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Abstract
Local search has been widely applied to solve the well-known (weighted) partial MaxSAT problem,
significantly influencing many real-world applications. The main difficulty to overcome when
designing a local search algorithm is that it can easily fall into local optima. Clause weighting is a
beneficial technique that dynamically adjusts the landscape of search space to help the algorithm
escape from local optima. Existing works tend to increase the weights of falsified clauses, and such
strategies may result in an unpredictable landscape of search space during the optimization process.
Therefore, in this paper, we propose a Unified Soft Clause Weighting Scheme called Unified-SW,
which increases the weights of all soft clauses in feasible local optima, whether they are satisfied
or not, while preserving the hierarchy among them. We implemented Unified-SW in a new local
search solver called USW-LS . Experimental results demonstrate that USW-LS , outperforms the
state-of-the-art local search solvers across benchmarks from anytime tracks of recent MaxSAT
Evaluations. More promisingly, a hybrid solver combining USW-LS and TT-Open-WBO-Inc won
all four categories in the anytime track of MaxSAT Evaluation 2023.
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1 Introduction

Given a propositional formula in conjunctive normal form (CNF), the maximum satisfiability
problem (MaxSAT) aims to find an assignment that maximizes the number of satisfied
clauses. Nowadays, research on MaxSAT mostly focuses on the partial MaxSAT (PMS), in
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which clauses are divided into hard and soft ones, and a feasible assignment, i.e., solution,
requires all hard clauses to be satisfied, and an optimal solution should maximize the number
of satisfied soft clauses. PMS can be generalized to weighted PMS (WPMS) by assigning
positive integer weights to soft clauses to establish a hierarchy of importance among them,
and the objective is to find an assignment that satisfies all hard clauses and maximizes the
sum of weights of satisfied soft clauses. Note that when all weights are identical, WPMS
becomes PMS. Therefore, we use WPMS to represent both WPMS and PMS. By focusing
on WPMS, we are focusing on both WPMS and PMS.

In addition to obtaining much attention in computer science theory, WPMS has also
been studied well in practical application domains since it can be applied to solve many
real-world optimization problems such as scheduling [20], the maximum clique problem [32],
FPGA routing [21], and computational protein design [2]. State-of-the-art WPMS solvers
can be either exact or anytime. Exact solvers are guaranteed to find an optimal solution, and
anytime solvers can quickly find a solution. With decades of development, Exact and anytime
solvers have both achieved success in solving WPMS, and they are highly complementary.
Recent annual MaxSAT Evaluations2 include two main tracks. One is to assess exact
solvers, and the other is to assess anytime solvers with the WPMS instances that no exact
solver can solve within 1 hour. Exact solvers mainly comprise two categories: SAT-based
[4, 19, 25, 5, 44, 35, 36, 6, 8, 9] and Branch-and-Bound (BnB) [31, 22, 27, 26, 1, 16, 30, 33].
Leading anytime solvers are hybrid [17, 43, 48, 29]: they apply LS for preprocessing and
then resort to SAT-based methods. This paper focuses on the LS component of solvers for
WPMS.

The LS method for WPMS iteratively chooses a variable and flips its value (from True
to False, or from False to True) following a greedy strategy to satisfy all hard clauses and
maximize the sum of weights of satisfied soft clauses. The main difficulty is that it can
frequently fall into local optima, which means that flipping any variable cannot increase
the number of satisfied hard clauses or the sum of weights of satisfied soft clauses. Many
approaches have been introduced to overcome this difficulty, among which perhaps the
most successful is clause weighting that is used in recent state-of-the-art LS solvers, such
as SATLike [28], NuWLS [18], and BandMaxSAT [50], etc. In practice, a clause weighting
scheme favors increasing the weights of falsified clauses so that their variables have greater
chances to be flipped subsequently to satisfy them.

While various heuristics have been proposed for designing weighting schemes [15, 46, 45,
14, 28, 18], existing work faces a key issue: the landscape of search space is blindly adjusted
with clause weighting because the relations among the soft clauses, as well as the relations
between hard clauses and soft clauses, are disturbed, and solvers have to search for better
solutions in a blindly adjusted search space, so that they can easily be misled when choosing
the next variable to flip.

In this paper, we carefully analyze the questions to answer when designing a clause
weighting scheme and propose a novel weighting scheme named Unified-SW (Unified Soft
Clause Weighting), which distinguishes feasible local optima from infeasible local optima, and
increases the weights of all soft clauses in feasible local optima, whether they are satisfied or
not, while preserving the hierarchy among them, which is quite different from some previous
approaches which tend to only increase the weights of falsified clauses.

Based on Unified-SW, we develop a new LS solver named USW-LS for WPMS. We
compare USW-LS with state-of-the-art LS solvers on unweighted and weighted benchmarks
from the anytime tracks of MaxSAT Evaluations from 2018 to 2023. Experimental results

2 https://maxsat-evaluations.github.io
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demonstrate that USW-LS outperforms the competing solvers in terms of both fixed-budget
performance and anytime performance. In addition, USW-LS considerably advances the
state-of-the-art in WPMS solving. Notably, the hybrid solver that combines USW-LS
and TT-Open-WBO-Inc [41] has won all four categories in the anytime track of MaxSAT
Evaluation 2023.

The rest of the paper is organized as follows. Section 2 presents some notions used in the
paper. Section 3 presents related works. Section 4 analyzes the questions to answer when
designing a clause weighting scheme, describes Unified-SW and its distinguishing properties,
and presents our new LS solver USW-LS based on Unified-SW. Section 5 empirically
demonstrates the performance of USW-LS and the effectiveness of Unified-SW. Section 6
concludes.

2 Preliminaries

Consider a set of n Boolean variables, denoted as {x1, x2, · · · , xn}. Corresponding to these
variables is the set of 2n literals, defined as {x1, ¬x1, x2, ¬x2, · · · , xn, ¬xn}, where each literal
represents either a variable or its negation. A clause c of length k is a disjunction of k literals,
denoted as c = l1 ∨ l2, · · · , ∨lk. A propositional formula F in Conjunctive Normal Form
(CNF) is a conjunction of clauses, denoted as F = c1 ∧ c2 ∧ · · · ∧ cm. For a CNF formula
F , a complete assignment is a mapping that assigns each variable in F to a Boolean value
(True or False). In this paper, an assignment is always complete. A literal x (¬x) is satisfied
if x is assigned True (False), otherwise, it is falsified. Each clause has two states: satisfied
or falsified. Given an assignment α, a clause c is satisfied if at least one literal in c is True;
otherwise, c is falsified.

PMS divides clauses in a CNF formula into hard and soft ones, and its objective is to find
an assignment that maximizes the number of satisfied soft clauses while satisfying all hard
clauses. For WPMS, each soft clause has a positive integer weight representing a cost if the
soft clause is falsified, so that there is a hierarchy of importance among soft clauses, and the
goal is to find an assignment that maximizes the total weight of satisfied soft clauses while
satisfying all hard clauses. PMS represents a special case of WPMS in which the weight of
each soft clause is identical, represented by 1.

An assignment is feasible if it satisfies all hard clauses. A feasible assignment is also
called a solution. The cost of an assignment α is the sum of weights of falsified soft clauses,
denoted as cost(α). An optimal solution is obtained by minimizing its cost while satisfying
all hard clauses. A solution α1 is considered to be better than another solution α2, if
cost(α1) < cost(α2).

Clause weighting schemes assign weights to both hard and soft clauses, and maintain
them. These weights are different from the original weights of soft clauses in WPMS instances.
To avoid confusion, we will call the weights assigned and maintained by a clause weighting
scheme maintenance weights or simply weights, but systematically add the word “original”
when talking about the original weights of soft clauses in WPMS instances. The maintenance
weight of a (hard or soft) clause c is denoted w(c), and the original weight of a soft clause
is denoted wori(c). Note that wori(c) is never changed, differently from w(c). The average
original weight of all soft clauses is denoted avgwsoft.

The maintenance weights are used to calculate the score of each variable. The score
of variable x, denoted score(x), is calculated as score(x) = make(x) − break(x), where
make(x) is the sum of maintenance weights of (hard and soft) clauses changing from falsified
to satisfied upon flipping x, and break(x) is the sum of maintenance weights of (hard and
soft) clauses changing from satisfied to falsified upon flipping x.

SAT 2024
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Restart strategy has commonly been applied when applying LS for WPMS. When
restarting a local search, apart from initializing the current assignment, the maintenance
weights assigned to each clause may also be reset.

3 Related Work

Solvers for WPMS can be categorized into exact and anytime types. Exact solvers can prove
the optimality of their solutions when the algorithm terminates, and these methods have
made significant progress over decades. In particular, the SAT-based solvers, which are built
based on classic SAT solvers, have gone through a series of advancements [21, 3, 4, 19, 25, 5,
44, 35, 36, 6, 9]. BnB MaxSAT solvers [22, 27, 26, 1, 16, 33] implement the branch-and-bound
method, detecting inconsistent subsets of soft clauses through unit propagation and lower
bound computation. The performance of the BnB solvers has been significantly enhanced by
integrating clause learning and an efficient bounding procedure [33].

While unable to prove solution optimality, LS solvers often obtain high-quality solutions
within short runtimes and exhibit complementarity with exact solvers when solving various
types of WPMS instances. Early LS algorithms encoded PMS instances as weighted MaxSAT
instances, which were then solved accordingly [23].

LS algorithms for solving WPMS have been developed along a line of using clause
weighting schemes to guide search. These algorithms assign weights to clauses and calculate
the score of variables using these weights. So, they intensify or diversify the search primarily
by maintaining these assigned weights in different ways.

Note that in PMS, as well as in WPMS, a hard clause is definitely more important than
all soft clauses. So, a natural way to assign weights to clauses is to set the weight of each
hard clause larger than the sum of all soft clause weights. However, this approach biases
the search towards satisfying hard clauses, significantly limiting the search space and often
negatively affecting the performance of LS algorithms [15].

As the above natural way to assign weights to clauses is ineffective, researchers spent
much effort designing better clause weighting schemes for WPMS for a long time. Examples
of early clause weighting schemes can be found in [15] for statically assigning suitable weights
to hard clauses or in [46, 45] for dynamically adjusting hard clause weights during the search.

Below, we go over recent clause weighting schemes, included in the state-of-the-art
algorithms Dist [14], SATLike [28] and NuWLS [18].

Dist uses a weighting scheme that only updates the hard clause weights. It introduces the
concepts of hard score and soft score and employs different heuristic methods for hard clauses
and soft clauses. The Dist series algorithms [13, 34] greatly improve the performance compared
to previous LS algorithms for WPMS. However, the concepts and heuristic methods are
separately defined for hard and soft clauses, increasing the algorithm complexity. Moreover,
the algorithms prioritize satisfying hard clauses, limiting the search space. Subsequently, a
series of algorithms based on Dist was designed to exploit the structure of WPMS further.

SATLike [28] introduces a weighting scheme called Weighting-PMS, which utilizes different
increments to update the weights of hard and soft clauses, and sets a uniform upper bound for
all soft clause weights. Weighting-PMS is also used in SATLike3.0 [12] and BandMaxSAT [50].

Based on an empirical finding that initial soft clause weights have a clear effect on the
effectiveness of the algorithm adopting Weighting-PMS, NuWLS [18] uses a new weighting
scheme named Dist-Weighting. There are three main distinctions between Dist-Weighting
and previous weighting schemes. First, Dist-Weighting initializes soft clause weights within
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a reasonable range. Second, it distinguishes conditions for updating hard and soft clause
weights. Third, it associates a specific upper bound with each soft clause based on its original
weight, instead of setting it uniformly as in Weighting-PMS.

Unfortunately, despite the above progress, designing effective clause weighting schemes in
LS algorithms for WPMS remains challenging, because it is difficult to balance the weight
relations between hard and soft clauses, as well as within soft clauses. After all, the initial or
adjusted weights may fail to reflect the importance of hard or soft clauses as expressed by
their hardness or original weights, potentially causing significant disturbance to the search
space. Moreover, while falsifying a hard clause is necessarily an error that should be repaired
by increasing its weight to favor its satisfaction subsequently, falsifying a soft clause is not
necessarily an error because it can be falsified in an optimal solution. So, it is unclear how
to distinguish between satisfied and falsified soft clauses by adjusting their weight.

Anytime solvers can employ exact methods to provide the best real-time solution.
Loandra [10] and TT-Open-WBO-Inc [38, 40] (based on Open-WBO-Inc [24]), are two
notable instances of such anytime solvers. The complementarity between exact and LS
methods has led to another research line that combines these two methods, giving rise to
hybrid solvers. Typically, these hybrid solvers apply an SAT solver to obtain a feasible
assignment. Then, LS is executed, using this assignment as the initial assignment, until
no improvement for k consecutive steps or a short time budget is reached. The best solu-
tion found by LS will serve as an initial model and provide an initial upper bound for an
SAT-based component. This hybrid-solving process will continue until the total budget is
exhausted. For the weighted part of the SAT-based component, the best-performing anytime
solver TT-Open-WBO-Inc [40] combines weights approximation by Boolean Multilevel Op-
timization [24] and the SAT-based LS algorithm Polosat [39]; for its SAT-based unweighted
component, it combines Mrs. Beaver algorithm [37] and Polosat.

Hybrid solvers demonstrate impressive performance in the anytime tracks of recent
MaxSAT Evaluations (MSEs). Hybrid solvers won 2 out of 4 anytime categories at MSE
2020, 3 out of 4 anytime categories at MSE 2021, and all 4 anytime categories at the two
latest evaluations, MSE 2022 and MSE 2023.

4 Proposed Methodology

In this section, we first analyze the questions to answer when designing a clause weighting
scheme, then propose a novel clause weighting scheme called Unified Soft Clause Weighting
Scheme (Unified-SW) to provide simple and effective responses to these questions, based on
which a new LS algorithm for WPMS called USW-LS is designed.

4.1 Analysis of clause weighting scheme
Recent LS solvers for WPMS consist of iteratively choosing the next variable x to flip, based
on its score score(x). Recall that score(x) = make(x)− break(x), where make(x) (break(x))
is the sum of weights of soft and hard clauses that will become satisfied (falsified) upon
flipping x. The weight of each clause is initialized at the beginning of the search process
and dynamically adjusted later on. Note that no distinction is made between hard and soft
clauses when calculating score(x) once their weights are defined. This working scheme raises
the following questions to answer when designing an LS solver:

How to initialize and adjust the weight of each hard clause and each soft clause to
distinguish between them during the search? In particular, what is the increment to be
added to the weight of a soft clause?

SAT 2024
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Can the weight of a clause be infinitely increased when the search proceeds? In other
words, should there be an upper bound for the weight of a clause? If yes, what is the
upper bound? Should it be uniform for all clauses or specific for each clause?
When the search encounters a local optimum, how to select the clauses whose weights
should be adjusted?

Different responses to these questions yield solvers of different performances. State-of-
the-art LS solvers either perform prior extensive experimental analysis or use intuition to
answer the first two questions, and the responses are often instance-type specific and are
hard to obtain for new instance types. In fact, the difficulty in designing an LS solver is that
a very small change in the solver can considerably deteriorate its performance.

Furthermore, existing weighting schemes usually increase the weights of falsified clauses
and leave the weights of other clauses unchanged to answer the last question. This is
reasonable for a falsified hard clause because a falsified hard clause represents an error that
must be repaired. However, the situation is much more complicated for a falsified soft clause,
because falsifying a soft clause is not necessarily an error. Moreover, only increasing the
weights of falsified soft clauses while leaving the weights of satisfied soft clauses unchanged
may change the hierarchy of soft clauses to mislead the solver. In other words, if the
original weight of a soft clause c1 is greater than another soft clause c2, i.e., if c1 is originally
considered to be more important than c2, increasing the weight of c2 but leaving the weight
of c1 unchanged may make the solver satisfy c2 in priority so that the solver becomes further
away from the optimal solution.

In the next subsection, we propose a novel clause weighting scheme that provides simple
and effective responses to all the above questions.

4.2 Unified-SW: a novel weighting scheme
We propose the Unified-SW scheme, where Unified-SW stands for unified soft clause weighting.
It operates as follows:
Initialization of Clause Weights: At the beginning of each round (restart) of local search,

Unified-SW initializes each clause weight as follows:
For each hard clause c, the weight w(c) := 1.
For each soft clause c, the weight w(c) := 0.

Update of Clause Weights: When the search encounters a local optimum α, the clause
weights are updated as follows:

If α falsifies at least one hard clause, and flipping any variable cannot increase the
total weight of satisfied hard clauses, α is called an infeasible local optimum. In this
case, for each falsified hard clause c, w(c) := w(c) + 1.
Otherwise, α is a feasible local optimum (i.e., all hard clauses are satisfied, but α

cannot be improved by flipping any variable). Let k be the number of feasible local
optima encountered so far. For each soft clause c, w(c) := k × wori(c)

avgwsoft
, where wori is

the original weight of c in the WPMS instance and avgwsoft is the average original
weight of all soft clauses.

Note that while the original weights of soft clauses are positive integers, the weights
defined by Unified-SW are positive real numbers with double precision.

Unified-SW obtains the following distinguishing properties.
At the beginning of the search, the soft clauses are not considered in the score of any
variables because their weight is 0. Consequently, the solver focuses on searching for the
first solution by increasing the weight of the hard clauses, and the first found solution is
necessarily a feasible local optimum.
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At each feasible local optimum, the weight of each soft clause is increased proportionally
to its original weight, whether it is satisfied or not, which significantly differs from the
previous approaches in which only the weight of falsified soft clauses is increased. It is
for this reason that the new clause weighting scheme is called Unified-SW. The intuition
behind this unified soft clause weighting is that even a satisfied soft clause in a feasible
local optimum can represent an error that should be repaired.
The hierarchy between soft clauses is always kept, i.e., given any two soft clauses c1
and c2, if wori(c1) ≤ wori(c2), then w(c1) ≤ w(c2) for any k. Moreover, the difference
of weights between c1 and c2 is k × ( wori(c1)

avgwsoft
− wori(c2)

avgwsoft
) which will become larger and

larger when search proceeds. In other words, the more the solver encounters feasible local
optima, the more important the soft clauses with great original weight will be, so that it
will be considered a priority to improve the cost of a solution.
Let S = {c1, . . . , cs} be the set of all soft clauses. After encountering kth feasible local
optima, the total weight of soft clauses is k × s. In other words, the more the solver
encounters feasible local optima, the larger the total weight of soft clauses. This is relevant
because a feasible local optimum is often dominated by hard clauses, i.e., a feasible local
optimum is often encountered by satisfying hard clauses. However, when there are many
feasible local optima, soft clauses should be considered more in the score of variables to
improve the cost of the solutions.
The weights of hard and soft clauses are increased upon infeasible and feasible local
optima, respectively, and infeasible local optima are considered in priority. The increase
of weights of soft clauses upon a feasible local optimum can make the solver far from
solutions, and then the solver works with the new greater weights of soft clauses to
hopefully move again toward a better solution via new paths, eventually by increasing
the weights of hard clauses in infeasible local optima along the new paths.
There is no upper bound, neither for the weights of soft clauses nor for the weights of
hard clauses, which greatly simplifies algorithm design.
The best solution found so far in terms of weights defined by Unified-SW is also the best
solution found so far in terms of original weights. To see this, we look at k and denote
the best solution found so far by α∗. When k = 0, i.e., at the beginning, the first solution
found is obviously the best solution found so far. When k > 0, let c denote a falsified soft
clause, w(c) =

∑
c k × wori(c)

avgwsoft
which is the smallest if and only if cost(α∗) =

∑
c wori(c)

is the smallest. Therefore, when a solver finds the best solution so far in terms of weights
defined by Unified-SW, it does not need to test if it is also the best solution found so far
in terms of original weights.

Note that for PMS, which is a particular case of WPMS where both wori(c) and avgwsoft

are 1 for any soft clause c, the weight of each soft clause is increased by 1 in each feasible
local optimum, increasing the importance of the soft clauses w.r.t. hard clauses and hopefully
making the next solution better.

4.3 The USW-LS algorithm
Based on the above Unified-SW, we introduce a new LS algorithm named USW-LS . The
pseudo-code of USW-LS is outlined in Algorithm 1. We use α∗ and cost∗ to denote the
best-found solution so far and the cost value of the best-found solution, respectively, while α

represents the current assignment maintained during the search.
In the USW-LS algorithm, α∗ is initialized as empty, and cost∗ is initialized to positive

infinity. It then iteratively executes the local search process until a termination criterion is
met (Lines 2–20). A round is from line 3 to line 20.

SAT 2024
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Algorithm 1 USW-LS .
Input: WPMS instance F , cutoff time.
Output: The best-found solution and its cost, or “No solution found”.

1 α∗ := ∅; cost∗ := +∞;
2 while no terminating criteria are met do
3 α := an initial complete assignment;
4 Initialize clause weights by Unified-SW;
5 L = 10 000 000;
6 for step = 0; step < L; step++ do
7 if α is feasible and cost∗ > cost(α) then
8 α∗ := α; cost∗ := cost(α); L = step + 107;
9 if cost∗ == 0 then

10 return α∗ and cost∗;

11 if (D : {x|score(x) > 0}) ̸= ∅ then
12 v := a variable in D selected by the BMS strategy;
13 else
14 update clause weights by Unified-SW;
15 if ∃ falsified hard clauses then
16 c := a random falsified hard clause;
17 else
18 c := a random falsified soft clause;
19 v := the variable with highest score in c;
20 α := α with v flipped;

21 if α∗ ̸= ∅ then return α∗ and cost∗;
22 else return “No solution found”;

In the local search process, an initial assignment is generated by a unit propagation based
procedure (Line 3) [12]. USW-LS then initializes the weights of all clauses by the Unified-SW
scheme. After initialization, USW-LS conducts the search process (Lines 6–20). During the
search process, whenever USW-LS finds a solution whose cost value is lower than cost∗, α∗

and cost∗ are updated accordingly.
In each search step, let D denote the set of variables with score(x)>0. USW-LS selects

a variable and flips its value depending on two situations. (I) If D is not empty, a variable is
selected from D. Since traversing all elements in D would be time-consuming, a sampling
strategy called BMS (Best from Multiple Selections) [11] is adopted here. Through BMS, t

variables are randomly selected from the D set (Where t is a parameter in BMS, the value
of which is specified in the Experimental setup.), and then the variable with the highest
score among the t variables is chosen to flip. It is shown in [11] that the score of the variable
selected in this way is close to the highest in D with high probability. (II) If D is empty,
indicating that the search is stuck in a local optimum, USW-LS updates the weights of
clauses according to Unified-SW. Then USW-LS randomly selects a falsified clause c, and
picks the variable with the highest score from the selected clause c.

Finally, when any terminating criterion is met, USW-LS reports α∗ and cost∗ if a solution
is found; otherwise, it reports “No solution found”.

5 Experimental Evaluations

In this section, we introduce experimental preliminaries and then conduct extensive ex-
periments on unweighted and weighted benchmarks from the anytime tracks of MaxSAT
Evaluations (MSEs) from 2018 to 2023. First, we compare USW-LS with three state-of-the-
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art LS solvers. Second, we demonstrate the performance enhancement achieved by combining
USW-LS with an SAT-based solver. Third, we present experimental results to demonstrate
the anytime performance exhibited by LS solvers employing different weighting schemes.
Finally, we examine the effectiveness of uniformly adjusting soft clause weights.

5.1 Experimental preliminaries
Benchmarks. Our experiments are conducted on 12 benchmarks, i.e., unweighted and
weighted benchmarks from the anytime tracks of MSEs from 2018 to 2023.

Competitors. In the first experiment, we compare USW-LS with the following three state-
of-the-art LS solvers, all of which employ various weighting schemes. The source codes
of these three solvers are publicly available,3,4,5 and the parameter settings follow those
presented in their papers.

NuWLS [18], which uses the Dist-Weighting scheme.
BandMaxSAT [50], which adopts the Weighting-PMS scheme proposed in SATLike [28]
SATLike3.0 [12], which adopts the Weighting-PMS scheme.

In the second experiment, we combine USW-LS with TT-Open-WBO-Inc (MSE2020
version) [40], which is based on Open-WBO-Inc [24], resulting in a new hybrid solver named
USW-LS-c.

First, we compare USW-LS-c with NuWLS-c, DT-HyWalk, and SATLike-c.
NuWLS-c combines NuWLS with TT-Open-WBO-Inc (MSE2020 version). We use its
source code from MSE 2022.6
DT-HyWalk combines BandMaxSAT with other LS and TT-Open-WBO-Inc (MSE2020
version). We use its source code from MSE 2022.6
SATLike-c combines SATLike with TT-Open-WBO-Inc (MSE2020 version). We use its
source code from MSE 2021.7

Then, we compare USW-LS-c with all hybrid solvers from the anytime track of MSE
2023.8

TT-Open-WBO-Inc-23(G) [43] combines NuWLS with TT-Open-WBO-Inc, where Gluc-
ose4.1 [7] serves as the underlying SAT solver.
TT-Open-WBO-Inc-23(I) [43] combines NuWLS with TT-Open-WBO-Inc, where In-
telSAT [42] serves as the underlying SAT solver.
NuWLS-c-Band [48] combines NuWLS with BandMaxSAT and TT-Open-WBO-Inc.
NuWLS-c-FPS [48] combines NuWLS with the farsighted probabilistic sampling (FPS)
strategy [49] and TT-Open-WBO-Inc.

The purpose of the second experiment is to investigate whether USW-LS could improve
the performance of hybrid solvers by combining LS with SAT-based algorithms. Note that
this experiment does not include NuWLS-c-2023 [17] because NuWLS-c-2023 is identical to
USW-LS-c, combining USW-LS with TT-Open-WBO-Inc.

3 https://github.com/filyouzicha/NuWLS
4 https://github.com/JHL-HUST/BandMaxSAT
5 http://lcs.ios.ac.cn/%7ecaisw/MaxSAT.html
6 https://maxsat-evaluations.github.io/2022
7 https://maxsat-evaluations.github.io/2021
8 https://maxsat-evaluations.github.io/2023
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In the third experiment, we analyze the anytime performance of USW-LS against NuWLS,
BandMaxSAT, and SATLike3.0.

In the fourth experiment, we make an ablation study to compare USW-LS with a variant
identical to USW-LS except that it only increases the weights of the falsified soft clauses in
a feasible local optimum.

Experimental setup. Our USW-LS solver is implemented in C++. USW-LS employs
the BMS strategy with a parameter t denoting the sample count, following the settings of
NuWLS. i.e., for PMS, t is set to 96; for WPMS, t is set to 25.

All solvers are compiled with g++ using the “-O3” option. The experiments are conducted
on a workstation running Ubuntu (version=“ 20.04.4 LTS (Focal Fossa)”) and equipped with
AMD EPYC 7763 3.2GHz CPUs.

Consistent with the rules in the anytime tracks of recent MSEs, we employ two cutoff
times, 60 seconds and 300 seconds. Each solver performs one run within a given cutoff time
on each instance. We record the cost of the best solution found by solver S on instance I,
denoted as costSI . The cost of the best solution found among all solvers in the same table
within the same cutoff time on instance I is denoted as costbI . The cost of the best-known
solution on instance I is denoted as bestI . For each solver S solving a benchmark B within
a cutoff time, we use two metrics to evaluate the performance of S.

#win: the number of instances where the corresponding costbI can be obtained by solver
S on B (i.e., the number of instances on which S wins). The number of winning instances
is a metric widely used to evaluate the performance of LS WPMS solvers.
avgscore: we use scoreSI to denote the competition score of solver S on instance I, if
S could not report any solution on instance I within the cutoff time, then scoreSI = 0.
Otherwise, scoreSI = bestI +1

costSI +1 . We use avgscore to denote the average competition
score of a solver on a benchmark. The competition score is the metric to measure the
performance of anytime solvers in recent MSEs.

The number of instances in each benchmark is indicated by ‘#inst’. For each of the above
two metrics, if a solver obtains a larger metric value on a benchmark, then the solver exhibits
better performance on the benchmark. The results highlighted in bold indicate the best
performance for the corresponding metric.

5.2 Comparison with local search solvers
The comparative results of USW-LS and its LS competitors on all the benchmarks are
shown in Table 1. On all the unweighted and weighted benchmarks, for both 60-second and
300-second cutoff times, USW-LS outperforms all competing solvers in terms of the number
of winning instances (#win) and average scores (avgscore).

For unweighted benchmarks with a 60-second cutoff time, USW-LS outperforms the
second-ranked solver by 28.40-58.57% for #win and 1.54-6.51% for avgscore. With a
300-second cutoff time, USW-LS outperforms the second-ranked solver by 31.48- 63.64%
for #win and 1.33-8.19% for avgscore.
For weighted benchmarks with a 60-second cutoff time, USW-LS exceeds the second-
ranked solver by 45.07-157.58% for #win, and 1.34-7.74% for avgscore. With a 300-second
cutoff time, USW-LS exceeds the second-ranked solver by 65.29-127.08% for #win and
0.98-6.97% for avgscore.

Among these LS solvers, the only distinction between USW-LS , NuWLS, and SATLike3.0
lies in the weighting scheme utilized. Both BandMaxSAT and SATLike3.0 employ the same
weighting scheme, differing only in the strategy introduced by BandMaxSAT for variable
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Table 1 Comparisons of USW-LS with state-of-the-art LS solvers.

Benchmark #inst USW-LS NuWLS BandMaxSAT SATLike3.0

#win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 102 0.7426 69 0.7131 42 0.6455 45 0.5673
Unw_19 299 206 0.7297 151 0.7117 96 0.6575 106 0.6179
Unw_20 262 181 0.7360 127 0.7161 76 0.6679 77 0.6150
Unw_21 155 104 0.6578 81 0.6176 52 0.5778 43 0.5223
Unw_22 179 113 0.7092 78 0.6684 55 0.6287 37 0.5682
Unw_23 179 111 0.6629 70 0.6528 30 0.5738 21 0.5160

Unweighted (300 seconds)
Unw_18 153 109 0.7726 71 0.7479 54 0.6906 46 0.6113
Unw_19 299 213 0.7546 162 0.7447 116 0.6961 116 0.6506
Unw_20 262 187 0.7616 132 0.7435 95 0.6965 90 0.6430
Unw_21 155 111 0.6877 79 0.6419 59 0.6013 46 0.5495
Unw_22 179 126 0.7514 77 0.6945 65 0.6540 44 0.5955
Unw_23 179 111 0.6977 71 0.6881 39 0.6219 34 0.5721

Weighted (60 seconds)
Wei_18 172 103 0.7716 71 0.7614 24 0.6978 18 0.6809
Wei_19 297 192 0.7686 125 0.7419 65 0.6638 41 0.6581
Wei_20 253 162 0.7797 94 0.7436 43 0.6301 36 0.6391
Wei_21 151 75 0.6833 38 0.6343 24 0.5437 27 0.5740
Wei_22 197 105 0.7094 58 0.6751 35 0.6052 25 0.6095
Wei_23 160 85 0.6631 33 0.6182 31 0.5651 15 0.5671

Weighted (300 seconds)
Wei_18 172 111 0.7848 67 0.7772 27 0.7244 16 0.7042
Wei_19 297 200 0.7916 121 0.7715 81 0.7118 54 0.7034
Wei_20 253 170 0.8085 99 0.7784 54 0.6893 39 0.6815
Wei_21 151 74 0.7199 35 0.6817 37 0.6225 28 0.6299
Wei_22 197 109 0.7459 57 0.7124 48 0.6705 28 0.6629
Wei_23 160 83 0.7093 37 0.6630 34 0.6338 16 0.6293

selection after encountering local optima. Experimental results demonstrate that USW-LS
outperforms NuWLS, while NuWLS outperforms SATLike3.0 in terms of #win and avgscore,
indicating that a well-designed weighting scheme can significantly enhance the performance
of LS solvers.

5.3 Improving hybrid solver through USW-LS
Since our experimental results in Table 1 demonstrate that USW-LS performs much better
than state-of-the-art LS solvers for solving WPMS on all benchmarks, we are interested in
investigating whether USW-LS could improve the performance of hybrid solvers compared
to these LS solvers. Therefore, we compare USW-LS-c with NuWLS-c, DT-HyWalk, and
SATLike-c, and the experimental results are shown in Table 2. From Table 2, in terms of
#win and avgscore, our USW-LS-c solver outperforms all the competitors on all benchmarks
and runtimes, indicating that USW-LS can considerably advance the performance of hybrid
solvers.

We submitted USW-LS-c to the anytime track of MSE 2023, where USW-LS-c is referred
to as NuWLS-c-2023. The official results from the anytime track of MSE 2023 indicate that
the top-five solvers are all hybrid, and USW-LS-c won all four categories.
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Table 2 Comparisons of USW-LS-c with hybrid solvers NuWLS-c, DT-HyWalk, and SATLike-c.

Benchmark #inst USW-LS-c NuWLS-c DT-HyWalk SATLike-c

#win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 106 0.8239 74 0.8015 83 0.7960 52 0.7745
Unw_19 299 234 0.8717 175 0.8549 189 0.8349 158 0.8265
Unw_20 262 202 0.8606 138 0.8420 151 0.8257 122 0.8214
Unw_21 155 115 0.8280 86 0.8011 87 0.7870 80 0.7834
Unw_22 179 128 0.8239 75 0.7896 89 0.7776 72 0.7610
Unw_23 179 109 0.7832 73 0.7605 75 0.7268 66 0.7220

Unweighted (300 seconds)
Unw_18 153 98 0.8635 77 0.8501 87 0.8507 52 0.8249
Unw_19 299 228 0.9141 186 0.9031 204 0.8950 160 0.8806
Unw_20 262 190 0.9025 144 0.8888 161 0.8754 121 0.8635
Unw_21 155 116 0.8864 96 0.8752 97 0.8646 80 0.8502
Unw_22 179 125 0.8866 90 0.8773 102 0.8601 83 0.8482
Unw_23 179 118 0.8609 88 0.8490 94 0.8274 84 0.8202

Weighted (60 seconds)
Wei_18 172 101 0.8811 84 0.8772 69 0.8706 76 0.8699
Wei_19 297 185 0.8572 133 0.8411 122 0.8233 123 0.8352
Wei_20 253 144 0.8518 110 0.8386 88 0.8006 92 0.8061
Wei_21 151 75 0.7800 59 0.7481 44 0.7102 46 0.7090
Wei_22 197 105 0.7862 66 0.7617 53 0.7325 60 0.7390
Wei_23 160 89 0.7867 54 0.7790 34 0.7296 44 0.7458

Weighted (300 seconds)
Wei_18 172 108 0.9147 89 0.8985 82 0.9007 87 0.9003
Wei_19 297 197 0.9202 164 0.9054 153 0.9021 137 0.8962
Wei_20 253 163 0.9178 129 0.8949 115 0.8653 106 0.8568
Wei_21 151 83 0.8475 65 0.8317 53 0.7798 52 0.7516
Wei_22 197 116 0.8676 90 0.8516 68 0.7838 62 0.7760
Wei_23 160 96 0.8891 63 0.8703 45 0.8384 50 0.8313

To give a more global assessment of USW-LS-c against state-of-the-art anytime solv-
ers, we compare it with the four other top-five solvers NuWLS-c-Band, NuWLS-c-FPS,
TT-Open-WBO-Inc-23(G), and TT-Open-WBO-Inc-23(I) in the anytime track of MSE 2023
on all benchmarks from the anytime tracks of MSE since 2018. The experimental results are
reported in Table 3. In terms of #win, USW-LS-c outperforms all the competitors on all
comparisons. In terms of avgscore, USW-LS-c outperforms all the competing solvers on 18
out of 24 comparisons. On the other 6 comparisons, USW-LS-c ranks second and slightly
worse than the best.

5.4 Anytime performance analysis
Apart from the fixed-budget performance measures that have been commonly applied for
MSEs and previous work on WPMS, an anytime performance measure [47], which evaluates
the performance of solvers across multiple cutoff times, has been used for assessing four
WPMS LS solvers. We also take this measure into account for comparing our proposed
USW-LS with three LS solvers.
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Table 3 Comparisons of USW-LS-c with hybrid solvers from MSE 2023, TT-OWI-G refers to
TT-Open-WBO-Inc-23(G), TT-OWI-I refers to TT-Open-WBO-Inc-23(I).

Benchmark #inst USW-LS-c TT-OWI-G TT-OWI-I NuWLS-c-Band NuWLS-c-FPS

#win avgscore #win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 85 0.8239 63 0.8097 58 0.8021 70 0.8092 77 0.8101
Unw_19 299 200 0.8717 159 0.8609 160 0.8547 170 0.8639 176 0.8623
Unw_20 262 171 0.8606 117 0.8445 119 0.8402 128 0.8458 139 0.8382
Unw_21 155 92 0.8280 77 0.8086 77 0.8093 77 0.8050 81 0.7930
Unw_22 179 96 0.8239 64 0.8099 63 0.8021 77 0.7921 74 0.7851
Unw_23 179 89 0.7832 61 0.7829 61 0.7615 66 0.7760 66 0.7770

Unweighted (300 seconds)
Unw_18 153 91 0.8635 64 0.8519 77 0.8610 77 0.8556 77 0.8551
Unw_19 299 214 0.9141 163 0.9054 185 0.9108 183 0.9084 187 0.9099
Unw_20 262 180 0.9025 126 0.8913 140 0.9035 141 0.8891 146 0.8862
Unw_21 155 105 0.8864 86 0.8751 81 0.8923 84 0.8549 86 0.8508
Unw_22 179 108 0.8866 78 0.8779 79 0.8861 91 0.8514 88 0.8427
Unw_23 179 112 0.8609 81 0.8563 84 0.8568 87 0.8543 87 0.8443

Weighted (60 seconds)
Wei_18 172 98 0.8811 84 0.8816 65 0.8713 84 0.8761 86 0.8801
Wei_19 297 181 0.8572 123 0.8318 122 0.8393 127 0.8406 103 0.8294
Wei_20 253 140 0.8518 96 0.8335 93 0.8360 95 0.8336 82 0.8291
Wei_21 151 69 0.7800 46 0.7502 42 0.7580 38 0.7526 44 0.7492
Wei_22 197 93 0.7862 67 0.7591 53 0.7542 67 0.7628 51 0.7558
Wei_23 160 85 0.7867 41 0.7585 35 0.7695 45 0.7755 45 0.7727

Weighted (300 seconds)
Wei_18 172 101 0.9147 95 0.9176 71 0.9091 92 0.9062 96 0.9067
Wei_19 297 186 0.9202 149 0.8823 136 0.9109 144 0.8990 135 0.9000
Wei_20 253 153 0.9178 119 0.8926 103 0.8884 107 0.8926 107 0.8944
Wei_21 151 71 0.8475 64 0.8550 49 0.8459 52 0.8342 55 0.8477
Wei_22 197 97 0.8676 91 0.8678 68 0.8356 72 0.8350 68 0.8383
Wei_23 160 90 0.8891 55 0.8466 42 0.8889 49 0.8569 49 0.8686

The empirical cumulative distribution function (ECDF) is used to assess the anytime
performance of solvers. Given a set of target values, i.e., cost, for each WPMS instance, an
ECDF value at time t represents the proportion of targets that have been achieved by a solver
within cutoff time t. Following the suggestion in the previous work [47], we consider a set of
100 cost values that are sampled within the smallest and largest cost values obtained during
the optimization process of all tested solvers. We plot in Figure 1 the averaged ECDFs values
across all tested WPMS instances for 100 cutoff times t that are selected within the range
of [0, 300s] with a logarithmic scale. We can observe that USW-LS generally outperforms
the other tested LS solvers across all the considered cutoff times, and this advantage is
significant, as shown in the figure. Note that the results are aggregated across all tested
WPMS instances such that we do not observe sharp increases at a specific cutoff time or
a flat line in Figure 1, but these behaviors may occur in particular instances as shown in
previous work [47].
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Figure 1 ECDFs of the tested solvers for two instance sets: Left: Unweighted, Right: Weighted.

5.5 Effects of uniformly adjusting soft clause weights
To examine the effect of uniformly adjusting soft clause weights, we introduce an alternative
version of USW-LS , denoted as USW-LS-alt. The only difference between USW-LS-alt
and USW-LS lies in their approach to adjusting soft clause weights: in USW-LS-alt, if the
assignment is a feasible local optimum, only the weights of falsified soft clauses are increased
by setting k = k + 1, and for each falsified soft clause c, w(c) := k × wori(c)

avgwsoft
.

Table 4 presents the results of USW-LS and USW-LS-alt across all the benchmarks.
From table 4, USW-LS demonstrates superior performance over USW-LS-alt in terms of
both #win. and avgscore. On unweighted benchmarks, USW-LS outperforms USW-LS-alt
by 45.21-71.17% in terms of #win, and exhibits a 4.18-6.23% improvement over USW-LS-alt
for avgscore. For weighted benchmarks, USW-LS surpasses USW-LS-alt more significantly,
with 116.67-305.77% higher #win and 2.18-9.91% better avgscore performance.

Table 4 Comparisons of USW-LS with its alternative version USW-LS-alt.

Benchmark #inst
USW-LS USW-LS-alt USW-LS USW-LS-alt

#win avgscore #win avgscore #win avgscore #win avgscore

60 seconds 300 seconds
Unw_18 153 106 0.7426 73 0.6991 113 0.7726 75 0.7311
Unw_19 299 217 0.7297 142 0.6899 226 0.7546 147 0.7160
Unw_20 262 190 0.7360 111 0.6958 197 0.7616 120 0.7223
Unw_21 155 113 0.6578 77 0.6304 119 0.6877 81 0.6601
Unw_22 179 133 0.7092 83 0.6685 140 0.7514 88 0.7099
Unw_23 179 116 0.6629 75 0.6326 121 0.6977 76 0.6648
Wei_18 172 133 0.7716 58 0.7486 134 0.7848 58 0.7681
Wei_19 297 237 0.7686 72 0.7075 244 0.7916 67 0.7401
Wei_20 253 201 0.7797 57 0.7094 211 0.8085 52 0.7409
Wei_21 151 110 0.6833 44 0.6339 114 0.7199 45 0.6728
Wei_22 197 142 0.7094 43 0.6630 152 0.7459 39 0.6978
Wei_23 160 117 0.6631 54 0.6260 119 0.7093 53 0.6697
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6 Conclusions and Future Work

Most solvers evaluated in the anytime tracks of recent MSEs integrate local search techniques,
showing wide interest in this approach for solving MaxSAT. The main difficulty of local
search is that it frequently falls into local optima, and the main technique to escape from a
local optimum is clause weighting. Unfortunately, designing an effective clause weighting
scheme needs to properly answer many questions, because otherwise, the solver can easily lose
control of the search trajectory. In this paper, we proposed a novel clause weighting scheme
called Unified-SW that provides simple, clever, and effective answers to these questions.

First, Unified-SW distinguishes between feasible local optima and infeasible local optima,
to only increase the weights of hard (soft) clauses in infeasible (feasible) local optima. Second,
in a feasible local optimum, instead of only increasing the weights of the falsified soft clauses
as in some previous approaches, Unified-SW increases the weights of all soft clauses, whether
they are satisfied or not, considering that even the satisfaction of a soft clause can represent
an error that should be repaired. Third, the total increase of the weights of soft clauses is a
constant in a feasible local optimum, proportionally split among all soft clauses, so that the
hierarchy among the soft clauses is kept, and no upper bound is needed for their weights.
Using Unified-SW, the increase of weights of soft clauses in a feasible local optimum can
make the solver far from solutions, the solver then works with the new greater weights of
soft clauses to hopefully move again toward a better solution via new paths, eventually by
increasing the weights of hard clauses in the infeasible local optima along the paths.

We implemented Unified-SW in a new LS solver called USW-LS , and designed four
experiments on all benchmarks from the anytime tracks of MSEs since 2018 to evaluate the
effectiveness of Unified-SW, using three measures: number of winning instances, competition
score used in MSEs, and anytime performance. These experiments show: (1) USW-LS
performs much better than three state-of-the-art LS solvers NuWLS, BandMaxSAT and
SATLike3.0; (2) when combined with an SAT-based solver, USW-LS-c also performs much
better than NuWLS, BandMaxSAT and SATLike3.0 combined with the SAT-based solver;
(3) Being the winning solver in all the 4 categories of the anytime tracks of MSE 2023, USW-
LS-c also performs better than the other four top-five solvers of the anytime track of MSE
2023 on most benchmarks from the anytime tracks of MSEs since 2018; (4) Across multiple
cutoff times, USW-LS performs also better than NuWLS, BandMaxSAT and SATLike3.0; (5)
Uniformly increasing the weights of all soft clauses in a feasible local optimum is important,
because USW-LS is much better than the variant that only increases the weights of falsified
soft clauses.

In the future, we plan to study more deeply the landscape of the search space changed by
Unified-SW for various types of instances. Currently, only falsified hard clauses see their
weight increased in an infeasible local optimum, we will investigate the possibility of also
increasing the weights of all soft clauses if the cost of the current assignment cannot be
improved. As is said above, the total increase of weights of soft clauses in a feasible local
optimum is a constant. We will investigate the possibility of increasing this constant when
the search proceeds and the number of encountered feasible local optima exceeds a threshold.
Finally, we also plan to apply Unified-SW to other optimization problems.
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