Essays in honor of William Craig. Synth.,
164(3):313-319, 2008. doi:10.1007/S11229-008-9350-6.

Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt
Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in
Computer Science, pages 1-13. Springer, 2003. doi:10.1007/978-3-540-45069-6_1.

Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere. Resolution-
based certificate extraction for QBF — (tool presentation). In Alessandro Cimatti and Roberto
Sebastiani, editors, Theory and Applications of Satisfiability Testing — SAT 2012 — 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture
Notes in Computer Science, pages 430-435. Springer, 2012. doi:10.1007/978-3-642-31612-8_
33.

Tomas Peitl, Friedrich Slivovsky, and Stefan Szeider. Polynomial-time validation of QCDCL
certificates. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Ap-
plications of Satisfiability Testing — SAT 2018 — 21st International Conference, SAT 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Ozxford, UK, July 9-12, 2018,
Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 253—-269. Springer,
2018. doi:10.1007/978-3-319-94144-8_16.

Tomas Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-resolution with depend-
ency schemes. J. Autom. Reason., 63(1):127-155, 2019. doi:10.1007/310817-018-9467-3.
Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981-998, 1997. doi:10.2307/2275583.

Matthias Schlaipfer, Friedrich Slivovsky, Georg Weissenbacher, and Florian Zuleger. Multi-
linear strategy extraction for QBF expansion proofs via local soundness. In Luca Pulina and
Martina Seidl, editors, Theory and Applications of Satisfiability Testing — SAT 2020 — 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture
Notes in Computer Science, pages 429-446. Springer, 2020. doi:10.1007/978-3-030-51825-7_
{3}{0}.

Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified boolean formulas. In 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, OR, USA, November /-6, 2019, pages 78-84. IEEE, 2019.
doi:10.1109/ICTAI.2019.00020.

28:19

SAT 2024

https://doi.org/10.3233/SAT190110
https://doi.org/10.1016/J.ARTINT.2016.01.004
https://doi.org/10.1016/J.ARTINT.2016.01.004
https://doi.org/10.1016/J.TCS.2015.01.048
https://doi.org/10.1145/1687399.1687544
https://doi.org/10.1007/978-3-642-02959-2_17
https://doi.org/10.1007/978-3-642-02959-2_17
https://doi.org/10.2307/2275541
https://doi.org/10.1007/S11229-008-9350-6
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-319-94144-8_16
https://doi.org/10.1007/S10817-018-9467-3
https://doi.org/10.2307/2275583
https://doi.org/10.1007/978-3-030-51825-7_{3}{0}
https://doi.org/10.1007/978-3-030-51825-7_{3}{0}
https://doi.org/10.1109/ICTAI.2019.00020

28:20

Strategy Extraction by Interpolation

36 Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining BDDs. In Dima
Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science — Theory and
Applications, First International Symposium on Computer Science in Russia, CSR 2006, St.
Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer
Science, pages 600-611. Springer, 2006. doi:10.1007/11753728_60.

37 Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. In John Paul Shen and Margaret
Martonosi, editors, Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, pages 404-415. ACM, 2006. doi:10.1145/1168857.1168907.

38 Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In Olaf Beyersdorff
and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing —
SAT 2018 — 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Ozford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture
Notes in Computer Science, pages 217-234. Springer, 2018. doi:10.1007/978-3-319-94144-8_
14.

39 Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE, 103(11):2021-2035, 2015. doi:10.1109/JPROC.
2015.2455034.

A Proof of Lemma 1

» Lemma 1. Let & = Qqv1...Quupn. be a QBF, and let « : {vy,...,v;} — {0,1} be a
partial assignment of its variables. Then exp(®[a]) and ¢° A Tl°) are equisatisfiable, where
oc=aly and T = a|g.

Proof. Let E; = {vy,...,v;} N E and U; = {vy,...,v;} NU. By definition, we have
exp(Pla]) = /\ /\ ol
p:U\U;—{0,1} Cepla]

Since every remaining existential variable in a clause C' € @[a] is to the right of every variable
in the domain of o, we can rename each literal £1? in exp(®[a]) to £[P°?] and obtain the
equisatisfiable formula

/\ /\ Clovr].

p:U\U; —{0,1} Cepla]

After that, we can replace the conjunction over clauses C' € p[a] with a conjunction over
clauses C' € [7], since @« = o U T, and the effect of applying o is taken care of by the
instantiation. We thus get

A cl— AN = A A

p:U\U;—{0,1} Cep[r] 0:U—{0,1} CeoplT] 0:U—{0,1} Ceep
aC#é aC#o
Because var(7) C {v1,...,v;}, 7% = 7l and
A ACHD = AN OO A = ol «
0:U—{0,1} Ceyp 0:U—{0,1} Cep

aC#o oCo

https://doi.org/10.1007/11753728_60
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1007/978-3-319-94144-8_14
https://doi.org/10.1007/978-3-319-94144-8_14
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034

	1 Introduction
	2 Preliminaries
	2.1 QBF Expansion Proofs

	3 Interpolation in Propositional Logic
	4 Strategy Extraction by Interpolation
	4.1 A Naive Approach
	4.2 Coordinated Interpolants are Strategies
	4.3 Computing Coordinated Interpolants from Exp+Res Proofs

	5 Experiments
	5.1 Setup
	5.2 Results
	5.3 Discussion

	6 Related Work
	7 Conclusion
	A Proof of Lemma 1

