
Lazy Reimplication in Chronological Backtracking
Robin Coutelier #

TU Wien, Austria

Mathias Fleury #

University Freiburg, Germany

Laura Kovács #

TU Wien, Austria

Abstract
Chronological backtracking is an interesting SAT solving technique within CDCL reasoning, as it
backtracks less aggressively upon conflicts. However, chronological backtracking is more difficult
to maintain due to its weaker SAT solving invariants. This paper introduces a lazy reimplication
procedure for missed lower implications in chronological backtracking. Our method saves propaga-
tions by reimplying literals on demand, rather than eagerly. Due to its modularity, our work can
be replicated in other solvers, as shown by our results in the solvers CaDiCaL and Glucose.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Automated reasoning

Keywords and phrases Chronological Backtracking, CDCL, Invariants, Watcher Lists

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.9

Supplementary Material
Software (CaDiCaL Source Code): https://github.com/arminbiere/cadical/tree/strong-
backtrack [12]; archived at swh:1:dir:eaf1bada31f3142996582c25a7df2118e7cacc98
Software (NapSAT Source Code): https://github.com/RobCoutel/NapSAT [10]

archived at swh:1:dir:1308f5717399bd09dcad2de805cc42eaa5504854
Software (Glucose Source Code): https://github.com/m-fleury/glucose [13]

archived at swh:1:dir:fc5f0bd80c6a9e9412c5a3f3fcde96bf17a36147

Funding The authors acknowledge support from the ERC Consolidator Grant ARTIST 101002685;
the TU Wien Doctoral College TrustACPS; the FWF SpyCoDe SFB projects F8504; the WWTF
Grant ForSmart 10.47379/ICT22007; the and the Amazon Research Award 2023 QuAT; the bwHPC
of the state of Baden-Württemberg; the German Research Foundation (DFG) through grant INST
35/1597-1 FUGG; and a gift from Intel Corporation.

Acknowledgements The first author’s Master thesis [11] conducted at the University of Liège under
the supervision of Pascal Fontaine laid the foundations of this work. We thank him for his insights.

1 Introduction

In the past few years, chronological backtracking in CDCL-based SAT solving attracted re-
newed interest as it implements less aggressive procedures when backtracking upon conflicts,
particularly for undoing literal assignments stored in the assignment stack. Chronologi-
cal backtracking has been proven sound and complete, while also empirically improving
performance on SAT competition problems [18,20,21].

Without chronological backtracking in SAT solving, the truth value of each literal is set as
early as possible in the solving process. With chronological backtracking, there are, however,
missed lower implications (MLI), i.e., clauses that could have set a literal at a lower SAT
decision level. As a remedy to MLI, IntelSAT [20] and CaDiCaL-1.9.4 [22] fix the level

© Robin Coutelier, Mathias Fleury, and Laura Kovács;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robin.coutelier@tuwien.ac.at
https://orcid.org/0009-0002-4735-5215
mailto:fleury@cs.uni-freiburg.de
https://orcid.org/0000-0002-1705-3083
mailto:laura.kovacs@tuwien.ac.at
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.4230/LIPIcs.SAT.2024.9
https://github.com/arminbiere/cadical/tree/strong-backtrack
https://github.com/arminbiere/cadical/tree/strong-backtrack
https://archive.softwareheritage.org/swh:1:dir:eaf1bada31f3142996582c25a7df2118e7cacc98;origin=https://github.com/arminbiere/cadical;visit=swh:1:snp:53dfb8828f1ebfecc0e02187545b6762c277b5c9;anchor=swh:1:rev:5ce2e0a5a676d5682622005d56a50e5266f3e29b
https://github.com/RobCoutel/NapSAT
https://archive.softwareheritage.org/swh:1:dir:1308f5717399bd09dcad2de805cc42eaa5504854;origin=https://github.com/RobCoutel/NapSAT;visit=swh:1:snp:aff7ae6a3ea2f154e8a57a795ff68bea81d9baaa;anchor=swh:1:rev:df5a9ca4c2ddb6196dca5b89050634ce72d5fec3
https://github.com/m-fleury/glucose
https://archive.softwareheritage.org/swh:1:dir:fc5f0bd80c6a9e9412c5a3f3fcde96bf17a36147;origin=https://github.com/m-fleury/glucose;visit=swh:1:snp:a2f7255914669f8ebcc24ec1124ef1ae31bb16d0;anchor=swh:1:rev:8a5c7117fda44781c56bba2e9a9520fca5450509
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Lazy Reimplication in Chronological Backtracking

Invariant properties for CDCL algorithms (Section 3)

Invariant 1–Weak watched literals: No conflict is missed.

Invariants on implications, native for NCB and WCB (Section 3.1)

Invariant 2–Implied literals: Literals are decisions or implied by a clause C

that is made unit by the partial assignment.

Invariant 3–Topological order : The partial SAT assignment follows a topolog-
ical order of the implication graph.

Strong invariant, non-trivial for CDCL with CB and native in NCB (Section 3.1)

Invariant 4–Strong watched literals: No implication nor conflict can be missed.

Figure 1 Invariant properties for CDCL-based SAT solving and maintained by the different
chronological backtracking (CB) strategies, particularly by non-chronological backtracking (NCB)
and weak chronological backtracking (WCB).

of the assignments. Modifying levels impacts solving performance and significantly clutters
the code; for example, reimplication techniques for detecting MLI have been removed in
CaDiCaL-1.9.5 [4] due to the increased code complexity.

In this paper, we introduce a lazy reimplication procedure for resolving missed lower
implications in chronological backtracking, while also ensuring efficiency in SAT solving.
Doing so, in Figure 1, we state the invariant properties to be maintained during CDCL
and highlight differences between relevant backtracking approaches in SAT solving. In
particular, we consider and adjust variants of non-chronological backtracking (NCB) [23] and
strong chronological backtracking (SCB) [20]. A formal presentation of these invariants and
backtracking variants is given in Section 3. Using the invariants of Figure 1, in Section 4
we introduce a lazy reimplication procedure to handle missed lower implications, with a
particular focus on handling unit implications after backtracking. We also adjust and enhance
the first unique implication point (UIP) algorithm [19] with the knowledge of missed lower
implications. Our approach is sound (Section 5). We implemented our work in the new solver
NapSAT [10] and present our empirical findings in Section 6. To demonstrate the flexibility
of our lazy reimplication techniques, we also implemented the algorithms of Section 4 in
CaDiCaL [5] and Glucose [1], and provide empirical comparisons using these solvers.

Related work. Within CDCL, the truth values of literals are assigned by guessing (deciding)
and propagating them in a trail until a conflict is found. Upon conflict analysis, the trail
is adapted by backtracking, i.e. revoking some assignments and swapping the truth value

R. Coutelier, M. Fleury, and L. Kovács 9:3

of one variable, called the unique implication point (UIP). The standard approach [23] is
to fix the conflict as early as possible with non-chronological backtracking (NCB) and all
assignments between the current point and the point where the UIP is set are deleted.

A different backtracking approach comes with chronological backtracking (CB) [18, 21].
Here, a less aggressive backtracking scheme is used and some propagations and decisions are
kept. Chronological backtracking may backjump at any level between the UIP and the UIP
falsification point minus one. As a result, chronological backtracking resets a smaller part
of the trail, but it may miss propagations that could have been done earlier if the learned
clause was known beforehand. In this paper, we refer by weak chronological backtracking
(WCB) to the CDCL algorithms that use chronological backtracking mechanism and which
do not detect every propagation as early as possible (see Section 3.2)

For recovering such missed propagations, we define strong chronological backtracking
(SCB). In particular, Nadel [20] introduced a reimplication procedure that eagerly re-assigns
literals detected as missed lower implications to their lowest possible level. We refer to this
SCB technique as eager strong chronological backtracking (ESCB). Our work introduces
a new SCB method, lazy strong chronological backtracking (LSCB). Unlike ESCB, within
LSCB we reimply missed implications on demand. As such, our work is stronger than WCB,
as WCB does not perform reimplications at all. In addition, our technique is shown to be
easier and more flexible to implement than ESCB or WCB (Section 6).

Our contributions. This paper brings the following contributions to chronological back-
tracking in CDCL-based proof search.
1. We formalize invariant properties that need to be maintained during SAT solving with

chronological backtracking (Section 3). Our invariants incorporate and reason over dif-
ferent backtracking strategies.

2. We introduce lazy strong chronological backtracking (LSCB) for on-demand reimplication
of (conflict) (Sec. 4) and prove soundness of our approach (Section 5).

3. We implement our work in the new NapSAT [10, 14] solver (Section 6). To showcase
the flexibility and efficiency of our approach, we integrate LSCB into CaDiCaL [5] and
Glucose [1], and provide experimental comparisons using these solvers.

2 Preliminaries

We assume familiarity with propositional logic and CDCL [6], and use the standard log-
ical connectives ¬, ∧, and ∨. A finite set of elements (e.g. literals) is called conjunctive
(respectively, disjunctive) to indicate that the set is the conjunction (respectively, disjunc-
tion) of its elements. An ordered set is a set S which defines a bijective function pS from
elements of S to naturals, such that pS(e) is the position of the element e in the ordered
set S. We consider the first element of S to have the position 0. Ordered sets are stable
under the removal of elements; that is, for the ordered sets S, T ,U with S = T \ U , we
have ∀e, e′ ∈ S. pS(e) < pS(e′) ⇔ pT (e) < pT (e′). We denote by · set concatenation; for
simplicity, we use · to also denote appending a sequence with an element. We write S[a : b]
to select the ordered elements e in S with positions a ≤ pS(e) ≤ b.

We denote by V a countable set of Boolean variables v. We consider propositional
formulas F in conjunctive normal form (CNF), represented by a conjunctive set of clauses
{C1, C2, . . . , Cn} over V. Clauses are disjunctive sets of literals C = {c1, c2, . . . , cm}, where
a literal ci is either a Boolean variable v or a negation ¬v of a variable v.

SAT 2024

9:4 Lazy Reimplication in Chronological Backtracking

To efficiently identify unit propagations, SAT solvers track two literals per clause in the
two-watched literal scheme [19]. We denote the watched literals of a clause C by c1 and c2, and
write WL(c1) and WL(c2) for the watched lists of c1 and c2. We have C ∈WL(c1)∩WL(c2).

During SAT solving, solvers keep track of a partial assignment, also called trail and
denoted as the conjunctive ordered set π = τ ·ω, which is split into two parts: (i) τ is the set
of literals that were already propagated and do not need to be inspected anymore (by checking
the watch lists); (ii) ω is the propagation queue containing literals that were implied and
waiting to be propagated. The partial assignment π contains the set πd ⊆ π of decision literals.
Decisions literals in πd are arbitrarily chosen literals when unit propagation cannot be further
used and the truth value of a (decision) literal needs to be picked and assigned. We call unit,
a clause C containing exactly one unassigned literal ℓ and whose other literals are falsified,
i.e., ∃ℓ ∈ C. C \{ℓ}, π |= ⊥∧|ℓ| /∈ |π|. For conflict analysis, the propagation reasons of literals
are analyzed. Therefore, SAT solvers use a ρ function that maps literals to clauses such that
ρ(ℓ) captures the reason for propagating ℓ. The reason for propagating ℓ is the clause C that
implied ℓ under assumption π, that is, [ℓ ∈ π]∧ [ℓ ∈ ρ(ℓ)]∧ [ρ(ℓ)\{ℓ}∧π |= ⊥]. Following [18],
we use δ to represent the (decision) level of ℓ, i.e., the level when a truth assignment to ℓ

was made. Formally, if ℓ is a decision literal, then the level δ(ℓ) = δ(¬ℓ) of ℓ is the number
of decisions preceding and including ℓ, that is δ(ℓ) = |π[0 : pπ(ℓ)]∩πd|. Further, for literals ℓ

implied by ρ(ℓ), we have δ(ℓ) = maxℓ′∈ρ(ℓ)\{ℓ} δ(ℓ′). Finally, δ(ℓ) =∞ for unassigned literals
ℓ. The definition of δ is extended to clauses and trails, with δ(C) = maxℓ∈C δ(ℓ); similarly
for δ(π). The level of the empty set is δ(∅) = 0. We write δ[ℓ← d] to denote that the level
of ℓ is updated to d. We reserve the special symbol ■ to denote undefined clauses during
SAT solving, with δ(■) =∞.

In standard CDCL with non-chronological backtracking (NCB) [23], level δ stores the
number of decisions that appear before in the trail, and is always the lowest level possible.
In CDCL with chronological backtracking, the history of propagations and conflicts may,
however, lead to missed lower implications (MLI), where a MLI captures the fact that a
clause C is satisfied by a unique literal ℓ at a level strictly higher than δ(C \ {ℓ}). Therefore,
in a MLI, the literal ℓ could have been propagated at a lower level in the trail.

▶ Example 1 (Missed Lower Implications – MLI). Figure 2 shows a clause set {C1, . . . , C7}
and a trail π = τ ·ω during CDCL solving with chronological backtracking. The trail diagram
displays, from left to right, the order in which literals are decided and propagated, as well
as the location of the propagation head (symbolized by the dashed line). The propagation
level is symbolized by the height of the step. As a visual aid, literals are colored green, red
or black, symbolizing respectively satisfied, falsified, and unassigned literals. The watched
literals are the first two in the clause.

In the example, the clause set F0 = {C1, . . . , C6} was given as input. The decisions
v1, v2 and v3 were made, then the solver found a conflict in C2 after implying v4 with reason
ρ(v4) = C1. The clause C7 = ¬v3@3 ∨ ¬v1@1 is learned and the solver backtracks to level
δ(C7)− 1 = 2, continuing its propagations until it reaches the assignment shown on Figure 2.
Figure 2 shows that C4 is a MLI. Indeed, v2 is satisfied at level 2, while all other literals are
falsified at level 1. After backtracking to level 1, the implication of v2 by C4 is missed since
(i) ¬v3 was already propagated, and (ii) C4 is watched by v3 and v2.

3 Invariant Properties on CDCL Variants

To properly handle MLI similar to Example 1, in this section we revisit and formalize our
invariants from Figure 1, expressing properties that need to be maintained in (variants of)
CDCL with chronological backtracking.

R. Coutelier, M. Fleury, and L. Kovács 9:5

C1 = ¬v3@1 ∨ v4
C2 = ¬v3@1 ∨ ¬v4 ∨ ¬v1@1
C3 = v5@1 ∨ v3@1
C4 = v2@2 ∨ v3@1 ∨ ¬v5@1
C5 = v6@2 ∨ ¬v5@1 ∨ v3@1
C6 = ¬v6@2 ∨ ¬v2@2 ∨ ¬v5@2
C7 = ¬v3@1 ∨ ¬v1@1

decision

δ = 1
v1

decision

δ = 2
v2

C7

¬v3

C3

v5

C6

¬v6

C5

⊥
ω →← τ

Figure 2 C4 is a MLI while C5 would be a MLI if v5 was set to true. We use the notation v@1
to indicate that literal v is on level 1.

The crux of our invariant properties is captured by watched literals [19]. They reduce the
number of clauses to be checked when propagating a literal. Invariant 1 therefore expresses
that, as long as CDCL does not falsify one of the watched literals c1, c2 of a clause C, the
clause C is not a conflict. Therefore, when propagating a watched literal ci during CDCL,
only checking the clauses watched by ¬ci is sufficient to not miss any conflict.

▶ Invariant 1 (Weak watched literals). Let π = τ · ω be the current trail. For each clause
C ∈ F watched by the two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ ¬c2 /∈ τ.

Invariant 1 ensures that conflicts are not missed during CDCL. Indeed, if there is a
conflicting clause C, the conflict is found after propagating all literals of C. After propagation,
no more literal has to be propagated, so π = τ . A conflicting clause C thus violates Invariant 1,
and hence the conflict of C is captured during CDCL.

3.1 CDCL Invariants on Implications
We next ensure the soundness of unit implications. Invariant 2 expresses that literals are
either decisions or implied by a sound implication. Note that an implication can be performed
if there is only one unassigned literal that can satisfy a clause C; hence, C is a unit clause.
In addition to ensuring that the solver infers correct literals, Invariant 2 is also relevant for
conflict analysis (see proof of Theorem 13).

▶ Invariant 2 (Implied literals). If a literal ℓ is in the trail π, then ℓ is either a decision literal
or ℓ is implied by π and its reason ρ(ℓ). That is,

∀ℓ ∈ π. ℓ ∈ πd ∨ [ℓ ∈ ρ(ℓ) ∧ [ρ(ℓ) \ {ℓ} ∧ π] ⊨ ⊥] .

To perform conflict analysis with the first unique implication point (UIP) [19], CDCL
solving assumes that literals are organized in a topological sort of the implication graph.

▶ Invariant 3 (Topological order). Trail π is a topological order of the implication graph:

∀ℓ ∈ π. ∀ℓ′ ∈ ρ(ℓ). pπ(¬ℓ′) ≤ pπ(ℓ),

where pπ(ℓ) and pπ(¬ℓ′) are respectively the positions of ℓ and ¬ℓ′ in π.

Invariant 3 holds by construction in CDCL with non-chronological backtracking (NCB) and
chronological backtracking without reimplication. However, Invariant 3 is crucial in any
setting of reimplying literals.

Finally, we impose that Boolean constraint propagation (BCP) in CDCL does not miss
unit implication during proof search. Invariant 4 therefore formalizes that CDCL cannot
have one propagated falsified watched literal without the clause being satisfied.

SAT 2024

9:6 Lazy Reimplication in Chronological Backtracking

decision

δ = 1
v1

C7

¬v3

C3

v5

ω →← τ

(a) Weak CB.

decision

δ = 1
v1

C7

¬v3

C3

v5

ω →← τ

(b) Restoration SCB.

decision

δ = 1
v1

C4

v2

C7

¬v3

C3

v5

C6

¬v6

C5

⊥
ω →← τ

(c) Eager SCB.

Figure 3 Different CB ways of handling the missed lower implications of Figure 2.

▶ Invariant 4 (Strong watched literals). Consider the trail π = τ · ω. For each clause C ∈ F

watched by the two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ c2 ∈ π.

Invariant 4 strengthens Invariant 1. When a conflicting clause C is detected while
propagating ℓ, the literal ℓ cannot be added to τ without violating Invariant 4. As such, by
imposing Invariant 4, the conflict of C is resolved and the trail is adapted.

3.2 Chronological Backtracking

Invariant 4 holds for CDCL with NCB, since the trail contains monotonically increasing
decision levels. Therefore, within NCB, literals are unassigned in the reverse order of
propagation. In particular, if a literal ℓ is satisfied in a clause C when propagating another
literal ℓ′, the literal ℓ remains satisfied at least until ℓ′ is backtracked.

Weak chronological backtracking (WCB). When considering (variants of) chronological
backtracking in CDCL, Invariant 4 becomes critical, as detailed next. The core idea is to
save parts of the trail without repropagating unlike [15].

▶ Example 5. Let us revisit the example of Figure 2. Figure 3a shows the trail after
backtracking to level 1. Literal v3 is already propagated (v3 ∈ τ), and C4 is still watched by
v2 and v3. Therefore, the implication of v2 is missed, even though Invariant 1 is not violated.

To circumvent the problem of missing implications similar to Example 5, we distinguish
a weak chronological backtracking (WCB) variant of CDCL with chronological backtracking.
Within WCB, Invariant 4 is not necessarily satisfied, as unit implications at lower levels
can be missed. To recover Invariant 4 in variants of CDCL with CB, we adjust and label
two existing solutions in SAT solving: (i) restoration [21], for repairing the trail p after
backtracking; and (ii) prophylaxis [20], for forcing literals at the lowest possible level.

Restoration. We call restoration the approach in which the trail π is repaired by pushing
back the propagation head when propagating [21]. Out-of-order literals are repropagated
whenever they are moved in the trail during backtracking. For example, in Figure 3b, v3 was
the first literal that changed position during backtracking, so this is where the propagation
head is set. When backtracking to level δ, the propagation head is set to pπ(πd[δ]). When
v3 is repropagated, v2 is reimplied. We, therefore, restore Invariant 4 by repropagating
the out-of-order literals. We call this approach restoring strong chronological backtracking
(RSCB), allowing to restore the trail π by propagating more. It is also used in CaDiCaL [5].

R. Coutelier, M. Fleury, and L. Kovács 9:7

Table 1 CB variants in CDCL, together with their invariant properties.

Inv. 1 Inv. 4 Inv. 6 Inv. 9 Solvers
NCB ✓ ✓ ✓ ✓ Most CDCL solvers
WCB ✓ ✗ ✗ ✗ Our work – NapSAT
RSCB ✓ ✓ ✗ ✗ Maple_LCM_Dist [21], CaDiCaL
ESCB ✓ ✓ ✓ ✓ IntelSAT and CaDiCaL 1.9.4
LSCB ✓ ✓ ✗ ✓ Our work – NapSAT, now in CaDiCaL

Prophylaxis. We name prophylaxis1 the approach in which missed lower implications are
prevented from becoming missed unit implications [20]. Prophylaxis uses an eager reimpli-
cation procedure and imposes the validity of a compatibility invariant; we formalize this
property in Invariant 6. That is, when a clause C is detected to be a missed lower implica-
tion of ℓ, then ℓ is reimplied at level δ(C \ {ℓ}) and its reason for propagation is updated.
Prophylaxis thus enforces our backtrack compatible Invariant 6 by ensuring that no clause
can become unit after backtracking. Furthermore, Invariant 6 guarantees that literals are
always propagated at the lowest level, and conflicts are detected at the lowest level.

▶ Invariant 6 (Backward compatible watched literals). For each clause C ∈ F watched by the
two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ [c2 ∈ π ∧ δ(c2) ≤ δ(c1)] .

▶ Example 7. Figure 3c shows the trail after v2 is reimplied. In this case, v2 was a decision,
and ¬v6 has to be reimplied to level 1 as well. All literals are propagated at the lowest
possible level. Thus, using Invariant 6, the conflict C5 is properly detected at level 1, instead
of level 2. Figure 3c also shows that the trail π no longer follows a topological order of the
implication graph. These issues have to be addressed.

Based on Invariant 6, eager strong chronological backtracking (ESCB) is used in [20,22],
yielding a CDCL method with chronological backtracking that satisfies Invariant 6 by eager
reimplication of missed lower implications. In Table 1 we summarize backtracking strategies
in CDCL, also listing our solution in this respect: lazy reimplication in strong chronological
backtracking (LSCB). Our LSCB approach maintains Invariant 1 and Invariant 4, while
weakening Invariant 6 via Invariant 9, as described next in Section 4 and implemented in
Algorithm 1.

4 Adapting CDCL with Lazy Reimplications

Embedding the prophylaxis approach of Section 3.2 in existing CDCL data structures is
highly non-trivial, due to the rigid and entangled data structures [20, 22], see e.g. [11]. In
addition, reimplying literals [20,22] changes the implication graph, and hence the trail π is
no longer a topological sort of the implications; as such, Invariant 3 must be restored.

While the restoration approach of Section 3.2 offers a practically simpler solution, restora-
tion might require the re-propagation of a large part of π and thus can be computationally
very expensive. For example, while in Figure 3b only one literal had to be re-propagated,
re-propagation could be applied on an arbitrary number of literals.

1 “Prophylaxis” is a chess term referring to a move that deals with a threat before it becomes a problem.

SAT 2024

9:8 Lazy Reimplication in Chronological Backtracking

Our solution: Lazy reimplication in CDCL. To overcome inefficiencies of restoration and
pure prophylaxis, our work advocates a lazy reimplication technique for CDCL with strong
chronological backtracking. To ensure Invariant 4, we reimply literals after backtracking.
That is, we detect missed lower implications eagerly but reimply them lazily.

Our lazy reimplication approach for CDCL-based solving is summarized in Algorithm 1. In
what follows, we describe the key ingredients of Algorithm 1 and revise the CDCL invariants
of Section 3, adjusted to Algorithm 1. To this end, we introduce a lazy reimplication vector λ

to store missed lower implications, where λ is a function from literals to clauses. Intuitively,
the lazy reimplication vector λ stores the lowest

detected missed lower implication for each literal ℓ. The clause λ(ℓ) ̸= ■ is an alternative
reason that would propagate ℓ in trail π, lower than the reason ρ(ℓ). Initially, no clause is
assigned, and ∀ℓ. λ(ℓ) = ■ (that is, the undefined clause). Invariant 8 is asserted to hold
during proof search.

▶ Invariant 8 (Lazy reimplication). If the lazy reimplication reason λ(ℓ) of literal ℓ is defined,
then the clause λ(ℓ) is a missed lower implication of ℓ. That is,

λ(ℓ) ̸= ■ ⇒ ℓ ∈ π ∧ ℓ ∈ λ(ℓ)
∧

(
λ(ℓ) \ {ℓ} ∧ π

)
⊨ ⊥

∧ δ(λ(ℓ) \ {ℓ}) < δ(ℓ)

When a missed lower implication for ℓ is detected, then ℓ is not reimplied directly. Rather,
we store the MLI in λ until ℓ is unassigned during backtracking. For example, if a literal ℓ

is assigned at level 3 and a missed lower implication C for ℓ is detected with δ(C \ {ℓ}) = 1,
then backtracking to level 2 will reassign ℓ from level 3 to level 1 by C.

Using our lazy reimplication vector λ, we weaken Invariant 6 into Invariant 9 such
that, during backtracking, we identify missed lower implications without requiring the re-
propagation of out-of-order literals.

▶ Invariant 9 (Lazy backtrack compatible watched literals). Consider the trail π = τ · ω. For
each clause C ∈ F , if one watched literal c1 of C is falsified by τ , then the other c2 must be
satisfied at a lower level, or a missed lower implication lower than c1 is set in λ.

¬c1 ∈ τ ⇒
(

c2 ∈ π ∧
(
δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)

))
Lazy reimplication for strong chronological backtracking – LSCB. Guided by the reim-
plication and backtracking properties of Invariant 8 and Invariant 9, Algorithm 1 shows our
LSCB algorithm for CDCL with chronological backtracking, as a slight refactoring of weak
chronological backtracking (WCB). In the following algorithms, particularities of LSCB are
highlighted in blue.

An important detail should be noted upon Algorithm 1: in our abstract representation, it
is not explicitly checked whether the learned clause D is different from the conflicting clause
C; such a check, however, should be performed when implementing Algorithm 1. Indeed, as
pointed out in RSCB [18], it is possible that a conflicting clause C does not require conflict
analysis since C might already be a UIP. However, if the highest literal ℓ in C is a MLI,
then the clause might be conflicting again after backtracking (see Algorithm 4).

▶ Example 10. Consider the example of Figure 2. Here, the conflicting clause C5 only has
one literal at the highest level, and, as such, it qualifies as a UIP. Therefore no conflict
analysis is required, we only backtrack to level 1, and then C5 implies v6 at level 1. However,
if ¬v6 was a missed lower implication, then backtracking to level 1 would reimply ¬v6, with
C5 conflicting again; this time, however, C5 would require conflict analysis.

R. Coutelier, M. Fleury, and L. Kovács 9:9

Algorithm 1 Lazy Reimplication in CDCL with CB.

1: π = τ = ω = πd = ∅
2: ∀ℓ. δ(ℓ) =∞
3: ∀ℓ. WL(ℓ) = ∅
4: ∀ℓ. ρ(ℓ) = λ(ℓ) = ■
5: procedure CDCL(F)
6: for C ∈ F do ▷ Fill the watcher lists
7: c1, c2 ← two literals in C

8: WL←WL[c1 ←WL(c1) ∪ {C}][c2 ←WL(c2) ∪ {C}]
9: while ⊤ do

10: C ← BCP() ▷ Algorithm 2
11: if C = ⊤ then
12: if |π| = |V| then ▷ All variables are assigned
13: return SAT
14: ℓ← Decide()
15: ω ← ω · ℓ, πd ← πd · ℓ, δ ← δ[ℓ← |πd|]
16: continue
17: D ← Analyze(C) ▷ Algorithm 4
18: if δ(D) = 0 then
19: return UNSAT
20: d← any level between δ(D)− 1 and the second highest level of D

21: Backtrack(d) ▷ Algorithm 3
22: ℓ← the unassigned literals in D

23: c2 ← the second highest literal in D

24: ω ← ω · ℓ, δ ← δ[ℓ← δ(C \ {ℓ}], ρ← ρ[ℓ← D]
25: F ← F ∪ {D} ▷ Does nothing if C = D

26: WL←WL[ℓ←WL(ℓ) ∪ {D}][c2 ←WL(c2) ∪ {D}]

Propagation in LSCB. When falsifying a watched literal, Algorithm 1 might need to find a
replacement candidate to become the new watched literal (line 7 of Algorithm 2). We define
the property of the candidate literal with information about its level as below.

▶ Definition 11 (Candidate literal). Let clause C be watched by the literals c1 and c2. with
¬c1 ∈ ω. Then, SearchReplacement(C, c1, c2) from Algorithm 2 returns a candidate
literal r for which one of the following holds:

Invariant 6 is satisfied on C after ¬c1 is added to τ , i.e.
¬r ∈ (τ · ¬c1)⇒ c2 ∈ π ∧ δ(c2) ≤ δ(r);
C is conflicting, propagating, or a MLI for c2. As such, C \ {c2} is unsatisfiable with the
current assignment, and r is at the highest decision level in C \ {c2}, that is(
C \ {c2} ∧ π

)
⊨ ⊥ ∧ δ(r) = δ(C \ {c2})

Concretely, the SearchReplacement(C, c1, c2) procedure iterates over literals of C \
{c2} and stops when it finds a literal r that would satisfy Invariant 6 if c1 was replaced by
r. In case of failure, it returns the highest literal in C \ {c2}. The knowledge of the highest
literal in C \ {c2} is enough to determine the nature and level of the clause.

Algorithm 2 shows our Boolean constraint propagation (BCP) algorithm adapted to
support LSCB. As opposed to standard BCP, Algorithm 2 does not stop when the other
watched literal is satisfied. We need the extra guarantee that either c2 is implied at a level

SAT 2024

9:10 Lazy Reimplication in Chronological Backtracking

Algorithm 2 Boolean Constraint Propagation in LSCB.

1: procedure PropagateLiteral(ℓ)
2: c1 ← ¬ℓ

3: for C ∈WL[c1] do
4: c2 ← the other watched literal in C

5: if c2 ∈ π∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)] then
6: continue
7: r ← SearchReplacement(C, c1, c2)
8: WL←WL[c1 ←WL(c1) \ {C}][r ←WL(r) ∪ {C}]
9: if ¬r /∈ π then

10: continue
11: if ¬c2 ∈ π then ▷ Conflict
12: return C

13: if c2 ∈ π then
14: if δ(c2) > δ(r) ∧ δ(λ(c2) \ {c2}) > δ(r) then
15: λ← λ[c2 ← C] ▷ New or improved MLI
16: continue
17: ω ← ω · c2, ρ← ρ[c2 ← C], δ ← δ[c2 ← δ(r)]
18: return ⊤
1: procedure BCP
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: C ← PropagateLiteral(ℓ)
5: if C ̸= ⊤ then
6: return C

7: ω ← ω \ {ℓ}, τ ← τ · ℓ
8: return ⊤

lower than c1, or it is registered as a MLI before skipping the clause. Further, when a
non-falsified replacement literal cannot be found, Algorithm 2 still changes the watched
literal. While this is not always strictly necessary (for example, in conflicts), systematically
swapping the highest literal allows checking the level of the clause in constant time and
provides cheap useful properties to the clause.

Backtracking in LSCB. When backtracking, our LSCB approach has the information of
whether a clause C violates Invariant 4. Therefore, Algorithm 3 can directly imply those
missed lower implications (line 15 of Algorithm 3).

The order in which literals are reimplied in Algorithm 3 is not important, as shown later
in Theorem 17. It is, however, unclear whether a specific order would impact performance
in problems where the stability of literal position in the trail is important. In such cases,
ordering the reimplications in increasing levels might be beneficial.

Conflict analysis with MLI. As opposed to traditional backtracking, Algorithm 1 does not
guarantee that, once it backtracks to a level lower than the level of the learned clause D, the
clause D will be propagating. Indeed, let the falsified learned clause D = {c1, c2, . . . , cm}
with c1 a unique literal at level δ(D). If we backtrack to level δ(D)−1, c1 might be reimplied
at a lower level, and D would still be a conflict. In response to this, we propose the following
two solutions:

R. Coutelier, M. Fleury, and L. Kovács 9:11

Algorithm 3 Backtracking and Reimplication.

1: procedure Backtrack(d)
2: Λ← ∅ ▷ Λ is the set that will be reimplied
3: π = τ · ω
4: for ℓ ∈ π do
5: if δ(ℓ) > d then
6: if δ(λ(ℓ) \ {ℓ}) ≤ d then
7: Λ← Λ ∪ {λ(ℓ)} ▷ Store the MLI for later
8: π ← π \ {ℓ} ▷ Unassign ℓ

9: δ ← δ[ℓ←∞], ρ← ρ[ℓ← ■]
10: λ← λ[ℓ← ■] ▷ λ(ℓ) is either used, or no longer valid
11: πd ← π ∩ πd ▷ Remove the unassigned literals
12: τ ← π ∩ τ

13: ω ← π \ τ

14: for C ∈ Λ do ▷ Reimplying the MLI
15: ℓ← the unassigned literal in C

16: ω ← ω · ℓ, ρ← ρ[ℓ← C], δ ← δ[ℓ← δ(C \ {ℓ})]

(Analyze-1) we analyze the conflict and backtrack again until we get a unit clause;

(Analyze-2) we perform conflict analysis with the knowledge of missed lower implications.

In Algorithm 4 we chose option 2. Option 1 will generate the same clause in the end, but
might create some unnecessary ones in the process. We empirically check our intuition in
Section 6 and demonstrate that option 2 indeed works better. We refer to D ⊗ℓ C ′ as the
result of binary resolution applied to the clauses C and D over the literal ℓ.

In Algorithm 4, when possible, we use the lazy reimplication reason λ(ℓ) instead of the
real reason ρ(ℓ) during conflict analysis. The lazy reason λ(ℓ) is guaranteed to introduce
literals at a level lower than δ(C), making it converge to a UIP faster. Once a UIP is obtained,
Algorithm 4 does not stop if there exists a missed lower implication for the last literal at
the conflict level. Furthermore, we adapted the learnt clause minimization approach [24],
adjusted to Algorithm 4 so that both reasons are checked if the literal can be removed.

▶ Example 12. Figure 4 shows a conflict after Algorithm 2 detected a missed lower implica-
tion C6. From Invariant 9, we have λ(¬v3) = C6. Algorithm 1 will then trigger Algorithm 4
to analyse the conflict on C5. During conflict analysis with Algorithm 4, we start from the
conflicting clause D = ¬v7@2 ∨ v5@2 ∨ v6@1 and apply the resolution D ← D ⊗¬v7 C4 to
obtain D = v5@2 ∨ v3@2 ∨ v6@1. We once again apply resolution and have D ← D ⊗v5 C2,
yielding the clause D = v3@2 ∨ v6@1 ∨ ¬v4@1. As this D is a UIP, most CDCL approaches
would stop conflict analysis here. However, in our LSCB approach we know that v3 can
be reimplied at level 1. Therefore, after backtracking to level 1 and reimplying ¬v3 with
Algorithm 3, the clause D would still be conflicting and conflict analysis would need to be
triggered again. Instead we apply the resolution D ← D ⊗v3 C6 to get a clause at level 1,
namely clause D = v6@1 ∨ ¬v4@1 ∨ v2@1. We then continue until the procedure at level 1
and obtain the final clause D = v2@1.

SAT 2024

9:12 Lazy Reimplication in Chronological Backtracking

Algorithm 4 Conflict Analysis.

1: procedure Analyze(C)
2: π ← τ · ω ▷ Array version of the trail.
3: D ← C ▷ Current learned clause.
4: n← |{ℓ : ℓ ∈ D ∧ δ(ℓ) = δ(D)}| ▷ Number of literals at the highest level.
5: while ⊤ do
6: ℓ← the last literal in π falsified in D at level δ(D)
7: if n = 1 ∧ λ(ℓ) = ■ then
8: return D

9: C ′ ← ρ(ℓ)
10: if λ(ℓ) ̸= ■ then
11: C ′ ← λ(ℓ)
12: D ← D ⊗ℓ C ′

13: n← |{ℓ : ℓ ∈ D ∧ δ(ℓ) = δ(D)}|

C1 = ¬v2@1 ∨ v1@1
C2 = ¬v5@2 ∨ v3@2 ∨ ¬v4@1
C3 = ¬v6@1 ∨ v2@1 ∨ ¬v4@1
C4 = v7@2 ∨ v5@2 ∨ v3@1
C5 = v5@2 ∨ ¬v7@2 ∨ v6@1
C6 = ¬v3@2 ∨ ¬v4@1 ∨ v2@1
C7 = v4@1 ∨ v2@1

decision

δ = 1
¬v1

C1

¬v2

decision

δ = 2
¬v3

C7

v4

C2

¬v5

C3

¬v6

C4

v7

C5

⊥
ω →← τ

Figure 4 The clause ¬v3@2 ∨ ¬v4@1 ∨ v2@1 is a missed lower implication in this example. v2

and ¬v4 are falsified at level 1, whereas ¬v3 is only satisfied at level 2.

5 Soundness of Lazy Reimplication

This section proves the soundness and completeness2 of our LSCB approach given in Algo-
rithm 1. We note that Algorithm 1 implements strong chronological backtracking and does
not miss any implication; as such, Invariant 4 holds.

▶ Theorem 13 (Soundness of conflict analysis). Let C ∈ F be a conflicting clause with the
partial assignment π. Then, conflict analysis in Analyze(C) from Algorithm 1 returns a
conflicting clause that is implied by the clause set.

Proof. The starting clause D ← C is conflicting. At each step, D is resolved with a clause
C ′ such that C ′ = ρ(ℓ) or C ′ = λ(ℓ), with ℓ ∈ C ′ and ¬ℓ ∈ D. From the definition of ρ

and λ, we have
(
C ′ \ {ℓ} ∧ π

)
⊨ ⊥. Therefore, the clause D ← D ⊗¬ℓ C ′ is conflicting, and

implied by F, since C ′ ∈ F . ◀

▶ Theorem 14 (No missed unit implication). Algorithm 1 satisfies Invariant 9. As such, our
LSCB method in Algorithm 1 does not miss unit implications.

Proof. We prove that Invariant 9 holds for each building block of Algorithm 1.

2 with details also in the code base of NapSAT

R. Coutelier, M. Fleury, and L. Kovács 9:13

BCP. Invariant 9 trivially holds at the starting state, where π = ∅. Further, during the
propagation of one literal, Algorithm 2 ensures that for each clause C ∈ F watched by c1
and c2, the following Hoare triple holds

{P}PropagateLiterall(ℓ){Q},

where

P ≡ ¬c1 ∈ τ ⇒ [c2 ∈ π ∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)]]
Q ≡ ¬c1 ∈ (τ · ℓ)⇒ [c2 ∈ π ∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)]]

By structural induction over the statements of Algorithm 2, we conclude that Invariant 9 is
maintained by BCP.

Backtracking. During backtracking in Algorithm 3, each literal ci is inspected: ci is either
removed from the trail π or ci is kept. Violating Invariant 9 means that a literal c2 from the
trail is removed such that ¬c1 ∈ τ ∧ c2 /∈ π for some clause C = {c1, c2, . . . , cm} (since the
levels are not altered). However, this case is rectified, since either δ(c1) ≤ δ(c2) (and then
¬c1 would be removed from τ), or δ(λ(c2) \ {c2}) ≤ δ(c1) (and then c2 would be reimplied at
level δ(λ(c2)\{c2}) and c2 ∈ π∧δ(c2) ≤ δ(c1) would be true), or δ(λ(c2)\{c2}) > δ(c1) (and
then ¬c1 is also backtracked). As such, backtracking in Algorithm 3 preserves Invariant 9.

Analysis. Within conflict analysis in Algorithm 4, the state of CDCL is not modified, only
read. Therefore, any invariant that held before Algorithm 4 also holds after Algorithm 4.

CDCL. We finally ensure that Invariant 9 is maintained by Algorithm 1 also during its
decision step and while adding a clause to the formula F . First, deciding still preserves
Invariant 9, since it merely adds a non-assigned literal to the propagation queue ω. Second,
after backtracking in Algorithm 1, we know by construction that the learned clause will
have a single literal ℓ that is unassigned. This literal ℓ is then implied at level δ(D \ {ℓ}),
satisfying Invariant 9 since the second watched literal c2 is falsified at level δ(D \ {ℓ}). ◀

▶ Corollary 15 (No missed conflict/implication). Our LSCB method from Algorithm 1 pre-
serves the strong watched literal property of Invariant 4.

Based on the results above, we conclude the soundness and completeness of LSCB.

▶ Theorem 16 (LSCB soundness and completeness). Lazy reimplication with strong chrono-
logical backtracking from Algorithm 1 is sound and complete.

Proof. Theorem 13 implies that clauses added to the clause set are implied by F . By
induction, if ϕ is the original CNF, then if ϕ |= F and F |= C, then ϕ |= F ∪ {C}.
Furthermore, from Corollary 15 we conclude that Invariant 4 holds.

Algorithm 1 returns unsat iff there exists a conflict at level 0; that is, there exists a set
of clauses F ′ ⊆ F such that F ′ |= ⊥. As ϕ |= F , then ϕ |= ⊥, and thus ϕ is unsatisfiable.
Otherwise, Algorithm 1 returns SAT if a model τ exists such that every variable has been
assigned and propagated (π = τ). Based on Invariant 4, no conflict is possible and ϕ |= τ . ◀

▶ Theorem 17 (Topological order in LSCB). The literals reimplied by the backtracking proce-
dure of Algorithm 3 respect the topological order of the implication graph.

SAT 2024

9:14 Lazy Reimplication in Chronological Backtracking

Proof. The reimplied literals cannot depend on each other. Indeed, if they are reimplied,
their implication level before backtracking was higher than d. Therefore, if a literal ℓ depends
on a literal ℓ′ in the implication graph, then δ(ℓ) ≥ δ(ℓ′). If the missed lower implication
λ(ℓ) has a level lower than d, then all literals in λ(ℓ) \ {ℓ} are lower than d, and therefore
were not backtracked. Therefore, since all literals are independent, they can be reimplied in
an arbitrary order at the end of the trail, and still respect the topological order. ◀

6 Empirical Analysis

In this section, we discuss the implementation of Algorithm 1 in our new SAT solver NapSAT.
We also integrated it in CaDiCaL and Glucose, and present our empirical results using
NapSAT, CaDiCaL, and Glucose.

6.1 NapSAT for Lazy Reimplication in CDCL
We implemented our LSCB method from Algorithm 1 in the new SAT solver NapSAT. Our
NapSAT tool is a CDCL solver using the watcher list scheme [19] with blocker literals [9].
NapSAT supports the backtracking variants of NCB, WCB, RSCB, and LSCB at runtime.
In chronological backtracking, the backtracking scheme is purely chronological, that is,
NapSAT always backtracks to one level before the conflict (unlike CaDiCaL). NapSAT
uses the VSIDS decision heuristic [19] with the agility restart strategy [3] and root-level
clause elimination [7]. NapSAT is available at https://github.com/RobCoutel/NapSAT
and consists in a total of ∼5.800 loc, among which the core of the solver represents ∼1.500 loc.

Blocker literals in NapSAT. Blocker literals are useful to reduce the number of pointer
dereferencing of the literal pointer [9]. If the blocker b is assigned at a level higher than the
literal ℓ being falsified, then it might get backtracked before ℓ and a conflict might be missed.
Invariant 9 can therefore be weakened, while still ensuring that no unit implication is missed.

▶ Invariant 18 (Lazy backtrack compatible watched literals with blocker literals). For each
clause C ∈ F watched by the two distinct literals c1, c2 and with blocker b, we have

¬c1 ∈ τ ⇒
(

c2 ∈ π ∧
(
δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)

))
∨

(
b ∈ π ∧ δ(b) ≤ δ(c1)

)
The eager update of blocking literals is in essence similar to strategies that aggressively
update watched literals during BCP [17].

Experiments. Figure 5 shows the average total number of propagations of NapSAT on the
3-SAT uniform random problems from SATLIB [16]. Our LSCB method from Algorithm 1,
indicated via -lscb, performs better than the other backtracking versions of NapSAT, both
for satisfiable and unsatisfiable instances. Figure 6 shows more details. In particular, it
shows the total number of propagations of each unsatisfiable problem with 250 variables. It
shows that LSCB consistently has fewer propagations than NCB, WCB, and RSCB.

We acknowledge that the number of propagations alone is not always representative of the
real performance of a SAT solver, since propagation in LSCB is slightly more expensive than
in NCB or WCB. However, the number of propagations in NapSAT indicates the impact of

https://github.com/RobCoutel/NapSAT

R. Coutelier, M. Fleury, and L. Kovács 9:15

50 100 150 200 250
Number of variables

102

103

104

105

106

107

Pr
op

ag
at

io
ns

-ncb
-wcb
-rscb
-lscb

(a) Satisfiable instances.

50 100 150 200 250
Number of variables

102

103

104

105

106

107

Pr
op

ag
at

io
ns

-ncb
-wcb
-rscb
-lscb

(b) Unsatisfiable instances.

Figure 5 Average total number of propagations performed by NapSAT on the SATLIB 3-SAT
random problem, clustered by the number of variables, and backtracking technique employed.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-ncb 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-ls
cb

1e7

(a) LSCB vs. NCB.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-wcb 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-ls
cb

1e7

(b) LSCB vs. WCB.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-rscb 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-ls
cb

1e7

(c) LSCB vs. RSCB.

Figure 6 Total number of propagations of NapSAT for each unsatisfiable Uniform Random
3-SAT problem from SATLIB. The red line is the equality line. Marks under the equality line favour
our new approach.

missed lower implications. For example, Figure 5 shows that restoring the trail with RSCB
might not be worth finding the missed lower implications in the random 3-SAT benchmarks;
yet, reimplying literals lazily significantly reduces the total number of propagations.

6.2 Integration of LSCB in CaDiCaL and Glucose

LSCB in CaDiCaL. We implemented our LSCB approach from Algorithm 1 in CaDi-
CaL [4], the baseline solver of the hack track of the SAT Competition. Thanks to the
built-in model-based tester Mobical, the most effort came with ensuring that we have
implemented correctly Invariant 4: CaDiCaL does not require watching the literals of two
highest levels when the clause is propagating. This, however, requires iterating over the
clause to find the propagation level, which we do not need.

We remark that we did not change the default backjumping policy of CaDiCaL: when
backjumping from more than 100 levels occurs (following the value implemented in CaDi-
CaL), we resort to backtracking (going one level back). Otherwise, an algorithm similar to
trail reuse for restarts is used to decide how many levels should be kept. Unlike the version
implemented in NapSAT, in CaDiCaL we store the missed level instead of checking the
level of the MLI each time we need the level.

SAT 2024

9:16 Lazy Reimplication in Chronological Backtracking

Table 2 Number of solved instances by different variants of strong backtracking on the SC2023
competition, using a 5.000 s timeout.

CaDiCaL version solved PAR-2 (×103)

base-CaDiCaL = RSCB 248 4.09
LSCB, Analyze-2 and minimization 246 4.16
ESCB 245 4.16
LSCB and Analyze-2 246 4.19
NCB 247 4.19
LSCB and Analyze-1 242 4.24

We tested various configurations, as summarized in Table 2, on the bwForCluster Helix with
AMD Milan EPYC 7513 CPUs, using a memory limit of 16 GB RAM on the problems from
the SAT Competition. Overall, we can see there is little difference between the considered
configurations. In particular, the performance difference between WCB and NCB is limited,
making it unclear if chronological backtracking is important. However, similar to the original
CaDiCaL implementation [18], on the benchmarks from the SAT Competition 2018, there
is an improvement from WCB over NCB. Our intuition is that chronological backtracking
is especially useful when the decision heuristic is picking the wrong literals finding conflicts
late instead of early (like finding a new unit at level 500 instead of level 1). The decision
heuristics seem to perform worse on the 2018 benchmarks, while this did not seem to have
happened since.

While the results in NapSAT seem to indicate a large decrease in the number of
propagations, three factors mitigate this effect in CaDiCaL: (i) propagating a literal ℓ

a second time as in RSCB is cheaper than propagating it for the first time. Most clauses
remaining in the watch list of ℓ will already be satisfied and are faster to check. (ii) RSCB
allows to use of blocking literals more loosely. There is no need to compare the level of the
blocking literal and the propagated one, making them more potent. (iii) Searching for a
replacement literal is slightly more expensive in LSCB since we need to record the highest
literal in the clause.

In a context where propagations are more expensive, such as SMT or user-propagators [8],
these considerations might weigh less on the overall performance of the solver. We will
investigate these applications for future work.

LSCB in Glucose. We also implemented our Algorithm 1 for LSCB into the latest version
of Glucose [1], the SAT solver that pioneered the LBD heuristic for the usefulness of
clauses (only without the minimization part). This is the only solver where we implemented
the LSCB without any existing CB in the code. The entire diff (including new logging
information and more assertions) is less than 1.000 lines. Our actual implementation of
LSCB in Glucose is very close to our abstract Algorithm 1, because the blocker literal is
always exactly the other watched literal. We use the simple heuristic to backtrack one level
if jumping back more than 100, otherwise use the normal backjumping. We did not change
the heuristic to block restarts [2], which is based on the trail length.

While running Glucose with LSCB on the SAT Competition 2023 (Fig. 7b), we ob-
served worse performance. Interestingly, this is mostly due to one family of benchmarks,
SC23_Timetable, that perform much worse with strong backtracking (but are solved even-
tually). On the 2018 benchmarks again (Fig. 7a), we observed a slight performance improve-
ment when using Glucose with LSCB and it seems to be better to trigger chronological
backtracking more often.

R. Coutelier, M. Fleury, and L. Kovács 9:17

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

lscb−50reuse
lscb
NCB

(a) Glucose variants in the SAT Competition 2018.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

ncb
lscb

(b) Glucose variants in the SAT Competition 2023.

Figure 7 CDF of the different Glucose (without strategy adapting) versions. The constant
indicates when chronological backtracking is triggered instead of backjumping: We apply chronolog-
ical backtracking when NCB would require jumping back more than 100 levels by default, like in
CaDiCaL. In the SAT Competition 2018, the version that triggers chronological backtracking for
more than 50 levels performs best.

SAT 2024

9:18 Lazy Reimplication in Chronological Backtracking

7 Conclusion

We introduce a lazy reimplication procedure to be used in CDCL with (variants of) chronologi-
cal backtracking. We particularly focus on the definitions of weak chronological backtracking
(WCB), restoring strong chronological backtracking (RSCB), eager strong chronological
backtracking (ESCB), and lazy strong chronological backtracking (LSCB). Our invariant
properties on these backtracking variants exploit watched literals. We prove that our ap-
proach of lazy reimplication in strong chronological backtracking (LSCB) yields a sound
and complete SAT solving method. Our implementation in NapSAT, and its integration
with CaDiCaL and Glucose, gives practical evidence that LSCB is significantly easier
to implement than ESCB, while also propagating fewer literals than RSCB, and providing
better guarantees than WCB.

In the future, we intend to extend our LSCB method to reason over virtual literal levels,
that is, levels of missed lower implications if such a clause is detected. We believe such an
extension would allow to converge closer to the guarantees of ESCB, while mitigating both
algorithmic complexities and reimplication costs. Further, we will explore the integration of
chronological backtracking variants in the context of SMT, as a robust approach to handling
arbitrary incremental clauses and expensive theory propagations.

References

1 Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern SAT
Solvers. In IJCAI, pages 399–404, 2009. URL: http://ijcai.org/Proceedings/09/Papers/
074.pdf.

2 Gilles Audemard and Laurent Simon. On the Glucose SAT solver. Int. J. Artif. Intell.
Tools, 27(1):1840001:1–1840001:25, 2018. doi:10.1142/S0218213018400018.

3 Armin Biere. Adaptive Restart Strategies for Conflict Driven SAT Solvers. In SAT, volume
4996 of LNCS, pages 28–33. Springer, 2008. doi:10.1007/978-3-540-79719-7_4.

4 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
CaDiCaL 2.0. In Arie Gurfinkel und Vijay Ganesh, editor, Computer Aided Verification -
36th International Conference, CAV 2024, Paris, France, July 24-27, 2024, LNCS. Springer,
2024. To appear.

5 Armin Biere, Mathias Fleury, and Florian Pollitt. CaDiCaL_vivinst, IsaSAT, Gimsatul,
Kissat, and TabularaSAT entering the SAT competition 2023. In SAT Competition 2023
– Solver and Benchmark Descriptions, volume B-2023-1 of Department of Computer Science
Report Series B, pages 14–15. University of Helsinki, 2023.

6 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satis-
fiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021. doi:10.3233/FAIA336.

7 Armin Biere, Matti Järvisalo, and Bejamin Kiesl. Preprocessing in SAT solving. In Armin
Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 391–435. IOS
Press, 2nd edition edition, 2021.

8 Nikolaj S. Bjørner, Clemens Eisenhofer, and Laura Kovács. User-propagators for custom
theories in SMT solving. In David Déharbe and Antti E. J. Hyvärinen, editors, Pro-
ceedings of the 20th Internal Workshop on Satisfiability Modulo Theories co-located with
the 11th International Joint Conference on Automated Reasoning (IJCAR 2022) part of
the 8th Federated Logic Conference (FLoC 2022), Haifa, Israel, August 11-12, 2022, vol-
ume 3185 of CEUR Workshop Proceedings, pages 71–79. CEUR-WS.org, 2022. URL:
https://ceur-ws.org/Vol-3185/extended6630.pdf.

http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.3233/FAIA336
https://ceur-ws.org/Vol-3185/extended6630.pdf

R. Coutelier, M. Fleury, and L. Kovács 9:19

9 Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. Cache Conscious Data Structures for
Boolean Satisfiability Solvers. JSAT, 6(1-3):99–120, 2009. URL: https://satassociation.
org/jsat/index.php/jsat/article/view/71.

10 Robin Coutelier. RobCoutel/NapSAT. Software, swhId:
swh:1:dir:1308f5717399bd09dcad2de805cc42eaa5504854 (visited on 2024-08-05). URL:
https://github.com/RobCoutel/NapSAT.

11 Robin Coutelier et al. Chronological vs. Non-Chronological Backtracking in Satisfiability
Modulo Theories. Master’s thesis, Université de Liège, Liège, Belgique, 2023.

12 Mathias Fleury. arminbiere/cadical. Software, swhId:
swh:1:dir:eaf1bada31f3142996582c25a7df2118e7cacc98 (visited on 2024-08-05). URL:
https://github.com/arminbiere/cadical/tree/strong-backtrack.

13 Mathias Fleury. m-fleury/glucose. Software, swhId:
swh:1:dir:fc5f0bd80c6a9e9412c5a3f3fcde96bf17a36147 (visited on 2024-08-05). URL:
https://github.com/m-fleury/glucose.

14 Robin Coutelier Pascal Fontaine. ModularIT solver. Accessed March 2024. URL: https:
//gitlab.uliege.be/smt-modules/.

15 Randy Hickey and Fahiem Bacchus. Trail saving on backtrack. In Luca Pulina and Martina
Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2020. doi:10.1007/978-3-030-51825-7_4.

16 Holger H Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on SAT.
Sat, 2000:283–292, 2000.

17 Norbert Manthey. Watch Sat and LTO for CaDiCaL. In SAT Competition 2023 – Solver and
Benchmark Descriptions, volume B-2023-1 of Department of Computer Science Report Series
B, pages 10–11. University of Helsinki, 2023.

18 Sibylle Möhle and Armin Biere. Backing Backtracking. In SAT, volume 11628 of LNCS,
pages 250–266. Springer, 2019. doi:10.1007/978-3-030-24258-9_18.

19 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In DAC, pages 530–535. ACM, 2001. doi:
10.1145/378239.379017.

20 Alexander Nadel. Introducing Intel(R) SAT Solver. In SAT, volume 236 of LIPIcs, pages
8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SAT.2022.8.

21 Alexander Nadel and Vadim Ryvchin. Chronological Backtracking. In SAT, volume 10929 of
LNCS, pages 111–121. Springer, 2018. doi:10.1007/978-3-319-94144-8_7.

22 Florian Pollitt. Cadical 1.9.4. Accessed March 2024. URL: https://github.com/
arminbiere/cadical/tree/reimply-branch.

23 João P. Marques Silva and Karem A. Sakallah. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

24 Niklas Sörensson and Armin Biere. Minimizing Learned Clauses. In SAT, volume 5584 of
LNCS, pages 237–243. Springer, 2009. doi:10.1007/978-3-642-02777-2_23.

SAT 2024

https://satassociation.org/jsat/index.php/jsat/article/view/71
https://satassociation.org/jsat/index.php/jsat/article/view/71
https://archive.softwareheritage.org/swh:1:dir:1308f5717399bd09dcad2de805cc42eaa5504854;origin=https://github.com/RobCoutel/NapSAT;visit=swh:1:snp:aff7ae6a3ea2f154e8a57a795ff68bea81d9baaa;anchor=swh:1:rev:df5a9ca4c2ddb6196dca5b89050634ce72d5fec3
https://github.com/RobCoutel/NapSAT
https://archive.softwareheritage.org/swh:1:dir:eaf1bada31f3142996582c25a7df2118e7cacc98;origin=https://github.com/arminbiere/cadical;visit=swh:1:snp:53dfb8828f1ebfecc0e02187545b6762c277b5c9;anchor=swh:1:rev:5ce2e0a5a676d5682622005d56a50e5266f3e29b
https://github.com/arminbiere/cadical/tree/strong-backtrack
https://archive.softwareheritage.org/swh:1:dir:fc5f0bd80c6a9e9412c5a3f3fcde96bf17a36147;origin=https://github.com/m-fleury/glucose;visit=swh:1:snp:a2f7255914669f8ebcc24ec1124ef1ae31bb16d0;anchor=swh:1:rev:8a5c7117fda44781c56bba2e9a9520fca5450509
https://github.com/m-fleury/glucose
https://gitlab.uliege.be/smt-modules/
https://gitlab.uliege.be/smt-modules/
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://doi.org/10.1007/978-3-319-94144-8_7
https://github.com/arminbiere/cadical/tree/reimply-branch
https://github.com/arminbiere/cadical/tree/reimply-branch
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-642-02777-2_23

	1 Introduction
	2 Preliminaries
	3 Invariant Properties on CDCL Variants
	3.1 CDCL Invariants on Implications
	3.2 Chronological Backtracking

	4 Adapting CDCL with Lazy Reimplications
	5 Soundness of Lazy Reimplication
	6 Empirical Analysis
	6.1 NapSAT for Lazy Reimplication in CDCL
	6.2 Integration of LSCB in CaDiCaL and Glucose

	7 Conclusion

