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Abstract
Quantum Computing (QC) is a new computational paradigm that promises significant speedup
over classical computing in various domains. However, near-term QC faces numerous challenges,
including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity
constraint, circuit mapping is required for executing quantum circuits on quantum computers. This
process involves performing initial qubit placement and using the quantum SWAP operations to
relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit
mapping is essential for improving the success rate of quantum circuit execution as SWAPs are
costly and error-prone. In this work, we introduce a novel circuit mapping method by combining
incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT
encoding for circuit mapping problems, which significantly improves solver-based mapping methods
and provides a smooth trade-off between compilation quality and compilation time. Through
comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum
computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based
methods, reducing the compilation time from hours to minutes for important quantum applications.
Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.
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1 Introduction

There is compelling evidence that Quantum Computing (QC) can solve certain computational
problems exponentially more efficiently than classical computers [33, 39]. As a result,
transformative applications are expected to emerge in fields such as optimization [1, 11,
32], machine learning [8, 38], finance [10, 18, 21, 34], pharmaceuticals [13, 16, 24], and
cryptography [17, 39, 40].
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However, the practical realization of QC still faces numerous challenges, including limited
qubit connectivity on quantum computers and noisy quantum operations. Limited qubit
connectivity decreases the ability of quantum devices to execute arbitrary quantum circuits,
and noisy operations restrict the sizes of executable quantum circuits. Fortunately, these
hardware challenges can be mitigated at the software level by compiler optimizations.

Quantum compilers perform numerous transformations and optimizations to produce
compact and optimized circuit executables. The specific transformation we are concerned
with in this paper is circuit mapping. Circuit mapping involves the insertion of a special
quantum operation called the SWAP gate to map arbitrary quantum circuits to devices.
Since SWAP gates are costly and error-prone, the compiler must minimize the SWAP count.
Currently, there are two primary approaches to the circuit mapping problem: solver-based
algorithms [28, 44] and heuristics-based algorithms [26, 41]. Both approaches have their
drawbacks: solver-based algorithms achieve optimal SWAP count but suffer from long
compilation time; heuristic algorithms are fast, but the SWAP counts are usually suboptimal.

We propose a novel circuit mapping method based on incremental and parallel solving for
Boolean Satisfiability (SAT). Our approach aims to find a minimum number of SWAP gates
that accommodate the circuit mapping requirement by iteratively decreasing the SWAP-gate
count and checking feasibility with SAT solving. We use a dedicated SAT encoding that
enables incremental solving and we combine incremental and parallel solving techniques.
Compared to current solver-based algorithms, our method is 26x faster on average. Compared
to current heuristic algorithms, our method reduces the SWAP count by 26% on average.

In summary, our contributions are:
1. We design a novel SAT encoding for determining the satisfiability of mapping a circuit

with a given SWAP count.
2. By combining the novel SAT encoding and parameter search developed, we develop a new

circuit mapping method that achieves a smooth trade-off between compilation quality (in
terms of SWAP count) and compilation time.

3. By exploiting the problem structure, we develop an efficient implementation of the
proposed mapping method that combines incremental and parallel techniques.

4. We perform an extensive evaluation to show that the resulting approach is 26× faster
than the state-of-the-art solver-based method and outperforms the heuristic approaches
in 76% of the instances.

In the rest of this paper, Section 2 introduces the background on quantum circuit mapping
and preliminaries on SAT solving. We then present our SAT-based quantum circuit mapper
in Section 3 and give details on the full encoding in Section 4. Finally, we present our
experimental evaluation in Section 5 and conclude in Section 6.

2 Background

2.1 Quantum Circuit Mapping
We first illustrate the problem of quantum circuit mapping with an example. Subsequently,
we delve into the existing approaches addressing this problem.

2.1.1 An Illustrative Example
Figure 1a shows the qubit connectivity of (part of) the Aspen M-3 quantum computer,
manufactured by Rigetti Computing [36]. Figure 1b shows the circuit diagram of a 3-qubit
quantum circuit for the famous Quantum Fourier Transform (QFT) algorithm [14, 33]. The
QFT circuit has a 2-qubit gate between each pair of the three qubits.
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(a) Qubit connectivity graph of (part of) the
Rigetti Aspen M-3 quantum computer. Circles are
physical qubits and lines are physical links that
allow 2-qubit gates to be performed on.

|q1⟩ • • H

|q2⟩ • H Rπ/2

|q3⟩ H Rπ/2 Rπ/4

(b) An example 3-qubit QFT circuit. The 3 hor-
izontal lines represent the time schedules of the
quantum gates on the 3 algorithmic qubits q1, q2,
and q3. This circuit consists of 1-qubit Hadamard
gates (boxes labeled H) and 2-qubit controlled ro-
tation gates (solid dot and box labeled R that are
connected by a vertical line). In our problem set-
ting, the two qubits in controlled rotation gates can
be treated equally.

Figure 1 The mismatch between qubit connectivity of the Rigetti Aspen M-3 hardware and that
of the QFT circuit. On the Aspen M-3 device in Figure 1a, no three qubits are connected to each
other. In the QFT circuit in Figure 1b, each qubit is connected to the other two by a 2-qubit gate.

To execute the QFT circuit on the Aspen M-3 device, a circuit mapping procedure must
be performed by a quantum compiler. Circuit mapping involves two steps: initial qubit
placement and qubit routing. During initial qubit placement, the quantum compiler maps
each algorithmic qubit in the circuit to a physical qubit on the device, as shown in Figure 2a.

The QFT circuit requires each algorithmic qubit to interact with the other two. However,
on the qubit connectivity graph of Aspen M-3, no subgraph forms a three-qubit ring that
would allow pairwise qubit interaction. As a result, after initial qubit placement, the QFT
circuit still cannot be directly executed since it requires a non-local 2-qubit interaction that
is not supported by the device (see Figure 2a for a specific initial assignment). This gap
necessitates the second step in circuit mapping – qubit routing. When two (algorithmic)
qubit operands in a 2-qubit gate are mapped to non-adjacent physical qubits, the compiler
performs qubit routing to remap the two qubit operands to adjacent physical qubits before
scheduling the 2-qubit gate.

(a) The initial qubit placement step associates each
algorithmic qubit in the QFT circuit with a phys-
ical qubit on the Aspen M-3 device. Black lines
are connections required by the QFT circuit in Fig-
ure 1b. The line with red cross is not available on
the device.

|q1⟩ • • H

|q2⟩ • H ×
|q3⟩ H Rπ/2 Rπ/4 × Rπ/2

(b) The qubit routing step inserts a SWAP gate
(denoted as two crosses connected by a vertical line)
in the QFT circuit. After the SWAP insertion, the
last 2-qubit gate is now between q1 and q3 (it was
between q1 and q2, as shown in Figure 1b).

Figure 2 Mapping the 3-qubit QFT circuit in Figure 1b onto the Aspen M-3 device in Figure 1a.
First, algorithmic qubits are placed onto the device (Figure 2a). The last 2-qubit gate between
q1 and q2 cannot be scheduled as there is no link between them on the device.. After the SWAP
insertion (Figure 2b), the last 2-qubit gate is re-targeted to q1 and q3, which then can be scheduled.

SAT 2024
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Qubit routing is performed by inserting quantum SWAP gates [33]. A SWAP gate
is a special 2-qubit quantum gate that is not responsible for entangling qubit states for
computation, but for exchanging the qubit states for routing. Since a SWAP gate exchanges
qubit states, it affects the quantum gates scheduled behind it. After a SWAP insertion, the
gates scheduled after the SWAP gate that use one of the swapped qubits must be re-targeted
to the other qubit that it swaps to. Figure 2b gives an example of SWAP insertion for the
3-qubit QFT circuit from Figure 1b. From the example, we can see that SWAP gates can
alter the connectivity requirements of the quantum circuits to match them with the qubit
connectivity of the underlying quantum hardware.

2.1.2 Current Circuit Mapping Approaches
Currently, there are two main-stream approaches to the circuit mapping problem:

Heuristic Algorithms. Heuristic mapping algorithms usually optimize metrics designed by
humans and calculable within a bounded search depth. Examples of these metrics include
the total 2-qubit gate distance of the 2-qubit gates that remain t to be scheduled (the gate
distance of a 2-qubit gate measures how far away the two qubit operands are on the device
given the current mapping). In industrial quantum compilers, heuristic algorithms are among
the most popular choices because they provide fast compilation time. Notable examples
include the SABRE (SWAP-based BidiREctional heuristic search) algorithm [26] used in the
Qiskit compiler [2] and the architecture-aware mapping algorithm in the TKET compiler [41].
Optimality studies have shown that heuristic algorithms are far from the theoretical optimal
in terms of the output SWAP count [43].

Solver-based Algorithms. Alternatives to the heuristic methods rely on complete algorithms
to search for the minimal SWAP count. Existing work employs different types of solvers
for this purpose. The state-of-the-art solver-based algorithm is the TB-OLSQ2 mapper [28],
which translates the mapping problem to a satisfiability problem that can be solved by the
Z3 [15] SMT solver. SATMap [31] is another solver-based algorithm that is based on MaxSAT
solving but SATMap is not as efficient as TB-OLSQ2 due to a different choice of encoding.

2.2 Modern SAT Solving
Let {x1, x2, ..., xn} be a set of Boolean variables. A literal l is a variable x or its negation ¬x.
A clause C of size k is a disjunction of k literals, i.e., C = (l1 ∨ l2 ∨ ... ∨ lk). A formula φ in
Conjunctive Normal Formal (CNF) is a conjunction of clauses, i.e., φ = (C1 ∧ C2 ∧ ... ∧ Cm)
for some m > 0. An assignment of truth values to the variables in φ is called a solution if it
makes φ evaluate to true. We call φ satisfiable if there exists a solution and unsatisfiable
otherwise. Given a formula φ, modern SAT solvers can effectively find a solution or prove
that it is unsatisfiable by using the Conflict Driven Clause Learning (CDCL) scheme [29].
Many efficient solver implementations have emerged in recent years, including but not limited
to Kissat, CaDiCaL [9], CryptoMiniSat [42], MapleSAT [27], and Glucose [5].

Incremental Solving. Incremental solving is an effective technique supported by most
modern SAT solvers for solving a series of similar formulas. Incremental solving supports
the addition of new clauses and assumptions between SAT calls. A key benefit is that the
solver can keep and reuse internal states and clauses learned in previous SAT calls to speed
up solving for the new formula.
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Parallel Solving. Parallel solving seeks to distribute the computational workload of solving a
formula across multiple processors. There are primarily two categories of work. The partition
approaches try to split the formula equally into many sub-problems using heuristics and
solve them in parallel [4, 20, 23, 45]. Recent work in this line includes cube-and-conquer [23],
AmPharoS [4], and Paracooba [20]. Another line of work, called theportfolio approach, runs
multiple SAT solvers with different configurations in parallel to solve the original formula
and share information, such as, learned clauses between solvers. These approaches mainly
leverage the solver diversity to improve the overall solving speed. Portfolio approaches
are implemented by competition-winning solvers such as ManySAT [19], Mallob [37], and
ParKissat-RS [7].

2.3 Helper Functions
In this section, we introduce some of the helper functions that we use in our approach.

2.3.1 Linear Encoding of At-Most-One Constraints
Several constraints in our SAT formulation are At-Most-One (AMO) constraints. We leverage
a recursive scheme (also used in other works [22]), as a general helper function for encoding
AMO constraints in our SAT formulation. Each step of the recursion introduces a new
Boolean variable y. To encode the AMO constraint for a general set of Boolean variables
B = {b1, ..., bi, ..., bn}, we have,

AMO(b1, . . . , bn) =
{∧

1≤i<j≤n(¬bi ∨ ¬bj) n ≤ 4
AMO(b1, b2, b3, y) ∧AMO(¬y, b4, . . . , bn) otherwise

For a constraint with n variables, this encoding introduces n−3
2 auxiliary variables and

3(n− 2) clauses compared to n2−n
2 clauses using a naive pairwise encoding.

2.3.2 Totalizer Encoding
Our approach utilizes a cardinality constraint with an iteratively decreasing cardinality bound.
We hence describe the Totalizer encoding [6, 30] for cardinality constraints with varying
bounds. Below we present an example to encode the AtMostK constraint (l1+l2+l3+l4+l5 ≤
k). Figure 3 illustrates the encoding structure where every node is represented by a node
name and a list of variables. The leaf node indicates an input variable, e.g., node C with a
variable l1. The root node includes the indicator variables for the sum of input variables.
For example, assigning variable o2 in node O indicates that at least two variables of l1, ..., l5
are true, while a false assignment to o2 indicates that at most one input variable is assigned
to true. Every internal node represents an intermediate sum over its two children. For
example, node A represents the sum of variables from nodes C and D. The variables a1 and
a2 indicate whether the sum is at least one and two, respectively.

Following the structure, we can derive the encoding below. For any non-leaf node
P : p1, ..., pnp

with two children denoted by Q : q1, ..., qnq
and R : r1, ..., rnr

, we require at
least α + β variables of P to be true when node Q implies α many variables assigned to true
and node R indicates β many variables to be true, i.e.,

(qα ∧ rβ)→ pγ

⇐⇒ ¬qα ∨ ¬rβ ∨ pγ for α + β = γ, 0 ≤ α ≤ nq, 0 ≤ β ≤ nr, 0 ≤ γ ≤ np

SAT 2024
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O : o1, o2, o3, o4, o5

A : a1, a2

C : l1 D : l2

B : b1, b2, b3

E : l3 F : f1, f2

G : l4 H : l5

Figure 3 Totalizer encoding for l1 + l2 + l3 + l4 + l5 ≤ k.

where q0 = r0 = p0 = true. For the cardinality bound, we simply add a unit clause

¬ok+1

for AtMostK constraint or add ok for AtLeastK constraint. In our application, we are
interested in AtMostK constraints with iteratively decreasing bounds. Since ¬ok1 implies
¬ok2 for k1 < k2, we can add the unit clause for a smaller bound without deleting the
previous one, which is called incremental strengthening in the literature [3].

For a cardinality constraint with n variables and bound k, the Totalizer encoding requires
O(n log n) auxiliary variables and O(nk) clauses after simplification [12, 25].

3 SAT-based Circuit Mapping

Our novel quantum circuit mapper is called SATmapper. It is depicted in Figure 4. SATmapper
seeks to find a minimum number of SWAP gates that accommodate the quantum circuit
mapping requirement by iteratively decreasing the SWAP-gate count (S) and checking
feasibility for S using a modern SAT solver. Section 3.1 provides an overview of the
SATmapper framework. We then discuss the encoding and decoding processes in Section 3.2.
We discuss the solving techniques used by SATmapper in Section 3.3.

3.1 Framework
Figure 4 presents the framework of SATmapper. For a given number of SWAP count S,
SATmapper reduces the mapping problem to a SAT encoding and utilizes a SAT solver to
compute the feasibility of using no mote than S SWAP gates. The workflow runs from left to
right. Given three inputs: a quantum circuit, a quantum device (QPU), and an initial SWAP
count (S), SATmapper encodes the quantum circuit mapping problem into a SAT formula
in conjunctive normal form (CNF). A SAT solver takes the CNF as input and checks its
satisfiability. A satisfiable (SAT) result indicates that there is a valid mapping that uses no
more than S SWAP gates. In this case, we reduce the SWAP count S and continue the loop
to search for a mapping with fewer SWAP gates. We exit the loop when the solver returns
UNSAT, which indicates that we cannot decrease the SWAP count. Finally, we decode a
mapped circuit from the best result we’ve obtained so far.

Pseudo-code for this procedure is given in Algorithm 1 . Given a quantum circuit and a
device. we initialize S with the value produced by the state-of-the-art heuristic approach,
TKET. If TKET generates a mapping without any SWAP gates, we terminate and return
the mapping at Line 3. In the common case, TKET provides a mapping with S(> 0) SWAP
gates. Then, we start our SAT-based optimization from this S at Lines 4-11.
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Circuit

QPU

SWAP≤ S

Encoder CNF SAT
Solver

Reduce S

Decoder Mapped
CircuitUNSAT

SAT

Figure 4 SATmapper framework.

Algorithm 1 SATmapper(circuit, qpu).

1: S ← TKET(circuit, qpu);
2: if S = 0 then
3: return mapped circuit from TKET; ▷ It’s already optimal.
4: repeat
5: S ← S − 1;
6: φ← Encode(circuit, qpu, S);
7: sat← Solve(φ);
8: if sat is True then
9: solution← GetSolution(φ); ▷ Store the best result so far.

10: S ← CountSWAP(solution); ▷ Calculate the SWAP count in the solution.
11: until (sat is False) or (S = 0) or Timeout;
12: if solution is NULL then
13: return mapped circuit from TKET; ▷ No better result from SATmapper.
14: else
15: mappedCircuit← Decode(solution, circuit, qpu);
16: return mappedCircuit; ▷ Retrieve the best result within the time limit.

In every iteration, we reduce the best-known S by one to explore the possibility of
producing a lower SWAP count. We encode the circuit mapping with an upper bound of
S SWAPs into a formula φ at Line 6 and invoke a SAT solver to solve φ at Line 7. If φ

is satisfiable, the circuit can be mapped with no more than S SWAP gates and we store
the solution at Line 9. The solution contains the best mapping up to this point and can
later be decoded into a mapped circuit. We calculate the actual SWAP count implied by the
solution as this SWAP count can be smaller than the current upper bound S. Therefore,
we update the best-known SWAP count S with the actual value implied by the solution at
Line 10. We repeat the loop until the solver can’t find a better mapping, or S is zero, or
we exceed the time limit. If we can’t find a single solution in the loop, we return the initial
mapping from TKET at Line 13. Otherwise, a solution was stored and we decode at Line 15
a mapped circuit from this solution, which represents the mapping with the smallest SWAP
count obtained within the time limit.

3.2 Encoding Sketch
This section presents the key encoding idea for mapping a quantum circuit to a target device
using a given number of SWAP gates. We introduce the core variables that encode the basic
information for mapping circuits in Section 3.2.1. Next, Section 3.2.2 presents the encoding of
SWAP constraints which has a crucial impact on our system design in the following sections.

SAT 2024
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Other variables and constraints capture the mapping interaction between the circuit and
SWAP gates, and we defer the details of full encoding to Section 4. Finally, Section 3.2.3
illustrates how to decode the mapped circuit from a solution to our encoding.

3.2.1 Transition Step
We consider the circuit mapping in different temporal steps. Instead of the actual time step
in the circuit that increase gate by gate, we define a transition step that increases only after
SWAP gate insertion. The layout of a quantum device changes when the transition step
increases. Each layout update event is encoded as a new time step. Therefore, we start with
an initial layout at step 0 and move to step 1 after inserting SWAP gates to update the
layout. Given a qubit connectivity graph of a quantum device, we use a Boolean variable ct

k

for every positive step t and edge k to indicate whether the edge k is selected to perform a
SWAP at step t or not. ct

k is assigned to true if the edge is selected to perform a SWAP and
is assigned to false otherwise.

For every gate g and step t, we use a Boolean variable ot
g to indicate whether the gate g

has been scheduled by step t (including t) or not. If ot
g is assigned to true, gate g is scheduled

at step i with 0 ≤ i ≤ t and is assigned to false otherwise. For example, o1
g = True indicates

that the gate g has been scheduled by step 1, that is, scheduled at either step 0 or step 1.
Otherwise, o1

g is false and the gate g has to be scheduled at step t > 1.

3.2.2 SWAP Constraints
The constraint on SWAP count is crucial to our design of SATmapper as it is the only varying
constraint across iterations. Suppose we consider T transition steps and K edges of the
connectivity graph. During the transition, multiple SWAPs can be scheduled simultaneously
if there are no conflicts among them. For every step t > 0, adjacent edges can’t be selected
for SWAP at the same time because they share a common vertex, For any two edges k and
k′ sharing a common vertex, we assert then

¬ct
k ∨ ¬ct

k′ for t ∈ [1, T ]

The total number of SWAPs over T steps is at most S, i.e.,

T∑
t=1

K∑
k=1

ct
k ≤ S (1)

where ct
k indicates whether the edge k is selected to perform SWAP at step t. The cardinality

constraint (Equation 1) can be encoded into clauses using the Totalizer encoding detailed in
Section 2.3.2.

3.2.3 Mapped Circuit Decoding
Algorithm 2 describes how to decode a mapped circuit from a solution to our encoding. We
first decode an initial qubit placement from the solution, that is, the mapping from each
algorithmic qubit to a physical qubit at step 0. Then, we retrieve the number of transition
steps from the heuristic approach, TKET. Starting from Line 3, we decode the mapped
circuit step by step. We use a list l initialized at Line 4 to store the gates to be scheduled
in sequence. Except for the initial step (t = 0), we retrieve all SWAP gates at step t and
schedule them at Line 8 to update the layout. Since there is no conflict between the SWAP
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Algorithm 2 Decode(solution, circuit, qpu).

1: mappedCircuit← GetInitPlacement(solution);
2: T ← TKETstep(circuit, qpu);
3: for t← 0 to T do
4: l← an empty list;
5: if t > 0 then
6: for ct

k from solution do
7: if ct

k is True then
8: mappedCircuit adds a SWAP gate on edge k;
9: for ot

g from solution do
10: if ot

g is True then
11: for g′ ← the last to the first of l do
12: if g depends on g′ in circuit then
13: l inserts g after g′;
14: break
15: if g ̸∈ l then
16: l inserts g at the beginning;
17: for g ∈ l do
18: mappedCircuit adds g;
19: return mappedCircuit;

gates at the same step, they can be scheduled in any order. Following that, we retrieve other
gates scheduled at step t one by one starting from Line 9. For a gate g, we traverse the list l

in a reverse order (Line 11) to insert g after the last gate g′ that g depends on at Line 13,
which ensures g is scheduled after all dependent gates. If g has no dependent gates in l, we
insert g at the beginning of l at Line 16. After that, l contains a sequence of gates where
∀gi, gj ∈ l with i < j, gi doesn’t depend on gj and can be safely scheduled before gj . Finally,
we schedule every gate in l in sequence at Line 18 and return the mapped circuit at Line 19.

3.3 Solving Techniques
Any modern SAT solver can serve to solve the encoded CNF in Figure 4, such as Kissat,
CaDiCaL [9], and the like. To embrace the recent advance in parallel (cloud) SAT solving, we
can use a competition-winning parallel SAT solver instead like Mallob [37] or ParKissat-RS [7].
Furthermore, Section 3.3.1 presents the application of incremental solving techniques to
SATmapper. Finally, we introduce the combination of incremental and parallel solving in
Section 3.3.2 to benefit SATmapper from the best of both worlds.

3.3.1 Incremental Solving
Incremental solving is beneficial in solving a series of similar input formulas. For SATmapper,
only the AtMostK cardinality constraint on the SWAP count (Equation 1) varies over
iterations. According to Section 2.3.2, the Totalizer encoding of the AtMostK constraint
allows us to use a list of variables oi to indicate different upper bounds for the same encoding.
In every iteration of SATmapper, we can run an incremental SAT solver, for example, CaDiCaL,
with a different assumption. For example, we can impose Equation 1 in our encoding by
adding the assumption of ¬oS+1 to the SAT solver, where ¬oS+1 indicates that there won’t
be S + 1 input variables to be true, that is, at most S SWAP gates are allowed in the
mapping. When SATmapper moves to a lower SWAP count S′ with S′ < S, we add another
assumption ¬oS′+1 to indicate the new bound of no more than S′ SWAPs.

SAT 2024
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As a consequence, we can avoid encoding and reading the whole CNF at every iteration on
line 6 and 7 of Algorithm 1. Instead, the solver uses a new assumption literal and continues
to solve the formula. This incremental solving allows the solver to start from the previous
internal state and reuse learned clauses from previous iterations, which effectively reduces
the overall runtime across iterations.

3.3.2 Incremental Parallel Solving
Given the application of incremental or parallel solving to SATmapper individually, one would
wonder whether SATmapper can benefit from the best of both worlds. This section gives an
affirmative answer to this question by presenting an incremental and parallel SAT solver,
IncParKissat.

We have extended the state-of-the-art parallel SAT solver ParKissat-RS to support in-
cremental solving. Figure 5 depicts the framework of IncParKissat. IncParKissat takes an
original CNF as input and initially forks multiple Kissat with different configurations to run
in parallel. Each Kissat keeps an individual copy of the input CNF and maintains its clause
database throughout running. During the solving process, different solvers communicate with
each other by sending and receiving important learned clauses to facilitate the global solving.
When a solver finds a solution, a global termination signal is sent to the other solvers, and
all solver threads join the main thread. Alternatively, if a solver proves that the input CNF
is UNSAT, it terminates and joins the main thread. In either case, we output the result
into the main thread and continue the incremental solving by forking multiple solver threads
again. Every solver adds additional clauses φ to their database and continues to solve the
input formula from the previous internal state.

Solver 2

Clauses

Input

Solver 1

Clauses

Solver 3

Clauses

Output

fork

add ϕ add ϕ add ϕ

fork

join

clauses clauses

Figure 5 Framework of incremental and parallel SAT solver, IncParKissat.

The underlying solver Kissat used by IncParKissat does not currently support solving with
assumptions, but our application, assumptions are not required. Our implementation allows
IncParKissat to add extra clauses across incremental iterations. Because SATmapper only
requires a cardinality constraint with a decreasing upper bound across iterations, the ability
to add a unit clause across iterations is sufficient. This is because ¬ok1 implies ¬ok2 for
k1 < k2 in the Totalizer encoding, so we can add the unit clause for a smaller bound without
deleting the previous one, as described in Section 2.3.2. IncParKissat could be extended
to support solving with assumptions by replacing the underlying SAT solver Kissat with
CaDiCaL.
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4 Full SAT Encoding

We present the full SAT encoding for the quantum circuit mapping problem in this section.
Our encoding uses a transition-based step instead of the actual time steps in the circuit.
After SWAP insertion, the layout of the quantum device is updated and we call the layout
update a transition. Each layout transition event will be encoded as a new time step. The
decision of whether a gate has been scheduled by a layout transition or not is encoded as a
Boolean variable.

As follows, Section 4.1 introduces the formal definition for input and Section 4.2 discusses
the pre-processing steps. We define the encoding variables in Section 4.3 and constraints in
Section 4.4. We analyze the asymptotic encoding size in Section 4.5.

4.1 Problem Input
There are three inputs to the SAT formulation: (1) The quantum circuit to be mapped,
which is represented as an ordered list of n 2-qubit1 quantum gates G = {g1, ..., gi, ..., gn}
and V algorithmic qubits; (2) The qubit connectivity graph of the quantum device, including
P physical qubits and K connecting edges eij for i, j ∈ [1, P ] and i ̸= j; (3) the desired
physical SWAP gate number S.

4.2 Pre-processing
We perform two simple initialization steps as pre-processing of the SAT encoding:

Initialization of the input qubit connectivity graph. We initialize an ordered list
E = {d1, ..., dk, ..., dK} of edges, where each dk uniquely corresponds to an edge eikjk

in
the input qubit connectivity graph, and K is the total number of edges in the connectivity
graph. The order of edges eij in E can be chosen arbitrarily. For each dk, we denote the
larger qubit index it connects as dk.opmax and the smaller qubit index as dk.opmin.
Initialization of gate dependency list. For gi in G, we denote the larger gate operand
as gi.opmax and the smaller operand as gi.opmin and initialize them in an array. Both
gi.opmax and gi.opmin are fixed for i ∈ [1, n]. Further, we initialize the gate dependency
list lg = {(g1

1 , g1
2), ..., (gi

1, gi
2), ...}, each pair of gates denotes that gi

2 is dependent on gi
1

and thus gi
2 cannot be scheduled before gi

1. lg can be generated by enumerating the gates
on each qubit.

4.3 Encoding Variables
Schedule ot

gi
: if gate gi has been scheduled in step t, t ∈ [0, T ], then ot

gi
= True, otherwise,

ot
gi

= False. 2-qubit gates can only be scheduled after their algorithmic qubit operands
are mapped to connected physical qubits on the connectivity graph. We set the number
of transition steps T to be the same as the output of the heuristic approach, TKET.
Layout πt

ij : After step t (and before step t + 1 if t < T ), if qubit i is mapped to qubit j,
then πt

ij = True, else πt
ij = False. Here i ∈ [1, V ], j ∈ [1, P ], t ∈ [0, T ].

SWAP operand selection ct
k: if edge k ∈ [1, K] is selected for performing a SWAP at step

t ∈ [1, T ], then ct
k = True, otherwise, ct

k = False. There are no SWAPs in the initial step,
when t = 0.

1 We don’t consider 1-qubit gates because they can always be scheduled.
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4.4 Constraints
Gate schedule initialization. For step t ∈ [0, T ) and gate gi ∈ G, it’s impossible that
gi is scheduled after step t, but not scheduled after step t + 1, i.e.,

¬(ot
gi
∧ ¬ot+1

gi
)

⇐⇒¬ot
gi
∨ ot+1

gi
for i ∈ [1, n], t ∈ [0, T )

by de Morgan’s law. Also, all gates should be scheduled after step T , i.e.,

oT
gi

= True for i ∈ [1, n]

Gate dependency. For (gi, gj) ∈ lg, gj cannot be scheduled before gi:

¬(¬ot
gi
∧ ot

gj
) for (gi, gj) ∈ lg, and t ∈ [0, T )

similarly, by de Morgan’s law, it can be re-written as

ot
gi
∨ ¬ot

gj
for (gi, gj) ∈ lg, and t ∈ [0, T )

Gate schedule continuation. For all i ∈ [1, n] and t ∈ [1, T ], if gate gi is not scheduled
after step t− 1 and its qubit operands are not mapped to connected physical qubits after
step t, then gi will not be scheduled after step t.¬ot−1

gi
∧

∧
(j,l)∈E

¬
(
(πt

gi.opmaxj ∧ πt
gi.opminl) ∨ (πt

gi.opmaxl ∧ πt
gi.opminj)

)→ ¬ot
gi

for i ∈ [1, n], and t ∈ [1, T ], which can be re-written as

ot−1
gi
∨ ¬ot

gi
∨

∨
(j,l)∈E

(πt
gi.opmaxj ∧ πt

gi.opminl) ∨ (πt
gi.opmaxl ∧ πt

gi.opminj)

where the big disjunction can be resolved by introducing auxiliary variables. For t = 0,

¬o0
gi
∨

∨
(j,l)∈E

(π0
gi.opmaxj ∧ π0

gi.opminl) ∨ (π0
gi.opmaxl ∧ π0

gi.opminj) for i ∈ [1, n]

Bounded SWAP selection. For every step t > 0, adjacent edges can’t be selected for
SWAP at the same time to avoid simultaneous SWAPs on the same qubit, i.e., for any
two edges dk and dk′ sharing a common vertex,

¬ct
k ∨ ¬ct

k′ for t ∈ [1, T ], k, k′ ∈ [1, K]

The total number of SWAPs over T steps is at most S, i.e.,
T∑

t=1

K∑
k=1

ct
k ≤ S (2)

where the cardinality constraint (Equation 2) can be encoded into clauses using the
Totalizer encoding detailed in Section 2.3.2.
Bijective layout mapping. The layout mapping πt

ij after each step t is required to be
injective, i.e.,

AMO({πt
ij}P

j=1) for i ∈ [1, V ], and t ∈ [0, T ]
AMO({πt

ij}V
i=1) for j ∈ [1, P ], and t ∈ [0, T ]
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Layout mapping update. After each step t > 0, πt−1
ij will be updated to πt

ij . If a
SWAP in step t is performed on the k-th edge dk in E (w.l.o.g., we assume dk stores edge
eij , i.e., the vertices i and j are endpoints of edge k.), then we have the following: (1) if
an algorithmic qubit m is mapped to physical qubit i after step t− 1 (i.e., πt−1

mi = True),
then πt

mj = True:

(ct
k ∧ πt−1

mi )→ πt
mj for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

⇒ ¬ct
k ∨ ¬πt−1

mi ∨ πt
mj for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

(2) similarly, if an algorithmic qubit m is mapped to physical qubit j after step t − 1,
then πt

mi =True,

¬ct
k ∨ ¬πt−1

mj ∨ πt
mi for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

(3) if an algorithmic qubit m is not mapped to i, j, then the qubit mapping after step
t− 1 and after step t are the same,

¬ct
k ∨ ¬πt−1

ml ∨ πt
ml for m ∈ [1, V ], l ∈ [1, P ], l ̸= i, l ̸= j, k ∈ [1, K], t ∈ [1, T ]

4.5 Complexity Analysis
Theorem 1 states the asymptotic number of variables and clauses introduced by our encoding.
The encoding size increases approximately linearly with the number of transition steps.

▶ Theorem 1. Given a quantum circuit of n gates, a quantum device of k edges in its
connectivity graph, and t transition steps with s SWAP gates, the SATmapper encoding
requires O (tk(n + log tk)) variables and O

(
tk(k + s + n2)

)
clauses.

Proof. Assume the quantum circuit has v algorithmic qubits and the device has p physical
qubits. We first consider the number of variables. We have O(tn + tvp + tk) original
variables introduced in Section 4.3. The gate schedule continuation introduces O(tnk)
auxiliary variables for resolving the big disjunction. The bounded SWAP selection introduces
O(tk log tk) auxiliary variables for the cardinality constraint. The bijective layout mapping
introduces O(tpv) auxiliary variables for AMO constraints. As a result, we have O(tvp +
tnk + tk log tk) ⊆ O (tk(n + log tk)) variables in total, assuming, w.l.o.g., v ∈ O(n) and
p ∈ O(k).

For the number of clauses, the gate schedule initialization requires O(tn) clauses and
the gate dependency constraints produces O(tn2) clauses. The gate schedule continuation
has O(tnk) original clauses and O(tnk) auxiliary clauses introduced to resolve the big
disjunction. The bounded SWAP selection requires O(tk2) clauses for non-conflict selection
and O(tks) auxiliary clauses for encoding the cardinality constraint. Finally, the bijective
layout mapping introducesO(tvp) clauses to encode AMO constraints, and the layout mapping
update produces O(tkv2) clauses. In total, we have O(tn2 + tnk + tk2 + tks + tvp + tkv2) ⊆
O

(
tk(k + s + n2)

)
clauses assuming v ∈ O(n) and p ∈ O(k). ◀

5 Experimental Evaluation

To evaluate our approach, we have implemented a prototype of SATmapper and com-
pared it with the state-of-the-art solver-based method, TB-OLSQ2, and the best heuristic
approach,TKET. We have conducted a comprehensive evaluation on seventy-eight instances
ranging over two quantum computer devices, OQC Lucy [35] and Rigetti Aspen M-3 [36], and
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three quantum algorithms including QAOA ansatz for k-regular graphs, Quantum Fourier
Transform (QFT), and Quantum Volume (QV) circuits, with various numbers of algorithmic
qubits. All experiments were conducted on Amazon EC-2 instances c6a.48xlarge featuring
192 CPUs.

We used a time limit of 1800 seconds per instance. We set 16 CPUs and recorded
the wall-clock time for parallel solvers. We set the step number T to be the same as the
output of TKET. The runtime of TKET is less than one second on the given instances.
We don’t include this time since it is negligible compared to the solving time. The Rigetti
Aspen M-3 and OQC Lucy devices contain 32 and 8 physical qubits, respectively, and the
number of algorithmic qubits to be mapped cannot be more than the available number of
physical qubits. We define the following three metrics to measure the performance of SWAP
count optimization for SATmapper and TB-OLSQ2. Lower is better for all metrics and both
SATmapper and TB-OLSQ2 start with an initial upper bound obtained by TKET.

Failure Ratio. The ratio of instances where no improvement against TKET is observed.
SWAP Ratio. The ratio of the best SWAP count to that of TKET on average.
Median Runtime. The median runtime across all instances.

Particularly, we aim to address the following questions:
RQ1. Is SATmapper able to outperform TB-OLSQ2?
RQ2. What is the best underlying solver for SATmapper?

Summary. SATmapper outperformed TB-OLSQ2 on all three metrics, achieving a reduction
of 57 percent for failure ratio and six percent for SWAP ratio, and lowering the median
runtime from 237 to 9 seconds. Additionally, IncParKissat is the best-performing underlying
solver for SATmapper by combining incremental and parallel solving.

5.1 RQ1. SATmapper vs. TB-OLSQ2
Table 1 summarizes the comparison between TB-OLSQ2 and SATmapper (equipped with
IncParKissat) through the three metrics and note that the lower is better for all metrics. The
first row presents the failure ratio, where TB-OLSQ2 had no improvement on 81% instances
while SATmapper only failed on 24% instances achieving a reduction of 57 percent. In the
second row, TB-OLSQ2 attained a SWAP ratio of 0.80 on average while SATmapper lowered
the ratio to 0.74 by an improvement of six percent. Finally, the median runtime of TB-OLSQ2
is 237 seconds across all instances. As a comparison, SATmapper median runtime is only 9
seconds, which achieves a 26-fold reduction compared to TB-OLSQ2.

Table 1 Performance comparison between TB-OLSQ2 and SATmapper.

Metric TB-OLSQ2 SATmapper

Failure Ratio 0.81 0.24
SWAP Ratio 0.80 0.74
Median Runtime/s 237 9

Table 2 presents a detailed comparison on a subset of instances. The first column gives
the instance name in a format that lists device name, algorithm name, and number of
algorithmic qubits. The next three columns compare the number of SWAPs optimized by
TKET, TB-OLSQ2, and SATmapper. On easy instances with fewer than ten algorithmic qubits,
both TB-OLSQ2 and SATmapper can improve the results against TKET and SATmapper can
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Table 2 SWAP optimization comparison on a subset of instances.

SWAP Count Runtime/s
Instance TKET TB-OLSQ2 SATmapper TB-OLSQ2 SATmapper

Aspen-qaoa-3reg-n-8 5 3 3 1.97 3.32
Aspen-qaoa-3reg-n-10 6 4 4 1.67 2.37
Aspen-qaoa-3reg-n-12 19 8 7 116.85 1732.92
Aspen-qaoa-3reg-n-14 11 8 8 192.78 5.33
Aspen-qaoa-3reg-n-16 17 12 11 925.10 414.73
Aspen-qft-n-8 18 13 12 201.95 45.80
Aspen-qft-n-9 24 19 16 793.87 447.15
Aspen-qft-n-10 37 Failed 24 Failed 609.81
Aspen-qft-n-11 58 Failed 34 Failed 1335.53
Aspen-qft-n-12 55 Failed 40 Failed 1651.05
Aspen-qv-n-8 11 10 8 89.19 18.43
Aspen-qv-n-10 47 Failed 27 Failed 1640.08
Aspen-qv-n-12 56 Failed 50 Failed 513.64
OQC-qaoa-3reg-n-8 7 7 7 0.17 1.12
OQC-qft-n-8 28 23 23 14.15 4.44
OQC-qv-n-8 17 13 13 3.03 5.59

find lower SWAP counts than TB-OLSQ2. On hard instances of at least ten algorithmic
qubits, TB-OLSQ2 failed to produce any better result for the QFT and QV instances while
SATmapper still improved the results of TKET by around 15 SWAPs.

The last two columns of Table 2 compare the runtime. SATmapper is slightly slower
on easy instances that TB-OLSQ2 could solve within a few seconds because of a constant
overhead, but SATmapper is consistently faster than TB-OLSQ2 on harder instances. We still
observe that SATmapper spent a significantly larger time than TB-OLSQ2 on some instances,
for example, Aspen-qaoa-3reg-n-12. This is because SATmapper tried to find a lower SWAP
count than TB-OLSQ2, which considerably increases the difficulty. If SATmapper stopped
at eight SWAPs on this instance, the total runtime would be twenty seconds only, which
is lower than the runtime of TB-OLSQ2, but the effort to find a mapping of seven SWAPs
took the remaining 1712 seconds. The example also revealed the drastically increased
difficulty when lowering the SWAP count. It’s worth highlighting that SATmapper even
used less time to produce a lower SWAP count than TB-OLSQ2 on many instances such as
Aspen-qaoa-3reg-n-16, Aspen-qft-n-8, and Aspen-qv-n-8.

5.2 RQ2. Underlying Solver for SATmapper
Table 3 compares the performance of SATmapper when using different underlying SAT
solvers. Specifically, we aim to benchmark the performance of incremental and parallel-
solving techniques for SATmapper. Every column indicates SATmapper equipped with a
particular solver. Kissat [9] is a state-of-the-art sequential SAT solver without incremental
and parallel-solving techniques. CaDiCaL refers to using the CaDiCaL SAT solver [9] in
incremental mode. Pbop is a non-incremental, clause-sharing parallel SAT solver based on
Kissat. IncParKissat is the incremental and parallel SAT solver described in Section 3.3.2.
Table 3 indicates that SATmapper with IncParKissat achieved the best performance on all
three metrics. Particularly, both CaDiCaL and Pbop outperformed Kissat, which reveals the
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Table 3 Performance comparison for SATmapper with different underlying solvers.

Metric Kissat CaDiCaL Pbop IncParKissat

Failure Ratio 0.27 0.26 0.25 0.24
SWAP Ratio 0.78 0.78 0.76 0.74
Median Runtime/s 183 137 18 9

individual benefits gained from incremental and parallel solving, respectively. Finally, the
combination of incremental and parallel solving allows IncParKissat to benefit from the best
of both worlds.

6 Conclusion

SWAP count optimization during quantum circuit compilation is critical to deploying quantum
algorithms on current generation quantum devices. The existing solver-based method to
address this problem does not scale well, but the fast heuristic approach tends to produce
low-quality results. Our approach, based on SAT solving, outperforms the existing solver-
based approach. It scales better and can produced smaller SWAP counts. It also produce
higher-quality quantum circuits that the best heuristics methods. We implement the SWAP
count optimization as a series of calls to a SAT solver. We introduced a novel SAT encoding,
and developed an efficient implementation by combining incremental and parallel-solving
techniques. A comprehensive evaluation on real-world quantum algorithms and devices
demonstrates that our method is 26× faster than the existing solver-based approach and
produces better results. Our method also improved on the heuristic approach on 76% of
instances and achieved an average of 26% reduction in SWAP count.
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