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Abstract
We obtain the smallest unsatisfiable formulas in subclasses of k-CNF (exactly k distinct literals per
clause) with bounded variable or literal occurrences. Smaller unsatisfiable formulas of this type
translate into stronger inapproximability results for MaxSAT in the considered formula class. Our
results cover subclasses of 3-CNF and 4-CNF; in all subclasses of 3-CNF we considered we were
able to determine the smallest size of an unsatisfiable formula; in the case of 4-CNF with at most 5
occurrences per variable we decreased the size of the smallest known unsatisfiable formula. Our
methods combine theoretical arguments and symmetry-breaking exhaustive search based on SAT
Modulo Symmetries (SMS), a recent framework for isomorph-free SAT-based graph generation. To
this end, and as a standalone result of independent interest, we show how to encode formulas as
graphs efficiently for SMS.
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1 Introduction

A (k, s)-formula is a propositional CNF formula in which each clause has exactly k distinct
literals and each variable occurs (positively or negatively) in at most s clauses. Since Tovey [27]
initiated the study of (k, s)-CNF formulas in 1984, they have been the subject of intensive
investigation [3, 4, 7, 9, 10, 11, 12, 15, 21, 25]. Using Hall’s Marriage Theorem, Tovey showed
that all (3, 3)-CNF formulas are satisfiable, but allowing a fourth occurrence per variable
yields a class of formulas for which the satisfiability problem is NP-complete. Kratochvíl,
et al. [21] generalized this result and showed that for each k ≥ 3, there exists a threshold
s = f(k) such that all (k, f(k))-formulas are satisfiable and checking the satisfiability of
(k, f(k) + 1)-formulas (the (k, s)-SAT problem) is NP-complete. Therefore, determining
whether (k, s)-SAT is NP-hard boils down to identifying an unsatisfiable (k, s)-formula.
While tight asymptotic bounds for the threshold have been obtained [10], exact values are
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31:2 Small Unsatisfiable k-CNFs with Bounded Literal Occurrence

only known for k ≤ 4 [11]: f(3) = 3, f(4) = 4; f(5) ∈ [5, 7]. No decision procedure is
known for determining the threshold f(k), since no upper bound on the size of a smallest
unsatisfiable (k, s)-formula is known for k > 4.

It is an intriguing question of extremal combinatorics to determine the size of the smallest
unsatisfiable (k, s)-formulas (with s > f(k)), and this paper sets out to address this question
for various values of the parameters. This requires proving lower and upper bounds – an
upper bound typically consists in exhibiting a formula with suitable parameters, while a
lower bound requires a proof that no such formulas of a particular size exist. For k = 3, the
unsatisfiable (3, 4)-formula constructed by Tovey [27] has 40 clauses, this was later improved
to 19 and then 16 by Berman, et al. [3, 4].

A simple counting argument shows that such a formula must contain at least 8 clauses,
hence there is a significant gap between the known lower and upper bounds. For k = 4, the
gap is even larger. Stříbrná [26] constructed an unsatisfiable (4,5)-CNF formula with 449
clauses, which Knuth [20, p. 588] improved to 257. The same counting argument shows that
such a formula must contain at least 16 clauses.

All constructions above have the following in common. A satisfiable (k, s)-formula with a
backbone variable x that must be false in all satisfying truth assignments is first constructed.
Such a formula is called a (k, s)-enforcer. Then one combines k copies of this formula together
with a k-clause with the k backbone variables to obtain an unsatisfiable (k, s)-CNF formula.
Aside from providing an upper bound for the size of a smallest unsatisfiable (k, s)-formula,
the size of unsatisfiable (k, s)-enforcers has a direct effect on inapproximability results for
certain NP-hard Max-SAT problems [3]. We also address the problem of the smallest size of
a (3, s) or (3, p, q)-enforcer in this paper.

Contribution

In this paper, we develop a general approach to computing small unsatisfiable (k, s)-formulas
and (k, s)-enforcers. We also consider the more fine-grained setting of (k, p, q)-formulas, where
p and q bound the number of positive and negative occurrences per variable, respectively.
We observe a similar threshold phenomenon in the complexity of (k, p, q)-SAT as in the case
of (k, s)-SAT (Lemma 4).

Our approach rests on utilizing the SAT Modulo Symmetries (SMS) framework [18, 16]
for isomorph-free generation of unsatisfiable (k, s) and (k, p, q)-formulas for a fixed number n
of variables and number m of clauses with parameters k, s, p, q.

The basic setting without any techniques for speed-up and divide-and-conquer scales up
to about m = 13. We then use further theoretical arguments together with techniques for
speed-up to determine the size of smallest formulas in various setting.

Smallest unsatisfiable formulas. We determined the size of smallest unsatisfiable (3, s) and
(3, p, q)-formulas for all possible s, p and q the values are given in Table 1 on the left for
(3, s)-formulas and on the right for (3, p, q)-formulas.

In particular, we identified a smallest unsatisfiable (3, 1, 3)-formula with 22 clauses, which
implies that (3, 1, 3)-SAT is NP-complete. Hence, we now have a direct and streamlined
proof for the dichotomy of (3, p, q)-SAT (Theorem 5).

Smallest enforcers. Table 2 summarizes our results on the size of smallest (3, s)-enforcers
and (3, p, q)-enforcers.
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Table 1 Size of smallest unsatisfiable (3, s)-formulas (left) and size of smallest unsatisfiable
(3, p, q)-formulas (right). ∞ indicates that for these parameters no unsatisfiable formula exists.

s ≤ 3 s = 4 s = 5 s ≥ 6

∞ 16 11 8

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 22 19 16
p = 2 – 20 11 10 10
p ≥ 3 – – 8 8 8

Table 2 Size of smallest (3, s)-enforcers (left) and smallest (3, p, q)-enforcers (right).

s ≤ 3 s = 4 s ≥ 5

∞ 5 4

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 7 6 5
p = 2 – 10 5 5 5
p ≥ 3 – – 5 5 5

A smaller unsatisfiable (4, 5)-formula. Recall that f(4) = 5. The smallest known unsatis-
fiable (4, 5)-formula is due to Knuth and has 257 clauses. We improve this by exhibiting an
unsatisfiable (4, 5)-formula with 235 clauses. We obtain this by first computing an auxiliary
formula with SMS and then constructing from it an unsatisfiable (4, 5)-formula by disjunctive
splitting.

Structure of the paper. After this introduction, and preliminaries, the paper is organized
into two main parts. In Section 3, we lay out the principle encoding that provides the basis
for all our results. In Section 4, we dive into the more complicated, technical aspects that
are necessary to rule out the existence of larger formulas and obtain better lower bounds.
Lemmas and Theorems marked with ⋆ have proofs in the full version [28], where some
arguments have been streamlined.

2 Preliminaries

For positive integers k < ℓ, we write [k] = {1, 2, . . . , k}, [−k] = {−k,−(k − 1), . . . ,−1},
and [k, ℓ] = {k, . . . , ℓ}. We assume familiarity with fundamental notions of propositional
logic [19]. In this paper we will talk about (minimally) unsatisfiable propositional formulas
represented as graphs, specified by properties expressed as quantified Boolean formulas, and
about isomorphisms (symmetries) of these formulas. We review the relevant basics below.

CNF formulas. A literal is a (propositional) variable x or a negated variable x, whereby
x = x. We write var(x) := var(x) := x for the variable belonging to a literal. A set S of literals
is tautological if S ∩ S ≠ ∅, where S = {x : x ∈ S }. A clause is a finite non-tautological set
of literals. A k-clause is a clause that contains exactly k literals. The 0-clause is denoted
by □. A (CNF) formula is a finite set of clauses. For k ≥ 1, a k-CNF formula is a formula
in which all clauses are k-clauses (please note that some authors allow a k-CNF formula to
contain clauses with fewer than k literals, but it is significant in our context that the number
is exactly k) and a (≤ k)-CNF formula is a formula in which all clauses contain at most
k literals. A variable x occurs positively in a clause C if x ∈ C, it occurs negatively in C

if x ∈ C, and it occurs in C if it occurs in C positively or negatively. For a literal x, F [x]
denotes the set of clauses in F in which var(x) occurs. We will often write a ≤ k-CNF with m

SAT 2024



31:4 Small Unsatisfiable k-CNFs with Bounded Literal Occurrence

clauses as a k ×m matrix whose columns are the clauses, and entries are literal occurrences.
When a clause has r < k literals, we write × in the last k − r rows in the corresponding
column of the matrix.

Counting occurrences. For a clause C, we write var(C) for the set of variables that occur
in C, and for a CNF formula F we write var(F ) =

⋃
C∈F var(C). The degree of a variable in

a formula F is defined as degvar
F (x) := |F [x]|. For literals, we put degvar

F (x) := degvar
F (x). The

degree of a literal x, denoted by degF (x), is the number of clauses in which the literal occurs.
We may omit the subscript F when it is clear from the context.

For k, s ≥ 1, a (k, s)-formula is a k-formula in which each variable occurs in at most s
clauses, and a (≤ k, s)-formula is a (≤ k)-formula in which each variable occurs in at most s
clauses. For k, p, q ≥ 1, a (k, p, q)-formula is a k-formula in which each variable occurs in at
most p clauses positively and in at most q clauses negatively, and a (≤ k, p, q)-formula is a
(≤ k)-formula with the same constraint. Without loss of generality, we will assume p ≤ q for
(k, p, q)-formulas as we can always swap positive and negative literals.

We define µ(k, s) to be the number of clauses of a smallest unsatisfiable (k, s)-formula,
and µ(k, p, q) denotes that of the smallest unsatisfiable (k, p, q)-formula.

Bounded literal occurrence SAT. A truth assignment for a set X of variables is a mapping
τ : X → {0, 1}. In order to define τ on literals, we set τ(x) = 1 − τ(x). A truth assignment τ
satisfies a clause C if C contains at least one literal x with τ(x) = 1, and τ satisfies a
formula F if it satisfies every clause of F . In the latter case, we call F satisfiable. The
Satisfiability problem (SAT) is to decide whether a given formula is satisfiable. (k, s)-SAT
is SAT restricted to (k, s)-formulas, and (k, p, q)-SAT is SAT restricted to (k, p, q)-formulas.

Enforcers. A (k, s)-enforcer is a satisfiable (k, s)-formula F with a variable x with
degvar

F (x) < s that is set to the same value in every satisfying assignment. A (k, p, q)-
enforcer is a satisfiable (k, p, q) formula F with a variable x which is either set to true in
every satisfying assignment, and then degF (x) < p, or it is set to false in every satisfying
assignment, and then degF (x) < q. We say the literal of x that is set to true in every
satisfying assignment is enforced. An enforcer can be completed into an unsatisfiable (≤ k, s)
or (≤ k, p, q)-formula by adding the unit clause containing the negation of the enforced literal.

Minimal unsatisfiability. A CNF formula is minimally unsatisfiable if it is unsatisfiable but
dropping any of its clauses results in a satisfiable formula. Let MU denote the class of all
minimally unsatisfiable formulas. The deficiency of a CNF formula F is δ(F ) = |C|−|var(F )|.
It is known that δ(F ) > 0 for any F ∈ MU [1]; therefore it is natural to parameterize MU by
deficiency and to consider the classes MU(d) := {F ∈ MU : δ(F ) = d } for d ≥ 1.

Variable elimination. It is well-known that one can eliminate variables of a CNF formula
by a process often called DP-resolution, after an algorithm of Davis and Putnam [6], as
follows. For two clauses C,D with x ∈ C, x ∈ D, the resolution rule yields the resolvent
clause C ∪D \ {x, x}. Let F be a CNF and x ∈ var(F ). We define F x := F \ F [x] ∪ {C ∪
D \ {x, x̄} |C,D ∈ F ;C ∩ D = {x}}. In other words, the result of eliminating x from F

is the formula that contains all clauses where x does not occur together with all possible
non-tautological resolvents on x. It is easy to see that ∃x F and F x are logically equivalent,
and in particular, if F is unsatisfiable, so is F x.
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Blocked clauses. A clause C in a CNF F is blocked in F on the literal x ∈ C if for every
C ′ ∈ F with x ∈ C ′, there exists a variable y ̸= var(x) with y ∈ C, y ∈ C ′ or y ∈ C ′, y ∈ C.
A clause is blocked in F if it is blocked on at least one of its literals. Blocked clauses are
a fundamental SAT preprocessing technique: when C is blocked in F and F is satisfiable,
then F ∪ {C} is also satisfiable [13, 22]; in other words, blocked clauses may be added or
removed without impacting satisfiability (notice that this also follows from soundness of
variable elimination). We will use the simple corollary that a minimally unsatisfiable formula
cannot contain a blocked clause.

QBF. Quantified Boolean formulas generalize propositional logic with quantification. In
this paper, we will need only the fragment of closed prenex 2-QBFs with one quantifier
alternation. A 2-QBF has the form ∃X∀Y Φ(X,Y ), where X and Y are sets of propositional
variables, and Φ is a propositional formula. A 2-QBF is true if there exists an assignment
τ : X → {0, 1} such that Φ(τ(X), Y ) evaluates to true for every assignment to Y , where
τ(X) denotes the substitution of τ values for X into Φ. The formula is false if no such
assignment τ exists.

Graphs. We only use undirected and simple graphs (i.e., without parallel edges or self-loops).
A graph G consists of set V (G) of vertices and a set E(G) of edges; we denote the edge
between vertices u, v ∈ V (G) by uv or equivalently vu.

We write Gn to denote the class of all graphs with V (G) = [n]. The adjacency matrix
A of a graph G ∈ Gn is the n× n {0, 1}-matrix where the element at row v and column u,
denoted by A(v, u), is 1 iff vu ∈ E(G).

Isomorphisms. For a permutation π : [n] → [n], π(G) denotes the graph obtained from G ∈
Gn by the permutation π, where V (π(G)) = V (G) = [n] and E(π(G)) = {π(u)π(v) : uv ∈
E(G) }. Two graphs G1, G2 ∈ Gn are isomorphic if there is a permutation π : [n] → [n] such
that π(G1) = G2; in this case G2 is an isomorphic copy of G1. A partially defined graph [17]
is a graph G where E(G) is split into two disjoint sets D(G) and U(G). D(G) contains
the defined edges, U(G) contains the undefined edges. A (fully defined) graph is a partially
defined graph G with U(G) = ∅. A partially defined graph G can be extended to a graph H
if D(G) ⊆ E(H) ⊆ D(G) ∪ U(G).

CNF Formulas as graphs. For sets S, S′, T , we write T = S⊎S′ if T = S∪S′ and S∩S′ = ∅.
A 2-graph is an undirected graph G = (V,E) together with a partition of its vertex set into
two disjoint blocks V1 ⊎ V2 = V . Two 2-graphs G = (V1 ⊎ V2, E) and G′ = (V ′

1 ⊎ V ′
2 , E

′) are
isomorphic if there exists a bijection ϕ : V1 ⊎ V2 → V ′

1 ⊎ V ′
2 such that v ∈ Vi if and only

if ϕ(v) ∈ V ′
i , i = 1, 2, and {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. The clause-literal

graph of a CNF formula F is the 2-graph G(F ) = (V1 ⊎ V2, E) with V1 = lit(F ), V2 = F ,
and E = { {x, x} : x ∈ var(F ) } ∪ { {C, ℓ} : C ∈ F, ℓ ∈ C }. We refer to the edges {x, x } as
variable edges. It is easy to verify that any two CNF formulas are isomorphic if and only if
their clause-literal graphs are isomorphic (as 2-graphs). Note that we can safely assume that
the first |V1| rows of the adjacency matrix of a clause-literal graph correspond to the vertices
in V1, and we will thoroughly do so throughout this paper.

SAT Modulo Symmetries (SMS). SMS [18] is a framework that augments a CDCL
(conflict-driven clause learning) SAT solver [8, 23] with a custom propagator that can reason
about symmetries, allowing to search modulo isomorphism for graphs in Gn satisfying a
property specified in (quantified) propositional logic.

SAT 2024



31:6 Small Unsatisfiable k-CNFs with Bounded Literal Occurrence

During search, the SMS propagator can trigger additional conflicts on top of ordinary
CDCL and consequently learn symmetry-breaking clauses, which exclude isomorphic copies
of graphs. More precisely, only those copies are kept which are lexicographically minimal
(canonical) when considering the rows of the adjacency matrix concatenated into a single
vector. A key component is a minimality check, which decides whether a partially defined
graph can be extended to a minimal graph; if it cannot, a corresponding clause is learned.
For a full description of SMS, we refer to the original work where the framework was
introduced [18]. In SMS, it is possible to specify a partition of the vertex set and restrict
the symmetry breaking to those permutations that preserve the partition. In Section 3.1,
we explain how we can specify partitions to efficiently generate formulas (represented by
2-graphs) modulo isomorphism with SMS.

3 Basic encoding

In this section we explain the methodology all of our investigations build upon, and review
results already obtainable with it. In the next section, we will delve into technical details
and improvements that are necessary to scale up this basic approach.

The idea is to first list all possible number of clauses a smallest (k, s) or (k, p, q)-formula
can have, and then decide whether an unsatisfiable formula exists with increasing m. For
each m, we split the decision problem further by specifying number of variables n the sought
formula has. For fixed m and n, we reduce this task to deciding the satisfiability of a suitable
quantified Boolean formula and give it to QBF-enabled SMS. Because we gradually increase
m, the first time we hit a satisfiable instance we know the formula thus produced is smallest
possible. The desired QBF should have its models correspond to unsatisfiable (k, s)-formulas
with n variables and m clauses. Since unsatisfiability is coNP-complete, we cannot hope to
obtain a polynomial-size propositional encoding (unless NP = coNP), and instead we use
a 2-QBF of the form ∃X∀Y Φn,m

k,s (X) ∧ ¬Σn,m(X,Y ) (or ∃X∀Y Φn,m
k,p,q(X) ∧ ¬Σn,m(X,Y )),

where Φn,m
k,s (X) (Φn,m

k,p,q(X)) expresses that X represents a (k, s)-formula ((k, p, q)-formula)
with n variables and m clauses, and Σn,m(X,Y ) expresses that the assignment represented
by Y satisfies X.

3.1 Hard-coding the first part of the clause-literal graph
Before we delve into the details of the encoding, we observe the following fact about the
lexicographically minimal matrix of a clause-literal graph.

Let pos(i) = r if the rth row/column of the adjacency matrix represents the positive
literal of the ith variable, and similarly for neg(i). The first block of a clause-literal graph
contains the vertices corresponding to literals, i.e., we have pos(i),neg(i) ∈ [2n] for all i ∈ [n].

▶ Theorem 1. The lexicographically minimal matrix of any clause-literal graph is antidiagonal
in the upper-left (variables) block, i.e., for all i, j ≤ 2n, A(i, j) = 1 iff i+ j = 2n+ 1. For
the ordering of literals, this means that for each i we have {pos(i),neg(i)} = {j, 2n+ 1 − j}
for some j ∈ [n].

Proof. Towards a contradiction, consider a lexicographically minimal adjacency matrix of
some clause-literal graph, and the row i, where antidiagonality is first violated, because the
1-entry is in column 2n+ 1 − j for j > i (and not j = i as it should be; notice that j < i is
impossible since the literal 2n + 1 − j would have to be adjacent to both j and i). Then,
swapping the vertices 2n+ 1 − j and 2n+ 1 − i yields a lexicographically smaller matrix. ◀
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x x y y

C1 C2 C3

x y y x C1 C2 C3
x 0 0 0 1 0 0 1
y 0 1 0 0 1 0
y 0 0 1 0 0
x 0 1 1 0
C1 0 0 0
C2 0 0
C3 0

Figure 1 Consider the formula F = {C1, C2, C3} with C1 = {x, y}, C2 = {x, y}, and C3 = {x}.
We see the corresponding 2-graph and the upper part of its lexicographically minimal adjacency
matrix. Observe how the left part is indeed antidiagonal.

Theorem 1 shows that we can hard-code the top-left 2n × 2n matrix of the adjacency
matrix. Doing so has the following benefits. The immediate advantage is that with fewer
undecided variables to solve, SMS terminates more quickly. Also, this breaks the symmetries
from reordering the literal nodes of the clause-literal matrix. Finally, as we will see more
clearly in the next part, fixing the matching between literal nodes reduces the size of the
encoding since we no longer need to describe the cardinality constraints on how many times
a variable can occur conditionally on an undecided matching among literal nodes. Figure 1
shows an example of a clause-literal graph and its corresponding lexicographically minimal
adjacency matrix.

3.2 Encodings for formulas
In this part, we describe the detailed construction of the specific 2-QBF we use, whose models
correspond to unsatisfiable (k, s)-formulas with n variables and m clauses. We write our
encoding in the standard circuit-QBF QCIR format [14].

We express cardinality constraints using cardinality networks [2]. A cardinality network
Carda

b takes b binary inputs and outputs the most significant a inputs ordered from more
significant to less. For the purpose of illustration, suppose we want variable z to be
true if and only if exactly d variables out of x1, . . . , xb are true. Let (y1, . . . , yd, yd+1) :=
Cardd+1

b (x1, . . . , xb). Note that this way yi is true if and only if there are at least i true
inputs among x1, . . . , xb. So we can define z := yd ∧ ¬yd+1. When the number of inputs
and outputs is clear from the context, we just write Card. Let i, i′ ∈ [n], j < j′ ∈ [m], we
define ai,i′ := A(pos(i),pos(i′)), ai,−i′ := A(pos(i),neg(i′)) and a−i,−i′ := A(neg(i),neg(i′))
for edges between literal vertices, ei,j := A(pos(i), j + 2n) and ei,j := A(neg(i), j + 2n) for
edges from a literal node to a clause node, and cj,j′ := A(j + 2n, j′ + 2n) for edges between
clause nodes. Take a sufficiently large x. For all i ∈ [n], t ∈ [n] ∪ [−n] and j ∈ [m], define

(ωt,1, ωt,2, . . . , ωt,x) := Card(et,1, et,2, . . . , et,m),
(σi,1, σi,2, . . . , σi,x) := Card(ei,1, ei,2, . . . , ei,m, e−i,1, e−i,2, . . . , e−i,m), and

(τj,1, τj,2, . . . , τj,k+1) := Card(e1,j , e2,j , . . . , en,j , e−1,j , e−2,j , . . . , e−n,j).

The following are some useful properties expressed in propositional logic which we use as
components in the desired 2-QBF. F1 expresses that there are no edges between two clause
nodes. F2 expresses that each literal occurs at least once. F3 expresses that a literal and its
negation cannot occur in the same clause. F v

4 expresses that each variable occurs at most s
times. F5 expresses that each clause contains exactly k literals.

SAT 2024
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F1 :=
∧

0≤j<j′<m

¬cj,j′ , F2 :=
∧

i∈[n]∪[−n]

∨
j∈[m]

ei,j , F3 :=
∧

i∈[n],j∈[m]

¬ei,j ∨ ¬e−i,j .

F v
4 :=

∧
i∈[n]

¬σi,s+1, F l
4 :=

∧
i∈[n]∪[−n]

¬ωi,q+1 ∧
∧

i∈[n]

¬ωi,p+1 ∨ ¬ω−i,p+1,

F5 :=
∧

j∈[m]

τj,k ∧ ¬τj,k+1.

It is easy to see that a smallest (k, s) or (k, p, q)-formula must be minimally unsatisfiable, and
thus we can also require (in Φn,m

k,s ) that it contain no blocked clauses. Given i ∈ [n] ∪ [−n]
and j, j′ ∈ [n], define ψi,j,j′ and φi,j as follows. Here φi,j expresses that the j-th clause is
not blocked on the literal i.

ψi,j,j′ :=
∧

i′∈[n]∪[−n]
i′ ̸=i,−i

(¬ei′,j ∨ ¬e−i′,j′), φi,j := ¬ei,j ∨
∨

j′∈[m]
j′ ̸=j

(e−i,j′ ∧ ψi,j,j′).

F6 expresses that the formula contained no blocked clauses.

F6 :=
∧

i∈[n]∪[−n],
j∈[m]

φi,j

F7 hard-codes the matching between the literal nodes.

F7 :=
∧

i∈[n]

ai,−i ∧
∧

i∈[n],i′∈[−n]
i ̸=−i′

¬ai,i′ ∧
∧

i<i′∈[n]

¬ai,i′ ∧
∧

i′<i∈[−n]

¬ai,i′

Let X := {A(i, j) : i < j ∈ [2n + m] } and Y = {αi : i ∈ [m] }. For i ∈ [n], we put
α−i := ¬αi. Finally, define Φn,m

k,s (X) := F1 ∧ F2 ∧ F3 ∧ F v
4 ∧ F5 ∧ F6 ∧ F7, Φn,m

k,p,q(X) :=
F1 ∧ F2 ∧ F3 ∧ F l

4 ∧ F5 ∧ F6 ∧ F7 and

Σn,m(X,Y ) :=
∧

j∈[m]

∨
i∈[n]∪[−n]

αi ∧ ei,j .

3.3 Preliminary findings
To determine the exact value of µ(3, s) and µ(3, p, q) for various choices of s, p and q, we
enumerate all permissible values of (m,n), where m is the number of clauses and n is the
number of variables, from smaller to bigger in the lexicographical order. For each pair (m,n),
we solve the formula described in Section 3.2 with SMS.1 We terminate the solver if it cannot
answer within 5 days.

We ran the solver on a Sun Grid Engine (SGE) cluster consisting of heterogeneous
machines running Ubuntu 18.04.6 LTS.2

We begin by observing that since allowing more occurrences yields a larger class of
formulas, by definition, µ(k, s) ≤ µ(k, s− 1), µ(k, p, q) ≤ min

(
µ(k, p− 1, q), µ(k, p, q − 1)

)
,

and µ(k, p+ q) ≤ µ(k, p, q). The following lemmas provide preliminary bounds on m and n

for our enumeration.

1 https://sat-modulo-symmetries.readthedocs.io
https://github.com/markirch/sat-modulo-symmetries

2 The cluster contains nodes with the following architectures: 2× Intel Xeon E5540 with 2.53 GHz Quad
Core, 2× Intel Xeon E5649 with 2.53 GHz 6-core, 2× Intel Xeon E5-2630 v2 with 2.60GHz 6-core, 2×
Intel Xeon E5-2640 v4 with 2.40GHz 10-core and 2× AMD EPYC 7402 with 2.80GHz 24-core.

https://sat-modulo-symmetries.readthedocs.io
https://github.com/markirch/sat-modulo-symmetries
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Table 3 Preliminary results based only on the method of this section, for µ(3, s) (left) and
µ(3, p, q) (right). Since the right table is symmetric with respect to the main diagonal, we only give
the upper triangle due to the assumption q ≥ p. All values for s ≥ 6 and q ≥ p ≥ 3 are 8: less is not
possible by Lemma 2. Lemma 2 also rules out a (3, 2, q)-formula with 9 clauses and q ≥ 5.

s = 4 s = 5 s ≥ 6

[14, 16] 11 8

q = 1 q = 2 q = 3 q = 4 q ≥5

p = 1 ∞ ∞ [14,∞] [11,∞] [8,∞]
p = 2 – [8, 20] 11 10 10
p ≥ 3 – – 8 8 8

▶ Lemma 2. An unsatisfiable k-CNF formula that contains a variable of type (p, q) has at
least 2k + |q − p| clauses.

Proof. Let F be an unsatisfiable k-CNF with m clauses, n variables, and x a variable of type
(p, q). F |x := {C \ {x} ∈ F : x ̸∈ C }, obtained from F by setting x to false, is unsatisfiable,
has n− 1 variables, p clauses of size k − 1, and m− p− q clauses of size k. Since a clause of
size r is falsified by 2n−1−r assignments, and each assignment falsifies some clause, we have
p2n−k + (m− p− q)2n−1−k ≥ 2n−1, and solving for m completes the proof. ◀

▶ Lemma 3. A minimally unsatisfiable (k, s)-formula with m clauses has between ⌈ k·m
s ⌉ and

m − 1 variables. Similarly, a minimally unsatisfiable (k, p, q)-formula with m clauses has
between ⌈ k·m

p+q ⌉ and m− 1 variables.

Proof. With n variables of degree ≤ s there are mk ≤ ns literal occurrences. For the upper
bound, recall that minimally unsatisfiable formulas have positive deficiency. ◀

It is known that an unsatisfiable (3,4)-formula with 16 clauses and an unsatisfiable
(3,2,2)-formula with 20 clauses exist [4]. We give the formulas as E3,4 and M3,2,2 in the
appendix. The experimental results combined with this knowledge yield Table 3. One can
find a smallest (3, 2, 3), (3, 2, 4) and (3, 3, 3)-formula in the appendix as M3,2,3, M3,2,4, and
M3,3,3. M3,2,3 also serves as a smallest (3, 5)-formula, and M3,3,3 as a smallest (3, 6) formula.

A closer look at the time spent on deciding the existence of an unsatisfiable (3, 4)-formula
with different n and m shown in Table 4 reveals that this basic method reaches its limit
with formulas of about 13 clauses. Thus, further considerations are called for if we want to
determine the precise value for some of the entries in the tables.

Table 4 Time spent deciding the existence of an unsatisfiable (3, 4)-formula with n variables and m

clauses (without/with blocked-clause detection encoded as F6). Unsolved queries are marked by to,
blank areas are out of bounds determined by Lemma 3. All terminated queries were unsatisfiable
except the one marked in blue with n = 12 and m = 16.

n m = 8 m = 9 m = 10 m = 11 m = 12

6 0.4s/0.6s
7 0.7s/1.2s 1.9s/2.0s
8 4.9s/5.9s 7.3s/10.4s
9 42s/1m 1m/3m 5m/4m

10 12m/7m 43m/17m
11 3h/1.6h

n m = 13 m = 14 m = 15 m = 16

10 2h/1h
11 12h/6h 28h/27h
12 5d/42h to to to/5d
13 to to to
14 to to
15 to

SAT 2024
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3.4 A dichotomy theorem for (3, 1, q)-SAT
The following extends a result by Kratochvíl, et al. [21, Lemma 2.2].

▶ Lemma 4 (⋆). Let k ≥ 3 and p, q ≥ 1 such that p+ q ≥ 3. If there exists an unsatisfiable
(k, p, q)-formula, then (k, p, q)-SAT is NP-hard.

▶ Theorem 5 (Dichotomy). For any p, q ≥ 1, if p+ q < 4 then (3, p, q)-SAT is solvable in
polynomial time, otherwise (3, p, q)-SAT is NP-hard.

Proof. (3, p, q)-SAT is a special case of (3, p+ q)-SAT, and (3, s)-SAT is in P for s ≤ 3 [27].
Let p+ q ≥ 4, w.l.o.g., p ≤ q. If p = 1, then q ≥ 3, if p ≥ 2, then q ≥ 2, and unsatisfiable
(3, 1, 3)-formulas and (3, 2, 2)-formulas exist (which are also (3, p, q)-formulas for larger p, q,
see Table 1). NP-hardness follows from Lemma 4. ◀

The NP-hardness part of Theorem 5 holds even for monotone SAT, where each clause is
required to contain only positive or only negative literals [5], with the exception of monotone
(3, 1, 3)-SAT, for which van Santvliet and de Haan [24] have recently shown that all instances
are satisfiable, and monotone (3, 1, 4)-SAT, which is still open. Our proof is uniform in the
sense that all hardness results rely on Lemma 4.

4 Compound methods

The core method for finding small unsatisfiable (k, s)-CNF and (k, p, q)-CNF formulas is our
SMS encoding that we have introduced in Section 3.2. This method is quite powerful and
lets us produce the smallest formulas and exact lower bounds for formula size. However,
since the search space grows very quickly, this method reaches its limits with formulas of
about 10–15 clauses, depending on the imposed side constraints. In this section, we show
how we improve the results from Table 3 by combining computational search with theoretical
analysis, and with several techniques to decrease the size of the search space. The methods
for obtaining upper bounds are disjunctive splitting and combining enforcers. The methods
for obtaining lower bounds are reductions and hard-coding part of the adjacency matrix.

Generating (k, s)-formulas directly is often prohibitively expensive. In such cases we also
consider (≤ k, s)-formulas that have a few clauses of width smaller than k. Central to the
various techniques we employ in this section is the concept of a stairway. A stairway, first
introduced by Hoory and Szeider [11], is an abstraction of a CNF formula that focuses only
on the clauses that are smaller than a given k. More specifically, a stairway σ = (a1, . . . , ar)
is a finite non-increasing sequence of positive integers. For a fixed integer k, a stairway
σ = (a1, . . . , ar) represents the set of all CNF formulas F = {C1, . . . , Cm} where ai = k−|Ci|
for 1 ≤ i ≤ r, and |Ci| = k for r + 1 ≤ i ≤ m. Define µ(k, s, σ) to be the number of clauses
of a smallest unsatisfiable (≤ k, s)-formula with stairway σ, and µ(k, p, q, σ) to be that of
the smallest unsatisfiable (≤ k, p, q)-formula with stairway σ.

It is straightforward to adapt Φn,m
k,s to encode, instead of a (k, s)-formula, a (≤ k, s)-

formula with a given stairway. Instead of requiring every clause to contain exactly k literals,
we require every clause to contain at most k literals, and that a certain number of clauses
contain less than r literals, for some 1 < r ≤ k. For each 1 < r ≤ k, j ∈ [n], let Nr be the
number of clauses that contains strictly less than r literals. We replace F5 with F ′

5 below.

F ′
5 :=

∧
j∈[n]

¬τj,k+1 ∧
∧

1<r≤k

∑
j∈[n]

¬τj,r = Nr.
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4.1 Improved bounds
The following theorems refine the bounds on µ(k, s) and µ(k, p, q) using stairways.

▶ Theorem 6. µ(k, p, q) ≥ min
(
µ(k, p, q, 1p) + q, µ(k, p, q − 1)

)
, where 1p is the stairway of

length p with each entry being a 1.

Proof. An unsatisfiable (k, p, q)-formula where at least one literal occurs q times gives an
unsatisfiable formula with p (k−1)-clauses and shorter in length by q if we set the literal that
occurs q times to true. The latter has minimal size µ(k, p, q, 1p). Taking this into account,
we know that µ(k, p, q) < µ(k, p, q− 1) is only possible if µ(k, p, q, 1p) + q < µ(k, p, q− 1). ◀

Recall the concept of an enforcer from Section 2. Enforcers can be used to provide upper
bounds, as we will show in Theorem 7. When k = 3, a (3, s)-enforcer (or a (3, p, q)-enforcer)
gives rise, by appending the appropriate unit clause, to an unsatisfiable (≤ k, s)-formula (or
an unsatisfiable (≤ k, p, q)-formula) with stairway (2), and thus by searching for formulas
with this stairway we can generate enforcers. In this way, we computed the size of a smallest
enforcer in the classes of (3, s)-formulas and (3, p, q)-formulas, and list them in Table 2.
The minimality of the (3, 3, 4)-enforcer was also shown by Jurenka [15] with a theoretical
argument. The corresponding formulas can be found in Appendix A.1.

▶ Theorem 7. µ(k, s) ≤ k · (µ(k, s, (k− 1)) − 1) + 1. Similarly, µ(k, p, q) ≤ k · (µ(k, p, q, (k−
1)) − 1) + 1.

Proof. Let E be a smallest (k, s)-enforcer, which by definition has size µ(k, s, (k − 1)) − 1
(the (k, p, q) case is analogous). We can obtain an unsatisfiable (k, s)-formula by taking k
variable-disjoint copies of E and adding a k-clause containing the negated enforced literals. ◀

Table 5 Smallest size of an unsatisfiable (≤ k, 1, q)-formula for stairway (1).

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 14 or 15 13 11

We compute the table for µ(3, 1, 3, (1)) and µ(3, 1, 3, (2)) through a similar exhaustive
search as explained in Section 3, and show the results in Table 5. Combining these tables
with Theorems 6 and 7, we have the following improvement.

▶ Corollary 8. µ(3, 1, 3), µ(3, 1, 4) ≥ 17 and µ(3, 1, q) ≥ 16 for all q ≥ 5.

▶ Corollary 9. µ(3, 1, 3) ≤ 22, µ(3, 1, 4) ≤ 19 and µ(3, 1, q) ≤ 16 for all q ≥ 5.

4.2 Disjunctive splitting
We say a CNF formula F is obtained by disjunctive splitting in x from CNF formulas
F1, F2, in symbols F = F1 ⊕ F2, if F can be partitioned into two nonempty sets F ′

1, F
′
2

such that the variable x occurs in F ′
1 positively but not negatively, and appears in F ′

2
negatively but not positively, and Fi is obtained from F ′

i with all occurrences of x, x removed.
Observe that if F1, F2 are unsatisfiable, then also F = F ′

1 ∪ F ′
2 is unsatisfiable. Hence, when

constructing an unsatisfiable (k, s)-CNF or (k, p, q)-CNF formula, we can first try to construct
(≤ k, s)-formulas or (≤ k, p, q)-formulas F1, F2 and then combine them to obtain F .

SAT 2024
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If F is obtained by disjunctive splitting in x from F1, F2, and x is added positively to p
clauses in F1 and negatively to q clauses in F2, we write F = F1 ⊕p,q F2. Disjunctive splitting
can be recursively applied to F1 and F2. This allows us to construct a formula from axioms
which are CNF formulas that we do not further split. For example, the (2, 4)-CNF formula
{{x, y}, {x, y}, {y, z}, {y, z}} can be constructed from the axiom {□}.

We can describe the construction by an ⊕-derivation, an algebraic expression ({□} ⊕1,1
{□}) ⊕2,2 ({□} ⊕1,1 {□}). In fact, MU(1) is exactly the class of all formulas that can be
constructed by disjunctive splitting from the axiom {□}.

This idea was utilized by Hoory and Szeider [11], who proposed an algorithm that
decides for given k, s whether (k, s)-CNF ∩ MU(1) ̸= ∅. This allows us to compute an
upper bound on the threshold function f(k). Hoory and Szeider define ⊕-derivations to
operate on stairways instead of formulas. For k = 3, the above ⊕-derivation would now read
((3) ⊕1,1 (3)) ⊕2,2 ((3) ⊕1,1 (3)) and produce the stairway (1, 1, 1, 1). By means of a saturation
algorithm, Hoory and Szeider could determine the upper bounds f(3) ≤ 3, f(4) ≤ 4, f(5) ≤ 7,
f(6) ≤ 11, f(7) ≤ 17, f(8) ≤ 29, and f(9) ≤ 51 on the threshold function f(k) (i.e., all
(k, f(k))-formulas are satisfiable but (k, f(k) + 1)-SAT is NP-complete), which are still the
best known upper bounds.

In this paper, we generalize Hoory and Szeider’s method in the following ways: (i) we
consider ⊕-derivations with more axioms: any unsatisfiable (≤ k, s)-formula can serve as
an axiom; (ii) we modify the saturation algorithm so that it gives the size of the smallest
unsatisfiable (k, s)-formula derivable with respect to the sizes of the formulas that serve as
axioms; (iii) we adapt the algorithm also for searching for unsatisfiable (k, p, q)-formulas. We
do this in the hope that, by finding suitable axioms with the SMS encoding, we can incorporate
them into the ⊕-derivations to obtain smaller unsatisfiable (k, s) or (k, p, q)-formulas.

Table 6 shows the size of smallest unsatisfiable (3, s) and (3, p, q)-formulas generated by
disjunctive splitting with {□} being the only axiom. The corresponding ⊕-derivations can
be found in the appendices. We determined µ(3, s, 1r) for all 1 ≤ r < s and µ(3, p, q, 1r) for
all 1 ≤ r < q, but this did not yield any new upper bounds. We were more successful with
the method of disjunctive splitting in the case of k = 4, which we discuss in Section 5.

Table 6 Size of the smallest (3, s)-formulas and (3, p, q)-formulas in MU(1).

s ≤ 3 s = 4 s = 5 s = 6 s = 7 s ≥ 8

∞ 16 12 10 9 8

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 22 19 16
p = 2 – ∞ 12 10 10
p = 3 – – 10 9 9
p ≥ 4 – – – 8 8

4.3 Hard-coding part of the matrix
After we narrowed down the search scope with tighter bounds, this and the next part deal with
deciding the missing values in Table 1 and the techniques involved. These techniques allow
us to determine the existence of unsatisfiable (3, 4)-formulas (or (3, 2, 2),(3, 1, q)-formulas)
whose size is too large to be exhaustively searched by SMS directly.

In this part, we determine the value of µ(3, 1, 3) and µ(3, 1, 3). The technique here is hard-
coding the part of the matrix that corresponds to the occurrences of some variables/literals.
The motivation is that with less undecided values in the matrix to solve, SMS terminates
more quickly. Suppose we want to fix both positive and negative occurrences of V variables
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A(i, 2n + j) 1. . . m − 9 m − 6 m − 3 m

1 (x1) 1
2 (x1) 1 1 1
3 (x2) 1
4 (x2) 1 1 1
5 (x3) 1
6 (x3) 1 1 1
7 (a1) 1
8 (b1) 1
9 (a2) 1
10 (b2) 1
11 (a3) 1
12 (b3) 1

Figure 2 The first rows of the matrix determined as a result of our choice for pos(i) and neg(i).
The omitted values are all 0.

x1, x2, . . . , xV and only the positive occurrences of L other variables xV+1, xV+2, . . . , xV+L.
To do this in a way that is compatible with the minimality check of SMS, we need to adjust
the following two things. First, when generating the encoding, we stipulate that the first
rows in the matrix correspond to x1, x1, x2, x2, . . . , xV , xV , xV+1, xV+2, ...xV+L and adjust
pos and neg to the following.

pos(i) :=
{

2i− 1 if i ≤ V,
i+ V otherwise;

neg(i) :=
{

2i if i ≤ V,
2n+ V − i+ 1 otherwise.

Second, we start SMS with the minimality check restricted to the refined partition

{{1}, {2}, . . . , {2V + L}, [2V + L + 1, 2n], [2n+ 1, 2n+m]}

of the original {[1, 2n], [2n+ 1, 2n+m]}. Given the specific assumption on the variables and
literals fixed, the minimality condition will determine the values of the first 2V + L rows in
the matrix. An example to this will be given shortly after.

To determine the value of µ(3, 1, 3) and µ(3, 1, 4), we prove the following lemma that
argues about the presence of certain “partially known” ≤ k-CNFs, so we can fix them. As
explained in Section 2, we write ≤ k-CNFs in matrix form. To argue about “partially known”
≤ k-CNFs, we extend the matrix notation to what is essentially a first-order language of
≤ k-CNFs. We use lowercase letters x, y, z, a, b, c, . . . to denote symbols to be interpreted by
propositional literals, positive or negative. We use to denote negation: if x is interpreted
as some literal, then x must be interpreted as its negation. Two different literal symbols may
be interpreted by different literals, or they may be interpreted by the same literal, or even by
the two literals of the same variable. When a position in the matrix is left blank, we leave
the corresponding literal unconstrained. We then say a formula F is of the form M if the
symbols in the matrix M can be interpreted by the literals of F to yield a matrix of F . A
clause C ∈ F is singular if deg(x) = 1 for all x ∈ C.

SAT 2024
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Table 7 Results of the search for unsatisfiable (3, 1, 3)-formulas for different numbers of variables
and clauses after hard-coding the first rows as described. All queries were unsatisfiable except the
one marked in blue with m = 22 and n = 21. For each m, the lower bound for the choice of n is by
Lemma 3, and the upper bound is m − 2 since we know the smallest size of a (3, 1, 3)-formula in
MU(1). There are two values for each pair of m and n. The values on the left indicate the time spent
on the case where we assume there is a unique singular clause. The values on the right indicate that
of the case where we assume there are at least two singular clauses. The cases superscribed with ⋆

and ▲ did not terminate within a timeout of 6 days and were further split into sub-cases and time
shown is the sum of time spent on each of the sub-cases. The cases superscribed with ⋆ are split into
1258 cases in terms of where a1, b1, a2 and a2 occur, modulo symmetries. The ones superscribed
with ▲ are split into 136 cases in terms of where y1, y2 and y3 occur, modulo symmetries. It is
worth noting that both sets of case distinctions are generated automatically without symmetry
by reformulating them as graph problems and giving the corresponding encoding to SMS. An
unsatisfiable formula is found in this case, assuming there exists a unique singular clause. Upon
inspection, this formula is revealed to be composed of 3 enforcers in the spirit of Theorem 7.

m = 17 m = 18 m = 19 m = 20 m = 21 m = 22

n = 13 5.3s/7.4m
n = 14 16s/17m 38s/1.8h
n = 15 19m/1.1h 11m/28.7h 12m/43.8h 53m/13.7h⋆

n = 16 7.2m/20h 7.4h/5.8h⋆ 1.7d/1.2d⋆ 1.7d/9.9d⋆

n = 17 3.8d/9.0h⋆ 15.9h▲/1.8d⋆ 2.1d▲/14.3d⋆

n = 18 1.2d▲/2.5d⋆ 3.6d▲/34.3d⋆

n = 19 11.6d▲/56.9d⋆

n = 21 29.2m/–

▶ Lemma 10 (⋆). Let q ≥ 3 and let F be a smallest unsatisfiable (3, 1, q)-formula.

1. There is a singular clause in F .
2. If

(
x1
x2
x3

)
∈ F is singular, then F [xi] ∩ F [xj ] =

{(
x1
x2
x3

)}
for any i ̸= j ∈ {1, 2, 3}, and

deg(x1) = deg(x2) = deg(x3) ≥ 3.
3. Let

(
x1
x2
x3

)
∈ F be a singular clause and let a be a literal such that deg(a) = 1 and var(a) ̸=

var(xi) for all i ∈ {1, 2, 3}. If a ∈
⋃
F [xi], then a ̸∈

⋃
F [xj ] for any i ̸= j ∈ {1, 2, 3}.

4. If there is a unique singular
(

x1
x2
x3

)
∈ F , then

⋃
i=1,2,3 F [xi] is of the form(

x1 x1 x1 x1 x2 x2 x2 x3 x3 x3
x2 a1 a2 a3
x3 b1 b2 b3

)
where deg(ai) = deg(bi) = 1 for all i ∈ {1, 2, 3}.

When searching for a smallest unsatisfiable (3, 1, 3)-formula, we distinguish the following
two cases, depending on whether there is a unique clause whose literals only occur once. If
there is, then we hard-code the partial formula

(
x1 x1 x1 x1 x2 x2 x2 x3 x3 x3
x2 a1 a2 a3
x3 b1 b2 b3

)
in the matrix

by setting the first 12 rows to represent x1, x1, x2, x2, x3, x3, a1, b1, a2, b2, a3 and b3, starting
with the ordered partition {{1}, {2}, . . . , {12}, [13, 2n], [2n+ 1, 2n+m]}, and hard-coding
the first 12 rows of the matrix thereby determined. The fixed rows are shown in Figure 2
as an example. Otherwise, there are more than one singular clause and we hard-code the
partial formula

(
x1 x1 x1 x1 x2 x2 x2 x3 x3 x3 y1
x2 y2
x3 y3

)
. When searching for a smallest unsatisfiable

(3, 1, 4)-formula, we follow the same rationale but split both of these cases into 4 cases
depending on the size of {xi | degvar(xi) = 5, i ∈ {1, 2, 3}}.

Combining the computational results in Tables 7 and 8 with the previous lemma, we
have the following result.

▶ Theorem 11. µ(3, 1, 3) ≥ 22 and µ(3, 1, 4) ≥ 19.
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Table 8 Results of the search for unsatisfiable (3, 1, 4)-formula for different numbers of variables
and clauses after hard-coding the first rows as described. The timeout is 11 days. For each m in the
table, the lower bound for the choice of n is by Lemma 3, and the upper bound is m − 2 since we
know that the smallest size of a (3, 1, 4)-formula in MU(1). There are eight values for each pair of m

and n divided into two rows of four values each. The upper row shows the amount of time spent on
the cases where we assume there is a unique singular clause; the lower row shows the cases with at
least two singular clauses. The four values in a row correspond to cases based on the number of
variables out of x1, x2, x3 that are of degree 5 (0, 1, 2, 3 left-to-right). An unsatisfiable formula is
found only for the case where m = 19, n = 18 and degvar(x1) = degvar(x2) = degvar(x3) = 5. Upon
inspection, this formula is revealed to be composed of 3 enforces in the way of Theorem 7.

m = 17 m = 18 m = 19

n = 11 (1.1s,1.1s,1.1s,0.7s) (–,–,1.1s,0.8s)
(19s,15s,12s,13s) (–,–,13s,14s)

n = 12 (1.8s,2.0s,2.0s,2.0s) (2.2s,2.5s,2.4s,2.7s) (4.7s,2.7s,2.8s,3.0s)
(1.1m,1.0m,0.6m,13s) (1.2m,1.2m,0.5m,0.5m) (2.0m,1.4m,1.9m,1.6m)

n = 13 (15s,7.1s,4.0s,6.4s) (5.5s,10s,12s,8.2s) (12s,9.0s,6.0s,14s)
(4.5m,1.1m,0.5m,1.0m) (6m,4.9m,0.9m,1.5m) (11m,5.1m,10m,9.5m)

n = 14 (24s,43s,14s,12s) (25s,56s,26s,32s) (1.2m,40s,1.2m,34s)
(9.1m,2.4m,1.2m,1.1m) (34m,8.4m,11m,3.6m) (1.7h,3.0h,2.8h,0.9h)

n = 15 (1.0m,1.7m,17s,21s) (17m,2.7m,49s,1.8m) (2.3m,1.0h,1.3m,9.7m)
(42m,10m,2.3m,1.9m) (1.7h,50m,22m,22m) (33.2h,17.1h,2.6h,1.4h)

n = 16 (39m,24m,36m,3.3m) (14.1h,4.5h,34m,30m)
(19.7h,47m,24m,40m) (t.o.,6.4d,3.3h,2.5h)

n = 17 (7.2d,12.0h,4.8h,2.6h)
(t.o.,t.o.,10.1h,2.3h)

n = 18 (t.o.,5.6d,6.5h,1.1h)
(2.4d,t.o.,6.3d,10.4h)

4.4 Reduction

In this section, we describe the final technique that allow us to determine the value of
µ(3, 4) and µ(3, 2, 2), and thus complete Table 1. The idea is to reduce a (3, 4)-formula (or
(3, 2, 2)-formula) to a smaller (≤ 3, 4)-formula (or (≤ 3, 2, 2)-formula) that is equisatisfiable,
so that the question of the existence of a certain formula is reduced to that of the existence
of a certain, smaller formula. We then use SMS to determine the existence of such small
formulas.

It is difficult to prove any useful properties about general unsatisfiable (3, 4)-formulas
(or (3, 2, 2)-formulas), but since we exhaustively search from smaller to bigger formulas,
we can restrict our search to minimal (in terms of the number of clauses) (3, 4)-formulas
(or (3, 2, 2)-formulas). We reduce such an F to a smaller unsatisfiable (≤ 3, 4)-formula (or
(≤ 3, 2, 2)-formula) by replacing all subsets of clauses from F that fit into one of the three
forms below with a single 2-clause

(
c
d
×

)
. For each replacement operation, the symbols c,

d are instantiated separately, i.e., they could be instantiated differently each time. Each
replacement is tantamount to a sequence of variable eliminations, and thus is sound (preserves
unsatisfiability).

1.
(

x x x w w w a c
a a a b b b b d
z y y z v v z z

)
for some degvar(x) = degvar(w) = 3 and degvar(y) = degvar(v) = 2.
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Elimination sequence: var(y), var(v), var(x), var(w), var(a), var(b), var(z).
2.

(
x x x c
a a a a
d y y d

)
for some degvar(x) = 3, degvar(y) = 2 and d. Eliminate: var(y), var(x), var(a).

3.
(

y y
c c
d d

)
for some degvar(y) = 2 and degvar(c) = degvar(d) = 4. Eliminate: var(y).

Given the number of clauses m and the number of variables n of the formula, the following
lemma helps us narrow down possibilities in terms of how many subsets there are that fit
into each of the forms.

▶ Lemma 12 (⋆). Let F be an unsatisfiable (3, 4)-formula of minimal size. Let x, y, u, w
be literals such that var(y) ̸= var(u) and var(x) ̸= var(w), degvar(y) = degvar(u) = 2 and
degvar(x) = degvar(w) = 3. We have the following facts:

1. If a literal a occurs in F , then a also occurs in F .
2. If

(
a
b

)
∈ F , then var(a) ̸= var(b).

3. F [y] is of the form
(

y y
a a
b b

)
.

4. F [x] is of the form
(

x x x
a a a
b c d

)
.

5. F [y] ∩ F [u] = ∅.
6. F [x] ∩ F [w] = ∅.
7. Either F [x] ∩ F [y] = ∅, or F [x] is of the form

(
x x x
a a a
z y y

)
.

8. If F [x] =
(

x x x
a a a
z y y

)
, then F [a] =

(
x x x b
a a a a
z y y z

)
, and degvar(b) = degvar(z) = 4.

▶ Lemma 13. A smallest (3, 2, 2)-formula has even size and no variables of degree 3.

Proof. It is possible to prove fact 4 from Lemma 12 for a minimal (3, 2, 2)-formula as well
(it does not follow automatically, as a minimal (3, 2, 2)-formula is not necessarily a minimal
(3, 4)-formula, but the proof is based on the same idea). A variable x of degree 3 then
implies there is a literal a of degree 3; a contradiction in a (3, 2, 2)-formula. So, a minimal
(3, 2, 2)-formula contains only variables of type (1, 1) and (2, 2), and has an even number of
literal occurrences. With k = 3, the number of clauses must be even. ◀

One caveat to searching for a formula of a reduced profile using SMS is that the reduction
can reduce degrees of some variables and literals. This means that some of the variables
or literals in the shorter clauses must occur strictly fewer times than the general bound s

(or p, q). To accommodate for this, we count each literal that occurs in a 2-clause twice.
However, this means that the literals in the 2-clauses whose degree was not reduced by the
steps above may exceed their degree cap under this way of counting. To adjust to this, we
sum up the number of exceeding counts and call it the surplus of the formula. Given a specific
reduction, we know the exact value of allowed surplus for the reduced formula, and so we can
include it as a part of the constraints. Here as an example, we write out the formula for the
case of bounded variable degree. The formula for the literal case can be defined similarly. For
all i ∈ [n] ∪ [−n], j ∈ [m], define e′

i,j := ei,j ∧ ¬τj,k. For all i ∈ [m] and t ∈ [m] ∪ [−m], define
(σ′

i,1, σ
′
i,2, . . . , σ

′
i,s+s) := Card(σi,1, σi,2, . . . , σi,s, e

′
i,1, . . . , e

′
i,m, e

′
−i,1, . . . , e

′
−i,m). Suppose S is

the value of surplus. Then we can define

Fsurp :=
∑
i∈[n]

σ′
i,s+1 + · · · + σ′

i,s+s = S.

We call the combination of the number of variables n, the number of clauses m, a
stairway σ and the number of surplus S a profile. For further speed-up, we also hard-code a
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Table 9 Number V of hard-coded variables of degree 3 we chose and time spent determining
the existence of a formula with each profile from reduction for previously unsolved cases with n

variables and m clauses from Table 4. Naturally, in each case V is no greater than the total number
of variables of degree 3 after reduction. In the table on the right, the number of hard-coded variables
of degree 3 is always 0 because by Corollary 13 no variable of degree 3 exists.

n m n′ m′ #2-cl S V time

9 11 1 1 3 0.2s
10 12 2 0 2 2.0s

12 14 8 10 2 1 0 32s
5 7 1 2 0 0.3s
6 8 2 2 0 1.5s
9 11 3 0 0 62s

12 15 0 0 3 6.5s
12 15 11 14 1 0 1 2.1h

9 12 1 1 0 41m

11 13 2 0 3 0.7s
9 11 2 1 2 1.3s

13 15 6 8 1 2 0 1.0s
7 9 2 2 0 9.4s

10 13 3 0 1 1.6h
8 10 3 1 0 33s

n m n′ m′ #2-cl S time

12 16 12 16 0 0 5d
13 16 11 14 2 0 7m
14 16 10 12 4 0 5.2s
14 18 13 17 1 0 21d
15 18 12 15 3 0 25m
16 18 11 13 5 0 4.5s

number of variables of degree 3 in the same way as described in the previous part. Let F
be a smallest unsatisfiable (3, 4)-formula and let x1, x2, . . . , xV be V degree 3 variables in F

whose occurrences we want to fix. By Lemma 12, the formula is of the following form. We
fix the first 3V rows of the matrix thereby determined.(

x1 x1 x1
a1 a1 a1

)(
x2 x2 x2
a2 a2 a2

)
. . .

(
xV xV xV
aV aV aV

)
. . .

▶ Lemma 14. A smallest unsatisfiable (3, 4)-formula (or (3, 2, 2)-formula) with m variables
and n clauses exists only if a formula of one of the profiles in Table 9, left (right) exists.

Proof. We enumerate all possible numbers of variables of degree 2 and 3 in the (unreduced)
formula, and list all possibilities of how the clauses of variables of degree 2 and 3 overlap
according to Lemma 12. We then perform the reduction to each possibility and obtain a list
of profiles that the unsolved cases from Table 9 reduce to. ◀

We tested the existence of each of the profiles from Table 9 with SMS and all of them
returned negative. Combining these experiment results with Lemma 14, we obtain the
following theorem.

▶ Theorem 15. µ(3, 4) > 15 and µ(3, 2, 2) > 18.

5 A smaller unsatisfiable (4, 5)-formula

We now turn our attention to unsatisfiable CNF formulas with clauses of length 4. As
mentioned in the introduction, f(4) = 4, i.e., s = 5 is the smallest value so that an
unsatisfiable (4, s)-formula exists. We found an unsatisfiable (4, s)-formula with 235 clauses,
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improving upon the formulas provided by Stříbrná [26] (449 clauses) and Knuth [20, p. 588]
(257 clauses). Knuth’s formula K4,5 can be described by the ⊕-derivation from the axiom
{□} depicted as a directed acyclic graph in Figure 3.

F1 F2

F3 F4

F5

F6 F7

F8

F9

F10

F11 F12

F13

F14

F15

F16

F17 K4,5

Figure 3 The ⊕-derivation of Knuth’s formula K4,5. Each node has two incoming arcs; the
number of arrowheads denotes the values p, q in ⊕p,q.

This formula has 257 clauses and 256 variables. However, 22 of these variables occur
twice (introduced in F1) and 31 variables occur in three clauses (introduced in F2). Hence
we can identify each of the variables with 2 occurrences with one variable with 3 occurrences,
still keeping the number of occurrences of the new identified variable within the bound 5.
By this method, we can save 22 variables, and indeed, Knuth states his formula to have
256 − 22 = 234 variables. With our modified saturation algorithm we could show that K4,5
is a smallest unsatisfiable (4, 5)-formula in MU(1). Thus, for finding a smaller formula, one
needs to search outside MU(1), and outside the class of formulas that can be obtained from
an MU(1) formula by identifying pairs of low-occurrence variables.

Finding an entire unsatisfiable (4, 5)-formula with SMS does not seem feasible. However,
we can search for an unsatisfiable (≤ 4, 5)-formula F that represents a stairway σ with
fewer clauses than any formula in MU(1) that represents the same stairway σ. Thus way
we can use F as an additional axiom in ⊕-derivations and this way possibly find a smaller
unsatisfiable (4, 5)-formula. We considered all stairways σ ∈ {(3), (2), (3, 2), (2, 2), (2, 2, 2),
(1), (3, 1), (2, 1), (2, 2, 1), (1, 1), (3, 1, 1), (2, 1, 1), (2, 2, 1, 1), (1, 1, 1), (3, 1, 1, 1), (2, 1, 1, 1),
(1, 1, 1, 1)} and run our SMS encoding to find an unsatisfiable formula F with at most 13
clauses and fewer clauses than a smallest MU(1)-formula for σ.

The search resulted in two such formulas within a timeout of five days. One formula
has 7 clauses for the stairway (3, 1, 1, 1) and the other has 8 clauses for the stairway (3, 2);
shortest MU(1) formulas for these stairways have 8 and 9 clauses, respectively. Using the
first of these two formulas as axiom indeed reduces the size of the unsatisfiable (4, 5)-formula
from 257 to 235, since the axiom is used several times; the second formula can be derived by
an ⊕ operation from the new axiom and axiom {□}. Our smaller unsatisfiable (4, 5)-formula
can be obtained by replacing F6 with F ′

6 in the ⊕-derivation from Figure 3, and using F ′
6 as

an additional axiom, where the two formulas are as follows (rows are variables, columns are
clauses, +/− indicates positive/negative occurrence; c.f. the appendix).

F ′
6 =


− +

− − − − +
− − + + −
− − + + −
− + − + −

 F6 =


− − − − +

− − − + +
− − − − +
− − − +
− − +
− + − +


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6 Conclusion

We have identified the smallest unsatisfiable (3, s) and (3, p, q)-formulas for a comprehensive
range of values, and brought an improvement in the known minimal size for an unsatisfiable
(4, 5)-CNF formula. Our work also contributed a uniform proof of the dichotomy for (3, p, q)-
SAT. The core methodology, a fusion of theoretical insights and an innovative application of
the SMS framework with the methods of disjunctive splitting and reductions has not only led
to the discovery of new smallest unsatisfiable formulas but also demonstrated the practical
utility of SMS in exploring the combinatorial landscape of CNF formulas.

Our findings have illuminated several challenging and open avenues for future work. For
instance, extending the scope to identify smallest unsatisfiable formulas for k ≥ 4 remains a
significant challenge. While the methods developed here provide a solid foundation, both
novel techniques and theoretical advances are necessary to tackle the increased complexity of
larger k values. An extension of our methods may lead to determining the exact value of
the threshold f(5), currently only known to be in the interval [5, 7]. Moreover, the interplay
between the size of unsatisfiable formulas and their implications for inapproximability results
in MaxSAT problems [3] invites deeper investigation. Finally, since we found out that, for
all q ≥ 3, the size of the smallest unsatisfiable (3, 1, q)-formula coincide with that of the
smallest unsatisfiable (3, 1, q)-formula in MU(1), we conjecture that this is true for all k ≥ 3
and q ≥ f(k) + 1.
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A Formulas

In the appendix we list formulas in tabular form, where rows represent variables, columns
represent clauses, and the + and − signs indicate positive and negative occurrence, respectively.
Blank cells mean the variable does not occur in the clause.

A.1 Smallest enforcers

In the following, we give examples of smallest (3, s)-enforcers E3,s and smallest (3, p, q)-en-
forcers E3,p,q for all entries in Table 2. Note that E3,4 also acts as a smallest (3, 2, 3)-enforcer.

E3,5 =

− − − −
− − + +
− + − +

 E3,4 =


− − −

− − + +
− − + +
− + − +

 E3,1,5 =


− − − − −
− − +

− − +
− +

− +



E3,1,4 =


− − +

− − − +
− − − −
− +

− − +
− +


E3,1,3 =



+ + +
− − − +

− − − +
− − +

− − +
− +

− +


E3,2,2 =



− −
− − + +

− − + +
− − + +

− + − +
− − + +

− + − +
− − + +



A.2 Smallest MU(1) formulas

In the following, we give ⊕-derivations of the smallest (3, s)-formula M1
3,s and the smallest

(3, p, q)-formula M1
3,p,q restricted to MU(1) for each entry from Table 6. For all the

derivations, we have F1 = {□} ⊕1,1 {□}, F2 = {□} ⊕1,2 F1 and F2′ = F1 ⊕2,2 F1; other Fi

symbols are defined locally in each derivation.

M1
3,4 = F4 ⊕2,2 F4 F3 = {□} ⊕1,3 F2 F4 = F3 ⊕2,2 F3

M1
3,5 = F4 ⊕3,2 F5 F3 = {□} ⊕1,3 F2 F4 = F1 ⊕2,3 F2 F5 = F2 ⊕3,2 F3

M1
3,6 = F2′ ⊕4,2 F3 F3 = F1 ⊕2,4 F2′

M1
3,7 = F2′ ⊕4,3 F3 F3 = F1 ⊕2,3 F2

M1
3,8 = F2′ ⊕4,4 F2′

M1
3,1,3 = F6 ⊕1,3 F4 F3 = {□} ⊕1,3 F2 F4 = F3 ⊕1,3 F2 F5 = {□} ⊕1,3 F4 F6 = F5 ⊕1,3 F4

M1
3,1,4 = F5 ⊕1,3 F3 F3 = F2 ⊕1,3 F2 F4 = {□} ⊕1,4 F3 F5 = F4 ⊕1,3 F3

M1
3,1,5 = F5 ⊕1,5 F3 F3 = F1 ⊕1,3 F2 F4 = {□} ⊕1,5 F3 F5 = F4 ⊕1,5 F3

M1
3,2,3 = F5 ⊕2,3 F4 F3 = {□} ⊕1,3 F2 F4 = F1 ⊕2,3 F2 F5 = F3 ⊕2,3 F2

M1
3,2,4 = F3 ⊕2,4 F2′ F3 = F1 ⊕2,4 F2′

M1
3,3,3 = F3 ⊕3,3 F3 F3 = F1 ⊕2,3 F2

M1
3,3,4 = F3 ⊕3,4 F2′ F3 = F1 ⊕2,3 F2

M1
3,4,4 = F2′ ⊕4,4 F2′
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A.3 Smallest (3, s) and (3, p, q)-formulas
In the following, we give examples of smallest (3, s)-formulas M3,s and smallest (3, p, q)-for-
mulas M3,p,q for all entries in Table 1. We take M3,4 = M1

3,4 and M3,1,q = M1
3,1,q for all

applicable q.

M3,6 = M3,3,3 =


− − − + + +

− − + − + +
− − + + − +
− + − + − +

 M3,5 = M3,2,3 =



− − − + +
− − − + +

− − + − +
− − − + +
− − + + −

− − + +
− − + +




+ + − −
+ + − −

+ + − −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −



M3,2,4 =



− +
− +

− +
− +

− +
− − + − − +

− − + − − +
− + − +

− + − +


M3,2,2 =
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