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Abstract
The propositional model counting problem #SAT asks to compute the number of satisfying as-
signments for a given propositional formula. Recently, three #SAT proof systems kcps (knowledge
compilation proof system), MICE (model counting induction by claim extension), and CPOG (certified
partitioned-operation graphs) have been introduced with the aim to model #SAT solving and enable
proof logging for solvers.

Prior to this paper, the relations between these proof systems have been unclear and very
few proof complexity results are known. We completely determine the simulation order of the
three systems, establishing that CPOG simulates both MICE and kcps, while MICE and kcps are
exponentially incomparable. This implies that CPOG is strictly stronger than the other two systems.
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1 Introduction

The propositional model counting problem #SAT asks to compute the number of satisfying
assignments for a given propositional formula [1]. The #SAT framework allows to efficiently
encode and solve many real-world problems from areas such as probabilistic reasoning [5, 45],
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risk analysis [26, 59] and explainable artificial intelligence [6, 51]. Interestingly, #SAT is
among the hardest combinatorial problems and known to be #P-complete [5, 49, 55]. To
put this in relation, by Toda’s Theorem [53] any problem from the polynomial hierarchy
(PH) can be solved in polynomial time by access to a #SAT oracle. In comparison, the SAT
problem is on the first level of PH [20].

Over the last two decades, researchers and solver engineers improved effective practical
#SAT solving [31] with numerous available #SAT solvers using conceptually quite different
approaches. An annual competition captures current trends of solvers and novel practical
algorithms, but also reveals that correctness needs to be improved [27].

In contrast to these practical advances, little is known theoretically on the power and
limitations of #SAT solving. In both SAT and quantified Boolean formulas (QBF), the main
theoretical approach towards gauging the strength of SAT and QBF solvers is through proof
systems and proof complexity [13,16]. The relation between proofs and solving is important
in at least two aspects.

Firstly, proof systems can model aspects of solving. A seminal result in this direction
is that CDCL solvers – the predominant approach in SAT solving – tightly correspond to
propositional resolution [4, 7, 48], in the sense that any (non-deterministic) CDCL run on an
unsatisfiable formula can be efficiently translated into a resolution refutation of the formula
and vice versa. Further results are known for practical CDCL [56] and relations between
QBF solving and related proof systems [10,36]. This allows to apply the plethora of proof
complexity results e.g. for propositional and QBF resolution [9, 43, 50] to the analysis of
solvers. For example any lower bound for proof size in propositional resolution directly
translates into a lower bound for CDCL runtime.

Secondly, proof systems can be employed for proof logging and certifying solver correctness
by designing certified tools. Therefore, formal proof systems are introduced where a practical
proof can be efficiently verified by a relatively simple method and easily emitted during
solving. Different proof systems and formats have been designed including RUP, RAT and
DRAT [29, 30, 34, 58] for SAT and QRAT [35] for QBF. These proof systems have been
intensively studied and compared in terms of simulations, e.g., [19,39,40]. While the first
modelling aspect needs weaker proof systems close to actual solving, the second proof-logging
aspect favours very strong proof systems.

In comparison to the rich and intensely researched interplay between solving and proof
complexity in SAT and QBF, significantly less is known in this regard for #SAT. In the past
five years, three different #SAT proof systems have been introduced. These systems are kcps
(2019) [18], MICE (2022) [11, 28], and CPOG (2023) [15]. These are the only #SAT proof
systems so far.

The three proof systems are conceptually quite different: while kcps and CPOG are both
static proof systems building on circuit classes used in knowledge compilation [24, 25] on
which model counting is efficient, MICE is a rule-based proof system using three simple rules
to compute counts for successively more complex formulas. The historically first system kcps
was inspired by #SAT solving using knowledge compilation techniques. Both subsequent
systems MICE and CPOG were designed with a view towards certifying different #SAT
solving approaches.

In contrast to the rich proof complexity results for SAT and QBF, almost nothing is
known theoretically for the three #SAT proof systems. Only for MICE, an exponential proof
size lower bound was shown last year [11], while the relations between the three systems in
terms of simulations are open.
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Figure 1 Simulation order of CPOG, MICE and kcps. A solid crossed edge from A to B indicates
that A p-simulates B and A is exponentially stronger than B. Dotted lines indicate incomparability.

1.1 Our contributions
We perform a proof-complexity analysis of the three proof systems kcps, MICE and CPOG
and completely determine their relative strength in terms of simulations and separations,
leading to the picture in Figure 1. In more detail, our findings can be summarised as follows.

A. Simulations between #SAT proof systems. We formally compare the three #SAT
proof systems in terms of simulations and show that CPOG p-simulates kcps and MICE, i.e.
both kcps and MICE proofs can be efficiently translated into CPOG proofs.

Rather than showing the two simulations directly, we consider two intermediate proof
systems kcps+ and CPOGDecision-DNNF. The first of these was already suggested in [18] as
a natural extension of kcps, while CPOGDecision-DNNF is newly introduced as a restriction
of CPOG. The system CPOG uses POGs (partitioned-operation graphs) as the underlying
circuit class, which in CPOGDecision-DNNF is restricted to Decision-DNNFs: the circuit class on
which kcps and kcps+ are based. Representing a CNF by any of these circuit models allows
efficient counting. Yet, the proofs need to contain additional information as verifying the
equivalence of a CNF to a circuit in these models is non-trivial. While the two additional
systems simplify our analysis, we believe they are also natural and of independent interest
for further research (cf. the discussion in the conclusion).

For these five proof systems, we determine the simulation order as depicted in Figure 2,
refining Figure 1 and including pointers to the results. While the simulations of kcps by
kcps+ and of CPOGDecision-DNNF by CPOG follow almost by definition, the simulations of
MICE by kcps+ and kcps+ by CPOGDecision-DNNF are more involved – in particular the first
one – as they connect conceptually quite different proof formats. The proof systems kcps,
kcps+, CPOGDecision-DNNF and CPOG are all static as they are based on circuits equipped with
additional information. In contrast, MICE is rule-based without any explicit connection to
circuits.1

B. Exponential separations between #SAT proof systems. As our second main result we
establish exponential separations between MICE and kcps in both directions. This entails
exhibiting suitable CNF families that have short proofs in MICE, while requiring short kcps
proofs, and vice versa. As a consequence, both systems are incomparable and at the same
time exponentially weaker than kcps+ and CPOG, thus resulting in the situation depicted in
Figure 1.

1 However, it was noted already in [12] that from a MICE proof a Decision-DNNF for the CNF can
be extracted. This does not, however, entail a simulation of MICE by kcps (which are based on
Decision-DNNFs), and in fact such a simulation fails as implied by our separation results in B.

SAT 2024
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1 Observation 4.5 open
2 Theorem 4.3∗ open
3 Theorem 4.1 Corollary 5.14
4 Observation 4.2∗ Corollary 5.14
5 (not possible) Corollary 5.13
6 (not possible) Corollary 5.4

Figure 2 Detailed simulation order of #SAT proof systems. A solid edge from A to B indicates
that A p-simulates B. If the edge is crossed, A is also exponentially separated from B. A dotted
edge from A to B indicates that A is exponentially separated from B. All the simulations of this
paper require only logarithmic space; those highlighted with “∗” only need linear time.

Technically, we obtain one direction (kcps does not simulate MICE) by showing a tight
characterisation of kcps proof size by regular resolution size on unsatisfiable formulas. A
similar characterisation of MICE by full resolution was shown in [11]. As regular resolution is
known to be exponentially weaker than resolution [3, 57], the separation follows.

For the other direction (MICE does not simulate kcps) we use a variant of the pebbling
formulas, prominent in propositional proof complexity [8, 14]. While the small Decision-
DNNFs and short kcps proofs are relatively easy to obtain, the hardness argument for MICE
is technically more involved (Theorem 5.7).

The first separation positively answers an open question posed by Capelli [18] to find
CNFs with polynomial-size Decision-DNNFs (these can always be extracted from short MICE
proofs [12]), but no small kcps proofs. The second separation implies that we cannot efficiently
transform Decision-DNNFs into MICE proofs.

1.2 Related work
For decision proof systems, there are extensive studies on simulation and separation, see,
e.g., [39,40]. For recently defined proof systems for propositional model counting, this has
been open. To the best of our knowledge, this paper is the first work in this direction for model
counting proof systems. However, existing approaches have been studied empirically [15,18,28].
Indeed, there is a list [27] of practical exact model counting systems, which are based on
different techniques. Among these are component caching [52], treewidth [42], knowledge
compilation, e.g., d4 [44], c2d [24], dsharp [46], as well as hybrid approaches [33,42]. Some
theoretical results are presented in [17] which predates the introduction of formal proof
systems for #SAT. There are also clausal proof systems enriched with XOR reasoning [47].
Very recently, first steps on proof systems for approximate counting [2] have been presented.

1.3 Organisation
The remainder of this paper is organised as follows. After reviewing some standard notions
from propositional logic and proof systems in Section 2, we provide formal definitions of
the existing proof systems for #SAT in Section 3. We show the simulations from Figure 2
in Section 4. The separations are provided in Section 5. We conclude in Section 6 with a
discussion on practical and theoretical implications.
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We highlight that though we believe our results bear practical relevance, this paper
performs a purely theoretical proof-complexity investigation.

2 Preliminaries

We briefly provide formal notions from propositional logic and proof systems. For more
detailed information, we refer to [1, 41]. For an integer n, we set [n] := {1, 2, . . . , n}.

Propositional formulas. A literal l is a variable z or its negation z, and we write var(l) := z.
A clause is a disjunction of literals, a conjunctive normal form (CNF) is a conjunction of
clauses. Often, we write clauses as sets of literals and formulas as sets of clauses. We assume
that propositional formulas are given in CNF. We can efficiently transform any formula
into a CNF using Tseitin transformations [54]. For a formula F , vars(F ) denotes the set
of all variables in F . If C ∈ F is a clause and V ⊆ vars(F ) is a set of variables, we define
C|V = {l ∈ C | var(l) ∈ V } and F |V denotes the formula F with every clause C replaced by
C|V .

Given a set V of variables, a (partial) assignment is a (partial) function α : V → {0, 1} that
maps variables to Boolean values. We write ⟨V ⟩ for the set of all 2|V | complete assignments
to V . For a (partial) assignment α, F [α] denotes the formula where we replace all occurrences
of variables x with α(x). If F [α] = 1, we say α satisfies F and write α |= F . We say that α
falsifies F if F [α] = 0 and write α ̸|= F .

Occasionally, we interpret an assignment as a CNF consisting of precisely those unit
clauses that specify the assignment. Therefore, the set operations are well defined for
formulas and assignments. We say that two assignments are consistent if they agree on their
intersection.

A formula F is satisfiable if there exists an assignment α ∈ ⟨vars(F )⟩ such that α |= F

and is unsatisfiable if there exists no such assignment. For a formula φ, Mod(φ) := {α ∈
⟨vars(φ)⟩ | α |= φ} is the set of all models of φ. The model counting problem #SAT asks to
compute |Mod(φ)| for a given formula φ. Throughout the paper, we use φ for formulas we
want to count on. The SAT problem asks to decide whether a given formula is satisfiable
and UNSAT whether a given formula is unsatisfiable. Moreover, we need the definition of
semantic consequence. We write F |= G if and only if for every assignment α ∈ ⟨vars(F )⟩, we
have that α |= F implies α |= G. We write F ≡ G if and only if F |= G and G |= F .

Proof systems. Following Cook and Reckhow [21], a proof system for a language L is a
polynomial-time computable function f with range rng(f) = L. Here, L will be chosen as
either UNSAT or #SAT. If f(w) = x, then w is called f -proof of x ∈ L. In order to compare
proof systems we need the notion of simulations. Let P and Q be proof systems for the same
language. Then, P p-simulates Q if every Q-proof can be translated in polynomial time into
a P -proof of the same formula. Two proof systems are p-equivalent if they p-simulate each
other. Further, P is exponentially separated from Q if there is a family of formulas that have
polynomial sized P -proofs while any Q-proof requires exponential size.

Resolution is arguably the most studied proof system for UNSAT. It is a line-based proof
system with clauses as proof lines. The resolution rule allows to derive the clause C ∪ D

from previously derived clauses C ∪ {x} and D ∪ {x}. We also allow the weakening rule that
derives C ∪D from a clause C. A resolution refutation of a CNF is a derivation of the empty
clause □. As refutational systems, resolution with and without weakening a p-equivalent.

SAT 2024
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Further, we can interpret any proof π in a line-based proof system as a directed graph
Gπ, where the nodes are proof lines in π. There is an edge from proof line l1 to l2 if l2 was
used to derive l1. A resolution refutation is regular if there is no path from the root to a leaf
in Gπ where a variable is resolved more than once.

3 Proof systems for #SAT

In this section, we recall the existing #SAT proof systems kcps, CPOG, and MICE and provide
some intuition. In particular, we provide a concise formalisation of CPOG. Furthermore, we
introduce two adapted versions of kcps and CPOG that we call kcps+ and CPOGDecision-DNNF.
As kcps and CPOG heavily use concepts from knowledge compilation, we start with relevant
definitions following standard texts [25,37].

A circuit is a directed acyclic graph with labelled nodes that we call gates. We only
consider circuits that have exactly one gate with indegree 0. It is called root and represents
the circuit’s output. Gates with outdegree 0 are called leaves and are labelled with literals
or constants 0 and 1. The latter are also called 0-gate or 1-gate. Every inner gate is an
And-, Or- or Not-gate labelled with the corresponding Boolean function. The semantics of
such circuits are defined in the usual way. Additionally, we assume that And- and Or-gates
always have exactly two children.

Let D be a circuit. For gates in D we use uppercase letters such as N . We write vars(D)
for the set of all variables occurring in leaves of D. E(D) denotes the Tseitin encoding [54]
of D, where we use a new variable ϑN for every gate N . We denote the subcircuit of D with
root N consisting of all descendants of N by D(N).

A circuit is in negation normal form (NNF) if it does not contain Not-gates. An And-
gate with children N1 and N2 is called decomposable, if vars(D(N1)) ∩ vars(D(N2)) = ∅. An
Or-gate with children N1 and N2 is called deterministic if there is no assignment that satisfies
both D(N1) and D(N2). A DNNF [22] is an NNF where every And-gate is decomposable.
A d-DNNF [23] is a DNNF where every Or-gate is deterministic.

Since it is non-trivial to check if all Or-gates are indeed deterministic, we also consider
a restricted version of d-DNNF called Decision-DNNF. In a Decision-DNNF, any Or-gate
has the form N = (N1 or N2) with N1 = (x and N3) and N2 = (x and N4) for any
variable x. It is obvious that any such Or-gate is deterministic. For better readability, we
write Decision-DNNFs without Or-gates but use Decision-gates instead. We rewrite the
above gate as N = (if x then N3 else N4). Note that we can assume that the leaves of
a Decision-DNNF contain only constants 0 or 1. Further, in any path from the root to a leaf,
any variable can be decided at most once because of the decomposability property. We say
that an assignment α reaches a gate N if there is a path P from the root to N such that all
decisions along P are consistent with α.

3.1 Kcps: Knowledge Compilation Proof System
The system kcps is the historically first proof system for #SAT, introduced by Capelli in
2019 [18]. As the name suggests, it aims to certify solvers that apply knowledge compilation
techniques. These solvers transform the input CNF into a format that can handle various
queries efficiently, in particular model counting [24,25, 44]. As in practice solvers often rely
on compiling the formulas into Decision-DNNFs, kcps is based on this class of circuits.

A kcps proof of φ provides a Decision-DNNF D such that D ≡ φ. The Decision-DNNF D

implicitly contains the model count of φ as we can efficiently compute it (cf. Figure 3 for
an example). However, for this to be a proof in the sense of Cook-Reckhow [21], we need
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Figure 3 A Decision-DNNF (left) and a POG (right) that are equivalent to the formula φ =
(a ∨ b) ∧ (c ∨ d). The blue number at a gate N indicates the fraction of assignments that satisfy the
subcircuit with root N . These numbers are computed bottom-up, i.e. 0-gates get count 0, 1-gates
count 1 and gates that are labelled with a literal count 1

2 . Decision-gates get the average of the
two children, Or-gates the sum and And-gates the product. Finally, to compute the model count of
φ, we multiply the fraction of satisfying assignments of the whole Decision-DNNF or POG with the
count of all possible assignments to vars(φ), resulting in |Mod(φ)| = 9

16 · 2|vars(φ)| = 9.

to verify that D and φ are indeed equivalent. The direction D |= φ can always be checked
efficiently [25] (cf. also Lemma 3.6 below for a formal argument). However, the other direction
φ |= D is a coNP-complete problem for arbitrary Decision-DNNFs [18]. Thus, we consider a
restricted version of Decision-DNNFs on which checking φ |= D becomes easy as well. For
that, we review the notion of a certified Decision-DNNF [18].

▶ Definition 3.1 (S-certified Decision-DNNF [18]). Let S be a set of clauses. A Decision-
DNNF D is called S-certified if every 0-gate N is labelled by a certificate C ∈ S. A clause is
a certificate for N if all assignments that reach N falsify C.

These restricted Decision-DNNFs have the property that for a formula φ, any φ-certified
Decision-DNNF D satisfies φ |= D [18]. To see this, consider the equivalent statement
¬D |= ¬φ. Let α be an assignment that falsifies D, then it reaches a 0-gate. Consequently,
it has to falsify its certificate and in particular φ.

Finally, we can define the kcps proof system:

▶ Definition 3.2 (kcps [18]). A kcps proof of a CNF φ is a φ-certified Decision-DNNF D

where D ≡ φ.

Note that the model count of φ and also the equivalence between φ and D are not
explicitly part of the proof as we can compute the model count efficiently from D and verify
D ≡ φ in polynomial time.

In fact, Capelli [18] proposed a generalization of kcps where the certifying clauses for the
0-gates are not necessarily clauses of the original formula φ. Instead, we use as certificates
arbitrary clauses derived by resolution from φ. This results in the proof system kcps+.

▶ Definition 3.3 (kcps+ [18]). A kcps+ proof of a CNF φ is a pair (σ,D) where
1. σ is a resolution derivation starting from the clauses in φ and
2. D is a σ-certified Decision-DNNF (i.e. all clauses labelling the 0-gates in D are derived

in σ) such that D ≡ φ.

SAT 2024
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3.2 CPOG: Certified Partitioned-Operation Graphs
In contrast to kcps, CPOG is not restricted to certified Decision-DNNFs, but uses the more
flexible circuit class POG (partitioned-operation graphs). Instead of providing the original
definition of POGs from [15], we equivalently define a POG as a d-DNNF with Not-gates
(alternatively, a d-DNNF can be viewed as a POG with negation applied only to variables).

Model counting is also efficient on POGs [15], and in fact POGs appear to be the largest
class to which the model counting idea used for Decision-DNNFs naturally extends. However,
in order to maintain efficient proof checking, a CPOG proof has to explicitly prove that P is
indeed a POG and that φ ≡ P . This leads to the following definition.

▶ Definition 3.4 (CPOG [15]). A CPOG proof of a CNF φ is a 4-tuple (E(P ), ρ, ψ,X) where
1. P is a POG with root R such that P ≡ φ and E(P ) is a clausal encoding of P ,
2. ρ is a proof for φ |= P , i.e., ρ is a resolution refutation of E(P ) ∧ φ ∧ (ϑR),
3. ψ is a proof for P |= φ, i.e., ψ contains a resolution refutation of E(P ) ∧ (ϑR) ∧ C for

every clause C ∈ φ,
4. X is a set of proofs verifying that all Or-gates of P are deterministic, i.e., X is a set of

resolution refutations such that for any Or-gate N , X contains a resolution refutation of
E(P ) ∧ (ϑN1) ∧ (ϑN2), where N1 and N2 are the two child gates of N .

Note that CPOG is originally defined on circuits with arbitrary fan-in, however we consider
only the binary case which is polynomially equivalent. Additionally, the original definition
uses RUP steps for the propositional proofs, which are p-equivalent to resolution. In our
definition, we use resolution proofs instead.

The underlying structure of POGs in CPOG proofs is quite generic. So far, the only
implementation of CPOG [15] is restricted to Decision-DNNFs instead of POGs. We capture
this variant in the following definition:

▶ Definition 3.5 (CPOGDecision-DNNF). A CPOGDecision-DNNF proof of a CNF φ is a pair
(E(D), ρ) where
1. D is a Decision-DNNF with root R and E(D) a clausal encoding of D such that D ≡ φ,
2. ρ is a resolution refutation of φ ∧ E(D) ∧ (ϑR).

Note that in comparison to Definition 3.4, the last two items are missing. This is clear
for item 4 as D only contains Decision-gates instead of Or-gates. But also the proof ψ in
item 3 can always be computed efficiently for Decision-DNNFs as we show in the next lemma.

▶ Lemma 3.6. Let D be a Decision-DNNF with root R and encoding E(D). If D ≡ φ, then
we can compute ψ, i.e. a resolution refutation of E(D) ∧ (ϑR) ∧C for every clause C ∈ φ, in
time O(|D| · |φ|).

Proof sketch. Let C ∈ φ be some arbitrary fixed clause. We assume that D ≡ φ. Let
L = N1, . . . , Nn be a list of all gates in D that are unsatisfiable under the partial assignment
C in some topological ordering such that no gate is listed after its ancestors. Note that R is
the last element in L as D[C] ≡ φ[C] has to be unsatisfiable. We can show inductively that
for every i ∈ [n] we can effectively derive the unit clause (ϑNi) from E(D) ∧ C. We do this
by deriving (ϑNi

) from the corresponding unit clauses of its children in a constant number of
resolution steps.

Since R ∈ L, we can derive (ϑR) efficiently. With an additional resolution step with
the unit clause (ϑR), we derive the empty clause. In total, we can construct a resolution
refutation of E(D) ∧ (ϑR) ∧ C of size O(|D|). Since ψ contains such a refutation for every
clause C ∈ φ, we can construct ψ with at most O(|D| · |φ|) resolution steps. ◀
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Axiom. (∅, ∅, 1) (Ax)

Composition. (F,A1, c1) · · · (F,An, cn)
(F,A,

∑
i∈[n] ci)

(Comp)

(C-1) vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n]
(C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is

included into the trace and is called an absence of models statement.

Join. (F1, A1, c1) (F2, A2, c2)
(F1 ∪ F2, A1 ∪A2, c1 · c2) (Join)

(J-1) A1 and A2 are consistent,
(J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension. (F1, A1, c1)
(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(Ext)

(E-1) F1 ⊆ F ,
(E-2) A|vars(F1) = A1,
(E-3) A satisfies F \ F1.

Figure 4 Inference rules for MICE [11].

3.3 MICE: Model-counting Induction by Claim Extension
The third system we need is the line-based #SAT proof system MICE, introduced with the
intention to provide a proof system close to various solvers [28]. Here, we use MICE in its
slightly simplified, but p-equivalent form as defined in [11].

▶ Definition 3.7 (MICE [11,28]). The proof lines in MICE are called claims. A claim is a
3-tuple (F,A, c) consisting of a CNF F , a partial assignment A of vars(F ) (called assumption)
and a count c. A MICE proof of a CNF φ is a sequence of claims I1, . . . , Ik that are derived
with the inference rules in Figure 4 such that the final claim has the form (φ, ∅, c) for some
count c.

If a MICE proof π derives the claim (φ, ∅, c), then π proves that φ has exactly c models.
A claim (F,A, c) is correct if F has exactly c models that are consistent with A. Since only
correct claims can be derived in MICE [11], the count c of a correct claim (F,A, c) is uniquely
determined by F and A. Thus, we sometimes omit c and use the notation (F,A) instead.

4 CPOG simulates MICE and kcps

We start our investigation by clarifying the simulation order of the #SAT proof systems
introduced in Section 3 and prove that CPOG simulates MICE and kcps. We achieve this by
efficiently constructing CPOG proofs from given MICE or kcps proofs. We use the systems
CPOGDecision-DNNF and kcps+ from Section 3 as convenient intermediate proof systems and
show the four simulations depicted in Figure 2.

Our first simulation transforms MICE proofs into kcps+ proofs.

▶ Theorem 4.1. kcps+ p-simulates MICE.
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Proof sketch. Let π = I1, . . . , In be a MICE proof of a CNF φ with Ik = (Fk, Ak) for every
k ∈ [n]. Our goal is to construct a kcps+ proof for φ from π. W.l.o.g. the first claim of π is
(∅, ∅, 1) derived with (Ax) and all other claims are not derived with (Ax). For each k ∈ [n],
we construct a Decision-DNNF Dk that satisfies the following invariants:

(i) Dk is equivalent to Fk[Ak],
(ii) Dk contains only variables from Fk[Ak], and
(iii) every 0-gate N in Dk is labelled with some clause C derived from φ such that for any

assignment α ∈ ⟨vars(Dk)⟩ that reaches N , the clause C is falsified by α ∪Ak.

For the base case k = 1, I1 = (∅, ∅, 1) is derived with (Ax). We set D1 to a circuit that
only contains one 1-gate. For the induction step, we distinguish how Ik is derived.

Join. Ik is derived with (Join) from claims Ii and Ij , so we have Fk = Fi ∪ Fj and
Ak = Ai ∪ Aj . Per induction hypothesis, we have already derived Decision-DNNFs Di

and Dj equivalent to Fi[Ai] and Fj [Aj ]. We define Dk to be an And-gate with the two
children that are the roots of Di and Dj .
Composition. Ik is derived with (Comp) from claims Ii1 , . . . , Iir . Per induction hypothesis,
we have the corresponding circuits Dij

for all j ∈ [r]. Let V = vars(Ai1) \ vars(Ak),
keeping in mind that all assumptions Aij have the same set of variables because of (C-1).
We build a complete binary decision tree T with variables in V . For every claim Iij

for
j ∈ [r] there is exactly one leaf in T that is consistent with the assumption Aij

. We
replace this leaf with the root of the corresponding Decision-DNNF Dij

. Afterwards, we
replace all remaining leaves with a 0-gate. Furthermore, we remove every Decision-gate
where both decisions lead to a 0-gate as long as such gates exist. We set Dk to be the
resulting circuit. For each new 0-gate we can specify a valid certificate and construct its
derivation from the absence of models statement that was used for the (Comp).
Extension. Ik is derived with (Ext) from Ii. Per induction hypothesis, we have already
derived a Decision-DNNF Di equivalent to Fi[Ai]. We set Dk = Di.

This completes the induction. Since In = (φ, ∅), Dn is a Decision-DNNF representing φ.
Further, all 0-gates have valid certificates in some derivation σ. Therefore, we have constructed
a valid kcps+ proof π′ = (Dn, σ). With |Dn| = O(n2 · |vars(φ)|) and |σ| = O(n2 · |vars(φ)| · |π|),
we get that |π′| is polynomial in |π|. ◀

We remark that there is a related result in [12], which shows that we can efficiently
transform any MICE proof of some formula φ into a Decision-DNNF D representing φ. The
theorem above strengthens this by showing that we can even derive some set σ of clauses
such that all 0-gates of D are σ-certified.

Next, we observe that kcps+ is indeed a generalization of kcps. This holds as we can write
any kcps proof D as a kcps+ proof (σ,D) where σ contains all clauses of φ.

▶ Observation 4.2. kcps+ p-simulates kcps.

Now, we efficiently transform a given kcps+ proof of a CNF φ into a CPOGDecision-DNNF

proof. The choice of the Decision-DNNF D for the CPOG proof is obvious: we simply copy it
from the kcps+ proof. Therefore, we only have to construct a short refutation of φ |= D.

▶ Theorem 4.3. CPOGDecision-DNNF p-simulates kcps+.

Proof. Let π = (σ,D) be a kcps+ proof for φ. Further, let E(D) be the clausal Tseitin
encoding of the Decision-DNNF D with root R. For any resolution refutation ρ of φ∧ E(D) ∧
(ϑR), we obtain a valid CPOGDecision-DNNF proof π′ = (E(D), ρ). In order to prove the theorem,
we construct ρ such that |π′| = O(|π|). As |π′| = |E(D)| + |ρ| = O(|D|) + |ρ| it is sufficient
that |ρ| = O(|D| + |σ|). For that, we first derive all clauses of σ in ρ.
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▷ Claim 4.4. For every gate N in D, we can efficiently derive a clause CN = (ϑN ∨ C)
from E(D) ∧ φ where C is a clause satisfying the invariant (I): Any assignment leading to N
falsifies C.

Proof sketch. We show this by induction on the gates of D starting at the leaves. In the
base case, N is a leaf. If N is a 0-gate with certificate C ′, we can derive CN for C = C ′.
Otherwise, if N is an 1-gate, we can derive CN with C = ∅. In the induction step, we use
the already derived clauses C1, C2 corresponding to the children of N . Together with E(D)
we can derive the clause CN with a constant number of resolution steps. ◁

As a result, we can also derive the clause CR = (ϑR ∨ C) for the root R such that C
satisfies (I). As there are no decisions above R, C has to be the empty clause, i.e., we have
derived the unit clause CR = (ϑR). By applying a resolution step with the other unit clause
(ϑR), we refute φ ∧ E(D) ∧ (ϑR) with resolution.

In total, ρ contains the derivations of σ and additionally, a constant number of resolution
steps for each gate in D. Thus, the resulting resolution refutation ρ has at most size
|σ| +O(|D|) and the theorem follows. ◀

We finally show last simulation which almost follows by definition as POGs generalise
Decision-DNNFs.

▶ Observation 4.5. CPOG p-simulates CPOGDecision-DNNF.

Proof sketch. In order to transform a CPOGDecision-DNNF proof (E(D), ρ) into a CPOG proof
(E(P ), ρ, ψ,X), we use that D is also a POG by setting P = D. We can compute the
corresponding ψ efficiently as shown in Lemma 3.6. Further, it is easy to show with resolution
that all Or-gates are deterministic, i.e., X can also be computed efficiently. ◀

With that, we have shown all simulations illustrated in Figure 2. Upon closer examination,
all these simulations turn out to be computable with logarithmic space. Moreover, the
simulations in Observation 4.2 and Theorem 4.3 can be computed in linear time.

5 MICE and kcps are incomparable

Having determined the simulation order of #SAT proof systems, we now turn to lower
bounds and separations between them. We first compare MICE and kcps.

5.1 CNFs that are hard for kcps but easy for MICE
Before getting to specific lower bounds, we provide a tight characterisation of proof size on
unsatisfiable formulas for kcps in terms of regular resolution.

▶ Proposition 5.1. For unsatisfiable formulas, kcps and regular resolution are p-equivalent.

Proof. The proof is based on [37, Theorem 18.1] stating that the minimal size of any regular
resolution refutation of a formula φ equals the minimal size of any read-once branching
program solving the search problem for φ. A read-once branching program for the search
problem for φ is equivalent to a φ-certified Decision-DNNF D with D ≡ φ that contains no
And-gates. Thus, the result directly implies that kcps p-simulates regular resolution for
unsatisfiable formulas.

For the converse simulation of kcps by regular resolution we consider an arbitrary φ-
certified Decision-DNNF D with D ≡ φ for some unsatisfiable formula φ and show that we
can get rid of all And-gates:
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▷ Claim 5.2. There is a φ-certified Decision-DNNF D′ with D′ ≡ φ and |D′| ≤ |D| that
contains no And-gates.

Proof sketch. To prove this claim we present a technique to remove an And-gate. Let N be
an And-gate of D such that all ancestors of N are Decision-gates. Further, let N1 and N2
be the children of N , i.e. D(N) ≡ D(N1) ∧D(N2). We can argue that not both D(N1) and
D(N2) are satisfiable as this would lead to a satisfying assignment of φ.

Therefore, we can assume w.l.o.g. that D(N1) is unsatisfiable, i.e. D(N) ≡ D(N1) ∧
D(N2) ≡ D(N1). Thus, we can decrease the number of And-gates of D by 1 by replacing
gate N with N1. This can never increase the set of assignments that reach a particular gate,
and therefore leaves all certificates intact. In this way, we can remove every And-gate one
by one without increasing the size of D. ◁

By using this claim, we convert D to some D′ without And-gates, apply the result from
[37, Theorem 18.1] and obtain a regular resolution refutation of size at most |D|. ◀

Therefore, any lower (and upper) bound for regular resolution transfers to kcps. For
regular resolution, many lower bounds are known [43], and in particular all formulas hard for
resolution such as the pigeonhole principle [32] are hard for kcps. Note that any unsatisfiable
formula has a trivial Decision-DNNF. Nevertheless, all kcps proofs can be of exponential size.
This answers an open question from [18].

A similar proof size characterisation on unsatisfiable formulas is known for MICE, in this
case in terms of full (i.e. unrestricted) resolution [11].

▶ Proposition 5.3 ([11]). For unsatisfiable formulas, MICE and resolution are p-equivalent.

As there are CNF families exponentially separating regular and full resolution [3, 57],
Propositions 5.1 and 5.3 yield:

▶ Corollary 5.4. MICE is exponentially separated from kcps.

While this separation is on unsatisfiable formulas, we can easily extend it to satisfiable
CNFs as well. For this, let φ be an unsatisfiable formula that separates resolution from
regular resolution. For some fresh variable a /∈ vars(φ), we define φ′ = {(C ∨ a) | C ∈ φ}.
Then, φ′ has 2|vars(φ)| models and still separates MICE from kcps.

Firstly, φ′ is still easy for MICE. We derive the claim (φ′, {a}) with (Comp), the absence
of models statement is short since φ′[a] = φ has a short resolution refutation. Further, we
derive (φ′, {a}) with (Ext) and finally apply (Comp) to these two claims, resulting in (φ′, ∅).

Secondly, we argue that the hardness of φ for kcps implies the hardness of φ′. For the
contrapositive, let D ≡ φ′ be a φ′-certified Decision-DNNF. Then, D[a] ≡ φ is a φ-certified
Decision-DNNF of size at most |D|, i.e. φ has a kcps proof of analogous size.

5.2 CNFs that are hard for MICE but easy for kcps
Next, we show that MICE cannot simulate kcps. For that, we use a variant of the pebbling
formulas on pyramidal graphs. For a given size n ∈ N, the pyramidal graph (cf. Figure 5)
has m := n(n+1)

2 nodes: a node Pi,j for each 1 ≤ j ≤ i ≤ n. For each i < n, there are edges
from Pi+1,j and Pi+1,j+1 to Pi,j . The variable i is called the row of the node, and j is called
the column. When comparing rows, we talk about greater or smaller rows. The nodes in
row n are called sources, and the node in row 1 is called the sink.
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Figure 5 Pyramidal graph for PEB6, depicting the situation in the proof of Theorem 5.7. For a
fixed claim in a MICE proof of PEB6, the red nodes are active, i.e. they correspond to variables that
occur in the formula F . The diamond-shaped nodes form the boundary of this claim as they have
neighbours that are not active.

We start with some intuition for the pebbling formulas PEBn. They have two variables
wi,j and bi,j for each node Pi,j . wi,j represents a white pebble being placed on that node,
while bi,j represents a black pebble. The formula requires each source node to contain a
pebble. Every other node needs to contain a pebble if and only if both its parent nodes
contain a pebble. No node can simultaneously contain a black and a white pebble.

▶ Definition 5.5. Let n be an integer. The formula PEBn has variables wi,j and bi,j for
every i, j ∈ [n] with j ≤ i. PEBn is a CNF defined as follows:

For every i, j ∈ [n− 1], j ≤ i the formula requires that

(wi,j ∨ bi,j) ↔ ((wi+1,j ∨ bi+1,j) ∧ (wi+1,j+1 ∨ bi+1,j+1)).

This is expressed using the clauses

C1
i,j = wi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j C2

i,j = wi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j

C3
i,j = bi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j C4

i,j = bi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j

C5
i,j = wi+1,j ∨ bi+1,j ∨ wi,j C6

i,j = wi+1,j ∨ bi+1,j ∨ bi,j

C7
i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ wi,j C8

i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ bi,j .

For every j ∈ [n] there is a clause wnj ∨ bnj.
For every i, j ∈ [n], j ≤ i there is a clause C9

i,j = bi,j ∨ wi,j.

Note that the commonly used pebbling formulas require the sink node P1,1 to contain no
pebbles, making the formula unsatisfiable. We omit this requirement and obtain a formula
that is satisfied if and only if each node contains exactly one pebble. It has 2m models where
m is the number of nodes. Two nodes are called adjacent if there is an edge between them in
the pebbling graph.

To separate kcps from MICE with PEBn, we show that there are polynomial-sized proofs
in kcps while any MICE proof requires exponential size. We start with the upper bound.

▶ Proposition 5.6. There is a kcps proof of PEBn of size O(|PEBn|).

Proof. We iteratively construct a PEBn-certified Decision-DNNF D with D ≡ PEBn. For
each node Pi,j , we construct a partial Decision-DNNF with root Ni,j that handles the case
{wi,j = 0, bi,j = 0}. This means that in order to obtain a valid Decision-DNNF, all paths
to Ni,j must include these two decisions. We also make sure that descendants of Ni,j only
decide variables of nodes in rows greater than i.

We begin constructing the Ni,j for greater rows, starting with i = n, and continue to
smaller rows. For i = n, Ni,j is simply a 0-gate labelled with the clause wn,j ∨ bn,j , which
will be falsified by the assumption {wi,j = 0, bi,j = 0}.
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Ni,j : wi+1,j?

bi+1,j?
(Ni+1,j)

0
wi+1,j+1?

bi+1,j+1?
(Ni+1,j+1)

0
0 (C4

i,j)10
0 (C3

i,j)1
10

wi+1,j+1?
bi+1,j+1?

(Ni+1,j+1)
0

0 (C2
i,j)10

0 (C1
i,j)1

1

Figure 6 Fragment for the Decision-DNNF in Proposition 5.6. The 0-gates are certified with
clauses Ci,j from Definition 5.5.

For i < n, we add Ni,j according to Figure 6. The leaves of this proof fragment are either
0-gates that are certified by some clause C1

i,j to C4
i,j , or are connected to some previously

constructed gate Ni+1,j or Ni+1,j+1, after making sure that the corresponding node contains
no pebbles. In this way, we can obtain a graph that contains an appropriate gate Ni,j for
every node Pi,j .

Finally, we build the complete Decision-DNNF D. For each node Pi,j , ordered from least
to greatest i, we decide wi,j and, if it is 0, also bi,j . If both are 0, we connect to Ni,j ; if both
are 1 connect to a 0-gate certified by C9

i,j . We merge the branches of all other cases and
continue with the next node. After all nodes have been handled, we finally arrive at a single
1-gate.

Because of the ordering of the nodes, each path through D can decide each variable at
most once. Therefore, D is indeed a Decision-DNNF. It is equivalent to φ and φ-certified.
For each node Pi,j we add at most 13 gates, and there is one additional 1-gate. In total, the
number of gates is at most 13m+ 1 = O(|PEBn|). ◀

The actual lower bound for MICE is the more challenging part.

▶ Theorem 5.7. PEBn requires MICE proofs of size 2Ω(n).

Note that all known lower bounds for MICE so far are based on formulas with large
Decision-DNNF representation [11]. However, this lower bound technique does not work for
PEBn as it has polynomial-sized Decision-DNNFs (Proposition 5.6).

Proof. Let π be a MICE proof of PEBn. For a claim I = (F,A), the set of active
nodes A(I) contains exactly the nodes Pi,j where wi,j ∈ vars(F ) or bi,j ∈ vars(F ). We
define the width of I as w(I) = |A(F )| and the boundary of I as B(I) := {N ∈ AF |
there is an adjacent node N ′ /∈ AF }.

We show that a claim that considers about half of all nodes also needs to have a large
boundary:

▷ Claim 5.8. Let I be a claim with width bounded by m
3 ≤ w(I) ≤ 2·m

3 . Then, |B(I)| ≥ n
8 .

Let Gπ = (V,E) be the representation of π as proof graph, i.e., V is the set of all claims
in π and there is an edge (I1, I2) between two claim exactly if I1 was used to derive I2. Any
claim I ∈ V that is derived with (Join) has two incoming edges. For any such node, we
delete the edge from the child that has the smaller width. We refer to the resulting graph as
G′

π = (V,E′).

▷ Claim 5.9. For every model α |= PEBn, there is a path πα from the final claim to an (Ax)
claim, along edges in E′, such that for every every claim (F,A) ∈ πα, α |= A.
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In the rest of the proof, we use the πα from Claim 5.9 and define V ′ to be the union of
all πα. We argue that claims in V ′ with a large boundary also have a large assumption:

▷ Claim 5.10. Any claim I = (F,A) ∈ V ′ satisfies |A| ≥ |B(I)|.

Next, we partition the claims of V ′ into two sets

X = {I ∈ V ′ | w(I) < 2
3 ·m},

Y = {I ∈ V ′ | w(I) ≥ 2
3 ·m}.

Further, we define the set S ⊆ Y as the set of nodes in Y that have a child in X, i.e.

S = {I ∈ Y | ∃I1 ∈ X : (I1, I) ∈ E′}.

We argue that all claims in S have large assumptions:

▷ Claim 5.11. Any claim I = (F,A) ∈ S satisfies |A| ≥ n
8 .

On the other hand, every model of PEBn corresponds to a claim in S:

▷ Claim 5.12. Let α be a model of PEBn. Then, there is a claim (F,A) ∈ S such that α
and A are consistent.

Using Claims 5.11 and 5.12, we can finally prove the lower bound for the theorem. It
is easy to observe that PEBn has 2m models because there are 2 satisfying assignments
to the variables of each node. Let α be an assumption with at least n

8 variables and s

the number of nodes with one or two variables in α. We observe that 2s ≥ n
8 and the

number of models consistent with α is at most 1s · 2m−s ≤ 2m · 2n/16. Because each of 2m

models is consistent with a claim in S, S has at least 2n/16 elements. We conclude that
|π| ≥ |V ′| ≥ |S| ≥ 2n/16 = 2Ω(n) leading to the theorem. ◀

By combining Proposition 5.6 and Theorem 5.7, we finally obtain the separation of kcps
from MICE:

▶ Corollary 5.13. kcps is exponentially separated from MICE.

While MICE and kcps are incomparable (Corollary 5.4, Corollary 5.13), kcps+ simulates
both systems (Theorem 4.1, Observation 4.2), which immediately leads to the following two
separations.

▶ Corollary 5.14. kcps+ is exponentially separated from MICE and from kcps.

With that, we have proven all separations from Figure 2.

6 Conclusion and future work

In this paper, we compare the strength of existing proof systems for #SAT. We mention that
four of the systems we study, namely MICE, kcps+, CPOGDecision-DNNF and CPOG, include
propositional resolution derivations in proofs. These resolution derivations are needed to
check propositional entailment steps. We could define variants of the four mentioned proof
systems by replacing all resolution proofs by proofs in a different propositional proof system P

(and in the extreme case even with NP oracle calls). Close inspection of our results shows
that all simulations and separations as depicted in Figure 2 will continue to hold when
resolution is replaced throughout by an arbitrary proof system P that is at least as strong as
resolution (or an NP oracle).
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We discuss a few directions for further work. From a practical perspective, our simulation
results imply that CPOG might indeed be a suitable choice for proof logging as it simulates
all other #SAT proof systems. But also CPOGDecision-DNNF or kcps+ could be practically
sufficient for proof logging for all state-of-the-art #SAT solvers (and as of now, neither of
these is known to be strictly weaker than CPOG).

In a related direction, we ask whether state-of-the-art knowledge compilers could effectively
take advantage of kcps+ by using resolution instead of strictly relying on existing input clauses
for certificates. We see this especially in the light that component caching-based #SAT
solvers, which can already be captured with MICE, can be directly turned into practically
effective knowledge compilers [38]. Hence, one might ask whether we can design even stronger
knowledge compilers. Alternatively, we may use kcps or CPOG to certify caching-based #SAT
solvers by emitting a Decision-DNNF.

From a theoretical perspective the system kcps+ appears quite interesting as it has an
easy definition and is still strong enough to capture the different approaches of MICE and
kcps. Designing a designated lower bound technique for kcps+ appears to be an interesting
problem.
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