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Preface

This volume contains (extended) abstracts of invited talks and full papers presented at
the 27th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2024). SAT 2024 was held from August 21–24, 2024, in the Sahyadri Park facility of
Tata Consultancy Services in Pune, India. This was the first time that the conference was
held in India, and it was jointly organized by Indian Institute of Technology Bombay and
Tata Consultancy Services.

The International Conference on Theory and Applications of Satisfiability Testing (SAT)
is the topmost annual meeting focused on all aspects of the propositional satisfiability
problem, broadly construed. In addition to propositional satisfiability in its classical form,
the scope of the conference also includes Boolean optimization problems like MaxSAT and
Pseudo-Boolean (PB) constraint solving, Quantified Boolean Formulas (QBF), Satisfiability
Modulo Theories (SMT), Model Counting, and Constraint Programming (CP) for problems
with clear connections to Boolean-level reasoning.

The call for papers for SAT 2024 welcomed original contributions addressing different
aspects of SAT, interpreted in a broad sense. This included theoretical advances such as
exact algorithms, proof complexity, and other complexity issues, practical search algorithms,
knowledge compilation, implementation-level details of SAT solvers and SAT-based systems,
problem encodings and reformulations, applications including both novel application domains
and improvements to existing approaches, as well as case studies and reports on findings based
on rigorous experimentation. Both regular (long) papers and short papers were welcomed
for submission, with the latter format also including tool papers.

A total of 70 submissions, with authors distributed across 25 countries, were received
by the submission deadline. Of these, 52 were regular papers, 4 were short papers, and 14
were tool papers. Each submission was reviewed by at least 3 (4 in most cases) Program
Committee members and external expert reviewers identified by the Program Committee.
Authors of submitted papers were provided an opportunity to respond to initial reviews and
to specific queries posed by reviewers during an author response period that spanned 5 days.
Subsequent to this, there was extensive discussion among Program Committee members for
finalizing the list of accepted papers. Eventually, 24 papers were unconditionally accepted,
and an additional 4 papers were accepted subject to the condition that the authors addressed
specific comments of reviewers, and the revised version went through a fresh round of review.
Authors of conditionally accepted papers were given 2 weeks to revise their papers. Each
revised paper was again reviewed by two of the reviewers who had originally reviewed the
paper. The 4 conditionally accepted papers were eventually accepted after the reviewers
satisfied themselves that all reviewers’ comments were attended to adequately in the revised
versions of the papers. Overall, a total of 28 papers were finally accepted for SAT 2024, with
23 of these being regular papers, 4 being tool papers, and 1 being a short paper.

In addition to the presentation of accepted papers, the technical program of SAT 2024 also
included three invited talks by eminent researchers in the area. Martina Seidl (Institute for
Formal Models and Verification at Johannes Kepler University, Austria), Cesare Tinelli (The
University of Iowa, USA), and Moshe Y. Vardi (Rice University, USA) delivered invited talks
on important and contemporary topics of significant interest to the community. Abstracts or
extended abstracts of their talks are included as part of this volume.

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang
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In recognition of outstanding and impactful contributions in areas of relevance to the
conference, four awards were presented at SAT 2024. The Program Committee deliberated
and gave suggestions for the choice of the Best Paper and the Best Student Paper, the latter
for a paper whose lead author was a student when the work was done. The Award Committee,
consisting of Nikolaj Bjørner, Shaowei Cai, Daniel Le Berre, and Jakob Nordström, carefully
considered these suggestions to arrive at the final award recommendations. Accordingly, the
Best Paper Award of SAT 2024 was conferred on “The Strength of the Dominance Rule”
by Leszek Aleksander Kołodziejczyk and Neil Thapen “for the use of theoretical tools from
mathematical logic to answer a question of considerable applied interest regarding the strength
of different methods for proof logging.” The Best Student Paper Award of SAT 2024 was
conferred on “Speeding-up Pseudo-Boolean Propagation” by Robert Nieuwenhuis, Albert
Oliveras, Enric Rodríguez Carbonell, and Rui Zhao (student author) “for the principled
approach used for measuring the impact of implementation choices for Pseudo-Boolean
propagation.”

The three runner-ups for the above awards are: “Optimal Layout Synthesis for Deep
Quantum Circuits on NISQ Processors with 100+ Qubits” by Irfansha Shaik and Jaco van de
Pol, “Quantum Circuit Mapping Based on Incremental and Parallel SAT Solving” by Jiong
Yang, Yaroslav A. Kharkov, Yunong Shi, Marijn Heule, and Bruno Dutertre, and “eSLIM:
Circuit Minimization with SAT Based Local Improvement” by Franz-Xaver Reichl, Friedrich
Slivovsky, and Stefan Szeider.

This year, the SAT Association also established a new award called the Fahiem Bacchus
PhD Award in Satisfiability. This award distinguishes one outstanding PhD thesis from
the past two years in the field of satisfiability, broadly construed. The award is named after
Fahiem Bacchus, who made significant contributions to the theory and practice of SAT, to
the SAT community, and to the SAT Association. In response to the call for nominations, the
committee for selecting the Fahiem Bacchus Award received a number of strong applications.

The inaugural Fahiem Bacchus Award was conferred at SAT 2024 on Dominik Schreiber
for his PhD thesis “Scalable SAT Solving and its Applications”, defended at the Karlsruhe
Institute of Technology (KIT) in 2023.

The two runner-ups for the award are: Stephan Gocht (Lund University, thesis title:
“Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning”)
and André Schidler (Technische Universität Wien, thesis title: “Scalability for SAT-based
Combinatorial Problem Solving”).

The SAT Test-of-Time Award is an award instituted by the SAT Association that is
given annually to a selected paper from around 20 years back with a large impact on SAT
and beyond. The SAT 2024 Test-of-Time Award was conferred on the paper “Combining
Component Caching and Clause Learning for Effective Model Counting”, which appeared in
the proceedings of SAT 2004 and was authored by Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A. Kautz, and Toniann Pitassi.

The week of SAT 2024 also included a pre-conference instructional school and three
workshops that were held at the same venue as the main conference. The 9th edition
of the Indian SAT+SMT School, organized by Supratik Chakraborty, Priyanka Golia,
Ashutosh Gupta, Saurabh Joshi, Kumar Madhukar, and Kuldeep S. Meel, was held during
August 18–19, 2024. Subsequently, the following three workshops were concurrently held on
August 20, 2024.

Pragmatics of SAT , organized by Katalin Fazekas and Alexey Ignatiev
International Workshop on Quantified Boolean Formulas and Beyond , organized by Hubie
Chen, Friedrich Slivovsky, and Martina Seidl
Workshop on Counting, Sampling and Synthesis, organized by Paulius Dilkas and Priyanka
Golia
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The results of four major competitions, as listed below, were also announced during the
technical program of SAT 2024.

SAT Competition 2024 , organized by Marijn Heule, Markus Iser, Matti Järvisalo, and
Martin Suda
Pseudo-Boolean Competition 2024 , organized by Olivier Roussel
Model Counting Competition 2024 , organized by Johannes Fichte, Markus Hecher, and
Arijit Shaw
MaxSAT Evaluation 2024 , organized by Matti Järvisalo, Jeremias Berg, Ruben Martins,
Tobias Paxian, and Andreas Niskanen

We are thankful to all individuals, institutions, and organizations who contributed to
making SAT 2024 a success. We thank all authors for submitting their work to SAT 2024,
and also thank all instructional school, workshop, and conference participants for actively
participating in the technical sessions. Our deepest thanks go to all Program Committee
members and external expert reviewers for carefully reading the submissions, providing
constructive comments, and for participating in extensive discussions that helped in selecting
the strongest papers for the technical program of the conference. A special thanks to the
Award Committee for working on a very tight schedule to arrive at the Best Paper and
Best Student Paper decisions, and also for recommending runner-ups for these awards. We
are thankful to the three invited speakers for accepting our invitation and enlightening the
audience with their insights and perspectives. Our thanks to the organizers of all the school,
workshops, and competitions that were affiliated to SAT 2024. A special thanks to Daniela
Kaufmann and Alexey Ignatiev for serving as Workshops Chair of SAT 2024.

We are thankful to R. Venkatesh, who served as General Chair of SAT 2024, and to the
entire local organizing committee that worked tirelessly under the leadership of Ravindra
Metta to make the conference a success. We wish to thank Finance Chair Hrishikesh
Karmarkar, Sponsorship Chair Kumar Madhukar, Publicity Chair Abhisekh Sankaran,
Advisory Chair Kuldeep S. Meel, and Webmasters Weichieh Wang and Anand Yeolekar for
their crucial roles in various aspects of organization of the conference. Our special thanks
go to Indian Institute of Technology Bombay and Tata Consultancy Services for helping us
negotiate mandatory clearance procedures for SAT 2024. We thank the SAT Association for
its invaluable guidance and support at all steps of organizing the conference. Thanks are
also due to the EasyChair conference management system for facilitating the submission,
review, and selection of papers, and to the editorial and publishing staff at LIPIcs for their
help and guidance in compiling this volume.

Finally, we wish to thank all sponsors and supporters of SAT 2024, whose generous financial
support made it possible to organize the conference smoothly. We gratefully acknowledge
the enormous support, both financial and logistical, provided by Tata Consultancy Services.
In addition, sponsorship was provided by Amazon Web Services, Cadence Design Systems,
Synopsys, Advanced Micro Devices, Google, and Microsoft. We are grateful to Dr. Anand
Deshpande for his support, advice, and encouragement. Generous support for international
student travel grants was provided by the journal of Artificial Intelligence (AIJ), while similar
support for travel and registration of Indian students was provided by the ACM India Council
and the Association for Logic in India. The ACM India Council and the Indian Association
for Research in Computing Science provided invaluable support at all stages of organizing the
conference. Our sincere thanks to all these organizations for their role in making SAT 2024
a success.

August 2024 Supratik Chakraborty
Jie-Hong Roland Jiang

SAT 2024
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Abstract
Because of the duality of universal and existential quantification, quantified Boolean formulas (QBF),
the extension of propositional logic with quantifiers over the Boolean variables, have not only
solutions in terms of models for true formulas like in SAT. Also false QBFs have solutions in terms
of counter-models. Both models and counter-models can be represented as certain binary trees or
as sets of Boolean functions reflecting the dependencies among the variables of a formula. Such
solutions encode the answers to application problems for which QBF solvers are employed like the
plan for a planning problem or the error trace of a verification problem. Therefore, models and
counter-models are at the core of theory and practice of QBF solving. In this invited talk, we survey
approaches that deal with models and counter-models of QBFs and identify some open challenges.
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1 Overview

The evaluation of a quantified Boolean formula (QBF) [8] is often seen as a two-player game
between a universal and an existential player: given a QBF Φ = ∀X1∃X2 . . . ∃Xn.ϕ where Xi

are disjoint sets of variables and ϕ is a propositional formula over these variables, the task is
to decide if the QBF is true or false. The existential player aims at satisfying the formula by
assigning values to the existentially quantified variables, while the universal player aims at
falsifying ϕ by setting the universally quantified variables. The variables need to be assigned
in the order as they occur in the prefix. If the formula is true under the chosen assignment,
the existential player wins, otherwise the universal player wins. Overall, a QBF is true if and
only if there is a winning strategy for the existential player and a QBF is false if and only
if there is a winning strategy for the universal player. Nowadays, QBF solvers are applied
for many applications [32], and in this context winning strategies play a crucial role. For
example, in the context of formal synthesis, a winning strategy for the existential variables
encodes the program that is synthesized from a given specification [9], or in the context of a
planning problem, the winning strategy encodes the plan [31].

Winning strategies are also often called the solutions of a QBF, i.e., they are the
models of true QBFs and, respectively, the counter-models of false QBFs. For a true QBF
Φ = ∀X1∃X2 . . . ∃Xn.ϕ, a model contains the information how to set the values of the
existential variables X2i based on the values of the universal variables X2j+1 with 0 ≤ j < i

such that ϕ evaluates to true under this assignment. Such a model can be represented either
as a binary tree of a certain structure or as a set of Boolean functions, so-called Skolem
functions. A Skolem function for an existential variable x ∈ X2i is a Boolean function over
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PCNF ϕ Solver TRUE/FALSE

Certificate Checker Ok/Failure

Extractor Solution

Solution
Checker

Ok/Failure

Figure 1 Workflow of solution extraction.

the universal variables X2j+1 with 0 ≤ j < i, i.e., the universal variables that precede x in
the prefix. If all existential variables are replaced by their Skolem functions, the resulting
propositional formula is valid.

Counter-models of false QBFs are defined dually. For a false QBF Φ = ∀X1∃X2 . . . ∃Xn.ϕ,
a counter-model contains the information how to set the values of the universal variables
X2i+1 based on the values of the existential variables X2j with 0 ≤ j ≤ i such that ϕ

evaluates to false under this assignment. Such a counter-model can be represented either
as a binary tree of a certain structure or as a set of Boolean functions, so-called Herbrand
functions. A Herbrand function for an universal variable x ∈ X2i+1 is a Boolean function
over the existential variables X2j with 0 ≤ j ≤ i, i.e., the existential variables that precede x

in the prefix. If all universal variables are replaced by their Herbrand functions, the resulting
propositional formula is unsatisfiable.

In QBF research, much emphasis is set on the evaluation of QBFs, i.e., on deciding
whether they are true or false. Less effort is set on obtaining models as counter-models
despite they are very relevant for practical applications. This is underpinned by the fact
that in recent QBF competitions [24, 28] there was no track involving solution extraction,
although the benefits of being able to produce winning strategies are manifold. On the one
hand models and counter-models can serve as a certificate confirming the correctness of a
solving result with the aid of a SAT solver. On the other hand, they encode the solution to
the application problem that was translated to a QBF. Furthermore, in the field of proof
complexity, counter-models of false QBFs establish a strong tie between theory and practice
of QBF solving. In this paper, we take a short tour through the works that explicitly deal
with QBF models and counter-models and identify some perspectives for future work.

2 Solutions of Quantified Boolean Formulas

There exist some solvers that generate solutions at runtime. Almost 20 years back, the
solver sKizzo was presented [5] which finds BDD-based models for true QBFs. Almost at
the same time, the solvers Squolem and EBDDRES were presented that could also generate
BDD-based solutions for true formulas [17]. At this time, it was not clear how to combine
the generation of solution with clause/cube learning as successfully used in SAT. Later, the
abstraction-based solvers CAQE and QuABs were developed that at least in some versions
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support the extraction of solutions [34]. The solver Cadet [29] for 2QBFs searches for Skolem
functions by incrementally adding constraints until these constraints describe a model in
terms of Skolem function or until it can be proven that it is not possible to construct a model,
i.e., the formula is false. The QBF solver QFun employs machine learning techniques to find
short Skolem and Herbrand functions [16].

For a very long time it was unclear how to generate solutions for solvers based on QCDCL,
the QBF variant of conflict-driven clause learning [25] which is the major solving paradigm
in SAT solving. Independently two approaches were presented that both rely on the fact that
QCDCL is based on the Q-resolution calculus [19], the QBF version of resolution. A QCDCL
solver like DepQBF [21] can directly emit clause Q-resolution proofs for false formulas and
cube Q-resolution proofs for true formulas. For the extraction of models/counter-models, the
applications of the QBF-specific existential reduction rule/universal reduction rule has to be
taken into account. The approach of Goultiaeva and Van Gelder [12] interactively rewrites a
Q-resolution proof as follows. Assume that the considered QBF is false and that the QBF
solver produced a clausal Q-resolution refutation. If the outermost variables of the quantifier
prefix are existential, then they can be assigned any value and the formula will still evaluate
to false. Now some assignment to those variables has to be provided and is applied on the
proof, i.e., the variables are assigned. The proof is then simplified resulting in a proof of the
QBF under the respective assignment. Now it can be shown that when a universal variable of
the new outermost block is eliminated by universal reduction, it occurs only in one polarity.
This polarity determines the value of the universal variable. In this way, all values of the
outermost universal variables can be directly read off from the proof. Again, the proof is
simplified under the assignment resulting in a new proof. Next, the outermost existential
variables assigned, resulting again in a proof from which the values of the next outermost
universal variables can be read off. This procedure is repeated until all variables are assigned.
The other approach by Balabanov and Jiang [1] traverses a Q-resolution proof in reverse
topological order and builds Skolem functions from cubes on which existential reduction
is applied in the case of true formulas and it builds Herbrand functions from clauses on
which universal reduction is applied. In this way, Boolean functions are generated which
are typically represented as And-Inverter-Graphs (AIGs). Figure 1 shows the workflow of
solution generation after the actual solving: first, the QBF solver decides whether the QBF
is true or false and produces a proof. This proof can be efficiently checked by an independent
checker to validate the solving result. Furthermore, the proof is then analyzed and the
Skolem/Herbrand functions are extracted. By replacing variables by their functions, a SAT
solver can then be used to (1) check the correctness of the Skolem/Herbrand functions and (2)
to confirm the solving result again. The complete tool chain is implemented in the QBFCert
framework [26]. Solution extraction from proofs has been considered for other proof systems
than the basic version of Q-resolution like QU-resolution and long-distance resolution [3, 2],
for the expansion-based proof system ∀Exp + Res and its extensions [7, 13] as well as for the
QRAT proof system [15] mainly used for preprocessing. In [11], we presented an approach
to combine the partial solutions obtained from preprocessing with solutions obtained from
complete solvers. In practical QBF solving, the extraction of solution is also useful for
debugging QBF encodings as suggested in [30].

When dealing with models and counter-models of QBFs as first-class objects, it also
becomes relevant to ask for symmetries [18] leading to the distinction of syntactic and
semantic symmetries as well as to ask for the overall number of solutions. First approaches
to solution counting for true and false QBFs have been presented. First, only assignments
to variables of the outermost quantifier block were considered [33, 4] using an enumerative

SAT 2024
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approach, but later this work was lifted to variables at the second quantifier level [27]. Most
recently, an efficient recursive approach has been introduced that computes the full model
count of true QBFs [10].

The impact of extracting winning strategies is not only practically motivated, but it is
also motivated by important results in the field of proof complexity (see [6] for a survey by
Beyersdorff). Beyersdorff identifies strategy extraction as a distinctive feature of QBF proof
systems for which no propositional analogue exists and states that most QBF lower-bound
techniques employ strategy extraction.

3 Some Open Challenges

While there has been made considerable progress in many theoretical and practical aspects
of QBF solving, there are still many open challenges that need to be addressed in the future.
In the following, three of such challenges are shortly discussed.

Obtaining Solutions for True Formulas

Although solution extraction and generation should be dual for true and false formulas in
theory, in practice there is a gap because of QBFs are usually provided in prenex conjunctive
normal form (PCNF). The PCNF representation yields several advantages because of the
easier implementation and because some techniques work only for clauses, but not for
arbitrary formulas. At the same time, the PCNF representation also introduces a bias,
because for true formulas having the formula in prenex disjunctive normal form (PDNF)
would be preferable. Currently, the PDNF representation has to be constructed during the
solving leading to large initial cubes or it involves an expensive transformation. To overcome
this problem, it might be preferable to focus on the original structure of a formula and not
to flatten it to an equivalent PCNF.

Solutions from Different Solving Paradigms

Over the last years, several different QBF solving paradigm have been shown to be orthogonal
in their strength. Therefore, their integration is often beneficial either in terms of distributed
portfolio solvers [14] or via well defined interfaces as suggested in [22, 20]. However, when
combining multiple approaches, the extraction of solutions becomes challenging, because it is
not clear how to define the interfaces at the solution level. We presented some work going in
this direction in [11].

Solutions from Parallel and Distributed QBF Solving

Current work shows the potential of exploiting modern distributed and parallel hardware
resources for QBF solving [23]. QBFs can be easily split into smaller subproblems that can
be handled individually. In the case of SAT, also the solutions can be handled individually:
if one of the subproblems is satisfiable, then its solution can be directly extended to the
solution of the overall problem. If all subproblems are unsatisfiable, then there exists no
solution. For QBFs, the situation is more complicated because the Skolem and Herbrand
functions need to be assembled.
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Abstract
Solvers for Satisfiability Modulo Theories (SMT) have become crucial components in safety- or
mission-critical formal methods applications, in particular model checking, verification, and security
analysis. Since state-of-the-art SMT solvers are large and complex systems, they are prohibitively
difficult to prove correct. Hence, proof production is essential as a way to demonstrate instead
the correctness of their responses, making those responses amenable to independent verification.
Historically, the main challenges for proof production in SMT have been solver performance and
proof coverage, often leading to the disabling of many sophisticated solving techniques when running
in proof-production mode, or to coarse-grained, and harder to check, proofs.

The first part of this talk presents a flexible proof-production architecture designed to handle the
complexity of versatile, industrial-strength SMT solvers, and discusses how it has been leveraged to
produce detailed proofs, even for sophisticated reasoning components. The architecture, implemented
in the state-of-the-art SMT solver cvc5, allows proofs to be produced modularly, as needed, and
with various safeguards for correctness. The architecture supports the generation of textual proof
certificates in different formats, for offline proof checking by external tools, as well as a rich API,
which is useful for online integration of the SMT solver into other reasoning tools such as, for instance,
skeptical proof assistants. Extensive experimental evaluations with both SMT-LIB benchmarks
and benchmarks provided by industrial partners have shown that the new architecture results in
greater proof coverage than previous approaches, imposes a small runtime overhead, and supports
fine-grained proofs in the great majority of cases.

The second part of the talk gives an overview of a new generic language for expressing SMT
proof certificates that builds on almost two decades of work and experience in proof generation and
checking in SMT and combines the benefits of several previous efforts on the topic. While developed
to express cvc5’s proof certificates, the language is meant to be useful to other SMT solvers as well.
It is in fact a logical framework, based on the syntax and semantics of the upcoming Version 3 of the
SMT-LIB standard, that can be customized, as in the case of cvc5, with the specific proof system
used by the solver through the definition of new symbols, binders and proof rules. In addition,
it features an intuitive syntax for representing natural-deduction-style proofs and the ability to
integrate other proof formats (such as, for instance, those currently used by SAT solvers) via the use
of oracles. The talk discusses an initial evaluation of the proof language, obtained with a companion
checker for it and an instantiation to cvc5’s proof system. The evaluation shows the viability of
high-performance, fine-grained proof production and checking for SMT.

The talk concludes with a brief overview of future work and new potential applications enabled
by scalable proof certificate production and checking.
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Abstract
The standard approach to algorithm development is to focus on a specific problem and develop for it
a specific algorithm. Codd’s introduction of the relational model in 1970 included two fundamental
ideas: (1) relations provide a universal data representation formalism, and (2) relational databases
can be queried using first-order logic. Realizing these ideas required the development of a meta-
algorithm, which takes a declarative query and executes it with respect to a database. In this talk, I
will describe this approach, which I call Logical Algorithmics, in detail, and trace a decades-long
path from the comoutational complexity theory of relational queries to recent tools for Boolean
reasoning.
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Abstract
Symmetry reduction is crucial for solving many interesting SAT instances in practice. Numerous
approaches have been proposed, which try to strike a balance between symmetry reduction and
computational overhead. Arguably the most readily applicable method is the computation of
static symmetry breaking constraints: a constraint restricting the search-space to non-symmetrical
solutions is added to a given SAT instance. A distinct advantage of static symmetry breaking is that
the SAT solver itself is not modified. A disadvantage is that the strength of symmetry reduction is
usually limited. In order to boost symmetry reduction, the state-of-the-art tool BreakID [Devriendt
et. al] pioneered the identification and tailored breaking of a particular substructure of symmetries,
the so-called row interchangeability groups.

In this paper, we propose a new symmetry breaking tool called satsuma. The core principle of our
tool is to exploit more diverse but frequently occurring symmetry structures. This is enabled by new
practical detection algorithms for row interchangeability, row-column symmetry, Johnson symmetry,
and various combinations. Based on the resulting structural description, we then produce symmetry
breaking constraints. We compare this new approach to BreakID on a range of instance families
exhibiting symmetry. Our benchmarks suggest improved symmetry reduction in the presence of
Johnson symmetry and comparable performance in the presence of row-column symmetry. Moreover,
our implementation runs significantly faster, even though it identifies more diverse structures.
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1 Introduction

Symmetries are present in many interesting SAT instances, ranging from hard combinatorial
problems to circuit design. Making use of symmetry is paramount in order to efficiently solve
many of these instances. Practical approaches for symmetry reduction must always strike
a balance between the computational overhead incurred and the strength of the symmetry
reduction. Two decades of research have led to many approaches to tackle this problem
[17, 1, 21, 36, 22, 20, 34, 26, 30]. At one end of the spectrum, isomorph-free generation
techniques [26, 30] apply sophisticated algorithms in conjunction with the solver, such that a

© Markus Anders, Sofia Brenner, and Gaurav Rattan;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anders@mathematik.tu-darmstadt.de
mailto:brenner@mathematik.tu-darmstadt.de
https://orcid.org/0009-0006-8512-2569
mailto:g.rattan@utwente.nl
https://orcid.org/0000-0002-5095-860X
https://doi.org/10.4230/LIPIcs.SAT.2024.4
https://arxiv.org/abs/2406.13557
https://github.com/markusa4/satsuma
https://archive.softwareheritage.org/swh:1:dir:134ea7952a25d92ba2addf7ff25aa18183550735;origin=https://github.com/markusa4/satsuma;visit=swh:1:snp:c688cc76e5c9281c04c683108ccc908ae32f6707;anchor=swh:1:rev:7c25c52df6c1ca2090c971d9b144b64ecd08e075
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Satsuma: Structure-Based Symmetry Breaking in SAT

solver only explores asymmetric branches of the search. While these techniques are successful
in solving hard combinatorial instances (e.g., [29]), this comes at the price of substantial
overhead: both in terms of computational cost as well as interfering with the other strategies
employed by solvers. Hence, one must be sure that the symmetry reduction is worth the
additional overhead. It therefore seems impractical to turn these techniques “on-by-default”.

Arguably at the other end are tools producing static symmetry breaking constraints
[17, 1, 21]. These tools add additional clauses and variables to a given instance, with the
aim of reducing the number of symmetric branches explored by the solver. While the
symmetry reduction is usually not as strong as for dynamic techniques, such constraints
can be computed comparatively cheaply. More importantly, a distinct advantage of static
symmetry breaking constraints is that the SAT solver itself is not modified, and hence there
is a complete separation of concerns. State-of-the-art static symmetry breaking tools are
successfully applied as an “on-by-default” technique [14, 21]. Static symmetry breaking is not
only used in SAT, but also in various other areas of constraint programming [25, 35, 19, 8].

In order to improve symmetry reduction, a rather recent development in static symmetry
breaking is to detect and make use of so-called row interchangeability subgroups [21, 35]. In
SAT, this feature was introduced by the state-of-the-art symmetry breaking tool BreakID
[21], but it is also used in symmetry breaking in mixed integer programming (MIP) [35].
Row interchangeability groups stem from a natural modeling of the variables as a matrix in
which all rows are interchangeable by a symmetry. The idea is to first identify these row
interchangeability groups, and then produce tailored symmetry breaking constraints. The
current generation of tools identifies row interchangeability by hoping for and exploiting a
particular structure in the generators of the symmetry group. However, the method is not
guaranteed to work and sometimes incurs significant overhead [5]. Despite this, the gain in
symmetry reduction seems to be worth the trade-off [21].

In the realm of constraint programming, symmetry breaking constraints for more struc-
tures have been considered: for example, row-column symmetry [23] is a natural extension
of row interchangeability, where both the rows and columns are interchangeable. These
symmetries are common in combinatorics, scheduling, or assignment problems [24, 23], such
as the well-known pigeonhole principle. While traditional complete symmetry breaking con-
straints are unlikely to be efficiently computable for these structures [23], different practical
constraints are well-studied in the literature for manual breaking of symmetries [23, 28].
Another area in which symmetry breaking has been studied in detail is graph generation
[15, 16, 30]. A typical problem in this area is to determine the existence of a graph with
a specific property. Symmetries in these problems often simply correspond to isomorphic
graphs. Even though this is rarely mentioned explicitly, such symmetries can be described by
so-called Johnson groups [9, 10].

In automated symmetry breaking, making use of such results requires us to identify the
appropriate structures first. However, generalizing the existing identification strategies of
contemporary tools to more elaborate structures seems elusive.

1.1 Contribution
We present a new algorithm for the generation of symmetry breaking constraints, and a
prototype implementation called satsuma. Our goal is to explore whether the approach of
“identifying and exploiting specific group structures” can be pushed further.

Techniques. We place the identification of specific symmetry groups at the very heart
of satsuma. The approach is enabled by our main contribution, a new class of practical
detection algorithms. In particular, we provide algorithms identifying row interchangeability
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(Section 3.1), row-column symmetry (Section 3.2), and Johnson symmetry (Section 3.3).
Furthermore, we detect certain combinations of the above groups, as well as groups which
are similar to the above groups, building essentially a structural description of the group.
Symmetry breaking constraints are then chosen based on the type of detected structure:
for each detected structure, we determine a set of carefully chosen symmetries, for which
conventional symmetry breaking constraints are produced.

Our detection algorithms are all based on the highly efficient individualization-refinement
framework, as is commonly used in practical graph isomorphism algorithms [33]. Our
detection algorithms are all heuristics, in that identification of a particular group cannot be
guaranteed. However, the success of the heuristics provably depends only on a well-studied
graph property (see Section 2).

These algorithms can be applied without computing the symmetries of the formula first:
they are purely graph-based. We exploit this by first running our tailored detection algorithms,
and then only apply general-purpose symmetry detection on parts not yet identified. In
order to handle this remainder, satsuma reimplements parts of BreakID. Essentially, our
new approach acts as a preprocessor for existing techniques.

Benchmarks. We compare satsuma and BreakID on a range of well-established SAT
instance families exhibiting symmetry. In our benchmarks, we observe that our new structure-
based implementation
1. leads to improved SAT solver performance on instances with Johnson symmetries,
2. comparable SAT solver performance on instances exhibiting predominantly row inter-

changeability or row-column symmetry,
3. and incurs less computational overhead on all tested benchmark families (we observe

better asymptotic scaling of satsuma on some benchmark families).
When satsuma detects a structure, our new approach seems to be a win-win: it yields lower
computational overhead, and the resulting speed-up for SAT solvers is comparable or better.

2 Preliminaries

2.1 Satisfiability and Symmetry
SAT. In this paper, a SAT formula F in conjunctive normal form (CNF) is denoted with
F = {{l1,1, · · · , l1,k1}, · · · , {lm,1, · · · , lm,km

}}. Each element C ∈ F is called a clause, whereas
a clause itself consists of a set of literals. A literal is either a variable v or its negation ¬v.
We write Var(F ) := {v1, . . . , vn} for the set of variables of F and use Lit(F ) for its literals.

A symmetry, or automorphism, of F is a permutation φ : Lit(F ) → Lit(F ) satisfying the
following properties. First, it maps F to itself, i.e., F φ = F , where F φ means applying φ

element-wise to the literals in each clause. Second, for all l ∈ Lit(F ) it holds that ¬φ(l) =
φ(¬l). We define the support of φ as supp(φ) = {l ∈ Lit(F ) : lφ ̸= l}, i.e., the set of all
literals moved by φ. The set of all symmetries of F is Aut(F ). We can efficiently test if a
permutation φ is an automorphism of F : for each clause C, we check whether Cφ ∈ F holds.

An assignment of F is a function θ : Var(F ) → {0, 1}. We define the evaluation of F under
θ in the usual way, i.e., either F [θ] = 1 or F [θ] = 0 holds. A formula F is satisfiable if there
exists an assignment θ with F [θ] = 1, and unsatisfiable otherwise. Given an assignment θ

of F and an automorphism φ ∈ Aut(F ), we define θφ(v) := θ(v′) if φ(v) = v′ for v′ ∈ Var(F )
and θφ(v) := ¬θ(v′) if φ(v) = ¬v′ for v′ ∈ Var(F ), where naturally ¬0 = 1 and ¬1 = 0. It
follows readily that for φ ∈ Aut(F ), we have F [θ] = F φ[θφ] = F [θφ].
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Symmetry Breaking Constraints. All symmetry breaking constraints in this paper are lex-
leader constraints. Let ≺ denote a total order of Var(F ). We order an assignment θ according
to ≺, yielding a {0, 1}-string. We can then order assignments θ, θ′ of F lexicographically by
comparing their corresponding strings, denoted by ≺lex. Given an automorphism φ of F , it
suffices to evaluate F on those assignments θ for which θφ ⪯lex θ holds, since F [θφ] = F [θ].
In particular, we may add a lex-leader constraint LL≺

φ to F , which ensures that θφ ⪯lex θ

holds. It is easy to see that F is satisfiable, if and only if F
∧

φ∈Aut(F ) LL≺
φ is satisfiable [37].

Lex-leader constraints can be efficiently encoded as a CNF formula, and different encodings
have been studied in detail [1, 21]. The practical encoding we use is reverse-engineered from
BreakID, and is described in [21]. Having detected structures of symmetries, satsuma
attempts to determine a favorable variable order and a set of automorphisms for which
lex-leader constraints are constructed (see Section 4).

2.2 Graphs and Symmetry
Graphs. An undirected graph G = (V, E) consists of a vertex set V and an edge relation
E ⊆

(
V
2
)
. We refer to the set of vertices of G as V (G), and to the set of edges as E(G). A

vertex coloring of G is a mapping π : V (G) → [k] to colors in [k] for some k ∈ N. We call
(G, π) a vertex-colored graph. The color class of a color c consists of all vertices of G with
color c. The color classes form a partition of V (G), the color partition corresponding to π.

A bijection φ : V (G) → V (G) is called an automorphism of (G, π), whenever (G, π)φ =
(Gφ, πφ) = (G, π) holds. Here, Gφ denotes the graph with vertex set V (G) and edges
{uφ, vφ} whenever {u, v} is an edge of G (where vφ simply denotes the image of v under φ).
The coloring πφ is given by πφ(v) = π(vφ) for every v ∈ V (G). The set of all automorphisms
of (G, π) is denoted by Aut(G, π).

For a given CNF formula F , we define the model graph G(F ) = (G, π) as follows. The
vertex set consists of the literals and clauses of F . There are edges connecting the literals of a
common variable to each other. Clauses are connected to the literals they contain. Formally,
let E := {{v, ¬v} : v ∈ Var(F )} ∪ {{C, l} : l ∈ C, C ∈ F}. Define a coloring π by setting
π(l) := 0 for all literals l ∈ Lit(F ) and π(C) := 1 for all clauses C ∈ F . It is well-known that
the automorphisms of G(F ) restricted to Lit(F ) are precisely the automorphisms of F [37].

Permutation Groups. We recall some notions of permutation group theory. A detailed
account can be found in [38]. Let Ω be a nonempty finite set. Let Sym(Ω) denote the
symmetric group on Ω, i.e., the group of permutations of Ω, and set Sym(n) := Sym([n]).
A permutation group is a subgroup Γ of Sym(Ω), denoted by Γ ≤ Sym(Ω). We also say
that Γ acts on Ω. For g ∈ Γ and ω ∈ Ω, we write ωg for the image of ω under g and
ωΓ = {ωg : g ∈ Γ} for the orbit of ω under Γ. In other words, ωΓ consist of all points in Ω
that can be reached from ω by applying elements of Γ. The partition of Ω into the orbits of
Γ is called the orbit partition. For ω ∈ Ω, let Γω := {g ∈ Γ: ωg = ω} denote the stabilizer of
ω in Γ. In other words, Γω consists of those elements in Γ that map ω to itself. The direct
product of permutation groups Γ1 and Γ2 which act on domains Ω1 and Ω2, respectively, is
the Cartesian product Γ1 × Γ2, endowed with a component-wise multiplication. It naturally
acts component-wise on Ω1 × Ω2.

Individualization-Refinement. A central ingredient in our algorithms is the so-called
individualization-refinement (IR) paradigm. The IR paradigm is the central technique
in all state-of-the-art symmetry detection algorithms [33, 18, 27, 4], and highly engineered
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Ind Ref Ind Ref

Figure 1 An illustration of the IR process. Individualization steps break symmetries or similarities
(nodes marked with a cross are individualized). Refinement steps propagate this information.

implementations are available. The paradigm mainly consists of the individualization tech-
nique, paired with the so-called color refinement algorithm. In this paragraph, we focus on a
high-level explanation of the routine. A detailed account can be found in [33].

The central idea of IR (see Figure 1 for an illustration) is the following: given a vertex-
colored graph (G, π) and a vertex v ∈ V (G), the vertex v is individualized. Basically
this means that it obtains a new color. The routine then proceeds with a so-called color
refinement: in each step, every vertex of G obtains a new color, based on its former color
together with the colors of its neighbors in G. This recoloring procedure is repeated until the
corresponding color partition stabilizes. The final coloring π′ is then returned. We use the
notation π′ = IR((G, π), v) to denote this process. The call IR((G, π), v) can be computed
in time O(|E(G)| log |V (G)|) (see [11]).

The coloring π′ is a refinement of π in the sense that vertices with the same color
in π′ already had the same color in π. In other words, a color c of π is either preserved
in π′, or partitioned into several other colors c1, . . . , cn. For i ∈ [n], we call the sets
{u ∈ V (G) : π(u) = c, π′(u) = ci} the fragments of c in π′. The second crucial observation is
that vertices in the same orbit under the stabilizer Aut(G, π)v obtain the same color in π′.
However, it is possible that the color partition of π′ is coarser than the orbit partition in the
sense that the vertices of multiple orbits might obtain the same color in π′.

Clearly, this process can be applied inductively to individualize multiple vertices. It
is also possible to pass the empty sequence ε to IR, i.e., to run only the color refinement
procedure. Arguing as above, the resulting color partition is guaranteed to be at least as
coarse as the orbit partition of Aut(G, π) (i.e., the stabilizer of the empty sequence).

The next lemma summarizes the properties of IR to which we refer throughout the paper:

▶ Lemma 1. Given a vertex-colored graph (G, π) and a vertex v ∈ V (G), the refined coloring
π′ = IR((G, π), v) has the following properties.
1. The coloring π′ is a refinement of π: for u, w ∈ V (G) with π′(u) = π′(w), we have

π(u) = π(w).
2. The color partition of π′ is at least as coarse as the orbit partition of Γ = Aut(G, π)v:

vertices u, w ∈ V (G) with π′(u) ̸= π′(w) lie in different orbits of Γ, i.e., we have w ̸∈ uΓ.
3. The colors of π′ are isomorphism-invariant: for every φ ∈ Sym(V (G)), it holds that

IR((Gφ, πφ), vφ) = IR((G, π), v)φ. In particular, if φ ∈ Aut(G, π), then IR((G, π), v)φ =
IR((Gφ, πφ), vφ) = IR((G, π), vφ) holds.

These properties follow almost immediately from the definition of IR, and we refer to [33]
for a treatment of the topic. We also mention that usually, as opposed to the description
above, IR is defined for sequences of vertices instead of single vertices.

We now recall the notion of Tinhofer graphs [7]. In view of the second part of Lemma 1,
these are precisely the graphs for which the two partitions coincide.

▶ Definition 2 (Tinhofer Graph [7, 40]). A graph G is called Tinhofer if for all v ∈ V (G), the
orbit partition of Γ := Aut(G, π)v coincides with the color partition of π′ := IR((G, π), v) and
the same applies recursively to the colored graph (G, π′) (this corresponds to individualizing
multiple vertices of G). Formally, the first property means that for all u, w ∈ V (G), we have
w ∈ uΓ if and only if π′(u) = π′(w).
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In particular, IR works well on Tinhofer graphs: practical graph isomorphism solvers are
guaranteed to not require any backtracking.

2.3 Symmetry Structures in SAT
The idea of our tool is to detect certain symmetry structures that are subsequently exploited.
In this section, we describe the main structures detected by the tool. The description of the
detection algorithms is the subject of Section 3.

Throughout, let F be a SAT formula. As a first step, consider the disjoint direct
decomposition of the symmetries Aut(F ): this is a partition Lit(F ) = L1 ∪̇ · · · ∪̇ Lk of Lit(F )
for which there exists a decomposition Aut(F ) = A1 × · · · × Ak into a direct product of
subgroups such that, for every i ∈ [k], the automorphisms in Ai only move the literals in
Li. A disjoint direct decomposition naturally decomposes the symmetry breaking problem,
and it suffices to treat each factor separately. In the following, we always refer to the finest
such decomposition, which is clearly unique. We call its parts L1, . . . , Lk the disjoint direct
factors of F . Note that every disjoint direct factor is a union of orbits of Aut(F ).

As factors in the disjoint direct decomposition, we detect several variants of three main
kinds of symmetries, namely row symmetry, row-column symmetry, and Johnson symmetry.
Let us now define these notions in the special context of CNF formulas.

Row Symmetry. Row interchangeability, or row symmetry, naturally occurs in the context of
matrix modeling [24] and is already successfully exploited in automated symmetry breaking.
We say that a SAT formula F exhibits row symmetry if there exists a disjoint direct factor
L ⊆ Lit(F ) which can be arranged in a matrix M such that Aut(F )|L acts by permuting
the rows of M . In addition, we require that every column of M is an orbit of Aut(F ).
See Figure 2a for an illustration. The colored boxes illustrate orbits, whereas dashed lines
indicate vertices in the same row. The rows can be permuted using symmetry.

We should address a technical difference between the definition above and how BreakID
handles row symmetry: in our definition, a disjoint direct factor should only admit the action
of the row symmetry group, or a particularly defined extension (see Section 3). BreakID on
the other hand would accept any row symmetry subgroup that it detects (see [5] for further
discussion). Hence, in practice, it may happen that BreakID reports row symmetry, when
satsuma does not. However, satsuma may instead identify a larger, more expressive group,
such as row-column symmetry, as explained below.

Let us make a general observation regarding negation symmetry.

▶ Remark 3. For an orbit σ of literals under Aut(F ), also the set ¬σ := {¬v : v ∈ σ} is an
orbit of literals. Hence two cases can occur: either we have σ = ¬σ, or the orbits σ and ¬σ

are disjoint.

In order to simplify the exposition, we only consider the second scenario in the following.

Row-column symmetry. Row-column symmetries are an extension of row interchangeability.
Row-column symmetry naturally occurs whenever both the rows and columns of a matrix of
variables are interchangeable. Examples can be found in scheduling, design, and combinatorial
problems (see [24]).

For m, n ∈ N, the row-column symmetry group is Γ := Sym(n) × Sym(m), acting
componentwise on [n] × [m]. We think of [n] × [m] as an n × m matrix M , on which
(σ1, σ2) ∈ Γ acts by permuting the n rows according to σ1 and the m columns according
to σ2.
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(a) A row symmetry with
4 rows and 5 columns.

(b) A row-column symmetry
with 4 rows and 5 columns.

(c) Illustration for the Johnson
group J5. The
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spond to edges of a complete graph
of size 5.

Figure 2 Various group structures used throughout the paper. Colors indicate orbits of the
group.
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(b) The action of the 5-cycle on the base set and
its induced action on the domain of J5.

Figure 3 An illustration of the Johnson group J5.

A SAT formula F exhibits row-column symmetry if there exists a disjoint direct factor
L ⊆ Lit(F ) consisting of an orbit σ of Aut(F ) and its negation ¬σ such that the following
holds: the literals in σ can be arranged in an n × m-matrix M such that Aut(F )|σ acts as a
row-column symmetry group on M . See Figure 2b for an illustration. Note that the action of
Aut(F ) on σ naturally extends to a row-column symmetry action on ¬σ. For this reason, our
algorithm generates the matrix M of the literals in σ and extends this to ¬σ, see Section 3.2
for details.

Johnson symmetry. Johnson groups are naturally tied to the graph isomorphism problem.
Whenever a problem asks for the existence of an undirected graph with a certain property,
typically, the underlying symmetries form a Johnson group.

Observe that π ∈ Sym(n) induces a permutation on the domain
([n]

2
)

of 2-subsets of [n],
mapping {a1, a2} to {aπ

1 , aπ
2 }. This way, Sym(n) becomes a permutation group on a domain

of size
(|n|

2
)
, the Johnson group Jn. Technically, these groups are specifically Johnson groups

of arity 2. The corresponding action is called a Johnson action.
We now define Johnson symmetries for SAT formulas. Intuitively, the variables the

formula correspond to the “edges” (i.e., sets of two vertices) of a complete graph. There
is a symmetric action on the “vertices” of this underlying graph and the variables of the
formula (“edges”) are permuted accordingly. See Figure 2c and Figure 3 for an illustration.
Formally, a SAT formula F exhibits a Johnson symmetry if the following holds: there exists
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(a) A row symmetry with 4 rows
and 5 columns.

(b) Individualizing a vertex of a
row identifies the entire row.

(c) A row symmetry on blocks
of size 2.

Figure 4 Illustrations of different aspects of row symmetry.

a disjoint direct factor L ⊆ Lit(F ) consisting of an orbit σ of Aut(F ) and its negation ¬σ

such that the literals in σ can be relabeled as x{i,j} for all {i, j} ∈
([n]

2
)

and Aut(F )|σ acts as
the Johnson group Jn (by permuting the index sets). Again, the action of Aut(F ) naturally
extends to ¬σ.

3 Detection Algorithms

We now present our detection algorithms. All algorithms are centered around detecting
structure on the model graph G(F ) of a given CNF formula F . Recall that G(F ) contains
a vertex for each literal, so we may use these terms interchangeably. The major design
principles of our algorithms are described in the following.

Colors are Orbits. Our algorithms work on the assumption that the model graph G(F ) is
Tinhofer (see Definition 2). Then we can compute orbits of stabilizers using IR. In particular,
the color classes of π = IR(G(F ), ε) are then the orbits of Aut(G(F )).

Certified Correctness. The input model graph might not be Tinhofer. However, each
algorithm constructs a carefully chosen set of candidate permutations, which suffices to
prove the existence of a certain group action. It is then verified that these permutations
are automorphisms of the formula F , which ensures correctness. In our implementation, we
produce lex-leader constraints only for automorphisms verified on the original formula.

Color-by-color. All of our detection algorithms proceed color-by-color, or orbit-by-orbit:
given an orbit, the algorithms stabilize a specific set of points, observing the effect on the
given orbit as well as other orbits. If an orbit exhibits a specific group action, then this effect
is clearly defined, and a model of the purported structure is made.

3.1 Row Symmetry
We describe an algorithm for row symmetry. First, we define an auxiliary function that
transposes two pair-wise disjoint lists of literals of equal length: For l ∈ Lit(F ), let

transposeF ((l1 . . . lk), (l′
1 . . . l′

k))F (l) :=


l′
i if l = li with i ∈ [k]

li if l = l′
i with i ∈ [k]

l otherwise.
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Algorithm 1 Detection algorithm for row symmetry.

1 function DetectRowSymmetry
Input : ➢ formula F

➢ set σ ⊆ Lit(F ) with |σ| ≥ 3
Output : ➢matrix with row symmetry including σ, or ⊥ if check fails

2 (G, π) := G(F ), π′ := IR((G, π), ε);

3 // construct a candidate row for each v ∈ σ

4 foreach v ∈ σ do
5 πv := IR((G, π′), v);
6 let τ be a list of literals that are singletons in πv but not in π′;
7 sort literals in τ according to their color in πv;
8 row[v] := τ ;
9 check that rows are pair-wise disjoint;

10 // verify that M exhibits row symmetry
11 foreach i ∈ {1 . . . |σ| − 1} do
12 v := σ[i − 1]; v′ := σ[i];
13 check that transposeF (row[v], row[v′]) is a symmetry of F ;
14 return matrix M constructed from row

(Description of Algorithm 1). For an illustration, see Figure 4a. The algorithm applies IR
for each v ∈ σ (see Figure 4b). All vertices v′ in other orbits which are individualized in
this process, i.e., which are fixed once v is fixed, are added to the purported “row” of v.
We then verify that every row transposition of the resulting matrix is indeed a symmetry
of F .

(Correctness of Algorithm 1). We first make the following observation for orbits of stabiliz-
ers in row interchangeability groups.

▶ Lemma 4. Let Γ = Sym(n) be a row interchangeability group acting on [n] × [m]. For
every (i, j) ∈ [n] × [m], the orbit of (k, l) ∈ [n] × [m] under the stabilizer Γ(i,j) of (i, j) is
given by

(k, l)Γ(i,j) =
{

{(i, l)} if k = i

([n] \ {i}) × {l} otherwise.

Proof. Interpreting [n] × [m] as n × m-matrix M , recall that Γ acts by permuting the rows
of M . In other words, the stabilizer Γ(i,j) consisting of all row permutations that fix the
i-th row and permute the other rows arbitrarily. Now consider the orbit of (k, l) ∈ [n] × [m]
under the stabilizer Γ(i,j). If k = i, then (k, l) can only be mapped to elements in the same
row as Γ(i,j) fixes the i-th row of M . On the other hand, since Γ acts by permuting the rows,
every element of M can only be mapped to elements in the same column, that is, (k, l) must
be fixed. Similarly, for k ̸= i, the element (k, l) can be mapped to all elements in the l-th
column except for (i, l). ◀

Next, we prove that the algorithm always returns correct symmetries of F and that in case
the model graph is Tinhofer, the algorithm is guaranteed to detect row interchangeability
groups.
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▶ Theorem 5. Let F be a SAT formula.
1. If Algorithm 1 returns a matrix M , every row permutation of M is a symmetry of F .
2. If F exhibits row interchangeability with at least three rows including the input set σ and

G(F ) is a Tinhofer graph, Algorithm 1 detects this structure and returns a corresponding
matrix of literals.

Proof. The first claim is guaranteed by the last part of Algorithm 1 which ensures that
transpositions of the rows of the returned matrix M are indeed symmetries of F (Line 11).
This implies that arbitrary row permutations are symmetries of F .

Now assume that F exhibits a row symmetry with at least three rows including σ and
G(F ) is Tinhofer. We argue that the algorithm successfully detects this symmetry. We
remark that the orbits of Aut(G(F )) restricted to the literals are precisely orbits of Aut(F ).
Let L be the disjoint direct factor of F containing σ and assume that the literals in L

can be partitioned into a matrix M that exhibits row symmetry (see Figure 4a). Due to
the assumption that G(F ) is Tinhofer, if the vertex v corresponding to a literal l of F

is individualized, the resulting refined coloring consists of the orbits of Aut(G(F ))v. In
particular, due to Lemma 4, the vertices in the row of M are fixed and all other vertices are
contained in orbits of size at least two since we have at least three rows (see Figure 4b). Note
that since we have at least three rows, ¬l must be in the row of l. Hence after executing the
loop for v, row[v] contains precisely the vertices in the row of v. Isomorphism-invariance of
the IR routine (see Lemma 1) ensures that for each row, the order in which symmetrical
singletons are colored will be consistent in each row (see Line 7). This ensures that the rows
we construct can indeed be transposed (see Line 11 onwards), and the algorithm correctly
returns a corresponding matrix. ◀

Recursive Row Symmetry. In practice, orbits often do not just exhibit a row symmetry.
In particular, we consider the case that an orbit of size k, with a natural symmetric action,
is connected to another orbit of size ck, where the symmetric action acts on blocks of
size c (see Figure 4c). We extend our algorithm to detect this particular case as follows:
in Line 6, we add fragments of other colors instead of vertices in singletons to the row.
Let c be a color of π with a fragment c′ in π′. We add the vertices π′−1(c′) to the row,
whenever |π′−1(c′)||σ| = |π−1(c)|. This means we consider vertices of c′, whenever there is
the possibility that the color c is split into |σ| parts of size |π′−1(c′)|. We call π′−1(c′) a block
of its orbit. On these blocks, we call our algorithm for row symmetry recursively. Essentially,
this enables us to detect recursive structures of row symmetry.

Row Symmetry in Stabilizer. A slight extension is that if the test for row symmetry fails,
we recurse on the largest fragment from the first IR call and check whether it exhibits row
symmetry. This extension is used for the other detection algorithms as well.

3.2 Row-Column Symmetry

Next, we describe a detection algorithm for row-column symmetry. As discussed in Section 2.3,
a disjoint direct factor exhibiting row-column symmetry consists of an orbit of literals and
its negation, which is also an orbit of literals. We detect row-column symmetry only on one
of these orbits, and expand the resulting automorphisms to the other one: For a permutation
φ of Lit(F ) and all l ∈ Lit(F ), let
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(a) A row-column symmetry with 4 rows
and 5 columns.

(b) Individualizing a vertex identifies its
row and column.

Figure 5 Illustrations of different aspects of row-column symmetry.

expandF (φ)(l) :=


φ(l) if l ∈ supp(φ)
¬φ(¬l) if ¬l ∈ supp(φ)
l otherwise.

(Description of Algorithm 2). For an illustration, see Figure 5a. Given a set σ ⊆ Lit(F ),
we apply IR to a fixed vertex v ∈ σ (see Figure 5b). Assuming that a row-column
symmetry is present, this determines a purported “row” row[v] and “column” col[v] of v.
The algorithm now successively individualizes the vertices in row[v] and col[v]. This way,
every vertex in σ is assigned a reference vertex in each of row[v] and col[v], determining
its position in the purported matrix. We then verify that the matrix is well-defined and
that every row and column transposition, expanded to ¬σ, is indeed a symmetry of F .

(Correctness of Algorithm 2). In order to prove the correctness of Algorithm 2, we first
observe the following:

▶ Lemma 6. Let Γ = Sym(n)×Sym(m) be a row-column symmetry group acting on [n]× [m].
For every (i, j) ∈ [n] × [m], the orbit of (k, l) ∈ [n] × [m] under the action of Γ(i,j) is given by

(k, l)Γ(i,j) =


{(k, l)} if (k, l) = (i, j)
{i} × ([m] \ {j}) if k = i, l ̸= j

([n] \ {i}) × {j} if k ̸= i, l = j

([n] \ {i}) × ([m] \ {j}) otherwise.

Proof. We identify [n] × [m] with the entries of an n × m-matrix M . Then Γ acts on M by
permuting the rows and the columns of M . Let π ∈ Γ be a permutation that fixes the entry
(i, j). Write π = (πr, πc), where πr is a permutation of the rows and πc a permutation of the
columns of M . Then πr fixes the i-th row and πc fixes the j-th column of M . On the other
hand, every such element of Γ fixes the entry (i, j).

Now consider the orbit of (k, l) ∈ [n] × [m] under the stabilizer Γ(i,j). By definition, it
consists of (k, l) for (k, l) = (i, j). For k = i and l ̸= j, we can map (k, l) = (i, l) to all
elements in the i-row, except for (i, j). Similarly, we argue if k ̸= i and l = j. Finally, if
k ̸= i and l ̸= j, we can map (k, l) to all vertices (k′, l′) with k′ ≠ i and l′ ̸= j. This shows
the claim. ◀

We prove that the algorithm always returns correct symmetries of F and that in case the
model graph is Tinhofer, it is guaranteed to detect row-column symmetry groups.
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Algorithm 2 Detection algorithm for row-column symmetry.

1 function DetectRowColumnSymmetry
Input : ➢ formula F

➢ set σ ⊆ Lit(F )
Output : ➢candidate matrix M , or ⊥ if check fails

2 (G, π) := G(F ), π′ := IR((G, π), ε);
3 choose arbitrary v ∈ σ;
4 πv := IR((G, π), v);
5 check that σ has 4 fragments in πv;
6 label fragments of σ in πv not containing v as σ1, σ2, σ3 in increasing size;

7 // we determine “coordinates” in matrix relative to v

8 row[v] := col[v] = v ; // v defines a row and a column
9 foreach r ∈ σ1 do

10 row[r] := v, col[r] := r ; // r is in row of v, and defines a column
11 πr := IR((G, π′), r);
12 let τ be the fragment of σ in πr of size |σ2| not containing v if exists;
13 foreach t ∈ τ do col[t] := r; // t is in column of r

14 foreach c ∈ σ2 do
15 col[c] := v, row[c] = c ; // c is in column of v, and defines a row
16 πc := IR((G, π′), c);
17 let τ be the fragment of σ in πc of size |σ1| not containing v if exists;
18 foreach t ∈ τ do row[t] := c; // t is in row of c

19 construct matrix M where M [r, c] = v′ with row[v′] = r and col[v′] = c;

20 // verify that M exhibits row-column symmetry
21 check that every vertex in σ has a unique row and a unique column label;
22 check that distinct vertices are assigned distinct label pairs;
23 check that M has pairwise disjoint rows, and pairwise disjoint columns;
24 foreach r ∈ σ1 do check that expandF (transposeF (M [∗, r], M [∗, v])) is a

symmetry of F ; // M [∗, x] denotes column of x

25 foreach c ∈ σ2 do check that expandF (transposeF (M [c, ∗], M [v, ∗])) is a
symmetry of F ; // M [x, ∗] denotes row of x

26 return M

▶ Theorem 7. Let F be a SAT formula.
1. If Algorithm 2 returns a matrix M of literals, every permutation of the rows or the

columns of M , expanded to the negations of the literals in M , is a symmetry of F .
2. If F exhibits a row-column symmetry with at least three rows and at least three columns

including σ and G(F ) is a Tinhofer graph, then Algorithm 2 detects this structure and
returns a corresponding matrix representation of the literals in σ.

Proof. The first claim is guaranteed by the last part of Algorithm 2 which ensures that
transpositions of the rows (Line 24) and columns (Line 25) of the returned matrix M ,
expanded to the corresponding negated literals, are indeed symmetries of F . By suitably
composing such transpositions, we obtain that every permutation of the rows or columns of
M induces a symmetry of F in this way.
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Figure 6 Individualizing a variable v in a Johnson symmetry (represented by edges in the
illustration), splits the set of edges into edges incident to v, and edges not incident to v.

Now assume that G(F ) is Tinhofer and that F exhibits row-column symmetry with
at least three rows and columns on σ. In other words, the literals in σ can be arranged
in a matrix M on which Aut(F ) acts by row and column permutations (see Figure 5a).
Individualizing a fixed vertex v ∈ σ causes σ to split into four fragments according to the
orbits of the stabilizer Aut(F )v: the singleton {v}, two fragments σ1 and σ2 corresponding to
the remainders of the row and the column of M containing v, and a fragment σ3 containing
the remaining vertices (see Lemma 6 Figure 5b). Since we assume that M has at least three
rows and columns, σ1, σ2, σ3 are non-singletons and σ3 is the largest fragment. Without loss
of generality, let σ1 ∪ {v} be the row and σ2 ∪ {v} be the column of v in M . Every column of
M is determined by the unique element of σ1 ∪ {v} that it contains (similarly for the rows).
Individualizing a vertex r ∈ σ1 leads a similar split of σ into four fragments. The fragments
corresponding to the row and column of r can be distinguished by observing that v lies in the
same row, but not in the same column as r. For all vertices in the column of r, we store this
information (Line 13). Similarly, we proceed for the columns (Line 18). After this procedure,
every element of σ is assigned a row and column representative in σ2 and σ1 respectively,
which, up to a permutation of the rows and columns, allows us to recover the matrix M . ◀

3.3 Johnson Symmetry
Finally, we describe a procedure to detect Johnson actions. We remark that there is a classic
algorithm to detect Johnson groups [10]. A difference to our heuristic is that we do not know
the generators of the group, and instead apply techniques directly on a given graph.

Our aim is to identify the variables in the input set σ with the 2-subsets of [n], where
|σ| =

(
n
2
)
. We thus search for a bijection b : σ →

([n]
2

)
such that Aut(F ) acts as the Johnson

group Jn on σ via this bijection (see Section 2.3, Figure 2, and Figure 3). To avoid confusion,
we refer to the elements of [n] as labels and to those of Lit(F ) as literals or vertices of G(F ).

(Description of Algorithm 3.) Suppose that F exhibits a Johnson symmetry on σ. As
described above, there is an (unknown) bijection b : σ →

([n]
2

)
(see Figure 3). We maintain a

list label[v] for every v ∈ σ, to which we add i ∈ [n] when we deduce that i ∈ b(v). If the
algorithm returns a list label, a possible bijection b is given by b(v) = label[v] for all v ∈ σ.
Note that b is only determined up to permutation of the labels, so our algorithm merely
determines vertices obtaining the same label and assigns the labels consecutively.

The algorithm proceeds as follows: we apply IR to v ∈ σ, yielding a coloring πv.
Write b(v) = {i, j} for some i, j ∈ [n]. The coloring πv has three fragments: {v}, the
fragment σv containing all u ∈ σ with |b(u) ∩ {i, j}| = 1, and the remaining elements (see
Figure 6). We call the vertices in σv adjacent to v and collect them in ad[v]. Now choose
w ∈ ad[v]. We can assume b(w) = {j, k} for some k /∈ {i, j}. As before, we find the
vertices adjacent to w by applying IR to w. Individualizing both v and w, the resulting
coloring πv,w contains exactly one further singleton consisting of y ∈ σ with b(y) = {i, k}.
Now ad[v] ∩ ad[w] = {y} ∪ {u ∈ σ : b(u) = {j, r} for some r /∈ {i, j, k}}. The vertices in
ad[v] ∩ ad[w] \ {y} thus obtain the label j. Similarly, we determine the vertices obtaining
the label i or k. After ensuring that the labels have not been considered previously, we add
them to the list label for the respective vertices.
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Algorithm 3 Detection algorithm for Johnson actions.

1 function DetectJohnson
Input : ➢ formula F

➢ set σ ⊆ Lit(F )
Output : ➢bijective labeling of σ by 2-subsets of [n], or ⊥ if check fails

2 (G, π) := G(F ), π′ := IR((G, π), ε);
3 check that |σ| ≥ 28 and |σ| =

(
n
2
)

for some n ∈ N;
4 foreach vertex v ∈ σ do set label[v] = [];
5 vnr = 1;
6 while there are vertices v ∈ σ with |label[v]| ≤ 1 do
7 Ei := Ej := Ek := {};
8 choose v ∈ σ with |label[v]| ≤ 1;
9 πv := IR((G, π′), v);

10 check that number of fragments of σ in πv is 3;
11 let σv be the smaller non-singleton fragment;
12 foreach x ∈ σv do add x to ad[v] ;
13 choose arbitrary w ∈ ad[v];
14 πw := IR((G, π′), w);
15 check that number of fragments of σ in πw is 3;
16 let σw be the smaller non-singleton fragment;
17 foreach x ∈ σw do add x to ad[w];
18 πv,w := IR((G, πv), w);
19 let {y} be the unique singleton fragment of σ in πv,w different from {v} and

{w} if existent, otherwise return ⊥;
20 πy := IR((G, π′), y);
21 check that number of fragments of σ in πy is 3;
22 let σy be the smaller non-singleton fragment;
23 foreach x ∈ σy do add x to ad[y];
24 add v to Ei and Ej , add w to Ej and Ek, add y to Ei and Ek;
25 foreach x ∈ ad[v] ∩ ad[y] and x ̸= w do add x to Ei;
26 foreach x ∈ ad[v] ∩ ad[w] and x ̸= y do add x to Ej ;
27 foreach x ∈ ad[w] ∩ ad[y] and x ̸= v do add x to Ek;
28 foreach E ∈ {Ei, Ej , Ek} do
29 if

⋂
v∈E label[v] = ∅ then

30 append vnr to label[v] for v ∈ E;
31 vnr += 1;
32 check that new labels were added to label in this iteration;
33 // verify that F exhibits Johnson symmetry
34 verify that label induces a bijection between σ and

([n]
2

)
;

35 foreach i ∈ [n − 1] do
36 let β denote the permutation of σ induced by the Johnson action induced by

(i, i + 1) ∈ Sym(n) using label;
37 check that expandF (β) is a symmetry of F ;
38 return label
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(Description of Algorithm 3). We again make some observations about stabilizers in John-
son groups:

▶ Lemma 8. Let n ∈ N and consider the Johnson group Γ := Jn, acting on 2-subsets of [n].
1. For {i, j} ∈

([n]
2

)
, the orbit of S ∈

([n]
2

)
under the stabilizer Γ{i,j} of {i, j} ∈

([n]
2

)
is given

by

SΓ{i,j} =


{S} if S = {i, j}
{T ∈

([n]
2

)
: |T ∩ {i, j}| = 1} if |S ∩ {i, j}| = 1

{T ∈
([n]

2
)

: T ∩ {i, j} = ∅} if S ∩ {i, j} = ∅.

2. For k ̸= i, j, the orbit of S ∈
([n]

2
)

under Γ{i,j} ∩ Γ{i,k} is given by

SΓ{i,j}∩Γ{i,k} =



{S} if S ∈ {{i, j}, {i, k}, {j, k}}
{{i, r} : r ∈ [n] \ {i, j, k}} if S = {i, s} for some s ∈ [n] \ {i, j, k}
{{j, r} : r ∈ [n] \ {i, j, k}} if S = {j, s} for some s ∈ [n] \ {i, j, k}
{{k, r} : r ∈ [n] \ {i, j, k}} if S = {k, s} for some s ∈ [n] \ {i, j, k}
{S ∈

([n]
2

)
: S ∩ {i, j, k} = ∅} if S ∩ {i, j, k} = ∅.

Proof.
1. Let S ∈

([n]
2

)
. If S = {i, j}, the orbit SΓ{i,j} consists only of S by definition of the

stabilizer. Now suppose that |S ∩ {i, j}| = 1 holds. Without loss of generality, let
S = {i, r} for some r ∈ [n] \ {i, j}. Let π ∈ Γ{i,j}. Either π fixes i and j, in which case
we have Sπ = {i, r′} for some r′ ∈ [n] \ {i, j}, or π interchanges i and j, in which case we
have Sπ = {j, r′} for some r′ ∈ [n] \ {i, j}. In both cases, we have |Sπ ∩ {i, j}| = 1. On
the other hand, it is easy to see that for every set T ∈

([n]
2

)
with |T ∩ {i, j}| = 1, there

exists π ∈ Γ{i,j} with Sπ = T . The description of SΓ{i,j} in the case S ∩ {i, j} = ∅ can
be derived analogously.

2. Note that an element in Γ{i,j} ∩ Γ{i,k} fixes or interchanges the labels i and j, and at the
same time fixes or interchanges the labels i and k. This is only possible if it fixes all of i,
j and k. The structure of the orbits then follows similarly to the first claim. ◀

We now prove that the algorithm always returns correct symmetries of F and that in
case the model graph is Tinhofer, the algorithm is guaranteed to detect that F exhibits a
Johnson symmetry on the input set σ.

▶ Theorem 9. Let F be a SAT formula.
1. If Algorithm 3 returns a list label of labels in [n], then for every element in Jn, the

induced permutation of σ according to label, expanded to ¬σ, is a symmetry of F .
2. If F exhibits a Johnson symmetry with Johnson group Jn with n ≥ 8 on σ and G(F ) is

a Tinhofer graph, then Algorithm 3 detects this structure and returns a corresponding
labeling of the literals in σ by 2-subsets of [n].

Proof. The last part of Algorithm 3 ensures that the Johnson action jπ induced by a
transposition π := (i, i + 1) ∈ Jn by permuting the elements in σ according to their labels in
label is a symmetry of F when expanded to ¬σ. By suitably composing these transpositions,
it follows that every element of Jn induces a symmetry of F in this way.

Now suppose that F exhibits a Johnson symmetry with Johnson group Jn with n ≥ 8
(i.e., |σ| ≥ 28). Furthermore, assume that G(F ) is Tinhofer. In particular, there is a
bijection b : σ →

([n]
2

)
(see Figure 3). We claim that when the algorithm terminates, there is
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a permutation τ ∈ Sym(n) of the label set [n] such that we have label[v] = {τ(i), τ(j)} if
b(v) = {i, j}. Note that the bijection b itself is determined only up to permutation of the
labels. Again, for the sake of clarity, we refer to the elements of [n] as labels and reserve the
term vertices for the vertices of the graph G(F ).

The individualization of a vertex v with b(v) = {i, j} (Line 9) leads to a color partition
with three fragments since G(F ) is Tinhofer (see Lemma 8 and Figure 6). The smaller
non-singleton fragment is σv = {u ∈ σ : |b(u)∩{i, j}| = 1}. For this, note that |σv| = 2(n−2)
holds and that we have n ≥ 8 by assumption. The list ad[v] (Line 12) then consists of all
vertices u ∈ σ with b(u) = {i, r} or b(u) = {j, r} with r ∈ [n] \ {i, j}.

Now let w ∈ ad[v]. Up to this point, the labels i and j are interchangeable, so we may
assume b(w) = {j, k} for some k ∈ [n] \ {i, j}. We repeat the above procedure with w in
place of v. In particular, ad[w] (Line 17) contains all vertices u ∈ σ with b(u) = {j, r} or
b(u) = {k, r} for r ∈ [n] \ {j, k}.

Finally we individualize both v and w to obtain the coloring πv,w. The fragments are
given by Lemma 8. In particular, we obtain b(y) = {i, k}. Apart from y, the intersection
ad[v] ∩ ad[w] contains all vertices u ∈ σ with b(u) = {j, r} for r ∈ [n] \ {i, j, k}, and we add
them to Ej (Line 26). Similarly, we construct the sets Ei and Ek (Lines 25 and 27).

From this explicit description, it is clear that u ∈ σ is added to Ei precisely if i ∈ b(u)
(similarly for Ej and Ek). In particular, for distinct vertices u1, u2 ∈ Ei, we have b(u)∩b(v) =
{i}. Thus if the lists label[u] for u ∈ Ei have a common entry, the label i has been considered
before (recall that |Ei| > 1 holds). Otherwise, we add the current vertex number vnr to
label[u] for all u ∈ Ei (Line 28) and set τ(i) = vnr. This way, label[u] remains duplicate-free
and only ever contains labels τ(l) for l ∈ b(u). In particular, we always maintain the property
|label[u]| ≤ 2. In each iteration of the while loop, one of the labels i and j was not considered
before (due to |label[v]| ≤ 1). In particular, the loop is executed at most n times. When it
stops, we have |label[v]| = 2 for all vertices v. ◀

Johnson Action on Row Symmetry. Quite commonly, SAT instances which search for a
graph, will search for a graph with a certain vertex property. For example, when asking for a
k-colorable graph, there will be (interchangeable) colors attached to each vertex of the graph.
In order to detect a corresponding symmetry structure, we want to detect blocks which
correspond to the labels in the Johnson domain. The detection works by stabilizing vertices
in other orbits, and checking whether they split apart the Johnson orbit precisely into the
vertices marked with a particular label, and a remainder. If so, these blocks are collected
and considered in our overall Johnson action. Finally, we run row symmetry detection on
the collected blocks.

4 Implementation

We now give an overview of our new symmetry breaking tool satsuma. The input of our
algorithm is a CNF formula F . The output is a symmetry breaking constraint for F . We
first discuss the breaking constraints produced for a given detected structure.

Breaking Constraints. We produce lex-leader constraints for each detected structure: we
use precisely the automorphisms constructed in Algorithm 1, Algorithm 2, and Algorithm 3.
Before we can produce lex-leader constraints, we must however fix an ordering on the variables.
The ordering used for matrix models simply orders the matrix row-by-row. For Johnson
groups, we begin with the vertices of the first label (see Algorithm 3), then the remaining
vertices of the second label, and so forth.
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family CMS BreakID+CMS satsuma+CMS
name size solved avg prep solved avg prep solved avg
channel 10 2 484.99 4.727 10 0.032 0.404 10 0.033
cliquecolor 20 2 574.734 0.129 13 228.998 0.058 20 0.845
coloring 55 21 377.338 42.12* 26 317.32 1.071 27 307.632
fpga 10 6 321.596 0.035 10 0.01 0.01 10 0.008
md5 11 5 358.616 0.635 5 359.382 0.548 6 349.171
php 10 3 423.266 6.337 10 0.043 0.128 10 0.036
ramsey 7 2 428.613 1.681 3 343.086 0.394 5 235.27
urquhart 6 6 0.768 0.14 6 0.008 0.032 6 0.066

Figure 7 Benchmarks comparing BreakID to satsuma, using the solver CryptoMiniSAT
(CMS). The timeout is 600 seconds, all times are given in seconds. The columns “prep” denote the
average time used for symmetry breaking. Columns “solved” refer to the number of solved instances
by CMS, and “avg” is the average time spent by CMS. *BreakID could not compute the symmetry
breaking constraints of two coloring instances within the timeout. We declared these as a timeout
for the SAT benchmarks (but the other configurations also timed out on these instances).

High-level Algorithm. The high-level algorithm proceeds as follows:
(Step 1). Construct a model graph from the given CNF formula.
(Step 2). Run the algorithms described in the previous section in the following order: John-

son groups (Algorithm 3), row-column symmetry (Algorithm 2), row interchangeability
(Algorithm 1). Whenever a structure is found, all orbits covered by the structure are
marked. The subsequent analysis only considers unmarked orbits. For each structure,
symmetry breaking constraints are constructed as described above. Lastly, we maintain a
vertex coloring of the model graph, which we call the remainder coloring: this coloring
restricts the symmetries of the model graph to symmetries not yet covered by detected
structures.

(Step 3). Run symmetry detection on the graph colored with the remainder coloring. Then,
the binary clause heuristic of BreakID is applied for all variables not yet ordered by
already produced lex-leader constraints: a stabilizer chain of the automorphism group is
approximated, and for each stabilized variable x a short lex-leader constraint for each
other literal y of its orbit is produced, i.e., essentially the binary constraint x ≤ y (see [21]
for a detailed description). Lastly, a lex-leader constraint for each generator is produced.

Implementation. The tool is written in C++, and is freely available as open source software
[2]. The tool dejavu [3, 4, 6] is used for providing general-purpose symmetry detection,
the individualization-refinement framework, and data structures for symmetries. Significant
parts of the implementation, in particular the generation of lex-leader constraints and binary
clauses, are reverse-engineered from BreakID. Our reimplementation of these routines differs
in two crucial aspects from the original one: first, BreakID uses the symmetry detection
tool saucy [18] instead of dejavu. Second, we use different data structures and algorithms
for the handling of symmetry.

5 Benchmarks

We compare the state-of-the-art static symmetry breaking tool BreakID (version 2.6) to
satsuma.

As SAT solvers, we use CryptoMiniSAT [39] and CaDiCaL [12]. The benchmarks
using CaDiCaL largely concur with the CryptoMiniSAT benchmarks, and our descriptions
will focus on the results using CryptoMiniSAT. The timeout for all benchmarks is 600
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family CaD BreakID+CaD satsuma+CaD
name size solved avg prep solved avg prep solved avg
channel 10 2 494.226 4.727 10 0.077 0.404 10 0.077
cliquecolor 20 9 442.373 0.129 13 216.999 0.058 20 0.2
coloring 55 20 393.864 42.12* 26 316.779 1.071 28 301.783
fpga 10 5 391.29 0.035 10 0.008 0.01 10 0.025
md5 11 6 339.378 0.635 6 343.324 0.548 6 324.716
php 10 3 422.976 6.337 10 0.085 0.128 10 0.1
ramsey 7 2 428.583 1.681 3 342.908 0.394 5 192.299
urquhart 6 2 449.622 0.14 6 0.005 0.032 6 0.052

Figure 8 Benchmarks comparing BreakID to satsuma. The SAT solver used is CaDiCaL
(CaD). The timeout used is 600 seconds. The columns “prep” refer to the time in seconds used
to compute the symmetry breaking constraint. Columns “solved” refer to the number of solved
instances by CaD, and “avg” is the average time used by CaD (excluding the time used for symmetry
breaking). *BreakID could not compute the symmetry breaking constraints of two coloring instances
within the timeout.

seconds. We separately measure the time spent on symmetry breaking itself, and SAT solving.
All benchmarks ran sequentially on an Intel Core i7 9700K with 64GB of RAM on Ubuntu
20.04.

Benchmark Instances. We run benchmarks on a variety of well-established instance families
exhibiting symmetry (see Figure 7). The sets coloring, urquhart, fpga, md5, and channel are
part of the distribution of BreakID [21]. We generate pigeonhole principle (php) instances,
Ramsey instances, and clique coloring instances using the tool cnfgen [31]. The set of
parameters for clique coloring is similar to [26], but we added larger instances. All instances
are unsatisfiable.

Regarding the detected symmetry structures of these instances, we detect Johnson
symmetry on the ramsey and cliquecolor families. On php, channel, and fpga, satsuma detects
row-column symmetry, and BreakID corresponding row interchangeability (see also [36, 21]).
The coloring instances exhibit a variety of different symmetries, but in particular also row
symmetry [21]. In urquhart and md5, no structure is detected by either of the tools.

Regarding our choice of benchmark instances, we stress that our main goal is to observe
whether detecting richer structures can improve performance compared to existing approaches.

SAT Benchmarks. An overview of the results can be found in Figure 7 (for CaDiCaL,
see Figure 8). Considering the results, we observe that satsuma solves more instances,
and solving times are considerably lower on average on the cliquecolor and ramsey instances.
We recall that these instance families exhibit Johnson symmetry. On all sets with row
and row-column symmetry, that is channel, coloring, fpga, and php, we observe that solved
instances and average solving times are comparable. On coloring, we observe that satsuma
solves one more instance than BreakID (and two more using CaDiCaL). For urquhart,
both satsuma and BreakID rely on the binary clause strategy. The results indicate that
BreakID is more effective in breaking symmetry, which is however outweighed by the
faster runtime of satsuma. The md5 instances only contain a single non-trivial symmetry.
Here, satsuma produces more breaking clauses, and we observe a consistent albeit marginal
speedup. It should be mentioned that it does however seem plausible that the observed
speed-up may be due to shuffling of literals in clauses, or other factors.
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Figure 9 Benchmarks comparing the computational overhead of BreakID to satsuma. The
shown computation time is the time spent computing symmetry breaking constraints for an instance
using the respective tool. The red bar indicates the timeout of 600 seconds.

In particular, we point out that satsuma compares favorably on instance families
which exhibit Johnson symmetry. We believe this to be due to our detection of Johnson
symmetry and the subsequent generation of more favorable constraints. Crucially, on all
successfully solved instances of cliquecolor and ramsey, the remainder contains no symmetry:
all symmetries are detected and in turn broken solely using the algorithms of this paper, and
no general-purpose symmetry detection and breaking is applied.

We observe that the average time spent computing the symmetry breaking constraints is
lower on all families for satsuma. A more in-depth analysis follows below.

Computational Overhead. We conduct further benchmarks to gauge the computational
overhead incurred by BreakID and satsuma. We test three different benchmark families:
php, cliquecolor, and urquhart (generated using cnfgen). For php, we increase the number
of pigeons from 10 to 150 (with n − 1 holes, respectively). For cliquecolor, we increase the
number of vertices of the prospective graph from 10 to 300 (the size of the clique is 3 and
number of colors 2). In urquhart, we use random 5-regular graphs, increasing the number of
vertices from 10 to 350. We chose these instance families such that they cover the different
symmetry detection routines in satsuma: the family php essentially measures the runtime
of our row-column routine, cliquecolor that of the Johnson routine, and urquhart uses general
purpose symmetry detection, followed by the binary clause strategy.

Figure 9 summarizes the results. In all instance families, the data suggest that satsuma
asymptotically scales better than BreakID. These results match our observations regarding
overhead from the first part of the benchmarks (see Figure 7).

We believe there are multiple reasons why satsuma runs faster than BreakID. First,
our new algorithms of Section 3 verify symmetries on the CNF formula instead of the model
graph. This is advantageous because symmetries of the CNF only explicitly map literals,
whereas symmetries of the model graph also explicitly map clauses. Second, most routines in
our implementation run proportional in the size of the support of symmetries, as opposed to
the number of literals of F . Third, for general-purpose symmetry detection, dejavu seems
to be more efficient in computing automorphism groups of SAT instances than saucy [3].

We mention that in the urquhart instances, the outliers with high running time seem to be
due to saucy taking a long time to compute symmetries for BreakID. On the other hand,
in these cases, we observe that the symmetries as returned by dejavu are less suitable for
the binary clause heuristic, leading to fewer produced clauses. This could however be easily
alleviated by a strengthening of the heuristic (e.g., by sometimes applying the Schreier-Sims
algorithm for stabilizers as already pointed out in [21]).
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6 Conclusions and Future Work

We described a new structure-based approach to symmetry breaking, and demonstrated the
effectiveness of our implementation satsuma. There seem to be many promising directions
in which the present work could be expanded:

Detect more group structures: in particular, a more generic approach to detect aggregates
of groups would be of great interest. Another interesting case might be the symmetries of
the family urquhart, which are isomorphic to Ck

2 and have been studied previously [32].
Consider other breaking approaches for certain group structures. So far, we used the
knowledge of group structures to pick out automorphisms, for which off-the-shelf lex-leader
constraints are generated. Since optimal handling of row-column symmetry and Johnson
symmetry seems infeasible with lex-leader constraints [32], other breaking constraints
could lead to better results. Moreover, Johnson symmetry allows the use of symmetry
reduction developed specifically for graph generation [15, 16, 30].
Improved techniques for handling of the “remainder”. As already pointed out in [21], one
potential direction would be to apply the random Schreier-Sims algorithm [38] to produce
more small symmetry breaking clauses.
An enticing feature is proof-logging, as was recently introduced to BreakID [13].
The new detection algorithms could be applied in other domains as well: for example,
seeing as row interchangeability is successfully used in MIP, it seems only natural that
MIP instances may also contain richer structures.
Sometimes symmetries are not present in a compiled CNF of a given problem (as, e.g.,
analyzed in [26]). A possible remedy is to allow the user to provide an auxiliary graph
that models the original symmetry (see [26]), and the methods proposed in this paper
should generalize to this setting.
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proof logging for solvers.

Prior to this paper, the relations between these proof systems have been unclear and very
few proof complexity results are known. We completely determine the simulation order of the
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The propositional model counting problem #SAT asks to compute the number of satisfying
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risk analysis [26, 59] and explainable artificial intelligence [6, 51]. Interestingly, #SAT is
among the hardest combinatorial problems and known to be #P-complete [5, 49, 55]. To
put this in relation, by Toda’s Theorem [53] any problem from the polynomial hierarchy
(PH) can be solved in polynomial time by access to a #SAT oracle. In comparison, the SAT
problem is on the first level of PH [20].

Over the last two decades, researchers and solver engineers improved effective practical
#SAT solving [31] with numerous available #SAT solvers using conceptually quite different
approaches. An annual competition captures current trends of solvers and novel practical
algorithms, but also reveals that correctness needs to be improved [27].

In contrast to these practical advances, little is known theoretically on the power and
limitations of #SAT solving. In both SAT and quantified Boolean formulas (QBF), the main
theoretical approach towards gauging the strength of SAT and QBF solvers is through proof
systems and proof complexity [13,16]. The relation between proofs and solving is important
in at least two aspects.

Firstly, proof systems can model aspects of solving. A seminal result in this direction
is that CDCL solvers – the predominant approach in SAT solving – tightly correspond to
propositional resolution [4, 7, 48], in the sense that any (non-deterministic) CDCL run on an
unsatisfiable formula can be efficiently translated into a resolution refutation of the formula
and vice versa. Further results are known for practical CDCL [56] and relations between
QBF solving and related proof systems [10,36]. This allows to apply the plethora of proof
complexity results e.g. for propositional and QBF resolution [9, 43, 50] to the analysis of
solvers. For example any lower bound for proof size in propositional resolution directly
translates into a lower bound for CDCL runtime.

Secondly, proof systems can be employed for proof logging and certifying solver correctness
by designing certified tools. Therefore, formal proof systems are introduced where a practical
proof can be efficiently verified by a relatively simple method and easily emitted during
solving. Different proof systems and formats have been designed including RUP, RAT and
DRAT [29, 30, 34, 58] for SAT and QRAT [35] for QBF. These proof systems have been
intensively studied and compared in terms of simulations, e.g., [19,39,40]. While the first
modelling aspect needs weaker proof systems close to actual solving, the second proof-logging
aspect favours very strong proof systems.

In comparison to the rich and intensely researched interplay between solving and proof
complexity in SAT and QBF, significantly less is known in this regard for #SAT. In the past
five years, three different #SAT proof systems have been introduced. These systems are kcps
(2019) [18], MICE (2022) [11, 28], and CPOG (2023) [15]. These are the only #SAT proof
systems so far.

The three proof systems are conceptually quite different: while kcps and CPOG are both
static proof systems building on circuit classes used in knowledge compilation [24, 25] on
which model counting is efficient, MICE is a rule-based proof system using three simple rules
to compute counts for successively more complex formulas. The historically first system kcps
was inspired by #SAT solving using knowledge compilation techniques. Both subsequent
systems MICE and CPOG were designed with a view towards certifying different #SAT
solving approaches.

In contrast to the rich proof complexity results for SAT and QBF, almost nothing is
known theoretically for the three #SAT proof systems. Only for MICE, an exponential proof
size lower bound was shown last year [11], while the relations between the three systems in
terms of simulations are open.



O. Beyersdorff, J. K. Fichte, M. Hecher, T. Hoffmann, and K. Kasche 5:3

CPOG

MICE kcps

//

Figure 1 Simulation order of CPOG, MICE and kcps. A solid crossed edge from A to B indicates
that A p-simulates B and A is exponentially stronger than B. Dotted lines indicate incomparability.

1.1 Our contributions
We perform a proof-complexity analysis of the three proof systems kcps, MICE and CPOG
and completely determine their relative strength in terms of simulations and separations,
leading to the picture in Figure 1. In more detail, our findings can be summarised as follows.

A. Simulations between #SAT proof systems. We formally compare the three #SAT
proof systems in terms of simulations and show that CPOG p-simulates kcps and MICE, i.e.
both kcps and MICE proofs can be efficiently translated into CPOG proofs.

Rather than showing the two simulations directly, we consider two intermediate proof
systems kcps+ and CPOGDecision-DNNF. The first of these was already suggested in [18] as
a natural extension of kcps, while CPOGDecision-DNNF is newly introduced as a restriction
of CPOG. The system CPOG uses POGs (partitioned-operation graphs) as the underlying
circuit class, which in CPOGDecision-DNNF is restricted to Decision-DNNFs: the circuit class on
which kcps and kcps+ are based. Representing a CNF by any of these circuit models allows
efficient counting. Yet, the proofs need to contain additional information as verifying the
equivalence of a CNF to a circuit in these models is non-trivial. While the two additional
systems simplify our analysis, we believe they are also natural and of independent interest
for further research (cf. the discussion in the conclusion).

For these five proof systems, we determine the simulation order as depicted in Figure 2,
refining Figure 1 and including pointers to the results. While the simulations of kcps by
kcps+ and of CPOGDecision-DNNF by CPOG follow almost by definition, the simulations of
MICE by kcps+ and kcps+ by CPOGDecision-DNNF are more involved – in particular the first
one – as they connect conceptually quite different proof formats. The proof systems kcps,
kcps+, CPOGDecision-DNNF and CPOG are all static as they are based on circuits equipped with
additional information. In contrast, MICE is rule-based without any explicit connection to
circuits.1

B. Exponential separations between #SAT proof systems. As our second main result we
establish exponential separations between MICE and kcps in both directions. This entails
exhibiting suitable CNF families that have short proofs in MICE, while requiring short kcps
proofs, and vice versa. As a consequence, both systems are incomparable and at the same
time exponentially weaker than kcps+ and CPOG, thus resulting in the situation depicted in
Figure 1.

1 However, it was noted already in [12] that from a MICE proof a Decision-DNNF for the CNF can
be extracted. This does not, however, entail a simulation of MICE by kcps (which are based on
Decision-DNNFs), and in fact such a simulation fails as implied by our separation results in B.
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CPOG

CPOGDecision-DNNF

kcps+

MICE kcps

1

2

3 4
5

6

//

Edge Simulation Separation

1 Observation 4.5 open
2 Theorem 4.3∗ open
3 Theorem 4.1 Corollary 5.14
4 Observation 4.2∗ Corollary 5.14
5 (not possible) Corollary 5.13
6 (not possible) Corollary 5.4

Figure 2 Detailed simulation order of #SAT proof systems. A solid edge from A to B indicates
that A p-simulates B. If the edge is crossed, A is also exponentially separated from B. A dotted
edge from A to B indicates that A is exponentially separated from B. All the simulations of this
paper require only logarithmic space; those highlighted with “∗” only need linear time.

Technically, we obtain one direction (kcps does not simulate MICE) by showing a tight
characterisation of kcps proof size by regular resolution size on unsatisfiable formulas. A
similar characterisation of MICE by full resolution was shown in [11]. As regular resolution is
known to be exponentially weaker than resolution [3, 57], the separation follows.

For the other direction (MICE does not simulate kcps) we use a variant of the pebbling
formulas, prominent in propositional proof complexity [8, 14]. While the small Decision-
DNNFs and short kcps proofs are relatively easy to obtain, the hardness argument for MICE
is technically more involved (Theorem 5.7).

The first separation positively answers an open question posed by Capelli [18] to find
CNFs with polynomial-size Decision-DNNFs (these can always be extracted from short MICE
proofs [12]), but no small kcps proofs. The second separation implies that we cannot efficiently
transform Decision-DNNFs into MICE proofs.

1.2 Related work
For decision proof systems, there are extensive studies on simulation and separation, see,
e.g., [39,40]. For recently defined proof systems for propositional model counting, this has
been open. To the best of our knowledge, this paper is the first work in this direction for model
counting proof systems. However, existing approaches have been studied empirically [15,18,28].
Indeed, there is a list [27] of practical exact model counting systems, which are based on
different techniques. Among these are component caching [52], treewidth [42], knowledge
compilation, e.g., d4 [44], c2d [24], dsharp [46], as well as hybrid approaches [33,42]. Some
theoretical results are presented in [17] which predates the introduction of formal proof
systems for #SAT. There are also clausal proof systems enriched with XOR reasoning [47].
Very recently, first steps on proof systems for approximate counting [2] have been presented.

1.3 Organisation
The remainder of this paper is organised as follows. After reviewing some standard notions
from propositional logic and proof systems in Section 2, we provide formal definitions of
the existing proof systems for #SAT in Section 3. We show the simulations from Figure 2
in Section 4. The separations are provided in Section 5. We conclude in Section 6 with a
discussion on practical and theoretical implications.
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We highlight that though we believe our results bear practical relevance, this paper
performs a purely theoretical proof-complexity investigation.

2 Preliminaries

We briefly provide formal notions from propositional logic and proof systems. For more
detailed information, we refer to [1, 41]. For an integer n, we set [n] := {1, 2, . . . , n}.

Propositional formulas. A literal l is a variable z or its negation z, and we write var(l) := z.
A clause is a disjunction of literals, a conjunctive normal form (CNF) is a conjunction of
clauses. Often, we write clauses as sets of literals and formulas as sets of clauses. We assume
that propositional formulas are given in CNF. We can efficiently transform any formula
into a CNF using Tseitin transformations [54]. For a formula F , vars(F ) denotes the set
of all variables in F . If C ∈ F is a clause and V ⊆ vars(F ) is a set of variables, we define
C|V = {l ∈ C | var(l) ∈ V } and F |V denotes the formula F with every clause C replaced by
C|V .

Given a set V of variables, a (partial) assignment is a (partial) function α : V → {0, 1} that
maps variables to Boolean values. We write ⟨V ⟩ for the set of all 2|V | complete assignments
to V . For a (partial) assignment α, F [α] denotes the formula where we replace all occurrences
of variables x with α(x). If F [α] = 1, we say α satisfies F and write α |= F . We say that α
falsifies F if F [α] = 0 and write α ̸|= F .

Occasionally, we interpret an assignment as a CNF consisting of precisely those unit
clauses that specify the assignment. Therefore, the set operations are well defined for
formulas and assignments. We say that two assignments are consistent if they agree on their
intersection.

A formula F is satisfiable if there exists an assignment α ∈ ⟨vars(F )⟩ such that α |= F

and is unsatisfiable if there exists no such assignment. For a formula φ, Mod(φ) := {α ∈
⟨vars(φ)⟩ | α |= φ} is the set of all models of φ. The model counting problem #SAT asks to
compute |Mod(φ)| for a given formula φ. Throughout the paper, we use φ for formulas we
want to count on. The SAT problem asks to decide whether a given formula is satisfiable
and UNSAT whether a given formula is unsatisfiable. Moreover, we need the definition of
semantic consequence. We write F |= G if and only if for every assignment α ∈ ⟨vars(F )⟩, we
have that α |= F implies α |= G. We write F ≡ G if and only if F |= G and G |= F .

Proof systems. Following Cook and Reckhow [21], a proof system for a language L is a
polynomial-time computable function f with range rng(f) = L. Here, L will be chosen as
either UNSAT or #SAT. If f(w) = x, then w is called f -proof of x ∈ L. In order to compare
proof systems we need the notion of simulations. Let P and Q be proof systems for the same
language. Then, P p-simulates Q if every Q-proof can be translated in polynomial time into
a P -proof of the same formula. Two proof systems are p-equivalent if they p-simulate each
other. Further, P is exponentially separated from Q if there is a family of formulas that have
polynomial sized P -proofs while any Q-proof requires exponential size.

Resolution is arguably the most studied proof system for UNSAT. It is a line-based proof
system with clauses as proof lines. The resolution rule allows to derive the clause C ∪ D

from previously derived clauses C ∪ {x} and D ∪ {x}. We also allow the weakening rule that
derives C ∪D from a clause C. A resolution refutation of a CNF is a derivation of the empty
clause □. As refutational systems, resolution with and without weakening a p-equivalent.
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Further, we can interpret any proof π in a line-based proof system as a directed graph
Gπ, where the nodes are proof lines in π. There is an edge from proof line l1 to l2 if l2 was
used to derive l1. A resolution refutation is regular if there is no path from the root to a leaf
in Gπ where a variable is resolved more than once.

3 Proof systems for #SAT

In this section, we recall the existing #SAT proof systems kcps, CPOG, and MICE and provide
some intuition. In particular, we provide a concise formalisation of CPOG. Furthermore, we
introduce two adapted versions of kcps and CPOG that we call kcps+ and CPOGDecision-DNNF.
As kcps and CPOG heavily use concepts from knowledge compilation, we start with relevant
definitions following standard texts [25,37].

A circuit is a directed acyclic graph with labelled nodes that we call gates. We only
consider circuits that have exactly one gate with indegree 0. It is called root and represents
the circuit’s output. Gates with outdegree 0 are called leaves and are labelled with literals
or constants 0 and 1. The latter are also called 0-gate or 1-gate. Every inner gate is an
And-, Or- or Not-gate labelled with the corresponding Boolean function. The semantics of
such circuits are defined in the usual way. Additionally, we assume that And- and Or-gates
always have exactly two children.

Let D be a circuit. For gates in D we use uppercase letters such as N . We write vars(D)
for the set of all variables occurring in leaves of D. E(D) denotes the Tseitin encoding [54]
of D, where we use a new variable ϑN for every gate N . We denote the subcircuit of D with
root N consisting of all descendants of N by D(N).

A circuit is in negation normal form (NNF) if it does not contain Not-gates. An And-
gate with children N1 and N2 is called decomposable, if vars(D(N1)) ∩ vars(D(N2)) = ∅. An
Or-gate with children N1 and N2 is called deterministic if there is no assignment that satisfies
both D(N1) and D(N2). A DNNF [22] is an NNF where every And-gate is decomposable.
A d-DNNF [23] is a DNNF where every Or-gate is deterministic.

Since it is non-trivial to check if all Or-gates are indeed deterministic, we also consider
a restricted version of d-DNNF called Decision-DNNF. In a Decision-DNNF, any Or-gate
has the form N = (N1 or N2) with N1 = (x and N3) and N2 = (x and N4) for any
variable x. It is obvious that any such Or-gate is deterministic. For better readability, we
write Decision-DNNFs without Or-gates but use Decision-gates instead. We rewrite the
above gate as N = (if x then N3 else N4). Note that we can assume that the leaves of
a Decision-DNNF contain only constants 0 or 1. Further, in any path from the root to a leaf,
any variable can be decided at most once because of the decomposability property. We say
that an assignment α reaches a gate N if there is a path P from the root to N such that all
decisions along P are consistent with α.

3.1 Kcps: Knowledge Compilation Proof System
The system kcps is the historically first proof system for #SAT, introduced by Capelli in
2019 [18]. As the name suggests, it aims to certify solvers that apply knowledge compilation
techniques. These solvers transform the input CNF into a format that can handle various
queries efficiently, in particular model counting [24,25, 44]. As in practice solvers often rely
on compiling the formulas into Decision-DNNFs, kcps is based on this class of circuits.

A kcps proof of φ provides a Decision-DNNF D such that D ≡ φ. The Decision-DNNF D

implicitly contains the model count of φ as we can efficiently compute it (cf. Figure 3 for
an example). However, for this to be a proof in the sense of Cook-Reckhow [21], we need
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Figure 3 A Decision-DNNF (left) and a POG (right) that are equivalent to the formula φ =
(a ∨ b) ∧ (c ∨ d). The blue number at a gate N indicates the fraction of assignments that satisfy the
subcircuit with root N . These numbers are computed bottom-up, i.e. 0-gates get count 0, 1-gates
count 1 and gates that are labelled with a literal count 1

2 . Decision-gates get the average of the
two children, Or-gates the sum and And-gates the product. Finally, to compute the model count of
φ, we multiply the fraction of satisfying assignments of the whole Decision-DNNF or POG with the
count of all possible assignments to vars(φ), resulting in |Mod(φ)| = 9

16 · 2|vars(φ)| = 9.

to verify that D and φ are indeed equivalent. The direction D |= φ can always be checked
efficiently [25] (cf. also Lemma 3.6 below for a formal argument). However, the other direction
φ |= D is a coNP-complete problem for arbitrary Decision-DNNFs [18]. Thus, we consider a
restricted version of Decision-DNNFs on which checking φ |= D becomes easy as well. For
that, we review the notion of a certified Decision-DNNF [18].

▶ Definition 3.1 (S-certified Decision-DNNF [18]). Let S be a set of clauses. A Decision-
DNNF D is called S-certified if every 0-gate N is labelled by a certificate C ∈ S. A clause is
a certificate for N if all assignments that reach N falsify C.

These restricted Decision-DNNFs have the property that for a formula φ, any φ-certified
Decision-DNNF D satisfies φ |= D [18]. To see this, consider the equivalent statement
¬D |= ¬φ. Let α be an assignment that falsifies D, then it reaches a 0-gate. Consequently,
it has to falsify its certificate and in particular φ.

Finally, we can define the kcps proof system:

▶ Definition 3.2 (kcps [18]). A kcps proof of a CNF φ is a φ-certified Decision-DNNF D

where D ≡ φ.

Note that the model count of φ and also the equivalence between φ and D are not
explicitly part of the proof as we can compute the model count efficiently from D and verify
D ≡ φ in polynomial time.

In fact, Capelli [18] proposed a generalization of kcps where the certifying clauses for the
0-gates are not necessarily clauses of the original formula φ. Instead, we use as certificates
arbitrary clauses derived by resolution from φ. This results in the proof system kcps+.

▶ Definition 3.3 (kcps+ [18]). A kcps+ proof of a CNF φ is a pair (σ,D) where
1. σ is a resolution derivation starting from the clauses in φ and
2. D is a σ-certified Decision-DNNF (i.e. all clauses labelling the 0-gates in D are derived

in σ) such that D ≡ φ.
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3.2 CPOG: Certified Partitioned-Operation Graphs
In contrast to kcps, CPOG is not restricted to certified Decision-DNNFs, but uses the more
flexible circuit class POG (partitioned-operation graphs). Instead of providing the original
definition of POGs from [15], we equivalently define a POG as a d-DNNF with Not-gates
(alternatively, a d-DNNF can be viewed as a POG with negation applied only to variables).

Model counting is also efficient on POGs [15], and in fact POGs appear to be the largest
class to which the model counting idea used for Decision-DNNFs naturally extends. However,
in order to maintain efficient proof checking, a CPOG proof has to explicitly prove that P is
indeed a POG and that φ ≡ P . This leads to the following definition.

▶ Definition 3.4 (CPOG [15]). A CPOG proof of a CNF φ is a 4-tuple (E(P ), ρ, ψ,X) where
1. P is a POG with root R such that P ≡ φ and E(P ) is a clausal encoding of P ,
2. ρ is a proof for φ |= P , i.e., ρ is a resolution refutation of E(P ) ∧ φ ∧ (ϑR),
3. ψ is a proof for P |= φ, i.e., ψ contains a resolution refutation of E(P ) ∧ (ϑR) ∧ C for

every clause C ∈ φ,
4. X is a set of proofs verifying that all Or-gates of P are deterministic, i.e., X is a set of

resolution refutations such that for any Or-gate N , X contains a resolution refutation of
E(P ) ∧ (ϑN1) ∧ (ϑN2), where N1 and N2 are the two child gates of N .

Note that CPOG is originally defined on circuits with arbitrary fan-in, however we consider
only the binary case which is polynomially equivalent. Additionally, the original definition
uses RUP steps for the propositional proofs, which are p-equivalent to resolution. In our
definition, we use resolution proofs instead.

The underlying structure of POGs in CPOG proofs is quite generic. So far, the only
implementation of CPOG [15] is restricted to Decision-DNNFs instead of POGs. We capture
this variant in the following definition:

▶ Definition 3.5 (CPOGDecision-DNNF). A CPOGDecision-DNNF proof of a CNF φ is a pair
(E(D), ρ) where
1. D is a Decision-DNNF with root R and E(D) a clausal encoding of D such that D ≡ φ,
2. ρ is a resolution refutation of φ ∧ E(D) ∧ (ϑR).

Note that in comparison to Definition 3.4, the last two items are missing. This is clear
for item 4 as D only contains Decision-gates instead of Or-gates. But also the proof ψ in
item 3 can always be computed efficiently for Decision-DNNFs as we show in the next lemma.

▶ Lemma 3.6. Let D be a Decision-DNNF with root R and encoding E(D). If D ≡ φ, then
we can compute ψ, i.e. a resolution refutation of E(D) ∧ (ϑR) ∧C for every clause C ∈ φ, in
time O(|D| · |φ|).

Proof sketch. Let C ∈ φ be some arbitrary fixed clause. We assume that D ≡ φ. Let
L = N1, . . . , Nn be a list of all gates in D that are unsatisfiable under the partial assignment
C in some topological ordering such that no gate is listed after its ancestors. Note that R is
the last element in L as D[C] ≡ φ[C] has to be unsatisfiable. We can show inductively that
for every i ∈ [n] we can effectively derive the unit clause (ϑNi) from E(D) ∧ C. We do this
by deriving (ϑNi

) from the corresponding unit clauses of its children in a constant number of
resolution steps.

Since R ∈ L, we can derive (ϑR) efficiently. With an additional resolution step with
the unit clause (ϑR), we derive the empty clause. In total, we can construct a resolution
refutation of E(D) ∧ (ϑR) ∧ C of size O(|D|). Since ψ contains such a refutation for every
clause C ∈ φ, we can construct ψ with at most O(|D| · |φ|) resolution steps. ◀
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Axiom. (∅, ∅, 1) (Ax)

Composition. (F,A1, c1) · · · (F,An, cn)
(F,A,

∑
i∈[n] ci)

(Comp)

(C-1) vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n]
(C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is

included into the trace and is called an absence of models statement.

Join. (F1, A1, c1) (F2, A2, c2)
(F1 ∪ F2, A1 ∪A2, c1 · c2) (Join)

(J-1) A1 and A2 are consistent,
(J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension. (F1, A1, c1)
(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(Ext)

(E-1) F1 ⊆ F ,
(E-2) A|vars(F1) = A1,
(E-3) A satisfies F \ F1.

Figure 4 Inference rules for MICE [11].

3.3 MICE: Model-counting Induction by Claim Extension
The third system we need is the line-based #SAT proof system MICE, introduced with the
intention to provide a proof system close to various solvers [28]. Here, we use MICE in its
slightly simplified, but p-equivalent form as defined in [11].

▶ Definition 3.7 (MICE [11,28]). The proof lines in MICE are called claims. A claim is a
3-tuple (F,A, c) consisting of a CNF F , a partial assignment A of vars(F ) (called assumption)
and a count c. A MICE proof of a CNF φ is a sequence of claims I1, . . . , Ik that are derived
with the inference rules in Figure 4 such that the final claim has the form (φ, ∅, c) for some
count c.

If a MICE proof π derives the claim (φ, ∅, c), then π proves that φ has exactly c models.
A claim (F,A, c) is correct if F has exactly c models that are consistent with A. Since only
correct claims can be derived in MICE [11], the count c of a correct claim (F,A, c) is uniquely
determined by F and A. Thus, we sometimes omit c and use the notation (F,A) instead.

4 CPOG simulates MICE and kcps

We start our investigation by clarifying the simulation order of the #SAT proof systems
introduced in Section 3 and prove that CPOG simulates MICE and kcps. We achieve this by
efficiently constructing CPOG proofs from given MICE or kcps proofs. We use the systems
CPOGDecision-DNNF and kcps+ from Section 3 as convenient intermediate proof systems and
show the four simulations depicted in Figure 2.

Our first simulation transforms MICE proofs into kcps+ proofs.

▶ Theorem 4.1. kcps+ p-simulates MICE.
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5:10 The Relative Strength of #SAT Proof Systems

Proof sketch. Let π = I1, . . . , In be a MICE proof of a CNF φ with Ik = (Fk, Ak) for every
k ∈ [n]. Our goal is to construct a kcps+ proof for φ from π. W.l.o.g. the first claim of π is
(∅, ∅, 1) derived with (Ax) and all other claims are not derived with (Ax). For each k ∈ [n],
we construct a Decision-DNNF Dk that satisfies the following invariants:

(i) Dk is equivalent to Fk[Ak],
(ii) Dk contains only variables from Fk[Ak], and
(iii) every 0-gate N in Dk is labelled with some clause C derived from φ such that for any

assignment α ∈ ⟨vars(Dk)⟩ that reaches N , the clause C is falsified by α ∪Ak.

For the base case k = 1, I1 = (∅, ∅, 1) is derived with (Ax). We set D1 to a circuit that
only contains one 1-gate. For the induction step, we distinguish how Ik is derived.

Join. Ik is derived with (Join) from claims Ii and Ij , so we have Fk = Fi ∪ Fj and
Ak = Ai ∪ Aj . Per induction hypothesis, we have already derived Decision-DNNFs Di

and Dj equivalent to Fi[Ai] and Fj [Aj ]. We define Dk to be an And-gate with the two
children that are the roots of Di and Dj .
Composition. Ik is derived with (Comp) from claims Ii1 , . . . , Iir . Per induction hypothesis,
we have the corresponding circuits Dij

for all j ∈ [r]. Let V = vars(Ai1) \ vars(Ak),
keeping in mind that all assumptions Aij have the same set of variables because of (C-1).
We build a complete binary decision tree T with variables in V . For every claim Iij

for
j ∈ [r] there is exactly one leaf in T that is consistent with the assumption Aij

. We
replace this leaf with the root of the corresponding Decision-DNNF Dij

. Afterwards, we
replace all remaining leaves with a 0-gate. Furthermore, we remove every Decision-gate
where both decisions lead to a 0-gate as long as such gates exist. We set Dk to be the
resulting circuit. For each new 0-gate we can specify a valid certificate and construct its
derivation from the absence of models statement that was used for the (Comp).
Extension. Ik is derived with (Ext) from Ii. Per induction hypothesis, we have already
derived a Decision-DNNF Di equivalent to Fi[Ai]. We set Dk = Di.

This completes the induction. Since In = (φ, ∅), Dn is a Decision-DNNF representing φ.
Further, all 0-gates have valid certificates in some derivation σ. Therefore, we have constructed
a valid kcps+ proof π′ = (Dn, σ). With |Dn| = O(n2 · |vars(φ)|) and |σ| = O(n2 · |vars(φ)| · |π|),
we get that |π′| is polynomial in |π|. ◀

We remark that there is a related result in [12], which shows that we can efficiently
transform any MICE proof of some formula φ into a Decision-DNNF D representing φ. The
theorem above strengthens this by showing that we can even derive some set σ of clauses
such that all 0-gates of D are σ-certified.

Next, we observe that kcps+ is indeed a generalization of kcps. This holds as we can write
any kcps proof D as a kcps+ proof (σ,D) where σ contains all clauses of φ.

▶ Observation 4.2. kcps+ p-simulates kcps.

Now, we efficiently transform a given kcps+ proof of a CNF φ into a CPOGDecision-DNNF

proof. The choice of the Decision-DNNF D for the CPOG proof is obvious: we simply copy it
from the kcps+ proof. Therefore, we only have to construct a short refutation of φ |= D.

▶ Theorem 4.3. CPOGDecision-DNNF p-simulates kcps+.

Proof. Let π = (σ,D) be a kcps+ proof for φ. Further, let E(D) be the clausal Tseitin
encoding of the Decision-DNNF D with root R. For any resolution refutation ρ of φ∧ E(D) ∧
(ϑR), we obtain a valid CPOGDecision-DNNF proof π′ = (E(D), ρ). In order to prove the theorem,
we construct ρ such that |π′| = O(|π|). As |π′| = |E(D)| + |ρ| = O(|D|) + |ρ| it is sufficient
that |ρ| = O(|D| + |σ|). For that, we first derive all clauses of σ in ρ.
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▷ Claim 4.4. For every gate N in D, we can efficiently derive a clause CN = (ϑN ∨ C)
from E(D) ∧ φ where C is a clause satisfying the invariant (I): Any assignment leading to N
falsifies C.

Proof sketch. We show this by induction on the gates of D starting at the leaves. In the
base case, N is a leaf. If N is a 0-gate with certificate C ′, we can derive CN for C = C ′.
Otherwise, if N is an 1-gate, we can derive CN with C = ∅. In the induction step, we use
the already derived clauses C1, C2 corresponding to the children of N . Together with E(D)
we can derive the clause CN with a constant number of resolution steps. ◁

As a result, we can also derive the clause CR = (ϑR ∨ C) for the root R such that C
satisfies (I). As there are no decisions above R, C has to be the empty clause, i.e., we have
derived the unit clause CR = (ϑR). By applying a resolution step with the other unit clause
(ϑR), we refute φ ∧ E(D) ∧ (ϑR) with resolution.

In total, ρ contains the derivations of σ and additionally, a constant number of resolution
steps for each gate in D. Thus, the resulting resolution refutation ρ has at most size
|σ| +O(|D|) and the theorem follows. ◀

We finally show last simulation which almost follows by definition as POGs generalise
Decision-DNNFs.

▶ Observation 4.5. CPOG p-simulates CPOGDecision-DNNF.

Proof sketch. In order to transform a CPOGDecision-DNNF proof (E(D), ρ) into a CPOG proof
(E(P ), ρ, ψ,X), we use that D is also a POG by setting P = D. We can compute the
corresponding ψ efficiently as shown in Lemma 3.6. Further, it is easy to show with resolution
that all Or-gates are deterministic, i.e., X can also be computed efficiently. ◀

With that, we have shown all simulations illustrated in Figure 2. Upon closer examination,
all these simulations turn out to be computable with logarithmic space. Moreover, the
simulations in Observation 4.2 and Theorem 4.3 can be computed in linear time.

5 MICE and kcps are incomparable

Having determined the simulation order of #SAT proof systems, we now turn to lower
bounds and separations between them. We first compare MICE and kcps.

5.1 CNFs that are hard for kcps but easy for MICE
Before getting to specific lower bounds, we provide a tight characterisation of proof size on
unsatisfiable formulas for kcps in terms of regular resolution.

▶ Proposition 5.1. For unsatisfiable formulas, kcps and regular resolution are p-equivalent.

Proof. The proof is based on [37, Theorem 18.1] stating that the minimal size of any regular
resolution refutation of a formula φ equals the minimal size of any read-once branching
program solving the search problem for φ. A read-once branching program for the search
problem for φ is equivalent to a φ-certified Decision-DNNF D with D ≡ φ that contains no
And-gates. Thus, the result directly implies that kcps p-simulates regular resolution for
unsatisfiable formulas.

For the converse simulation of kcps by regular resolution we consider an arbitrary φ-
certified Decision-DNNF D with D ≡ φ for some unsatisfiable formula φ and show that we
can get rid of all And-gates:
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▷ Claim 5.2. There is a φ-certified Decision-DNNF D′ with D′ ≡ φ and |D′| ≤ |D| that
contains no And-gates.

Proof sketch. To prove this claim we present a technique to remove an And-gate. Let N be
an And-gate of D such that all ancestors of N are Decision-gates. Further, let N1 and N2
be the children of N , i.e. D(N) ≡ D(N1) ∧D(N2). We can argue that not both D(N1) and
D(N2) are satisfiable as this would lead to a satisfying assignment of φ.

Therefore, we can assume w.l.o.g. that D(N1) is unsatisfiable, i.e. D(N) ≡ D(N1) ∧
D(N2) ≡ D(N1). Thus, we can decrease the number of And-gates of D by 1 by replacing
gate N with N1. This can never increase the set of assignments that reach a particular gate,
and therefore leaves all certificates intact. In this way, we can remove every And-gate one
by one without increasing the size of D. ◁

By using this claim, we convert D to some D′ without And-gates, apply the result from
[37, Theorem 18.1] and obtain a regular resolution refutation of size at most |D|. ◀

Therefore, any lower (and upper) bound for regular resolution transfers to kcps. For
regular resolution, many lower bounds are known [43], and in particular all formulas hard for
resolution such as the pigeonhole principle [32] are hard for kcps. Note that any unsatisfiable
formula has a trivial Decision-DNNF. Nevertheless, all kcps proofs can be of exponential size.
This answers an open question from [18].

A similar proof size characterisation on unsatisfiable formulas is known for MICE, in this
case in terms of full (i.e. unrestricted) resolution [11].

▶ Proposition 5.3 ([11]). For unsatisfiable formulas, MICE and resolution are p-equivalent.

As there are CNF families exponentially separating regular and full resolution [3, 57],
Propositions 5.1 and 5.3 yield:

▶ Corollary 5.4. MICE is exponentially separated from kcps.

While this separation is on unsatisfiable formulas, we can easily extend it to satisfiable
CNFs as well. For this, let φ be an unsatisfiable formula that separates resolution from
regular resolution. For some fresh variable a /∈ vars(φ), we define φ′ = {(C ∨ a) | C ∈ φ}.
Then, φ′ has 2|vars(φ)| models and still separates MICE from kcps.

Firstly, φ′ is still easy for MICE. We derive the claim (φ′, {a}) with (Comp), the absence
of models statement is short since φ′[a] = φ has a short resolution refutation. Further, we
derive (φ′, {a}) with (Ext) and finally apply (Comp) to these two claims, resulting in (φ′, ∅).

Secondly, we argue that the hardness of φ for kcps implies the hardness of φ′. For the
contrapositive, let D ≡ φ′ be a φ′-certified Decision-DNNF. Then, D[a] ≡ φ is a φ-certified
Decision-DNNF of size at most |D|, i.e. φ has a kcps proof of analogous size.

5.2 CNFs that are hard for MICE but easy for kcps
Next, we show that MICE cannot simulate kcps. For that, we use a variant of the pebbling
formulas on pyramidal graphs. For a given size n ∈ N, the pyramidal graph (cf. Figure 5)
has m := n(n+1)

2 nodes: a node Pi,j for each 1 ≤ j ≤ i ≤ n. For each i < n, there are edges
from Pi+1,j and Pi+1,j+1 to Pi,j . The variable i is called the row of the node, and j is called
the column. When comparing rows, we talk about greater or smaller rows. The nodes in
row n are called sources, and the node in row 1 is called the sink.
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Figure 5 Pyramidal graph for PEB6, depicting the situation in the proof of Theorem 5.7. For a
fixed claim in a MICE proof of PEB6, the red nodes are active, i.e. they correspond to variables that
occur in the formula F . The diamond-shaped nodes form the boundary of this claim as they have
neighbours that are not active.

We start with some intuition for the pebbling formulas PEBn. They have two variables
wi,j and bi,j for each node Pi,j . wi,j represents a white pebble being placed on that node,
while bi,j represents a black pebble. The formula requires each source node to contain a
pebble. Every other node needs to contain a pebble if and only if both its parent nodes
contain a pebble. No node can simultaneously contain a black and a white pebble.

▶ Definition 5.5. Let n be an integer. The formula PEBn has variables wi,j and bi,j for
every i, j ∈ [n] with j ≤ i. PEBn is a CNF defined as follows:

For every i, j ∈ [n− 1], j ≤ i the formula requires that

(wi,j ∨ bi,j) ↔ ((wi+1,j ∨ bi+1,j) ∧ (wi+1,j+1 ∨ bi+1,j+1)).

This is expressed using the clauses

C1
i,j = wi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j C2

i,j = wi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j

C3
i,j = bi+1,j ∨ wi+1,j+1 ∨ wi,j ∨ bi,j C4

i,j = bi+1,j ∨ bi+1,j+1 ∨ wi,j ∨ bi,j

C5
i,j = wi+1,j ∨ bi+1,j ∨ wi,j C6

i,j = wi+1,j ∨ bi+1,j ∨ bi,j

C7
i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ wi,j C8

i,j = wi+1,j+1 ∨ bi+1,j+1 ∨ bi,j .

For every j ∈ [n] there is a clause wnj ∨ bnj.
For every i, j ∈ [n], j ≤ i there is a clause C9

i,j = bi,j ∨ wi,j.

Note that the commonly used pebbling formulas require the sink node P1,1 to contain no
pebbles, making the formula unsatisfiable. We omit this requirement and obtain a formula
that is satisfied if and only if each node contains exactly one pebble. It has 2m models where
m is the number of nodes. Two nodes are called adjacent if there is an edge between them in
the pebbling graph.

To separate kcps from MICE with PEBn, we show that there are polynomial-sized proofs
in kcps while any MICE proof requires exponential size. We start with the upper bound.

▶ Proposition 5.6. There is a kcps proof of PEBn of size O(|PEBn|).

Proof. We iteratively construct a PEBn-certified Decision-DNNF D with D ≡ PEBn. For
each node Pi,j , we construct a partial Decision-DNNF with root Ni,j that handles the case
{wi,j = 0, bi,j = 0}. This means that in order to obtain a valid Decision-DNNF, all paths
to Ni,j must include these two decisions. We also make sure that descendants of Ni,j only
decide variables of nodes in rows greater than i.

We begin constructing the Ni,j for greater rows, starting with i = n, and continue to
smaller rows. For i = n, Ni,j is simply a 0-gate labelled with the clause wn,j ∨ bn,j , which
will be falsified by the assumption {wi,j = 0, bi,j = 0}.
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Ni,j : wi+1,j?

bi+1,j?
(Ni+1,j)

0
wi+1,j+1?

bi+1,j+1?
(Ni+1,j+1)

0
0 (C4

i,j)10
0 (C3

i,j)1
10

wi+1,j+1?
bi+1,j+1?

(Ni+1,j+1)
0

0 (C2
i,j)10

0 (C1
i,j)1

1

Figure 6 Fragment for the Decision-DNNF in Proposition 5.6. The 0-gates are certified with
clauses Ci,j from Definition 5.5.

For i < n, we add Ni,j according to Figure 6. The leaves of this proof fragment are either
0-gates that are certified by some clause C1

i,j to C4
i,j , or are connected to some previously

constructed gate Ni+1,j or Ni+1,j+1, after making sure that the corresponding node contains
no pebbles. In this way, we can obtain a graph that contains an appropriate gate Ni,j for
every node Pi,j .

Finally, we build the complete Decision-DNNF D. For each node Pi,j , ordered from least
to greatest i, we decide wi,j and, if it is 0, also bi,j . If both are 0, we connect to Ni,j ; if both
are 1 connect to a 0-gate certified by C9

i,j . We merge the branches of all other cases and
continue with the next node. After all nodes have been handled, we finally arrive at a single
1-gate.

Because of the ordering of the nodes, each path through D can decide each variable at
most once. Therefore, D is indeed a Decision-DNNF. It is equivalent to φ and φ-certified.
For each node Pi,j we add at most 13 gates, and there is one additional 1-gate. In total, the
number of gates is at most 13m+ 1 = O(|PEBn|). ◀

The actual lower bound for MICE is the more challenging part.

▶ Theorem 5.7. PEBn requires MICE proofs of size 2Ω(n).

Note that all known lower bounds for MICE so far are based on formulas with large
Decision-DNNF representation [11]. However, this lower bound technique does not work for
PEBn as it has polynomial-sized Decision-DNNFs (Proposition 5.6).

Proof. Let π be a MICE proof of PEBn. For a claim I = (F,A), the set of active
nodes A(I) contains exactly the nodes Pi,j where wi,j ∈ vars(F ) or bi,j ∈ vars(F ). We
define the width of I as w(I) = |A(F )| and the boundary of I as B(I) := {N ∈ AF |
there is an adjacent node N ′ /∈ AF }.

We show that a claim that considers about half of all nodes also needs to have a large
boundary:

▷ Claim 5.8. Let I be a claim with width bounded by m
3 ≤ w(I) ≤ 2·m

3 . Then, |B(I)| ≥ n
8 .

Let Gπ = (V,E) be the representation of π as proof graph, i.e., V is the set of all claims
in π and there is an edge (I1, I2) between two claim exactly if I1 was used to derive I2. Any
claim I ∈ V that is derived with (Join) has two incoming edges. For any such node, we
delete the edge from the child that has the smaller width. We refer to the resulting graph as
G′

π = (V,E′).

▷ Claim 5.9. For every model α |= PEBn, there is a path πα from the final claim to an (Ax)
claim, along edges in E′, such that for every every claim (F,A) ∈ πα, α |= A.
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In the rest of the proof, we use the πα from Claim 5.9 and define V ′ to be the union of
all πα. We argue that claims in V ′ with a large boundary also have a large assumption:

▷ Claim 5.10. Any claim I = (F,A) ∈ V ′ satisfies |A| ≥ |B(I)|.

Next, we partition the claims of V ′ into two sets

X = {I ∈ V ′ | w(I) < 2
3 ·m},

Y = {I ∈ V ′ | w(I) ≥ 2
3 ·m}.

Further, we define the set S ⊆ Y as the set of nodes in Y that have a child in X, i.e.

S = {I ∈ Y | ∃I1 ∈ X : (I1, I) ∈ E′}.

We argue that all claims in S have large assumptions:

▷ Claim 5.11. Any claim I = (F,A) ∈ S satisfies |A| ≥ n
8 .

On the other hand, every model of PEBn corresponds to a claim in S:

▷ Claim 5.12. Let α be a model of PEBn. Then, there is a claim (F,A) ∈ S such that α
and A are consistent.

Using Claims 5.11 and 5.12, we can finally prove the lower bound for the theorem. It
is easy to observe that PEBn has 2m models because there are 2 satisfying assignments
to the variables of each node. Let α be an assumption with at least n

8 variables and s

the number of nodes with one or two variables in α. We observe that 2s ≥ n
8 and the

number of models consistent with α is at most 1s · 2m−s ≤ 2m · 2n/16. Because each of 2m

models is consistent with a claim in S, S has at least 2n/16 elements. We conclude that
|π| ≥ |V ′| ≥ |S| ≥ 2n/16 = 2Ω(n) leading to the theorem. ◀

By combining Proposition 5.6 and Theorem 5.7, we finally obtain the separation of kcps
from MICE:

▶ Corollary 5.13. kcps is exponentially separated from MICE.

While MICE and kcps are incomparable (Corollary 5.4, Corollary 5.13), kcps+ simulates
both systems (Theorem 4.1, Observation 4.2), which immediately leads to the following two
separations.

▶ Corollary 5.14. kcps+ is exponentially separated from MICE and from kcps.

With that, we have proven all separations from Figure 2.

6 Conclusion and future work

In this paper, we compare the strength of existing proof systems for #SAT. We mention that
four of the systems we study, namely MICE, kcps+, CPOGDecision-DNNF and CPOG, include
propositional resolution derivations in proofs. These resolution derivations are needed to
check propositional entailment steps. We could define variants of the four mentioned proof
systems by replacing all resolution proofs by proofs in a different propositional proof system P

(and in the extreme case even with NP oracle calls). Close inspection of our results shows
that all simulations and separations as depicted in Figure 2 will continue to hold when
resolution is replaced throughout by an arbitrary proof system P that is at least as strong as
resolution (or an NP oracle).
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We discuss a few directions for further work. From a practical perspective, our simulation
results imply that CPOG might indeed be a suitable choice for proof logging as it simulates
all other #SAT proof systems. But also CPOGDecision-DNNF or kcps+ could be practically
sufficient for proof logging for all state-of-the-art #SAT solvers (and as of now, neither of
these is known to be strictly weaker than CPOG).

In a related direction, we ask whether state-of-the-art knowledge compilers could effectively
take advantage of kcps+ by using resolution instead of strictly relying on existing input clauses
for certificates. We see this especially in the light that component caching-based #SAT
solvers, which can already be captured with MICE, can be directly turned into practically
effective knowledge compilers [38]. Hence, one might ask whether we can design even stronger
knowledge compilers. Alternatively, we may use kcps or CPOG to certify caching-based #SAT
solvers by emitting a Decision-DNNF.

From a theoretical perspective the system kcps+ appears quite interesting as it has an
easy definition and is still strong enough to capture the different approaches of MICE and
kcps. Designing a designated lower bound technique for kcps+ appears to be an interesting
problem.
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Abstract
Many practical applications of satisfiability solving employ multiple steps to encode an original
problem formulation into conjunctive normal form. Often circuits are used as intermediate repres-
entation before encoding those circuits into clausal form. These circuits however might contain
redundant isomorphic sub-circuits. If blindly translated into clausal form, this redundancy is retained
and increases solving time unless specific preprocessing algorithms are used. Furthermore, such
redundant sub-formula structure might only emerge during solving and needs to be addressed by
inprocessing. This paper presents a new approach which extracts gate information from the formula
and applies congruence closure to match and eliminate redundant gates. Besides new algorithms for
gate extraction, we also describe previous unpublished attempts to tackle this problem. Experiments
focus on the important problem of combinational equivalence checking for hardware designs and
show that our new approach yields a substantial gain in CNF solver performance.
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1 Introduction

One of our motivations is to improve SAT solving for combinational equivalence checking of
hardware circuits [30,54,63]. For decades combinational equivalence checking was considered
the most successful application of formal verification in industry, actually before the SAT
revolution started. Earlier approaches in the last century relied on binary decision diagram
(BDD) technology, i.e., BDD sweeping [53], which however has been combined (if not replaced)
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with SAT sweeping [54] in this century. There are various commercial providers of equivalence
checkers, including major electronic design automation (EDA) vendors such as Synopsys,
Cadence, and Siemens, with widespread use in chip design.

Even though details about the inner workings of these EDA commercial equivalence
checkers are not publicly available, simply encoding large equivalence checking problems into
a monolithic SAT formula in conjunctive normal form (CNF) and then using a stand-alone
solver to solve them does not scale. Therefore, we submitted monolithic equivalence checking
benchmarks to the SAT Competition already in 2013 [24]. These benchmarks are regularly
used in SAT competitions (for instance two of them in 2022) and some are still challenging.

It is fair to assume that commercial equivalence checkers use a hybrid approach, where the
circuit structure guides incremental SAT queries to establish correspondence between internal
sub-circuits, as a recursive process following the topological order of the circuit. These hybrid
approaches to combinational equivalence checking have their own challenges [1, 70–72] and,
in our view, are not a solved problem.

Furthermore, improving plain CNF-level SAT solving on such instances will be beneficial
for hybrid approaches as well. Techniques useful for equivalence checking can have a positive
impact on other applications of SAT too.

The question remains why state-of-the-art SAT solvers working on CNF need that
guidance and are not able to efficiently find proofs for large equivalence checking problems,
actually also called miters [30], even though, at the end, also those hybrid approaches just
rely on the resolution proof system. While short proofs exist in theory, even for the simplest
equivalence checking task of comparing two identical circuits, current state-of-the-art solvers
based on the conflict-driven clause learning (CDCL) paradigm [26] fail to find short resolution
proofs, as we have shown in previous work [45].

Equivalence checking of arithmetic circuits [12, 52] has similar applications and issues.
In principle, algebraic techniques [34, 51, 61] can solve them, but they remain extremely
challenging if given in CNF. Therefore, we consider arithmetic circuit verification out-of-scope
for this study. We further focus on combinational equivalence checking leaving sequential
equivalence checking, which relates to hardware model checking, to future work. Our goal is
to improve CNF SAT solving for combinational (non-arithmetic) equivalence checking.

We consider isomorphic miters, the problem that encodes equivalence checking of two
identical copies of a circuit, but also will take a look at the comparison of non-isomorphic
circuits. The latter are actually the main target in industrial applications of equivalence
checking, where a synthesized and optimized circuit and the original unsimplified circuit are
compared. These optimized miters are much harder to solve.

The real cause for this failure of CDCL to solve isomorphic miters encoded into CNF is
unclear, but proven empirically, as our experiments confirm. We can offer two explanation
attempts though. First Yakau Novikau suggested at the Dagstuhl seminar on “The Theory
and Practice of SAT Solving” in 2015 that, due to the recursive nature of equivalence
checking, to learn an internal equivalence (two binary clauses) the SAT solver must fully
restart in-between learning the two clauses. As a consequence, which again only empirically
has been confirmed, solving miters in CNF greatly benefits from rapid restarts, i.e., restarting
after each conflict. The second observation is that SAT solvers on miters even for isomorphic
circuits learn rather long clauses, followed by shorter and shorter clauses until they learn
some binary clauses. But then the whole process repeats, while a guided approach can focus
on learning the necessary binary clauses directly.
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Figure 1 Example of an equivalence checking problem for two identical (isomorphic) circuits
consisting each of one AND, XOR, and ITE (multiplexer/if-then-else) gate. The miter circuit in the
middle (b) compares the output of the two circuits and assumes they are different by feeding them
into another XOR gate which in turn is assumed to produce the output value 1. The equational
semantics (a) is shown on the left which after Tseitin encoding [67] gives the CNF (c), e.g., the last
AND gate G8 in the second circuit is encoded by the last three clauses C25, C26 and C27.

While when working on circuits directly the gates are explicitly present, new gates can
appear during solving. Our experiments on the SAT Competition 2022 shows that many SAT
problems have gates, partially due to Tseitin encoding and redundant isomorphic structures.
Therefore, it makes sense to have our technique on the CNF side directly: our implementation
in Kissat identifies more than 180 million congruent variables.

2 Preliminaries

We assume that the reader is familiar with propositional satisfiability (SAT) and otherwise
refer to [25]. In order to save space we abbreviate formulas in conjunctive normal form (CNF)
by omitting operators if they are clear from the context. For instance we use (ar)(as)(ar s)
to denote the CNF (a ∨ r) ∧ (a ∨ s) ∧ (a ∨ r ∨ s). We identify a double negated literal with
itself and denote with |l| the variable v of a positive literal l = v or negative literal l = v̄.

In Fig. 1, we present an example of a combinational equivalence checking problem (miter).
This is an isomorphic miter as the two circuits compared are identical. In the experiments
we also consider the case where one of the circuits is an optimized version of the other, since
these optimized miters are the main target in industrial applications of equivalence checking.

Hybrid approaches to equivalence checking (starting from [54] and most recently [72])
keep the two circuits alongside the CNF encoding in the SAT solver. During parsing such
an isomorphic miter from a file, they will already detect all equivalences and simplify both
circuits to one representation by applying “structural hashing”.

This technique is also called “hash consing” in implementations of functional programming
languages or “common sub-expression elimination” in compiler optimization. It is also
implemented in libraries for the manipulation of binary decision diagrams (BDDs) [33] or
and-inverter graphs (AIGs) [54] in the form of a “unique-table”.

The basic idea of our approach is to simulate structural hashing by deriving from the
CNF through resolution binary clauses of the equivalence of literals representing outputs of
equivalent gates: For the two AND gates G7 and G8 in Fig. 1 we first derive a1 = a2, i.e.,

SAT 2024
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the binary clauses (a1 ∨ a2) and (a1 ∨ a2). Then we derive x1 = x2 for the two XOR gates
G5 and G6. This allows us two replace the inputs a2 and x2 of the second ITE gate G4 by
a1 and x1 which in turn yields m1 = m2. Substituting m2 with m1 in the right hand side
(RHS) of gate G2 simplifies to 0, which contradicts the assumption that the outputs of the
two compared circuits are different (p = 1).

We show first how such a simulation is feasible starting from a CNF encoding and second
how our new congruence closure approach solves isomorphic miters instantly. In the second
scenario, when checking optimized miters, it is further expected that during solving often
identical sub-circuits emerge. Our approach then allows to simplify the problem through
inprocessing, which reduces over-all solving time, as confirmed in our experiments.

Related to clausal congruence closure is SAT sweeping. It has only been described in
our solver description [21, 22] and uses the “small” SAT solver Kitten within Kissat to
prove the equivalence of two literals. It can simulate congruence closure (if the variables are
scheduled in the right order), but it is more expensive as it relies on Kitten as SAT oracle.
However, it is also stronger, because it is not limited to matching gates syntactically.

Our new implementation in Kissat with efficient algorithms for gate extraction runs
congruence closure until completion during both pre- and inprocessing, even for the largest
CNFs in the SAT competition. We enable it by default without limit, in contrast to our earlier
attempts to solve isomorphic miters including “lazy hyper binary resolution” [9], “tree-based
look ahead” [45], “simple probing” (see next Sect. 3), “blocked-clause decomposition” [44],
and “internal SAT sweeping” [21,22], which all need to be limited or preempted.

3 Simple Probing

Simple probing is available in Lingeling since 2012 [10] motivated by the observation [45] that
though hyper binary resolution (HBR) [3, 4, 42] combined with equivalent literal substitution
(ELS) [2, 36,56,68] in theory can solve identical miters, in practice it fails to do so.

The problem with existing HBR implementations [3, 4, 42, 45] is that they are “global”
and rely on complete failed literal probing, followed or interleaved with a global form of
ELS. This means that all literals are probed and all binary clauses are taken into account
in finding and substituting equivalent literals. For isomorphic miters, the fix-point of this
process is only reached after many rounds of HBR and ELS. The main idea behind “simple
probing” is to apply HBR and ELS steps only locally to avoid some unnecessary work.

Continuing with the example in Fig. 1, we resolve the 6 clauses C22, . . . C27 of the two
AND gates G7 and G8 through two hyper-binary resolution steps:

(a1r s)24 (a2r)25 (a2s)26

(a1a2)28
HBR1

(a2r s)27 (a1r)22 (a1s)23

(a2a1)29
HBR2

These two hyper binary resolution steps yield the equivalence a1 = a2, represented by the
two resolvents, and correspond to the following two linear chains of resolution (RES) steps:

(a1r s)24 (a2r)25

(a1a2s) RES (a2s)26

(a1a2)28
RES

(a2r s)27 (a1r)22

(a2a1s) RES (a1s)23

(a2a1)29
RES

Note that such linear resolution chains correspond to reverse-unit propagation (Rup) [41] in
clausal proofs [46,47]. Next we have to substitute (w.l.o.g.) a2 by a1 in the formula:

(m2c a2)10 (a1a2)28

(m2c a1)30
RES

(m2c a2)12 (a2a1)29

(m2c a1)31
RES
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This again boils down to resolution, which also explains why simple probing can produce
Rup proofs [41] easily. Also C25, C26, and C27 of the AND gate G8 of the circuit on the
right should be substituted, but the result would be identical to the already existing clauses
C22, C23 and C24 of the equivalent gate G7 of the circuit on the left, and should be avoided.
Instead, they should just be deleted, the main feature in Drup which extends the Rup proof
system by including “deletion” information [69] to speed-up proof checking.

This forms the core of simple probing. In the implementation we use a counting argument:
we find “immediate” hyper binary resolvents by counting how often a literal occurs in binary
clauses which can be resolved with a given non-binary base clause. For the base clause C24,
we only consider the two binary clauses C25 and C26 as resolution candidates because we
can ignore the blocked clauses C22 and C23 (as they both contain a1). The literal a2 occurs
twice in them, and, since the base clause has one literal more than the occurrence count,
this yields C28 through HBR1. Similarly, we get C29 using C27 as base clause.

Whenever we find a new hyper-resolvent this way, without adding duplicates, we check
whether its dual clause with both literals negated already exists. For instance, assume that
in our example applying HBR1 first. Then, when clause C29 is derived through HBR2, as its
dual (C28) already exists, the equivalence a2 = a1 is derived. To substitute one literal with
the other, we traverse all clauses containing the literal to substitute, apply the substitution,
and delete the original clause. While checking for dual clauses only requires finding all binary
clauses in which a literal occurs, the substitution step requires full occurrence lists.

The complete preprocessing algorithm in Alg. 2 needs to determine which and when
clauses are (re)considered as base clauses. As clauses are eagerly removed and added in
this approach, we do not want to use base clauses as scheduling objects in a working queue.
Instead, we opted for our implementation in Lingeling to have literals occurring in base
clause candidates as scheduling objects. Initially, all literals are candidate literals for simple
probing. For each candidate, we go through all its non-binary clauses (requiring occurrence
lists) and then apply the two-step procedure described above. After finding and substituting
equivalence, we reschedule literals occurring in the resulting clauses.

Simple probing will solve isomorphic miters of circuits with only AND gates. Actually,
after substituting the equivalence of outputs of the compared circuits, the comparison in
clauses of the miter XOR gates will yield a unit clause. We would need to propagate those
units to derive unsatisfiability (unless each compared circuit has only one output).

However, even though simple probing implicitly treats OR as AND gates, it does not
handle other more complex gates, particularly neither XOR nor ITE gates. Actually,
HBR+ELS alone cannot solve such miters with XORs and ITEs, including our example, as
already observed by Heule at al. [45]. They proposed to interleave probing based HBR+ELS
with saturating ternary resolution (TRN) [28] to simulate structural hashing for XOR and
ITE gates, i.e., add all resolvents of at most length three between ternary gates.

Such ternary resolution is rather costly, particularly if run until completition. Thus it
needs to be localized in combination with simple probing and also does not work for larger
XOR gates with more than two inputs. Nevertheless, CaDiCaL [23] and Lingeling [11]
both implement (non-localized) TRN but not eagerly and in a limited way.

4 Gate Extraction

Previous attempts (including simple probing) to solve CNF-encoded isomorphic miters
through HBR (with ELS and TRN) essentially failed. They are orders of magnitude slower
than circuit-based techniques, as already pointed out in the conclusion of [45] and again
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Algorithm 2 Pseudo code of “simple probing” from Lingeling through local hyper binary
resolution (HBR) and eager equivalent literal substitution (ELS): We interpret the given CNF F as
a set of clauses, which in turn are sets of literals, with no duplicates. With |r| ̸= |l| in Line 10 we
assume that the variables of r and l are different. Line 13 performs the actual ELS by replacing all
occurrences of l with the representative literal r (resp. l by r). In the actual implementation, we
consider additional cases, e.g., we check for hyper binary resolved units when γ(r) = |C| in Line 10.

simple-probing (CNF F ) // by reference, i.e., F updated in place
1 literals L = all literals in F

2 candidates Λ = L

3 while Λ ̸= ∅
4 pick and remove l ∈ Λ
5 for all “base” clauses C ∈ F with |C| > 2 and l ∈ C

6 for all literals k ∈ C

7 counts γ : L → N initialized to γ ≡ 0
8 for all binary clauses (o ∨ k) ∈ F

9 γ(o)++ // increment count of other literal o by one
10 for all r with γ(r) + 1 = |C| and |r| ̸= |l| and (r ∨ l) ̸∈ F

11 add (r ∨ l) to F // HBR
12 if (r ∨ l) ∈ F // checking for dual clause - ELS
13 substitute l = r in all clauses D ∈ F with l or l in D

14 reschedule literals in resulting clauses by adding them to Λ
15 continue with outer while loop at Line 3

confirmed in our experiments. The key to obtaining a scalable algorithm is to extract “gates”
from the CNF instead, also called “macros” and “(functional) definitions” in related work.
This takes us halfway to the reconstruction of the original circuit, except that we do not care
about the topological order, nor do we try to find global (primary) inputs or outputs.

Gate extraction goes back to [40, 58, 60] and we refer to the preprocessing chapter of the
SAT handbook [26, Sect. 9.6.2] for details. These works were either limited in scope or had
as goal to recover an actual circuit, including inputs and outputs as well as topologically
ordering extracted gates. This is actually a difficult problem in general, as for instance
XOR constraints (and inverters) are not directed, i.e., the Tseitin encoding of an XOR gate
of arity n is symmetric in all variables and allows to actually extract n + 1 gates. Even
for Tseitin-encoded AIGs, which are circuits with only AND gates (and inverters), there
are problems. First, constant inputs might turn binary AND gates into unary AND gates
(buffer/equivalences/inverters), which have to be ordered. Second, the same clause can be
used for extracting multiple gates, which requires selecting a gate.

Recent work stays on the CNF level and uses blocked clause decomposition (BCD)
instead [5,44,49,50]. Note, however, that this approach does not support either in-processing
or the production of proofs. A basic XOR-constraint extraction algorithm is described in [64]
with the goal to enable algebraic reasoning. Gate detection has also been used extensively
during SAT preprocessing to filter out resolvents in bounded variable elimination [37, 39]. In
that context, it is local to the candidate variable for elimination and thus other algorithms
apply. Similar gate-extraction approaches exist in richer logics (#SAT and QBF) too [55,62].

We only syntactically extract “gates”, trying to reverse the CNF encoding, e.g., from the
clauses C22, C23, and C24 in the CNF of Fig. 1 we extract the “gate” (equation) a1 = r ∧ s.
Semantic extraction (such as [39, 62]) is much more powerful, but also much more expensive.
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Algorithm 3 Basic algorithm for extracting AND gates. As in Alg. 2 correctness hinges on the
assumption that F is without trivial clauses and all its clauses, as well as F , are interpreted as sets
without duplicates. Thus, in the implementation, one must remove duplicated binary clauses first.
Only binary clauses need to be watched, assuming base clauses can be traversed in some other way.

basic-and-gate-extraction (CNF F )
1 resulting AND gates A = ∅
2 literals L = all literals in F

3 for all clauses C ∈ F with |C| > 2
4 marks µ : L → B initialized to µ ≡ ⊥ // implemented as bit-map
5 for all literals r with r ∈ C

6 µ(r) = ⊤
7 for all literals l ∈ C

8 n = 0
9 for all binary clauses (l ∨ r) ∈ F

10 if µ(r) then n++
11 if n = |C| − 1
12 let (l ∨ r1 ∨ . . . ∨ rn) = C // structured binding
13 add AND gate (l = r1 ∧ · · · ∧ rn) to A

14 return A

5 AND-Gate Extraction

Our basic-and-gate-extraction algorithm is shown in Alg. 3. For each non-binary base clause,
it first marks the negation of all its literals. Then, for each literal in the clause, we traverse
all binary clauses in which it occurs negatively. If the number of other marked literals in
those binary clauses is one less than the size of the base clause, we have found an AND
gate. However, for large formulas with millions of variables, millions of binary, and candidate
clauses,1 this algorithm is too slow to run until completion in order to solve miters.

In a failed improvement attempt, we added all binary clauses to a hash table, such that
we can directly search for (l ∨ r) when considering l as the left-hand side literal for all other
r with r ∈ C instead of marking (Lines 5–10). However, it turns out that for large formulas,
filling the hash-table took the same amount of time as the marking variant in Alg. 3.

Our first successful improvement counts the number of occurrences of literals in binary
clauses and drops candidate clauses C where no literal has enough negative occurrences in
binary clauses. Actually, iterations of the loop in Lines 7–13 can always be skipped in Alg. 3
for literals l where l occurs less than |C|−1 times in binary clauses. Our second improvement
uses the observation that, while considering the left-hand-side (LHS) candidate l in Line 7
of that loop and traversing binary clauses (l ∨ r) in Line 9, all remaining LHS candidates
l′ ∈ C not yet tried still need to occur negated as one of these r.

For example, let C = (l1 ∨ l2 ∨ l3) in Line 3. Assume l1 occurs only once in binary clauses,
and thus is skipped. Further, let (l2 ∨ r1) and (l2 ∨ r2) be the only binary clauses with l2
when iterating over l = l2 in Line 7. If neither l3 = r1 nor l3 = r2 then l3 is no LHS candidate
as (l2 ∨ l3) is missing. To implement this optimization, we use two mark bits for the negation

1 See e.g., SAT_MS_sat_nurikabe_p16.pddl_166 from the main track of the SAT Competition 2022
with 19 million variables, 199 million binary clauses and 14 million candidate base clauses.
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Algorithm 4 This is a basic algorithm for XOR-gate extraction. It uses the bit-extraction function
β to determine if the bit at a given bit position is set and π to compute its parity.

basic-xor-gate-extraction (CNF F )
1 resulting XOR gates X = ∅
2 let β : N × N → {0, 1} with β(i, s) = (s/2i) mod 2 // extract ith bit from s

3 let π : N → {0, 1} with π(s) = |{i | β(i, s) = 1}| mod 2 // parity of all “bits” in s

4 for all clauses C = (l0 ∨ . . . ∨ lm−1) ∈ F with |C| > 2
5 for s = 2 to 2m − 1 with π(s) = 0 // flip an even number of sign bits
6 D = {li | β(i, s) = 0} ∪ { l̄i | β(i, s) = 1} // negate li if ith bit set
7 if D ̸∈ F continue with outer loop at Line 4 // clause missing
8 for i = 0 to m − 1 // add m XOR gates of arity m − 1
9 let (li ∨ k1 ∨ . . . ∨ km−1) = C and l = l̄i

10 add XOR gate (l = k1 ⊕ · · · ⊕ km−1) to X

11 return X

of literals in C. The first mark plays the same role as µ in Alg. 3 while the second is used
to mark the negation of remaining LHS candidates. When counting occurrences of marked
literals in Lines 9–10 we update the second mark bit and later only consider LHS literals
which have the second bit still set.

6 XOR-Gate Extraction

As with AND-gate extraction, there is little published work on XOR extraction. It is briefly
mentioned in [10] to support Gaussian elimination and a preliminary form of congruence
closure in Lingeling for the SAT Challenge 2012. Both CaDiCaL since 2019 [13] and
Kissat since 2020 [20] use XOR-gate extraction to make bounded variable elimination more
effective, as originally proposed in [37] for AND gates. Our basic algorithm in Alg. 4 follows
these implementations and corresponds to a similar algorithm presented in [64].

In Lines 5–7, we check that all clauses D are present in the CNF which differ from the
base clause C by negating exactly an even number of literals. If this is the case, we have
found the XOR constraint 1 = l0 ⊕ · · · ⊕ lm−1, falsified by the same assignment which falsifies
C (assigning all literals of C to false). This constraint can now be rewritten into those m

XOR gates added on Line 10, by removing li from the right-hand-side (RHS) of the constraint
and replacing its LHS with the negation l of li (“1” on the LHS above acts as negation).

The reason for adding all m gates is that we cannot (and do not want to) order symmetric
gates, where input and output can be exchanged. Consequently, the functional dependency
graph between inputs and outputs of our extracted gates becomes cyclic as soon as a single
XOR constraint is extracted and covers all the gates. Being able to handle such cyclic
dependencies is an important feature of congruence closure in our approach, which is not
possible when gate extraction is used to reconstruct the structure of circuits [40,60].

Note that for each XOR constraint found for a base clause C with m literals, the CNF
actually needs to contain 2m−1 − 1 matching D clauses, but we only extract m gates from it.
So even for m = 3, we extract only three gates covering four clauses. Nevertheless, the basic
algorithm performs redundant work, since Line 4 does not detect when C was already used
as a matching D clause in a successful extraction before.
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We can avoid this redundant work by considering in Line 4 only one of the clauses that
encodes an XOR gate. Assume we have a strict order over variables, for instance, by using
the integer encoding of variables in the DIMACS format. Then, C can be skipped in Line 4
unless either all literals of it are positive or only the largest one is negative. This amounts to
the condition l0 = |l0| < l1 = |l1| < · · · < lm−2 = |lm−2| < |lm−1| on C in Line 4.

Note that the number of clauses needed to encode an XOR gate of arity n is 2n, i.e.,
grows exponentially. As clauses in the encoding have size m = n + 1, we can therefore further
limit the size of the base clauses in Line 4 in Alg. 4. In practice, we did not see any need to
search for XOR gates of arity larger than the run-time parameter NXOR = 4.

Furthermore, as with AND gates, the XOR-extraction algorithm can be improved by
counting occurrences of literals in clauses that can be part of the encoding of an XOR gate.
Base clauses of size m = |C| considered for extracting an XOR gate of arity n = m − 1 can
be skipped if C contains a literal that has less than 2n−1 occurrences.

Finally, we realized that after counting the number of occurrences of literals in all clauses,
some clauses end up having literals with too few occurrences in the reduced set of considered
clauses and thus should not be considered anymore. Therefore, recounting might find
additional clauses to skip. This process can be repeated until fix-point, but most of the
reduction is achieved after two rounds of counting (the run-time parameter we are using).

For checking D /∈ F in Line 7, we connect all remaining clauses that can potentially
be part of an XOR gate encoding through full occurrence lists. Searching for D can then
be restricted to traverse the occurrence list of the literal in D with the minimum number
of occurrences, as in backward-subsumption checks [37]. Using hashing instead (still a
compile-time parameter) has similar negative results as for AND-gate extraction.

7 ITE-Gate Extraction

The most common type of encoded gates are AND gates, followed by XOR gates. Except
for a few applications where they are frequent, such as describing BDDs, ITE gates occur
much less often. However, occasionally it can be crucial to handle ITE gates efficiently.
For example, for one of the hard synthesized miters that we considered in our experiments
(test02 from [72]) it gave a 1000 × improvement in solving time: 1.79 seconds when extracting
vs. 2023.41 seconds when not extracting ITE gates (cf. Tab. 13, and Fig. 8 and 9).

As with AND and XOR gates we have been using a simple algorithm for ITE-gate
extraction in the context of variable elimination for many years, i.e., where the variable of
the LHS literal is fixed. A potential variant to extract all ITE gates in a given formula is
shown in Alg. 5. To encode an ITE gate (l = c ? t : e) exactly the following four ternary
clauses are needed (c̄ ∨ l̄ ∨ t), (c̄ ∨ l ∨ t̄), (c ∨ l̄ ∨ e), and (c ∨ l ∨ ē) ignoring two potential
additional redundant clauses (l̄ ∨ t ∨ e) and (l ∨ t̄ ∨ ē), which might be used to improve
arc-consistency of the encoding. Observe that the first two clauses encode the conditional
equivalence c → l = t and the third and fourth the conditional equivalence c̄ → l = e.

The inner loop at Line 6 gives quadratic complexity in the number of literal occurrences,
and with the check at Line 7 it looks even cubic. However, the actual goal of this algorithm
is to find for a candidate condition c both a positive (c → l = t) and a matching negative
conditional equality (c̄ → l = e), and thus to extract an ITE gate. This observation leads to
the optimized algorithm in Alg. 6. It iterates over all variables, instead of clauses, and looks
for positive and negative conditional equivalences E+ and E− for each of them. Equivalences
of both sets with the same LHS are then merged to form ITE gates.

SAT 2024
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Algorithm 5 This is a basic algorithm for ITE-gate extraction. To find ITE gates with a given
LHS literal l, as in variable elimination, the outer loop at Line 2 would only go over clauses with l.

basic-ite-gate-extraction (CNF F )
1 resulting ITE gates I = ∅
2 for all ternary clauses C = (l1 ∨ l2 ∨ l3) ∈ F

3 for i = 1 . . . 3
4 let (c̄ ∨ l̄ ∨ t) = C with c = l̄i

5 if (c̄ ∨ l ∨ t̄) ̸∈ F continue with next i at Line 3
6 for all ternary clauses (c ∨ l̄ ∨ e) ∈ F

7 if (c ∨ l ∨ ē) ∈ F

8 add ITE gate (l = c ? t : e) to I

9 return I

Algorithm 6 Fast ITE-gate extraction based on matching conditional equivalences.

find-conditional-equivalences (CNF F , literal c)
1 resulting conditional equivalences E = ∅
2 for all ternary clauses C = (c̄ ∨ l̄ ∨ t) ∈ F

3 if (c̄ ∨ l ∨ t̄) ∈ F

4 add l = t to E

5 return E

merge-conditional-equivalences (literal c, equivalences E+, equivalences E−)
6 resulting ITE gates I = 0
7 for all equivalences l = t in E+

8 for all equivalences l = e in E−

9 add ITE gate (l = c ? t : e) to I

10 return I

fast-ite-gate-extraction (CNF F )
11 resulting ITE gates I = 0
12 for all variables v in F

13 E+ = find-conditional-equivalences (F , v)
14 E− = find-conditional-equivalences (F , v̄)
15 add merge-conditional-equivalences (v, E+, E−) to I

16 return I

Further implementation details are as follows. Lines 2–3 of find-conditional-equivalences
are implemented by extracting pairs of all the other literals in ternary clauses with c̄, sorting
the literals in the pair (smaller literal first), and then sorting all these conditional pairs
lexicographically (positive literal smaller than negative). Those sorted pairs are split into
“ranges” of positive and negative occurrences of the same variable as first literal in a pair.

Then we try for each pair of the smaller range to find the dual pair (with both literals
negated) in the other range by binary search. Thus the complexity of find-conditional-
equivalences is bounded by O(n · log n) where n is the number of ternary clauses with c̄.

The nested loop in merge-conditional-equivalences can be implemented by first sorting
the two conditional equivalence sets and following a merge-sort-style strategy, passing over
both of them in increasing order of literals. It is still quadratic in the number of generated
ITE gates, which is the worst-case complexity of the problem anyhow.
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Finally, we can filter out (and do not watch) clauses which have literals that do not occur
often enough: two literals (the condition and the LHS literal) have to occur twice positively
and twice negatively, while the third literal must occur at least once in each polarity.

8 Congruence Closure

In SMT solvers [7] the congruence closure algorithm has found several applications, for
example in ground theory solvers [57], or during quantifier instantiation [6]. It uses the
congruence axiom to propagate and derive further equalities from a given set of equalities over
first-order ground terms. For instance, given the equalities x = y, u = f(x) and v = f(y),
the congruence axiom allows us to deduce u = v too. This idea can be extended to functions
and predicates of arbitrary arity. In contrast to structural hashing, it does not require any
topological order of the variables, and thus can also be applied to cyclic functional definitions.

Extracted or rewritten gates need to be normalized to increase chances of matching other
gates. For AND gates, the only form of normalization that can be achieved is to sort the
RHS literals, assuming once again a fixed order on variables, e.g., induced by the variable
order in the DIMACS file. The same idea can be applied to XOR gates, but besides sorting
we can further force all the RHS literals of an XOR gate to be positive: if the number of
negated RHS literals is even, their negations cancel, and we can simply drop them; if the
number is odd, we also drop the negations and negate the LHS literal instead.

For an ITE gate (l=c ? t : e), a normalization strategy known from the BDD literature [29]
applies. First, we ensure that the condition literal c is positive by using the equation
c̄ ? t : e ≡ c ? e : t, if necessary. Then, we also make sure that the then literal t is positive,
using c ? t̄ : e ≡ c ? t : ē and negating the LHS literal l if necessary.

After normalizing a gate, we check whether there is already an existing gate with the
same operator (AND, ITE, XOR) and the same RHS literals. This check is implemented
with a hash table using the operator and RHS literals as a key. If a gate is found with the
same operator and RHS, we have derived an equivalence between the two LHS literals of the
gates. This equivalence is recorded in a union-find data-structure [66], where every literal
points to its (smaller) representative or itself.

Whenever a literal is assigned a new representative literal, we put that literal into a
queue. Once all gates have been extracted, the propagation of these queued equivalences can
be started in the main congruence closure loop (lines 13–18 in Alg. 7). In each iteration, a
literal l of the queue is processed by iterating through all the gates that have l in their RHS.
Each such gate is rewritten by replacing l (resp. l) in them with its representative.

If a rewriting step results in a trivial gate, it is marked as garbage and skipped in later
checks. For example, assume that literal b is dequeued in Line 13, and it is equivalent to its
representative a. Then, the rewriting of the AND gate (l = a ∧ b) based on this equivalence
results in the equivalence l = a. This we record and then mark the gate as garbage, without
removing it from the RHS occurrence list of a.

Recording or merging an equivalence l1 = l2 consists of determining the representatives
r1 of l1 and r2 of l2 (could be the literal itself). Assuming w.l.o.g. that |r1| < |r2|, we use
r1 as the new representative for both literals and push l2 (the literal that is assigned a new
representative) on the equivalence queue. As a last step, for proof logging, we augment the
CNF with two binary clauses to capture that l2 ↔ r1 (this step is not shown in Alg. 7). Once
the loop terminates, this augmented CNF is passed to a global equivalent literal substitution
(ELS) procedure, which substitutes all equivalent literals in one pass over the formula.
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Algorithm 7 An abstract version of our congruence closure algorithm. In the actual implementa-
tion we use a hash table to search gates in G by their RHS (in Lines 11 and 17) and interleave the
loop in Lines 11–12 with gate extraction in Line 7. We further need to have fast access in Line 14 to
all gates with the dequeued literal in their RHS, for which we use occurrence lists. We also do not
show how derived unit clauses on this level of abstraction are handled which in our implementation
are first propagated over the CNF and then used to simplify gates.

merge-literals (CNF F , queue Q, representatives ρ, literals l1, l2) // F , Q, ρ by reference
1 r1 = ρ(l1), r2 = ρ(l2)
2 if r1 = r̄2 then F = ⊥ and return // inconsistent equivalence thus F unsatisfiable
3 select r ∈ {r1, r2} with |r| = min(|r1|, |r2|) // pick representative with smaller variable
4 update ρ(l1) = ρ(l2) = r and ρ(l̄1) = ρ(l̄2) = r̄

5 if r ̸= r1 then enqueue l1 to Q

6 if r ̸= r2 then enqueue l2 to Q

clausal-congruence-closure (CNF F ) // by reference, i.e., F updated in place
7 G = extract-gates (F)
8 literals L = all literals in F

9 representatives ρ : L → L initialized to ρ(l) = l

10 Q = empty literal queue
11 for all (l1 = rhs1), (l2 = rhs2) ∈ G with rhs1 = rhs2

12 merge-literals (F , Q, ρ, l1, l2)
13 while F ̸= ⊥ and Q not empty dequeue l from Q

14 for all gates (k = rhs) ∈ G where l or l̄ occurs in rhs
15 use ρ to rewrite (k = rhs) to (k′ = rhs′)
16 remove gate (k = rhs) from G

17 if G contains (k′′ = rhs′′) with rhs′ = rhs′′ then merge-literals (F , Q, ρ, k′, k′′)
18 else add gate (k′ = rhs′) to G

19 remove clauses C from F with C ̸= ρ(C) ∧ ρ(C) ∈ F

20 replace F with ρ(F )

Besides those (actually rather complex) ways of rewriting gates, another complication
exists. It has to be taken into account when rewriting actually leads to a unit: for instance, if
b in the discussed example with (l = a ∧ b) has ā as representative instead of a, we can derive
the unit clause l̄. In this situation, we not only propagate this new assignment through the
original CNF clauses, using the existing BCP mechanism of the SAT solver, but also need
to simplify all gates in which l or l̄ occurs. Thus our loop actually consists of propagating
with higher priority all literals root-level assigned to a constant through gates in which they
occur on the RHS, simplifying them accordingly, and then with lower priority propagating
equivalent literals and rewriting their gates as discussed above.

During this procedure (cf. Alg. 7), it might happen that an inconsistency is detected.
For instance, if in the last example where l = ⊥ is derived, the LHS l is already assigned to
⊤. Then the loop aborts and claims unsatisfiability of the formula immediately. This will in
particular be the outcome when congruence closure is applied to isomorphic miters.

As already pointed out in Sect. 3, matching two isomorphic gates and substituting
one LHS literal by its representative in all clauses where it occurs, necessarily results in
duplicating the clauses of the representative gate. This occurs, for instance, in isomorphic
miters where half of the variables vanish, but the number of clauses does not change.
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Figure 8 An example of an optimized miter. It is comprised of an unsimplified circuit on the
bottom part and its optimized variant above it. The optimized circuit simply omits the unnecessary
inverters. This example also illustrates why test02 from [72] is considerably more challenging
without ITE-gate extraction. For example, to recognize easily that the output of G5 (resp. G7)
is the negation of the output of gate G6 (resp. G8), the CNF encoding must maintain parts of
the structure of the circuits. Extracting and normalizing ITE gates allows the congruence closure
approach to realize the equivalence between the two circuits efficiently (cf. Fig. 9).

Therefore, we originally tried to eagerly delete clauses used to extract a gate as soon as
it became garbage or was removed. This risks turning unsatisfiable formulas satisfiable, as
clauses can be used multiple times to extract gates. Instead, we implemented a dedicated
global forward subsumption algorithm (hinted at in Line 19), which targets removing identical
clauses modulo equivalent literals as recorded in the union-find data structure.

9 Proofs

The algorithms for extraction and congruence closure as well as for rewriting and simplifying
gates are rather involved. Therefore, we rely on generating and checking clausal proofs for
correctness (i) with our internal proof checker during development and testing, as well as
(ii) by producing Drup proofs and external checking in production [48,65,69].

In principle, we just have to derive the two binary clauses for each detected equivalence.
While equivalences from matched AND gates are easy to handle as they can be simulated
by HBR and thus yield Rup steps as discussed in Sect. 3, equivalences from matched XOR
and ITE gates require more intermediate Drup steps as proposed in [59] for XORs or how
ternary resolution is used in [45] for ITE gates and binary XORs.

Note that eager ELS during congruence closure does not need to be modelled in Drup
proofs, i.e., substituting an equivalent literal by its representative (either in clauses or in
the RHS of a gate) as this is captured by propagation semantics in Rup. Proofs with
hints/antecedents, such as Lrat proofs [35], would require much more effort. The internal
proof checker receives the same information as the Drup proof, but in addition we check
that the clauses of the Tseitin encoding of all extracted or rewritten gates are Rup.
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(a) A miter of two ITE gates in AIGER [8] format.
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(x11 x6), (x11 x9), (x11 x6 x9),

(x12 x10 x11), (x12).

(b) The ands CNF encoding of the AIG.
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(c) The xits CNF encoding of the AIG.

Figure 9 An illustration of the difference between xits and ands CNF encodings of a given AIG.
The miter applies an XOR (described by the three AND nodes A20, A22, and A24) to compare
c ? t : e (AND nodes A8, A10, and A12) to c ? t̄ : ē (AND nodes A14, A16, and A18). The ands
encoding (Fig. 9b) translates all 9 AND nodes of the AIG independently of each other, resulting in
26 clauses over 12 Boolean variables. The xits encoding (Fig. 9c), on the other hand, recognizes the
ITE and XOR gates in the AIG and encodes the corresponding nodes together into a CNF with 11
clauses over 6 variables. While the ands encoding destroys the original ITE and XOR structures
of the formula, the xits encoding maintains them. That allows our approach to recognize, extract
and normalize the ITE gates efficiently and thereby the congruence closure algorithm can quickly
conclude that the two ITE expressions are equivalent. This explains the efficiency of our algorithm
on the test02 miter from the IWLS’22 benchmark set (cf. Sect. 7 and Fig. 12).

10 Benchmarks

Our first HWMCC’12 benchmark set contains CNF encoded miters where HBR has difficulties
and which had already been submitted to the SAT Competition 2013 [24]. These are miters
for 341 AIGER [8] models used in the Hardware Model Checking Competition 2012. The
original models are sequential and to obtain combinational miters, we simply treat latches as
inputs and their next-state functions as outputs. We further used Abc [31] as synthesis tool
to optimize the models (using the ‘&dc2’ command). These are passed through AigMiter
(from the AIGER [8] tools) to construct optimized miters, tagged opt. Isomorphic miters,
tagged iso, are generated in the same way, except that optimization through Abc is skipped.

These miter circuits are then translated to CNF with a new version of AigToCnf
(available in the AIGER GitHub repository and in the source code artifact [15]) which has
been extended to detect XOR and ITE gates in AIGER circuits. During Tseitin encoding, we
check whether an AND gate has two negated AND gates as children and actually implements
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an XOR or ITE gate. In this case we use a direct CNF encoding of four clauses, as for the
XOR and ITE gates in Fig. 1, instead of 9 clauses for three AND gates, skipping the two
child AND gates of the top AND gate. This reduces not only the number of clauses and
variables but also has positive effects on running time as our experiments will show (except
for the simple identical miters where there is little difference).

Therefore we have extended the original HWMCC’12 benchmark set by using this new
version of AigToCnf with XOR and ITE matching too, which results in four variants of
the 341 AIGER models: ands-iso, ands-opt, xits-iso, and xits-opt. We give in Fig. 8+9 an
example of an optimized miter. These benchmarks are available at [17].

Our second IWLS’22 set comes from the IWLS’22 paper [72] by He-Teng Zhang, Jie-Hong
R. Jiang, Alan Mishchenko, and Luca Amarù. It is an update on their DAC’21 paper [70],
focusing on a hybrid approach to SAT-sweeping, i.e., using a SAT solver incrementally, taking
circuit structure into account. Experiments in [72] used a subset of the benchmarks from [70].
These includes the five miters n01, n04, n06, and test01 and test02 in AIGER [8] format,
provided by Alan Mishchenko. These benchmarks were considered hard for SAT sweeping,
particularly for monolithic CNF-level SAT solving. Thus we consider this set of benchmarks
as a litmus test for our usecase. As for HWMCC’12, our IWLS’22 CNF benchmarks come in
two flavors: xits with special treatment of XOR and ITE gates during Tseitin encoding and
ands without. These benchmarks are available at [16].

It turned out, confirmed by Alan Mishchenko, that the outputs of test01 and test02 were
flipped in the generation process. This does not invalidate the SAT sweeping experiments
in [70, 72] at all. However, it needs to be taken care of when encoding them into CNF
with AigToCnf, by simply first negating the outputs with AigFlip. Furthermore, the
other three AIGs, n01, n04, and n06, are not negated but have multiple outputs. Thus,
we joined them by disjunction with AigOr. These tools are part of the AIGER library
https://github.com/arminbiere/aiger and included in the source code artifact [15].

Continuing the discussion of Section 9, we not only empirically checked via fuzzing [32]
that our implementation of congruence closure is sound but also that it is complete, i.e., it
really solves isomorphic miters with AND, XOR, and ITE gates. To that end, we generated
combinational AIGER models with our AigFuzz fuzzer, used AigMiter to produce an
isomorphic miter, and then encoded it to CNF with our new version of AigToCnf, which
detects XOR and ITE gates. The resulting CNF is given to Kissat using options that make
sure that only congruence closure is run (to completion as always) without using any other
preprocessing and not even entering the CDCL loop. Thus the CNF remains unsolved unless
congruence closure alone can solve it.

11 Experiments

We follow the set-up of the main track of the SAT Competition, where each solver configuration
is run on one benchmark instance in single-threaded mode. As compute platform we used
the bwForCluster Helix with AMD Milan EPYC 7513 CPUs and for all experiments enforced
a memory limit of 15 GB and a time limit of 5000 seconds with Runlim.

We compare our implementation of congruence closure, enabled by default in our new
version of Kissat with the latest version 1.0.0 of Lingeling implementing simple probing,
blocked clause decomposition (using the tools sblitter, followed by mequick, and finally
using the same SAT solver Lingeling 1.0.0) [44], the winner Sbva-CaDiCaL [43] of the
SAT Competition 2023, the latest version 1.9.5 of CaDiCaL [23] and MiniSat 2.2.0 [38]. We
further compare against Abc [31, 72] on miter circuits. It represents the state-of-the-art [72]
in hybrid SAT sweeping, but “per se” is not a solver, even though it uses SAT solvers.
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Different configurations of Kissat on HWMCC’12 miters [24]
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Figure 10 Comparison of variants of Kissat with more and more relevant features disabled. The
default configuration employs all of the methods described here. First, only the extraction of ITE
gates is disabled (no-congruenceites), then also the extraction of XOR gates (no-congruenceites-no-
congruencexors), then congruence closure is completely disabled (no-congruence), and finally even
internal SAT sweeping [21,22] is disabled (no-congruence-no-sweep). Note that for the ands encoding,
no ITE nor XOR gate can be extracted anyhow and therefore disabling their extraction gives the
same result as enabling them. Thus the plot shows only 6 ands variants but 10 xits variants. On this
and all the following plots, the results are shown in the same way as in the annual SAT competition,
e.g., a point with coordinates (1407, 333) means that 333 problems were solved in 1407 seconds.

Our results are presented as a cumulative distribution function (CDF), as in the SAT
Competition since 2021, giving the number of solved problems (y-axis) within the amount of
time (x-axis), i.e., the higher and the more to the left, the better. We include a horizontal
line for all instances (100%). The x-axis shows time up-to the time-limit of 5000 seconds.

While adding congruence closure to Kissat we introduced a dedicated preprocessing
round, during which, after unit propagation, the first complete round of congruence closure
is applied. Later, during solving, whenever probing based inprocessing is scheduled – which
includes vivification, equivalent literal substitution, and other procedures – we always schedule
again congruence closure elimination, but only on irredundant and binary clauses. It is also
run until completion. This allows us to find additional congruent literals, as gate structure
emerges after learning units, shrinking clauses, vivification, and variable elimination.

Our primary results on HWMCC’12 miters in Fig. 10 show that isomorphic miters (iso)
can be solved by our new congruence closure approach kissat-⋆-default instantly, both if we
encode only AND gates directly (ands) or match them to XOR and ITE gates and then use
a more elaborate Tseitin encoding (xits). Internal SAT sweeping [21, 22] implemented in
Kissat is in principle also able to find equivalences of gates. It is, however, scheduled after
our faster congruence closure algorithm. For xits encoding, congruence closure takes 0.79 s on
average (0 s–44.21 s) and the average percentage of total solving time is 5.4% (0.02%–26.03%).
Isomorphic miters are solved by our new algorithm instantly (the vertical lines in Fig. 10).
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Best variants of SAT solvers and Abc on HWMCC’12 miters [24]
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341  abc−240306−iso−fraig
341  kissat−ands−iso−default
340  lingeling−1.0.0−ands−iso−prbsimplertc
336  kissat−xits−opt−default
335  abc−240306−opt−fraig
331  blocked−clause−decomposition−ands−opt
331  blocked−clause−decomposition−ands−iso
329  lingeling−1.0.0−ands−opt−prbsimplertc
323  cadical−1.9.5−xits−iso
321  sbva−cadical−ands−iso
320  cadical−1.9.5−xits−opt
319  sbva−cadical−xits−opt
297  minisat−2.2.0−xits−iso
294  minisat−2.2.0−ands−opt

Figure 11 Number of solved HWMCC’12 miter instances at each point of time. To improve
clarity and save space, we show only the best encoding variant (ands or xits) for each SAT solver. For
instance our experiments revealed that for Kissat on optimized miters (opts) the xits encoding, i.e.,
kissat-xits-opt-default was superior to kissat-and-opt-default with the ands encoding while for MiniSat
it was the opposite (and therefore we only show minisat-2.2.0-ands-opt and not minisat-2.2.0-xits-opt).

Comparison with other solvers is shown in Fig. 11. Optimized miters (opt) are in general
harder to solve, but clausal congruence closure, as enabled by default in kissat-xits-opt-default,
even surpasses abc-240306-opt-frag, which represents the state-of-the-art in hybrid SAT
sweeping [72], as implemented in Abc (command ‘&fraig -y’). Running simple probing
in Lingeling until completion (lingeling-1.0.0-ands-iso-prbsimplertc) is the only CNF-level
approach that can compete on isomorphic miters (iso), but is not competitive on optimized
(opt) ones (Fig. 12, Tab. 13). Note that simple probing can not handle XOR nor ITE gates.

Fig. 12 shows the results on IWLSS’22 benchmarks. Our implementation in Kissat
(in contrast to Abc) can provide DRAT proofs [69] as standard in the SAT Competition.
Actually only DRUP proofs are relevant for congruence closure, as described in Sect. 9.
The results demonstrate that the overhead for proof production (proof) for Kissat is low
and proof checking (check) has comparable run-time to solving. On these 5 benchmarks
our new algorithm gives substantial improvements in solving time, i.e., kissat-xits-default
vs. kissat-xits-no-congruence in Tab. 13. On four of these benchmarks Abc still wins (running
on the AIGER circuit model while Kissat only gets CNF) except for test02 where Kissat
is faster for the xits encoding. See Fig. 8+9 for an explanation.

To assess the effectiveness of congruence closure on a more general set of problems, we also
evaluated our new version of Kissat on problem instances [18,19] from the SAT Competition
2022 and 2023. The results show that our implementation is fast enough to run to completion
even when there are few or no gates to extract. On the 2022 problems our method solves 14
more instances (Fig. 14). The effect of congruence closure on the 2023 problem set is small
(cf. Fig. 15), probably due to a large fraction of combinatorial benchmarks. Following the
SAT practitioner manifesto [27] we also compare against the 2023 winner Sbva-CaDiCaL.

SAT 2024
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Hard Combinational Equivalence Checking Miters from IWLS’22 [70,72]
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5  kissat−xits−no−congruence
5  kissat−xits−no−congruence−no−sweep
5  kissat−ands−default
5  blocked−clause−decomposition−ands
5  lingeling−1.0.0−ands−default
4  lingeling−1.0.0−xits−prbsimplertc
4  blocked−clause−decomposition−xits
4  lingeling−1.0.0−ands−no−prbsimple
4  lingeling−1.0.0−ands−prbsimplertc
3  sbva−cadical−ands
3  cadical−1.9.5−ands
3  minisat−2.2.0−xits
2  cadical−1.9.5−xits
2  sbva−cadical−xits
2  minisat−2.2.0−ands

Figure 12 These miters from [70] were target of optimizations reported in [72]. They are indeed
hard for monolithic SAT solving starting after Tseitin encoding. Results on benchmark test02
are particularly interesting as kissat-xits-default took 1.79 s. to solve it, Abc 5.75 s, while disabling
extraction of ITE gates in kissat-xits-no-congruenceites already needs 2032.41 s and plain AND-only
Tseitin encoding in kissat-ands-default even 4585.76 s (cf. Tab. 13 for more detailed results).

Table 13 The actual run-time on the IWLS’22 miters from [70,72] (cf. CDF in Fig. 12).

n01 n04 n06 test01 test02
abc-240306-fraig 5.96 5.38 4.86 2.89 5.75
kissat-xits-check 95.45 162.38 282.61 54.28 9.06
kissat-ands-check 81.57 209.54 233.75 67.95 431.21
kissat-xits-default 305.60 160.01 542.18 352.15 1.79
kissat-xits-proof 287.21 179.72 593.54 345.60 2.38
kissat-xits-no-sweep 199.17 807.07 644.22 669.11 1.79
kissat-xits-no-congruenceites 238.32 157.06 631.46 363.93 2032.41
kissat-xits-no-congruence 222.25 218.73 684.94 404.48 2270.00
kissat-xits-no-congruence-no-sweep 221.25 678.17 720.29 1073.75 2620.65
kissat-ands-default 231.87 201.45 664.81 479.28 4585.76
blocked-clause-decomposition-ands 840.19 1058.28 2345.20 2368.54 4846.14
lingeling-1.0.0-ands-default 563.03 3192.09 1997.28 2788.51 3788.10
lingeling-1.0.0-xits-prbsimplertc 607.82 1039.04 1540.55 2459.75 —
blocked-clause-decomposition-xits 622.46 822.68 1841.48 2628.96 —
lingeling-1.0.0-ands-no-prbsimple 733.61 1928.03 2144.69 2568.83 —
lingeling-1.0.0-ands-prbsimplertc 700.58 3085.86 2092.79 2875.45 —
sbva-cadical-ands 244.94 1800.21 1135.28 — —
cadical-1.9.5-ands 236.14 2270.17 701.13 — —
minisat-2.2.0-xits 895.77 4088.40 3525.61 — —
cadical-1.9.5-xits 227.21 — 801.69 — —
sbva-cadical-xits 205.70 — 853.77 — —
minisat-2.2.0-ands 1229.07 — 3660.71 — —
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Kissat and Sbva-CaDiCaL on all 400 SAT Competition 2022 main track benchmarks
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302  kissat−no−congruence
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Figure 14 On the problems of the main track of the SAT Competition 2022 [18] the congruence
closure algorithm is successful. In fact, all versions of Kissat are faster than Sbva-CaDiCaL. Two
benchmarks 6133-sc2014 and 6s184, reused from our HWMCC’12 isomorphic miter benchmarks
submitted to the SAT Competition 2013 [24], were solved immediately by congruence closure (in
0.07 s and 0.04 s), but were also solved without congruence closure (in 37.51 s and 25.99 s). The default
configuration of Kissat eliminated a total of 108 272 236 equivalent literals found by congruence
closure among all the 400 benchmarks of the main track.

Kissat and Sbva-CaDiCaL on all 400 SAT Competition 2023 main track benchmarks
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Figure 15 In the main track of the SAT Competition 2023 [19] with many hard combinatorial
problems, Structured Bounded Variable Addition (SBVA) [43] in Sbva-CaDiCaL, the winner of
this track, has an advantage over Kissat, because SBVA and congruence closure are orthogonal.
The different variants of congruence closure are very similar here, although the default version spent
on average 4.41% of the running time in congruence closure.
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Finally, we want to investigate the average learned clause length, related to the observation
in the introduction on CDCL not being able to produce short proofs. Therefore, we have
rerun without congruence closure (no-congruence) but with more statistics all the isomorphic
HWMCC’12 miters again (see the metrics directories in the experimental data artifact [14])
and computed the average learned clause lengths over all miters, which is 43.6 literals per
learned clause for ands-iso-no-congruence, and 46.7 for xits-iso-no-congruence. Our default
version of Kissat with congruence closure solves these miters instantly through preprocessing,
without the need to learn any clause, and thus we computed instead the average added clause
length in the Rup proofs which is 1.88 literals for ands-iso and 2.12 for xits-iso.

Source code is available on Zenodo [15]. The HWMCC’12 benchmarks [17] and ILWS’22
benchmarks [16] are available on Zenodo too, as well as all experimental data [14].

12 Conclusion

We explored the idea of applying congruence closure to gates extracted from CNF using an
inverse of the Tseitin encoding. Our new optimized extraction algorithms for AND, XOR, and
ITE gates are able to run until completion within seconds on large combinational equivalence
checking miters and benchmarks from the SAT competition. These gates are then used in a
congruence closure algorithm to match equivalent gates and deduce equivalent literals, which
can also run to completion on standard benchmarks from the SAT competition and is now
enabled by default in our new version of the SAT solver Kissat.

Our experiments show that this is the first approach in the literature to instantly solve large
isomorphic CNF encoded miters. Further, it gives substantial improvements on industrially
relevant optimized miters, where our CNF level approach reaches the performance or even is
better than a dedicated circuit level SAT sweeping technique.
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Abstract
Popular redundancy rules for SAT are not necessarily sound for MaxSAT. The works of [Bonacina-
Bonet-Buss-Lauria’24] and [Ihalainen-Berg-Järvisalo’22] proposed ways to adapt them, but required
specific encodings and more sophisticated checks during proof verification. Here, we propose a
different way to adapt redundancy rules from SAT to MaxSAT. Our rules do not require specific
encodings, their correctness is simpler to check, but they are slightly less expressive. However,
the proposed redundancy rules, when added to MaxSAT-Resolution, are already strong enough to
capture Branch-and-bound algorithms, enable short proofs of the optimal cost of notable principles
(e.g., the Pigeonhole Principle and the Parity Principle), and allow to break simple symmetries (e.g.,
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1 Introduction

MaxSAT is the problem of finding an assignment that minimizes the number of falsified
clauses in a given CNF formula. Several variants of MaxSAT exist that, for example, allow
to give different weights to clauses, or enforce some clauses to be hard requirements for the
solution. While all state-of-the-art SAT-solvers are more or less based on the same theoretical
approach, there is more variety among state-of-the-art MaxSAT solvers, e.g., core-guided,
minimum-hitting-set, branch-and-bound, and MaxSAT Resolution [27, 4]. Here we focus
mostly on MaxSAT Resolution and we make some observations about branch-and-bound
(in Section 5). MaxSAT Resolution was first defined in [15] and proved complete for MaxSAT
in [12]. Although MaxSAT is a much harder problem than SAT, in some cases MaxSAT
solvers can be adapted to be more efficient than CDCL SAT-solvers on hard problems, for
instance dual-rail MaxSAT Resolution [10] has short proofs of the Pigeonhole Principle.

We propose new proof systems for MaxSAT by incorporating redundancy rules into
MaxSAT resolution. Redundancy rules were introduced in SAT solving to allow the intro-
duction of clauses that preserve satisfiability even though they are not logical consequences.
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In other words, redundant clauses formalize the notion of reasoning “without loss of gener-
ality” [29] by restricting the space of solutions without killing it entirely. The first type of
redundancy rules considered were Blocked Clauses (BC) [26] and Resolution Asymmetric
Tautologies (RAT) [23, 18]. BC, RAT and stronger redundancy rules are extensively used
in proof logging of pre-processing and in-processing of state-of-the-art SAT-solvers, and
hence are extensively studied in the literature, for instance in [16, 17, 19, 21, 24, 30]. Par-
ticularly relevant to this article is the work of Buss and Thapen [13]. Redundancy rules
strengthen significantly the Resolution proof system, for instance allowing to prove efficiently
the Pigeonhole Principle [21].

Redundancy rules for MaxSAT can only add clauses that do not increase the minimum
number of falsified clauses, and the usual redundancy checks used in SAT do not provide
any guarantees on that. Recently, some papers have proposed ways to integrate and study
redundancy rules in MaxSAT. The work of Ihalainen, Berg and Järvisalo [22], building
on [6], studies the advantage of redundancy to preprocess MaxSAT instances. Proof system
veriPB [7] includes redundancy rules, among many others. Being rooted in cutting planes,
veriPB is particularly apt at certifying optimality, and it can log the reasoning of MaxSAT
solver strategies that are way out of reach of MaxSAT resolution [5]. In contrast to these
works, the explicit goal of the of Bonacina, Buss, Bonet, Lauria [8] is to study the proof
complexity of redundancy rules for MaxSAT in a similar vein of what [13] does for SAT,
something that is beyond the scope of those other works, more focused on proof logging
actual solvers. To witness that a clause is redundant for SAT it is sufficient to provide an
appropriate variable substitution, and even that is not necessary for the weakest forms of
redundancy like BC. For MaxSAT, a proof must witness that the redundant clause preserves
optimality. In [22] the authors do not provide a polynomially checkable methods for their
most powerful rule, but they do for the simplest ones. In [7] they leverage the underlying
language cutting planes, usually strong enough to prove the redundancy of a clause explicitly.
The work in [8] gives a simple condition that is easy to check and allow to reuse all redundancy
rule from [13] in the MaxSAT setting.

The scope of this paper is to understand the power of redundancy rules in the context
of MaxSAT and MaxSAT resolution. We analyze forms of redundancy that are simple,
and yet add non-trivial power to MaxSAT resolution. In particular, we adapt the rules
from [13], namely Literal Propagation Redundancy (LPR), Subset Propagation Redundancy
(SPR), Propagation Redundancy (PR), or Substitution Redundancy (SR), to the context of
MaxSAT. For simplicity of presentation, we develop our redundancy rules in a setting where
all clauses are soft. Everything generalizes easily to a setting with soft/hard clauses. There,
the hard clauses would be manipulated by standard resolution, while the soft clauses would
be subjected to MaxSAT resolution and our new redundancy rules. That setting would make
the arguments more cumbersome, without providing any further technical insight.

We stress again that this paper does not provide strong proof systems for MaxSAT. Even
MaxSAT-Resolution +iSR, which the stronger proof system presented here, is easily simulated
by veriPB, a very strong proof system that captures most proof techniques in SAT/CP
solving and optimization. Our goal is quite the opposite: we add redundancy in the least
intrusive way possible to a simple proof system for MaxSAT, and we investigate its strength.
In this setting lower bounds could be reachable, at least for weak redundancy rules as iSPR.
On the contrary lower bounds for veriPB are way beyond the reach of current techniques.

Moreover, regarding proof logging applications, the framework we propose captures simple
branch-and-bound algorithms, it is plausible it could capture some branch-and-bound usage
from MaxCDCL [28], and can also witness some preprocessing techniques. On the other hand,
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it is unlikely that MaxSAT-Resolution +iSR could capture core-guided MaxSAT. Nevertheless,
a small advantage over veriPB is that DRAT/PR verifiers can be adapted to work with our
framework with minimal effort.

The redundancy rules in [22, 8, 7] are all variants of rules LPR, SPR, PR, SR as given
in [13]. All these variants rely on a specific, although common, blocking variables encoding of
MaxSAT instances. Furthermore, every time a redundant clause is added to the proof, the
verifier must check that cost is preserved.

In this work we follow a different approach. Essentially, we show that BC and suitable
variants of LPR, SPR, PR and SR rules are already cost-preserving, thus no additional check
is necessary. Moreover, our approach works even without the blocking variable encoding.
To give a concrete idea, when studying satisfiability we say that a clause C is redundant
w.r.t. a set of clauses Γ if there exists a partial assignment α that satisfies C and such that
Γ|C |= Γ|α; that is, the set of clauses Γ|C , i.e., the clauses of Γ restricted by the assignment
which is the negation of C, logically imply all the clauses in Γ|α. In other words, if we can
find a solution of Γ assuming C is false, there is also a solution of Γ assuming the partial
assignment α. Unfortunately the relation |= is not polynomially checkable therefore the
relation is substituted with unit-propagation ⊢1, a simpler form of logical implication which
is efficiently checkable. This notion is fine for satisfiability, but unfortunately the ⊢1 relation
is not cost-preserving: the central idea in this paper is to consider ⊆ instead of ⊢1 in the
redundancy condition.

In the context of MaxSAT, we say that a clause C is redundant w.r.t. a multiset of
clauses Γ, when Γ|C ⊇ Γ|α for some α that satisfies C. Recall that inclusion between multiset
takes multiple occurrences in account. We define rules iLPR, iSPR, iPR and iSR that are the
“inclusion” versions of redundancy rules LPR, SPR, PR, and SR (Definition 3.2). There is no
inclusion version of BC since it is already defined using inclusion. This change makes the
rules immediately cost-preserving, thus avoids the extra check on the cost and the blocking
variables encoding, needed in [22, 8, 7]. The relation ⊇ is weaker than ⊢1, therefore, in
principle, our rules are formally less expressive. This does not seem to be a limitation: in the
context of SAT, all the upper bounds for hard tautologies showed in [13], while described
using the SPR rule, do not use unit-propagation but only inclusion, even if the SPR rule
would have allowed it.

Adding redundancy rules to the resolution proof system makes it stronger. We add our
new rules to the MaxSAT-Resolution proof system (Definition 3.4) and we see that indeed it
becomes more powerful: we see that some hard contradictions for MaxSAT-Resolution become
easy (the Pigeonhole Principle and the Parity Principle, Theorem 4.3 and Theorem 4.4 resp.),
and we show that we can “undo” the effect of xorifications (Theorem 4.5). Both the Pigeonhole
Principle and the Parity Principle are exponentially hard for MaxSAT-Resolution, since a
MaxSAT-Resolution proof of cost at least 1 is also, syntactically, a Resolution refutation, and
the principles above are exponentially hard for Resolution [14].

One goal of proof systems for MaxSAT is to capture the reasoning of MaxSAT solvers and
it turns out that the iPR rule is quite apt at logging Branch-and-Bound (BnB) approaches to
optimization. In its simplest form, the BnB approach explores the possible assignments for
a CNF formula in a tree-like fashion, in order to find one that satisfies the largest number
of clauses, cutting the branches that are bound to give solutions worse than the best one
discovered so far. This works well in many scenarios, but historically has not performed
well on MaxSAT industrial instances. Recently, though, a better integration with CDCL
has made BnB competitive again [28]. As a proof of concept we show how the basic BnB
approach can be simulated in MaxSAT-Resolution+iPR.
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Structure of the Paper

Section 2 contains notation and preliminaries. In Section 3 we introduce the redundancy
rules for MaxSAT and proof systems for MaxSAT based on them. Section 4 showcases the
strength of the system. We give short refutation of the Pigeonhole Principle, the Parity
Principle, and show how to undo xor-ifications. In Section 5 we show how to simulate in the
system Branch-and-bound algorithms. Finally, Section 6 contains some concluding remarks
and open problems.

2 Preliminaries

Basic Notation. For n ∈ N, let [n] = {1, . . . , n}. We denote with capital Roman or Greek
letters sets and multisets. The size of a multiset S is |S|, the number of elements in S

(counted with multiplicity). Given two multisets S, T , S is included in T (S ⊆ T ) if each
element of S appears in T with multiplicity at least the multiplicity it had in S.

A Boolean variable x is a variable that takes values ⊤ (true) or ⊥ (false). A literal is a
Boolean variable x or its negation x. We consider fixed a finite set X of Boolean variables
and let X = { x | x ∈ X }. A clause is a finite disjunction of literals. A clause D is a
weakening of a clause C if D = C ∨ C ′ for some clause C ′. The empty disjunction is ⊥.

A map σ : X ∪ X ∪ {⊤, ⊥} → X ∪ X ∪ {⊤, ⊥} is a substitution if σ is the identity on
{⊤, ⊥}, and for each x ∈ X, σ(x) = σ(x), where ⊤ = ⊥, ⊥ = ⊤, and for each Boolean
variable x, x = x. The composition σ ◦ τ of two substitutions σ, τ is also a substitution,
where σ ◦ τ(v) = σ(τ(v)) for every v ∈ X ∪ X ∪ {⊤, ⊥}.

A substitution σ is an assignment if for every ℓ ∈ X ∪X, either σ(ℓ) = ℓ or σ(ℓ) ∈ {⊤, ⊥}.
An assignment τ extends an assignment σ if σ−1({⊤, ⊥}) ⊆ τ−1({⊤, ⊥}). An assignment
σ is total if for every ℓ ∈ X ∪ X, σ(ℓ) ∈ {⊤, ⊥}. The domain of an assignment σ is
dom(σ) = σ−1({⊤, ⊥}).

Given a clause
∨

x∈L ℓ and a substitution σ, the restriction of C under σ is C|σ =∨
x∈L σ(ℓ), simplified using the usual logic rules (⊤ ∨ ℓ = ⊤, ℓ ∨ ℓ = ℓ, etc.). A substitution σ

satisfies a clause C if C|σ is a tautology, i.e., C|σ is a weakening either of ⊤ or x ∨ x for some
variable x. Given a clause C =

∨
ℓ∈L ℓ, we denote with C the assignment given by σ(ℓ) = ⊥

and σ(ℓ) = ⊤ if ℓ ∈ L and the identity otherwise. In particular, C|C = ⊥.
Given a set of clauses Γ and a substitution σ, the restriction of Γ under σ is the multiset

Γ|σ = {C|σ : C ∈ Γ and σ ̸|= C}. A substitution σ satisfies a multiset of clauses Γ (σ |= Γ)
if σ satisfies all the clauses in Γ, i.e., Γ|σ = ∅. A multiset of clauses Γ entails a multiset of
clauses ∆ if for every substitution σ s.t. σ |= Γ it holds σ |= ∆.
▶ Fact 1. If S, T are multisets of clauses with S ⊆ T and σ is a substitution then S|σ ⊆ T |σ.
▶ Fact 2 ([13, Lemma 1.1]). If S is a multiset of clauses and σ, τ are substitutions, then
(S|σ)|τ = S|τ◦σ.

MaxSAT and MaxSAT-Resolution. Given a multiset of clauses S, MaxSAT asks to find
the maximum number of clauses in S that can be simultaneously satisfied. Equivalently, find
a total assignment mapping to ⊥ the smallest number of clauses in S possible. The cost of a
multiset of clauses S is cost(S), the minimum of size of S|α over all possible total assignments
α. Notice that for a total assignment α, S|α is a multiset of the form {⊥, . . . , ⊥}. The goal
of proof systems for MaxSAT is to show lower bounds on the cost of MaxSAT instances.
One of such systems is MaxSAT-Resolution which was introduced in [15] and proved complete
in [12]. We present the system using the rules of [2], first used in the context of MaxSAT
in [11].
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▶ Definition 2.1 (MaxSAT-Resolution). A sequence of multisets (Si)i∈[m] is a derivation of
Sm from S1 in MaxSAT-Resolution if for each i ∈ [m] either

(i) Si+1 = (Si \ {C ∨ x, C ∨ x}) ∪ {C} where {C ∨ x, C ∨ x} ⊆ Si (symm. cut); or
(ii) Si+1 = (Si \ {C}) ∪ {C ∨ x, C ∨ x} where C ∈ Si (split).

The size of the derivation is
∑

i∈[m]|Si|.

It is known that MaxSAT-Resolution is sound and complete for MaxSAT:
Soundness Whenever (Si)i∈[m] is a MaxSAT-Resolution derivation, cost(S1) = cost(Sm).

Therefore, if ⊥ appears in Sm with multiplicity k, then trivially cost(Sm) ≥ k and we say
that the MaxSAT-Resolution derivation certifies cost(S1) ≥ k, since cost(S1) = cost(Sm).

Completeness Whenever cost(S1) = k there is a MaxSAT-Resolution derivation (Si)i∈[m]
where ⊥ occurs k times in Sm, and all the remaining clauses in Sm are satisfiable [12,
Theorem 10].

3 Cost-preserving rules

In the context of SAT, a clause C is redundant w.r.t. a set of clauses F if adding C to F

does not affect its satisfiability or unsatisfiability, i.e., F ∪ {C} is satisfiable if and only if F

is satisfiable [26]. In particular if F |= C, then C is redundant.
In the context of MaxSAT the intuition is similar, a clause C is redundant w.r.t. a multiset

of clauses S if adding C to S does not affect the cost. In this context, even when F |= C,
it is not clear that C is redundant w.r.t. S. The notion of redundancy for MaxSAT was
introduced in [22] in a slightly different setting than ours.

▶ Definition 3.1 (redundant clause). A clause C is redundant w.r.t. a multiset of clauses S

if cost(S) = cost(S ∪ {C}).

Notice that C is redundant w.r.t. S if and only if there exists a total assignment β with
|S|β | = cost(S) and β |= C. In particular, if C is redundant w.r.t. S, then the clause C

could be added to S with arbitrary multiplicity without changing the cost, i.e., cost(S) =
cost(S ∪ {C}) = cost(S ∪ {C, . . . , C}).

Unless P = NP, it is not polynomially checkable whether a clause C is redundant w.r.t. a
multiset of clauses S, therefore, as in the context of SAT, we consider polynomially verifiable
notions of redundancy, i.e., ways of adding redundant clauses (as per Definition 3.1) while
certifying efficiently their redundancy. In [8] the authors described a systematic way of
porting to MaxSAT the notions of efficiently certifiable redundancy already studied in the
literature of SAT [20], for example the systems SR/PR/SPR/LPR/BC . This relied on (1)
a particular form of the MaxSAT instance considered, and (2) an additional condition to
enforce the correctness for MaxSAT.

By considering limited versions of the rules SR/PR/SPR/LPR/BC, we show a conceptually
simpler way of adding redundancy rules to MaxSAT. This approach is alternative to the one
in [8, 22].

▶ Definition 3.2 (Inclusion Substitution Redundant, iSR). A clause C is Inclusion Substitution
Redundant (iSR) w.r.t. a multiset of clauses S if exists a substitution σ s.t.

(S ∪ {C})|σ ⊆ S|C .

If the substitution σ has some additional structure, we also have the following redundancy
rules, listed in decreasing order of generality:
Inclusion Propagation Redundant (iPR) if σ is an assignment.
Inclusion Subset Propagation Redundant (iSPR) if σ is an assignment with the same do-

main of C. Hence σ differs from C in the value given to some variables.
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7:6 MaxSAT Resolution with Inclusion Redundancy

Inclusion Literal Propagation Redundant (iLPR) if σ is an assignment with the same do-
main of C and differs from C in the value given to exactly one variable.

Blocked Clause (BC) if σ is an assignment with the same domain of C and differs from
C in the value given to exactly one variable x, and moreover for every clause in D ∈ S

containing the variable x, σ |= D.1

Notice that while BC and iLPR might look very similar, they are distinct concepts. For
instance, the clause C = x is iLPR w.r.t. S = {y, y ∨ x, y ∨ x} but it is not BC w.r.t. the
same set. Another redundancy rule is SBC, a generalization of BC defined in [25] which we
do not address explicity. As it happens for BC and iLPR, SBC is a valid redundancy rule for
MaxSAT and a proper special case of iSPR. For instance, the clause C = {x ∨ z} is iSPR
w.r.t. F = {y, y ∨ x, y ∨ x, y ∨ x ∨ z, y ∨ x ∨ z}, but it is not SBC (nor iLPR).

▶ Lemma 3.3. If a clause C is iSR w.r.t a multiset of clauses S, then C is redundant w.r.t.
S, i.e., cost(S) = cost(S ∪ {C}).

Proof. Clearly cost(S) ≤ cost(S ∪ {C}). To prove the other inequality, let k = cost(S) and
let β be a total assignment such that |S|β | = k. If β |= C, then we are done. Suppose
then C|β = ⊥. That is β extends C. By assumption, there is a substitution σ such that
(S∪{C})|σ ⊆ S|C . Therefore (S∪{C})|β◦σ ⊆ S|β◦C = S|β . Hence |(S∪{C})|β◦σ| ≤ |Sβ | = k,
and cost(S ∪ {C}) ≤ k. ◀

Checking whether a clause is iSR w.r.t. S, given the substitution σ, is doable in polynomial
time. Therefore we can extend any proof system for MaxSAT with a rule that introduces
iSR clauses. We now consider such extension for MaxSAT-Resolution.

▶ Definition 3.4 (MaxSAT-Resolution+ iSR). A sequence of multisets (Si)i∈[m] is a derivation
of Sm from S1 in MaxSAT-Resolution + iSR if for each i ∈ [m] either one of the cases (i), (ii)
of the definition of MaxSAT-Resolution occur, or
(iii) Si+1 = Si ∪ {C} where C is iSR w.r.t. Si;
(iv) Si+1 = Si \ {C} where C is iSR w.r.t. Si \ {C}.

Each occurrence of the rules (iii) and (iv) is accompanied by the corresponding substitution σ

witnessing the validity of the rule. The size of the derivation is
∑

i∈[m]|Si|. The definition of
MaxSAT-Resolution+R for any R ∈ {iPR, iSPR, iLPR, BC} is analogous.

We only consider the case where MaxSAT-Resolution + iSR derivation are not allowed to
introduce new variables, since introducing new variables makes the systems as strong as
Extended Resolution [26]. To be consistent with [13], the rules/systems should be called
MaxSAT-Resolution+ iSR−, where the “−” is used to indicate that the systems are not
allowed to introduce new variables. We ignore that convention to ease notation. The system
MaxSAT-Resolution + iSR is sound and complete.
Soundness Lemma 3.3 and the soundness of MaxSAT-Resolution immediately imply that

MaxSAT-Resolution + iSR is also sound, i.e., whenever (Si)i∈[m] is a MaxSAT-Resolution
+ iSR derivation, cost(S1) = cost(Sm). Therefore, as in the case of MaxSAT-Resolution,
we say that the MaxSAT-Resolution + iSR derivation certifies cost(S1) ≥ k if Sm contains
⊥ with multiplicity at least k.

Completeness The completeness of MaxSAT-Resolution + iSR is immediate from the com-
pleteness of the system MaxSAT-Resolution.

1 This is not the usual definition of BC but it is equivalent, as shown in [8].
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▶ Remark 3.5. The choice of MaxSAT-Resolution in Definition 3.4 is in some sense arbitrary:
the rule iSR (i.e., items (iii) and (iv) in Definition 3.4) could be added or easily adapted
to any sound proof system for MaxSAT with substitution rules, for instance, the weighted
resolution proof system from [11]. In particular, since weighted resolution is equivalent to
Sherali-Adams, and restricted weighted resolution is equivalent to Nullstellensatz [11, 9], this
means the iSR rule could be also added to those (semi-)algebraic proof systems.
▶ Remark 3.6. Our goal is to adapt rules like SR from the SAT framework to MaxSAT.
Nevertheless the iSR rule and its restrictions iPR/iSPR/iLPR/BC still make sense for SAT. If
we apply them to sets instead of multisets, they immediately become special cases of the
original redundancy rules for SAT. For example iSR in this context is a special case of the
SR rule that we spell here for convenience. A clause C is Substitution Redundant (SR) w.r.t.
a set of clauses S if

S|C ⊢1 (S ∪ {C})|σ ,

where ⊢1 indicates unit propagation, an efficiently checkable form of entailment. To the best
of our knowledge, the iSR/iPR/iSPR/iLPR rules are presented here for the first time, both in
the context of SAT and MaxSAT. We observe, though, that the upper bounds for pigeonhole
principle, bit-pigeonhole principles, clique-coloring, parity, xor-ification, and Tseitin formulas
in [13, Section 4] are stated for the rule SPR in the case of SAT, but in fact fulfill the inclusion
condition as in iSPR. On the other hand, these results cannot be automatically adapted to
MaxSAT-Resolution+iSPR due to the MaxSAT-Resolution rule restrictions.

4 Certifying the cost of some hard tautologies

In this section we exemplify the power of MaxSAT-Resolution + iSR by (1) efficiently certifing
the optimum cost of the pigeonhole principle PHPm

n , (2) efficiently certifying the optimum
cost of the parity principle, and (3) reversing the hardness increase due to xor-ification of
CNFs. To do so we use few simple, yet useful, lemmas.

▶ Lemma 4.1. Given a clause C and multisets of clauses S and T , if there is a substitution
π such that S|π ⊆ S and C|π ∨ C is a tautology and for every clause D ∈ T , D|π ∨ C is also
a tautology, then C is iSR w.r.t. S ∪ T .

Proof. Let π such that S|π ⊆ S and C|π ∨ C is a tautology. Let σ = C ◦ π. Since C|π ∨ C is
a tautology we have C |= C|π and σ |= C. Similarly for every clause D ∈ T , σ |= D. That is

(S ∪ T ∪ {C})|σ = S|σ = S|C◦π = (S|π)|C ⊆ S|C ⊆ (S ∪ T )|C . ◀

It is well known that pure literals are blocked clauses. For convenience here we state
essentially the same fact for iLPR.

▶ Lemma 4.2. Given a multiset of clauses Γ and a literal ℓ such that ℓ does not occur in Γ.
We can derive Γ′ from Γ using the iLPR rule where Γ′ ⊆ Γ and Γ′ is a multiset not containing
any clause with the literal ℓ.

Proof. It is sufficient to consider the symmetric difference to be a single clause C ∨ ℓ and
show that C ∨ ℓ is iLPR w.r.t. to Γ. The main claim follows by repeated applications of iLPR
rules.

Let Γ = Γ0 ∪Γℓ where Γ0 are the clauses containing neither ℓ nor ℓ, and Γℓ are the clauses
with literal ℓ. We fix σ = {C ∧ ℓ = 1}, and observe that

(Γ ∪ {C ∨ ℓ})|σ = Γ0|C = Γ0|C∧ℓ=0 ⊆ Γ|C∧ℓ=0 . ◀
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7:8 MaxSAT Resolution with Inclusion Redundancy

4.1 Pigeonhole principle PHPm
n

Let m, n ∈ N with m > n. The propositional encoding of the Pigeonhole Principle PHPm
n

uses Boolean variables pi,j with i ∈ [m] and j ∈ [n] with intended meaning that pi,j is true
if and only if the pigeon i flies to hole j. For i < k let the injectivity axiom Inji,k,j be the
clause pi,j ∨ pk,j , expressing that the two pigeons i, k cannot fly at the same time to hole j;
and let the totality axiom Toti,n be the clause

∨
j∈[n] pi,j , expressing that the pigeon i must

fly somewhere among the n holes. The CNF encoding of Pigeonhole Principle is

PHPm
n = {Toti,n | i ∈ [m]} ∪ {Inji,k,j | i, k ∈ [m], j ∈ [n] and i < k} .

An assignment that maps the first n pigeons to the n holes, and leaves the other pigeons
unassigned, falsifies m − n totality axioms and no injectivity axioms. Hence cost(PHPm

n ) ≤
m − n, and we can prove that this is optimal in MaxSAT-Resolution + iSR.

▶ Theorem 4.3. There is a polynomial size derivation in MaxSAT-Resolution + iSR showing
that cost(PHPm

n ) ≥ m − n.

Proof. It is enough to show how to derive PHPm−1
n−1 from PHPm

n , since repeating this process
n times gives PHPm−n

0 . This latter formula contains no other clauses than m − n totality
axioms Toti,0, that are indeed copies of the empty clause ⊥. This would conclude the proof.

To derive PHPm−1
n−1 from PHPm

n we use iSR to enforce one by one all the pigeons of index
below m not to fly into hole n. Namely for 1 ≤ i ≤ m we have the intermediate sets

Γi =
((

PHPm
n \ {Injℓ,k,n : ℓ < i and k ̸= ℓ}

)
\ {Totℓ,n : ℓ < i}

)
∪ {Totℓ,n−1 : ℓ < i} ,

In particular, Γ1 = PHPm
n and Γm = PHPm−1

n−1 ∪ {Totm,n}. The variable xm,n appears only
in Totm,n therefore, by Lemma 4.2, this clause can be removed from Γm to get PHPm−1

n−1 .
Suppose now 1 ≤ i < m, we have the database of clauses is Γi and we want to obtain Γi+1.

Step 1. The clause C = pm,n ∨ pi,n is iSR for Γi, and we witness that with permutation π

that exchanges pigeons i and m. That is, π(pm,j) = pi,j , π(pi,j) = pm,j , π(pm,j) = pi,j and
π(pi,j) = pm,j for every j ∈ [n]. On the other variables π is the identity. The permutation π

maps Γi to itself: totality axioms Totm,n and Toti,n are both in Γi−1 and get swapped; the
injectivity axioms Injℓ,k,n in Γi all have ℓ, k ≥ i, therefore π maps this set of axioms to itself,
the set of remaining axioms is also mapped to itself. Applying Lemma 4.1 with T = ∅ we get
that pm,n ∨ pi,n is iSR wrt Γi. Once we add pm,n ∨ pi,n to Γi, we cut it with the injectivity
axiom Inji,m,n to get pi,n. Now the database of clauses is Γi \ {Inji,m,n} ∪ {pi,n}.

Step 2. To cut pi,n with Toti,n, i.e.,
∨

j∈[n] pi,j we need first to split pi,n repeatedly getting
the database of clauses(

Γi \ {Inji,m,n}
)

∪{pi,n ∨
( ∨

ℓ∈[j−1]

pi,ℓ

)
∨pi,j : j ∈ [n−1]}∪{pi,n ∨pi,1 ∨pi,2 ∨· · ·∨pi,n−1} .

Now cut pi,n ∨ pi,1 ∨ pi,2 ∨ · · · ∨ pi,n−1 with the totality axiom Toti,n to obtain Toti,n−1 and
the database of clauses

∆ =
(
Γi \ {Inji,m,n, Toti,n}

)
∪ {Toti,n−1} ∪ {pi,n ∨

( ∨
ℓ∈[j−1]

pi,ℓ

)
∨ pi,j : j ∈ [n − 1]} .
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Step 3. The database ∆ only contains variable pi,n with negative polarity, hence, Lemma 4.2
allows to remove all the clauses containing pi,n, and get the database of clauses((

Γi \ {Inji,k,n : i < k}
)

\ {Toti,n}
)

∪ {Toti,n−1} = Γi+1 . ◀

The proof of Theorem 4.3 is a generalization of the argument to prove efficiently the
unsatisfiability of PHPn+1

n in [13, Example 1.4], which in turn is based on [20].

4.2 Parity principle
The Parity Principle claims that there is a perfect matching between an odd number of
elements. The propositional encoding of this principle (Parityn) is minimally unsatisfiable,
and here we show that it has a short proof in MaxSAT-Resolution+ iSR. This is interesting
since the formula is hard for Sherali-Adams and Sum-of-Squares proof systems [3, 1].

The set of clauses Parityn has Boolean variables x{i,j} for i, j ∈ [n] with i ̸= j, where
x{i,j} means that elements i and j are matched together. To ease the notation we use xi,j

and xj,i as alternative notations for x{i,j}. For each i, n′ ∈ [n] we define the set of clauses

AtLeastn′

i =
∨

j∈[n′]\{i}

xi,j AtMostn′

i = {xi,j ∨ xi,j′ : j, j′ ∈ [n′], i, j, j′ all distinct} .

Their informal meaning is that the element i matches with at least and at most one distinct
element in [n′] respectively. The set of clauses Parityn is then

Parityn = {AtMostn
i , AtLeastn

i : i ∈ [n]} .

For n odd, there is an assignment of the variables satisfying all but one clause, that is Parityn

is minimally unsatisfiable.
▶ Theorem 4.4. For odd n, there is a polynomial size derivation in MaxSAT-Resolution
+ iSR showing that cost(Parityn) ≥ 1.
Proof. The strategy of the proof is to start with a clauses of Parityn and deduce from it the
clauses of Parityn−2. Since n is odd at some point we get to Parity1, which contains AtLeast1

1
which is the empty disjunction, i.e., ⊥.

To reduce Parityn to Parityn−2 we enforce the elements n − 1 and n to match.

Step 1. Derive clauses Ci = xn,i ∨ xn,(n−1) for every 1 ≤ i ≤ n − 2 in this order one by
one. To derive the clause Ci we use Lemma 4.1 with S = Parityn and T = {Cj : j < i}.
As witnessing substitution we use π, the variable permutation induced by swapping indices
i and n − 1. By symmetry Parityn|π = Parityn. Then, observe that the clause Ci|π and all
clauses Cj |π for Cj ∈ T contain the literal xn,i, while Ci contains xn,i. Therefore Ci|π ∨ Ci

and all Cj |π ∨ Ci are tautologies and Lemma 4.1 applies.

Step 2. Derive clauses Di = x(n−1),i ∨ x(n−1),n for every 1 ≤ i ≤ n − 2 in this order, using
almost the same strategy of Step 1. To derive the clause Di we again use Lemma 4.1 with
substitution π induced by the variable permutation induced by swapping indices i and n.
Everything works as in the previous paragraph, S = Parityn and

T = {Dj : j < i} ∪ {Ck : k ∈ [n − 2]} .

Clause Di|π contains the literal x(n−1),i and the same happens for all Dj |π with j < i, and
for all Ck|π with k ∈ [n − 2]. Hence, as in Step 1, all Dj |π ∨ Di with j ≤ i and all Ck|π ∨ Di

with k ∈ [n − 2] are tautologies, and Lemma 4.1 applies. The current database of clauses is

Γ = Parityn ∪ {Ci : i ∈ [n − 2]} ∪ {Dj : j ∈ [n − 2]} .
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Step 3. For all i ∈ [n − 2] we do a symmetric cut between the clause Ci = xn,i ∨ xn,(n−1),
introduced in Step 2, and the Parityn clause xn,i ∨ xn,(n−1), to obtain the set of unit clauses

{xn,i : i ∈ [n − 2]} ,

consuming all the clauses of the form Ci and all the clauses xn,i ∨ xn,(n−1) with i ∈ [n − 2].
Similarly, for all j ∈ [n−2] we do a symmetric cut between the clause Dj = x(n−1),j ∨x(n−1),n,
introduced in Step 1, and the Parityn clause x(n−1),j ∨x(n−1),n, to obtain the set of unit clauses

{x(n−1),j : j ∈ [n − 2]} ,

consuming from Γ all the clauses of the form Dj and all the clauses x(n−1),j ∨ x(n−1),n with
j ∈ [n − 2]. As a result the current database of clauses is

Γ′ = (Parityn\{x(n−1),i∨x(n−1),n, xn,i∨xn,(n−1) : i ∈ [n−2]})∪{xi,(n−1), xi,n : i ∈ [n−2]} .

Step 4. In Γ′ literal xn,n−1 does not occur, so we can use Lemma 4.2 to remove both
AtLeastn

n−1 and AtLeastn
n from Γ′. The clause database becomes

Γ′′ = {AtMostn−2
i , AtLeastn

i : i ∈ [n − 2]} ∪ {xi,(n−1), xi,n : i ∈ [n − 2]} .

Step 5. To conclude the derivation of Parityn−2 we need to shorten the all the clauses
AtLeastn

i into AtLeastn−2
i for each i ∈ [n − 2]. We show how to derive AtLeastn−1

i from unit
xi,n and AtLeastn

i . The same procedure then works to get AtLeastn−2
i from unit xi,n−1 and

AtLeastn−1
i .

First split xi,n into xi,1 ∨ xi,n and xi,1 ∨ xi,n, then the latter clause into xi,1 ∨ xi,2 ∨ xi,n

and xi,1 ∨ xi,2 ∨ xi,n, and so on up to get
∨

j∈[n−1]\{i} xi,j ∨ xi,n. We do symmetric cut
between this last clause and AtLeastn

i to get AtLeastn−1
i . Notice that all intermediate clauses

from the splits left in the clause database contain the literal xi,n.
Repeating this procedure using the unit clause xi,n−1 and AtLeastn−1

i gives AtLeastn−2
i

and several intermediate clauses containing literal xi,n−1.
We do this for every i ∈ [n − 2], so that in the clause database we have Parityn−2 plus

clauses containing literals of the form either xi,n−1 or xi,n. We can remove all such clauses
using Lemma 4.2 because the opposites of these literals do not occur in Parityn−2. This
concludes the derivation of Parityn−2. ◀

Therefore, a consequence of Theorem 4.4 is that neither Sherali-Adams nor Sum-of-Squares
as proof systems for MaxSAT can simulate MaxSAT-Resolution + iSR.

4.3 XOR-ification
We show that MaxSAT-Resolution+iSPR can “undo” the effect of common techniques used to
make hard instances of propositional tautologies. For concreteness we do it for xor-ifications.
This is analogous to the case of SAT, where the SPR rule can be used to “undo” the effects
of xor-ifications [13, Section 4.6].

Given a multiset of clauses F , the mth xor-ification of a variable x is the set of clauses
where the variable x is substituted by the XOR of m new variables x1 ⊕ · · · ⊕ xm and
the resulting formula is expanded again as a CNF formula. The mth xor-ification of F

(denoted F [⊕m]) is the procedure above applied to all the variables of F . Notice that
cost(F ) = cost(F [⊕m]).
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▶ Theorem 4.5. Let F be a multiset of clauses with a MaxSAT-Resolution derivation showing
that cost(F ) ≥ k in size s, then there is a MaxSAT-Resolution+iSPR derivation showing that
cost(F [⊕m]) ≥ k of size polynomial in s and the number of clauses of F [⊕m].

Proof. The idea is to remove all the symmetries among the xor-ified variables at the beginning
one by one, and then do the MaxSAT-Resolution derivation. We show how to “undo” the
xor-ification of a variable x xor-ified into x1 ⊕ x2 ⊕ · · · ⊕ xm. Without loss of generality we
assume m to be even, therefore for each clause in F of the form C ∨ x, F [⊕m] contains the
clause C ∨x1 ∨x2 ∨· · ·∨xm; similarly, for each clause in F of the form C ∨x, F [⊕m] contains
the clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm. Let ℓ be the number of occurrences of the variable x in F .

Step 1. Let Γi = F [⊕m] ∪ {xj . . . xj︸ ︷︷ ︸
ℓ copies

: 2 ≤ j ≤ i}, so that Γ1 = F [⊕m]. For i ≥ 2, we see

how to derive Γi from Γi−1.
The clauses x1 ∨ xi is iSPR w.r.t. Γi−1 and x1 ∨ xi is iSPR w.r.t. Γi−1 ∪ {x1 ∨ xi}. For

the first application of the iSPR rule we set σ = {x1 := ⊤, xi := ⊥}. To check that it is a
valid application notice that for any clause C ∨ (x1 ∨ xi ∨ . . .) that gets restricted but not
satisfied in Γi−1|σ, there is another clause C ∨ (x1 ∨ xi ∨ . . .) that gets restricted in the same
way in Γi−1|{x1:=⊥,xi:=⊤}. For the second application σ = {x1 := ⊥, xi := ⊥} and we apply
a simular reasoning. In both cases we add x1 ∨ xi and x1 ∨ xi to Γi−1 with multiplicity ℓ.
Afterward, by symmetric cut we obtain ℓ copies of xi, and this gives us Γi. We keep going
until we get to Γm.

Step 2. Now in the clause database we have ℓ copies each of the sequence of unit clauses
x2, . . . , xm. A positive occurrence of original variable x in a clause C ∨ x ∈ F induces a
clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm ∈ F [⊕m]. To resolve that with x2, . . . , xm we first apply splits
to the units, and eventually we can apply a series of symmetric cuts and obtain C ∨ x1. In
the same way, for C ∨ x ∈ F we work on the corresponding clause C ∨ x1 ∨ x2 ∨ · · · ∨ xm

to get clause C ∨ x1. In the end the clause database contains a copy of F up to variable
renaming. ◀

5 Simulating branch-and-bound with MaxSAT redundancy rules

Given a set of clauses F , the basic branch-and-bound (BnB) procedure explores the space
of all possible assignments for F in a depth-first way. At every node, the BnB procedure
has computed an upper bound UB and a lower bound LB: the UB is the cost of the best
solution found so far, while the LB is the number of falsified clauses in the current branch.
At the beginning of the procedure UB is the number of clauses in F and the LB is 0. At each
node the procedure compares LB and UB at that node: if LB ≥ UB the algorithm prunes
the branch, i.e., it does not continue to explore the subtree and backtracks to a previous
node, since we are exploring an assignment that we already discovered it is not optimal. If
LB < UB the algorithm instantiates one more variable and continues the exploration. The
solution is the value of UB after exploring the whole search tree.

Here we simulate the basic BnB approach via MaxSAT-Resolution+ iPR. Let S be a
multiset of clauses, let T be the BnB decision tree for S and let t be the number of leaves
of T . We identify the leaves of T with the partial assignments β1, β2, . . . , βt that label the
branches of the tree, enumerated according to the visit order. Each leaf has an associated
cost ki, which is the LB at node i, the number of clauses of S falsified by βi. Each leaf βi is
of one of two types:
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Pruning: when ki ≥ kj for some 1 ≤ j < i; kj corresponds to the UB;
Improvement: when ki < kj for all 1 ≤ j < i and each clause in S is either satisfied or
falsified by βi, because βi is a leaf. In this case ki will be the new UB.

▶ Theorem 5.1. Consider a BnB procedure for MaxSAT on clauses S and let T be the BnB
decision tree associated showing cost(S) = k. Then there is a MaxSAT-Resolution+ iPR proof
of length O(k · |T |) that cost(S) ≥ k.

Proof. Let t be the number of leaves of T , and m = |S|. First phase: the proof simulates
the BnB by considering the leaves β1, . . . , βt one by one. The derivation maintains a multiset
of clauses that forbid all leaves seen so far, except for the leaf with the current best value.
If the next leaf is pruned, then the proof adds a clause to forbid it. If the next leaf is an
improvement, then the proof forbids the leaf corresponding to the previous best value. We
will use several times the following fact.

▶ Fact 3. For any i ̸= j, assignment βj satisfies clause βi, since βi and βj must disagree on
the value of some variable.

For 1 ≤ i ≤ t, we show how to get the clause database Γi = S ∪ {β1, . . . , βi} \ {αi} where
αi is the assignment corresponding to the leaf of minimum cost among {β1, . . . , βi}. Leaf
β1 is trivially an improvement, hence Γ1 = S. To derive Γi+i from Γi we deal with the two
types of leaves separately.

If βi+1 was pruned, we forbid it by adding βi+1 to the database Γi using the iPR rule
with current best assignment αi as witness. We need to check that (Γi ∪ {βi+1})|αi ⊆ Γi|βi+1 .
By the previous Fact, all clauses in Γi \ S = {β1, . . . , βi} \ {αi} are satisfied both by αi and
by βi+1, and furthermore βi+1|αi

= ⊤. The check reduces to verifying that S|αi
⊆ S|βi+1 .

The right hand side S|βi+1 contains ki+1 copies of ⊥ by definition (together possibly with
other clauses), and S|αi

contains only the clause ⊥ with multiplicity at most ki+1.
If leaf βi+1 corresponds to an improvement, we forbid αi by adding αi to the database

via iPR using βi+1 as witness, that is (Γi ∪ {αi})|βi+1 ⊆ Γi|αi . The procedure is the same as
before, but with the role of αi and βi+1 reversed. In this case Γi+1 = Γi ∪ {αi}.

Second phase: Let α be the assignment corresponding to the optimal leaf, and k be its
cost. The clause database now contains S ∪ {β1 . . . , βt} \ {α}. Our goal now is to derive
k copies of all clauses forbidding all assignments at the leaves of T . From there, we derive
k copies of ⊥ by doing symmetric cuts on the tree branches, and that would conclude the
proof.

To derive the missing k − 1 copies of clauses βi, for βi ≠ α, we use the iPR rule with α as
witnessing substitution. This is similar to the pruning step, but the right hand side of the
inclusion has even more copies of ⊥. These applications of iPR rule are correct regardless of
their order in the proof.

Now we derive k copies of α: S contains k clauses falsified by α, hence α is a weakening
of each of them. We do not have a weakening rule in our proof system, but we can
simulate it using the split rule. We explain with an example how we do it: let us say that
α = x1 ∨ x2 ∨ · · · ∨ xℓ and that C = x1 ∨ x2 ∨ · · · ∨ xj ∈ S for some j ≤ ℓ. We use the
split rule on C to get C ∨ xj+1 and C ∨ xj+1, then on the latter to get C ∨ xj+1 ∨ xj+2 and
C ∨ xj+1 ∨ xj+2, and so on. In this way we derive a copy of α from each of the k falsified
clauses, each of them in O(|α|) steps.

In total we do k(|T | − 1) applications of iPR rule, and O(k|α|) to derive the clauses
corresponding to the optimal leaf. Finally we get the k empty clauses in O(|T |) steps each,
resolving bottom to top in the tree using symmetric cuts. ◀
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The division of the proof into first and second phase looks artificial, but we used it to
highlight how part of the proof can be logged during the BnB procedure. In the second phase
we use the optimum k, that is only known at the end of the procedure. As an alternative, for
any non-optimal branch βi ̸= α we could produce a sufficient number of copies of βi when we
add it, and use only k of them at the end, since the optimal branch α can only be produced
with multiplicity k (as in the previous proof). The sufficient number of copies could be the
current UB of the branch, which is always greater or equal than k. This, on the other hand,
makes the proof longer, but could be avoided using the language of weighted clauses.

6 Conclusions and open problems

We convert redundancy rules SR/PR/SPR/LPR for SAT into rules iSR/iPR/iSPR/iLPR that
are sound for MaxSAT. Adding such rules to MaxSAT-Resolution produces new proof systems.
We exemplify their strength with short proofs of the optimal cost of hard tautologies
(Section 4), and with a simulation of simple BnB procedures (Section 5). We conclude with
a list of open problems.

Can MaxSAT-Resolution+iSPR prove either cost(PHPm
n ) = m − n or cost(Parityn) = 1

efficiently? Polynomial-size proofs of the unsatisfiability of PHPn+1
n and Parityn are known

for the system SPR− [13] but the arguments don’t seem to adapt to MaxSAT-Resolution
+iSPR.
Sparse versions of Pigeonhole Principle allow each pigeon to only fly into a small selection
of holes, i.e., some variables pi,j are set to ⊥. In proof systems that are closed under
variable restrictions, the sparse version is at least as easy as the standard version. But
this closure property does not hold in proof using redundancy rules, thus it is interesting
to ask whether sparse versions of pigeonhole principle are easy for MaxSAT-Resolution
+ iSR or SR−.
How does MaxSAT-Resolution + iSR compare with MaxSAT-Resolution+cost-SR from [8]?
We simulate a plain BnB in MaxSAT-Resolution + iPR. This suggests that iPR rule could
be instrumental to simulate more sophisticated BnB algorithms. For example algorithms
that integrate CDCL reasoning [28].
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Abstract
Local search has been widely applied to solve the well-known (weighted) partial MaxSAT problem,
significantly influencing many real-world applications. The main difficulty to overcome when
designing a local search algorithm is that it can easily fall into local optima. Clause weighting is a
beneficial technique that dynamically adjusts the landscape of search space to help the algorithm
escape from local optima. Existing works tend to increase the weights of falsified clauses, and such
strategies may result in an unpredictable landscape of search space during the optimization process.
Therefore, in this paper, we propose a Unified Soft Clause Weighting Scheme called Unified-SW,
which increases the weights of all soft clauses in feasible local optima, whether they are satisfied
or not, while preserving the hierarchy among them. We implemented Unified-SW in a new local
search solver called USW-LS . Experimental results demonstrate that USW-LS , outperforms the
state-of-the-art local search solvers across benchmarks from anytime tracks of recent MaxSAT
Evaluations. More promisingly, a hybrid solver combining USW-LS and TT-Open-WBO-Inc won
all four categories in the anytime track of MaxSAT Evaluation 2023.
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1 Introduction

Given a propositional formula in conjunctive normal form (CNF), the maximum satisfiability
problem (MaxSAT) aims to find an assignment that maximizes the number of satisfied
clauses. Nowadays, research on MaxSAT mostly focuses on the partial MaxSAT (PMS), in
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which clauses are divided into hard and soft ones, and a feasible assignment, i.e., solution,
requires all hard clauses to be satisfied, and an optimal solution should maximize the number
of satisfied soft clauses. PMS can be generalized to weighted PMS (WPMS) by assigning
positive integer weights to soft clauses to establish a hierarchy of importance among them,
and the objective is to find an assignment that satisfies all hard clauses and maximizes the
sum of weights of satisfied soft clauses. Note that when all weights are identical, WPMS
becomes PMS. Therefore, we use WPMS to represent both WPMS and PMS. By focusing
on WPMS, we are focusing on both WPMS and PMS.

In addition to obtaining much attention in computer science theory, WPMS has also
been studied well in practical application domains since it can be applied to solve many
real-world optimization problems such as scheduling [20], the maximum clique problem [32],
FPGA routing [21], and computational protein design [2]. State-of-the-art WPMS solvers
can be either exact or anytime. Exact solvers are guaranteed to find an optimal solution, and
anytime solvers can quickly find a solution. With decades of development, Exact and anytime
solvers have both achieved success in solving WPMS, and they are highly complementary.
Recent annual MaxSAT Evaluations2 include two main tracks. One is to assess exact
solvers, and the other is to assess anytime solvers with the WPMS instances that no exact
solver can solve within 1 hour. Exact solvers mainly comprise two categories: SAT-based
[4, 19, 25, 5, 44, 35, 36, 6, 8, 9] and Branch-and-Bound (BnB) [31, 22, 27, 26, 1, 16, 30, 33].
Leading anytime solvers are hybrid [17, 43, 48, 29]: they apply LS for preprocessing and
then resort to SAT-based methods. This paper focuses on the LS component of solvers for
WPMS.

The LS method for WPMS iteratively chooses a variable and flips its value (from True
to False, or from False to True) following a greedy strategy to satisfy all hard clauses and
maximize the sum of weights of satisfied soft clauses. The main difficulty is that it can
frequently fall into local optima, which means that flipping any variable cannot increase
the number of satisfied hard clauses or the sum of weights of satisfied soft clauses. Many
approaches have been introduced to overcome this difficulty, among which perhaps the
most successful is clause weighting that is used in recent state-of-the-art LS solvers, such
as SATLike [28], NuWLS [18], and BandMaxSAT [50], etc. In practice, a clause weighting
scheme favors increasing the weights of falsified clauses so that their variables have greater
chances to be flipped subsequently to satisfy them.

While various heuristics have been proposed for designing weighting schemes [15, 46, 45,
14, 28, 18], existing work faces a key issue: the landscape of search space is blindly adjusted
with clause weighting because the relations among the soft clauses, as well as the relations
between hard clauses and soft clauses, are disturbed, and solvers have to search for better
solutions in a blindly adjusted search space, so that they can easily be misled when choosing
the next variable to flip.

In this paper, we carefully analyze the questions to answer when designing a clause
weighting scheme and propose a novel weighting scheme named Unified-SW (Unified Soft
Clause Weighting), which distinguishes feasible local optima from infeasible local optima, and
increases the weights of all soft clauses in feasible local optima, whether they are satisfied or
not, while preserving the hierarchy among them, which is quite different from some previous
approaches which tend to only increase the weights of falsified clauses.

Based on Unified-SW, we develop a new LS solver named USW-LS for WPMS. We
compare USW-LS with state-of-the-art LS solvers on unweighted and weighted benchmarks
from the anytime tracks of MaxSAT Evaluations from 2018 to 2023. Experimental results

2 https://maxsat-evaluations.github.io

https://maxsat-evaluations.github.io
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demonstrate that USW-LS outperforms the competing solvers in terms of both fixed-budget
performance and anytime performance. In addition, USW-LS considerably advances the
state-of-the-art in WPMS solving. Notably, the hybrid solver that combines USW-LS
and TT-Open-WBO-Inc [41] has won all four categories in the anytime track of MaxSAT
Evaluation 2023.

The rest of the paper is organized as follows. Section 2 presents some notions used in the
paper. Section 3 presents related works. Section 4 analyzes the questions to answer when
designing a clause weighting scheme, describes Unified-SW and its distinguishing properties,
and presents our new LS solver USW-LS based on Unified-SW. Section 5 empirically
demonstrates the performance of USW-LS and the effectiveness of Unified-SW. Section 6
concludes.

2 Preliminaries

Consider a set of n Boolean variables, denoted as {x1, x2, · · · , xn}. Corresponding to these
variables is the set of 2n literals, defined as {x1, ¬x1, x2, ¬x2, · · · , xn, ¬xn}, where each literal
represents either a variable or its negation. A clause c of length k is a disjunction of k literals,
denoted as c = l1 ∨ l2, · · · , ∨lk. A propositional formula F in Conjunctive Normal Form
(CNF) is a conjunction of clauses, denoted as F = c1 ∧ c2 ∧ · · · ∧ cm. For a CNF formula
F , a complete assignment is a mapping that assigns each variable in F to a Boolean value
(True or False). In this paper, an assignment is always complete. A literal x (¬x) is satisfied
if x is assigned True (False), otherwise, it is falsified. Each clause has two states: satisfied
or falsified. Given an assignment α, a clause c is satisfied if at least one literal in c is True;
otherwise, c is falsified.

PMS divides clauses in a CNF formula into hard and soft ones, and its objective is to find
an assignment that maximizes the number of satisfied soft clauses while satisfying all hard
clauses. For WPMS, each soft clause has a positive integer weight representing a cost if the
soft clause is falsified, so that there is a hierarchy of importance among soft clauses, and the
goal is to find an assignment that maximizes the total weight of satisfied soft clauses while
satisfying all hard clauses. PMS represents a special case of WPMS in which the weight of
each soft clause is identical, represented by 1.

An assignment is feasible if it satisfies all hard clauses. A feasible assignment is also
called a solution. The cost of an assignment α is the sum of weights of falsified soft clauses,
denoted as cost(α). An optimal solution is obtained by minimizing its cost while satisfying
all hard clauses. A solution α1 is considered to be better than another solution α2, if
cost(α1) < cost(α2).

Clause weighting schemes assign weights to both hard and soft clauses, and maintain
them. These weights are different from the original weights of soft clauses in WPMS instances.
To avoid confusion, we will call the weights assigned and maintained by a clause weighting
scheme maintenance weights or simply weights, but systematically add the word “original”
when talking about the original weights of soft clauses in WPMS instances. The maintenance
weight of a (hard or soft) clause c is denoted w(c), and the original weight of a soft clause
is denoted wori(c). Note that wori(c) is never changed, differently from w(c). The average
original weight of all soft clauses is denoted avgwsoft.

The maintenance weights are used to calculate the score of each variable. The score
of variable x, denoted score(x), is calculated as score(x) = make(x) − break(x), where
make(x) is the sum of maintenance weights of (hard and soft) clauses changing from falsified
to satisfied upon flipping x, and break(x) is the sum of maintenance weights of (hard and
soft) clauses changing from satisfied to falsified upon flipping x.
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Restart strategy has commonly been applied when applying LS for WPMS. When
restarting a local search, apart from initializing the current assignment, the maintenance
weights assigned to each clause may also be reset.

3 Related Work

Solvers for WPMS can be categorized into exact and anytime types. Exact solvers can prove
the optimality of their solutions when the algorithm terminates, and these methods have
made significant progress over decades. In particular, the SAT-based solvers, which are built
based on classic SAT solvers, have gone through a series of advancements [21, 3, 4, 19, 25, 5,
44, 35, 36, 6, 9]. BnB MaxSAT solvers [22, 27, 26, 1, 16, 33] implement the branch-and-bound
method, detecting inconsistent subsets of soft clauses through unit propagation and lower
bound computation. The performance of the BnB solvers has been significantly enhanced by
integrating clause learning and an efficient bounding procedure [33].

While unable to prove solution optimality, LS solvers often obtain high-quality solutions
within short runtimes and exhibit complementarity with exact solvers when solving various
types of WPMS instances. Early LS algorithms encoded PMS instances as weighted MaxSAT
instances, which were then solved accordingly [23].

LS algorithms for solving WPMS have been developed along a line of using clause
weighting schemes to guide search. These algorithms assign weights to clauses and calculate
the score of variables using these weights. So, they intensify or diversify the search primarily
by maintaining these assigned weights in different ways.

Note that in PMS, as well as in WPMS, a hard clause is definitely more important than
all soft clauses. So, a natural way to assign weights to clauses is to set the weight of each
hard clause larger than the sum of all soft clause weights. However, this approach biases
the search towards satisfying hard clauses, significantly limiting the search space and often
negatively affecting the performance of LS algorithms [15].

As the above natural way to assign weights to clauses is ineffective, researchers spent
much effort designing better clause weighting schemes for WPMS for a long time. Examples
of early clause weighting schemes can be found in [15] for statically assigning suitable weights
to hard clauses or in [46, 45] for dynamically adjusting hard clause weights during the search.

Below, we go over recent clause weighting schemes, included in the state-of-the-art
algorithms Dist [14], SATLike [28] and NuWLS [18].

Dist uses a weighting scheme that only updates the hard clause weights. It introduces the
concepts of hard score and soft score and employs different heuristic methods for hard clauses
and soft clauses. The Dist series algorithms [13, 34] greatly improve the performance compared
to previous LS algorithms for WPMS. However, the concepts and heuristic methods are
separately defined for hard and soft clauses, increasing the algorithm complexity. Moreover,
the algorithms prioritize satisfying hard clauses, limiting the search space. Subsequently, a
series of algorithms based on Dist was designed to exploit the structure of WPMS further.

SATLike [28] introduces a weighting scheme called Weighting-PMS, which utilizes different
increments to update the weights of hard and soft clauses, and sets a uniform upper bound for
all soft clause weights. Weighting-PMS is also used in SATLike3.0 [12] and BandMaxSAT [50].

Based on an empirical finding that initial soft clause weights have a clear effect on the
effectiveness of the algorithm adopting Weighting-PMS, NuWLS [18] uses a new weighting
scheme named Dist-Weighting. There are three main distinctions between Dist-Weighting
and previous weighting schemes. First, Dist-Weighting initializes soft clause weights within
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a reasonable range. Second, it distinguishes conditions for updating hard and soft clause
weights. Third, it associates a specific upper bound with each soft clause based on its original
weight, instead of setting it uniformly as in Weighting-PMS.

Unfortunately, despite the above progress, designing effective clause weighting schemes in
LS algorithms for WPMS remains challenging, because it is difficult to balance the weight
relations between hard and soft clauses, as well as within soft clauses. After all, the initial or
adjusted weights may fail to reflect the importance of hard or soft clauses as expressed by
their hardness or original weights, potentially causing significant disturbance to the search
space. Moreover, while falsifying a hard clause is necessarily an error that should be repaired
by increasing its weight to favor its satisfaction subsequently, falsifying a soft clause is not
necessarily an error because it can be falsified in an optimal solution. So, it is unclear how
to distinguish between satisfied and falsified soft clauses by adjusting their weight.

Anytime solvers can employ exact methods to provide the best real-time solution.
Loandra [10] and TT-Open-WBO-Inc [38, 40] (based on Open-WBO-Inc [24]), are two
notable instances of such anytime solvers. The complementarity between exact and LS
methods has led to another research line that combines these two methods, giving rise to
hybrid solvers. Typically, these hybrid solvers apply an SAT solver to obtain a feasible
assignment. Then, LS is executed, using this assignment as the initial assignment, until
no improvement for k consecutive steps or a short time budget is reached. The best solu-
tion found by LS will serve as an initial model and provide an initial upper bound for an
SAT-based component. This hybrid-solving process will continue until the total budget is
exhausted. For the weighted part of the SAT-based component, the best-performing anytime
solver TT-Open-WBO-Inc [40] combines weights approximation by Boolean Multilevel Op-
timization [24] and the SAT-based LS algorithm Polosat [39]; for its SAT-based unweighted
component, it combines Mrs. Beaver algorithm [37] and Polosat.

Hybrid solvers demonstrate impressive performance in the anytime tracks of recent
MaxSAT Evaluations (MSEs). Hybrid solvers won 2 out of 4 anytime categories at MSE
2020, 3 out of 4 anytime categories at MSE 2021, and all 4 anytime categories at the two
latest evaluations, MSE 2022 and MSE 2023.

4 Proposed Methodology

In this section, we first analyze the questions to answer when designing a clause weighting
scheme, then propose a novel clause weighting scheme called Unified Soft Clause Weighting
Scheme (Unified-SW) to provide simple and effective responses to these questions, based on
which a new LS algorithm for WPMS called USW-LS is designed.

4.1 Analysis of clause weighting scheme
Recent LS solvers for WPMS consist of iteratively choosing the next variable x to flip, based
on its score score(x). Recall that score(x) = make(x)− break(x), where make(x) (break(x))
is the sum of weights of soft and hard clauses that will become satisfied (falsified) upon
flipping x. The weight of each clause is initialized at the beginning of the search process
and dynamically adjusted later on. Note that no distinction is made between hard and soft
clauses when calculating score(x) once their weights are defined. This working scheme raises
the following questions to answer when designing an LS solver:

How to initialize and adjust the weight of each hard clause and each soft clause to
distinguish between them during the search? In particular, what is the increment to be
added to the weight of a soft clause?
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Can the weight of a clause be infinitely increased when the search proceeds? In other
words, should there be an upper bound for the weight of a clause? If yes, what is the
upper bound? Should it be uniform for all clauses or specific for each clause?
When the search encounters a local optimum, how to select the clauses whose weights
should be adjusted?

Different responses to these questions yield solvers of different performances. State-of-
the-art LS solvers either perform prior extensive experimental analysis or use intuition to
answer the first two questions, and the responses are often instance-type specific and are
hard to obtain for new instance types. In fact, the difficulty in designing an LS solver is that
a very small change in the solver can considerably deteriorate its performance.

Furthermore, existing weighting schemes usually increase the weights of falsified clauses
and leave the weights of other clauses unchanged to answer the last question. This is
reasonable for a falsified hard clause because a falsified hard clause represents an error that
must be repaired. However, the situation is much more complicated for a falsified soft clause,
because falsifying a soft clause is not necessarily an error. Moreover, only increasing the
weights of falsified soft clauses while leaving the weights of satisfied soft clauses unchanged
may change the hierarchy of soft clauses to mislead the solver. In other words, if the
original weight of a soft clause c1 is greater than another soft clause c2, i.e., if c1 is originally
considered to be more important than c2, increasing the weight of c2 but leaving the weight
of c1 unchanged may make the solver satisfy c2 in priority so that the solver becomes further
away from the optimal solution.

In the next subsection, we propose a novel clause weighting scheme that provides simple
and effective responses to all the above questions.

4.2 Unified-SW: a novel weighting scheme
We propose the Unified-SW scheme, where Unified-SW stands for unified soft clause weighting.
It operates as follows:
Initialization of Clause Weights: At the beginning of each round (restart) of local search,

Unified-SW initializes each clause weight as follows:
For each hard clause c, the weight w(c) := 1.
For each soft clause c, the weight w(c) := 0.

Update of Clause Weights: When the search encounters a local optimum α, the clause
weights are updated as follows:

If α falsifies at least one hard clause, and flipping any variable cannot increase the
total weight of satisfied hard clauses, α is called an infeasible local optimum. In this
case, for each falsified hard clause c, w(c) := w(c) + 1.
Otherwise, α is a feasible local optimum (i.e., all hard clauses are satisfied, but α

cannot be improved by flipping any variable). Let k be the number of feasible local
optima encountered so far. For each soft clause c, w(c) := k × wori(c)

avgwsoft
, where wori is

the original weight of c in the WPMS instance and avgwsoft is the average original
weight of all soft clauses.

Note that while the original weights of soft clauses are positive integers, the weights
defined by Unified-SW are positive real numbers with double precision.

Unified-SW obtains the following distinguishing properties.
At the beginning of the search, the soft clauses are not considered in the score of any
variables because their weight is 0. Consequently, the solver focuses on searching for the
first solution by increasing the weight of the hard clauses, and the first found solution is
necessarily a feasible local optimum.
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At each feasible local optimum, the weight of each soft clause is increased proportionally
to its original weight, whether it is satisfied or not, which significantly differs from the
previous approaches in which only the weight of falsified soft clauses is increased. It is
for this reason that the new clause weighting scheme is called Unified-SW. The intuition
behind this unified soft clause weighting is that even a satisfied soft clause in a feasible
local optimum can represent an error that should be repaired.
The hierarchy between soft clauses is always kept, i.e., given any two soft clauses c1
and c2, if wori(c1) ≤ wori(c2), then w(c1) ≤ w(c2) for any k. Moreover, the difference
of weights between c1 and c2 is k × ( wori(c1)

avgwsoft
− wori(c2)

avgwsoft
) which will become larger and

larger when search proceeds. In other words, the more the solver encounters feasible local
optima, the more important the soft clauses with great original weight will be, so that it
will be considered a priority to improve the cost of a solution.
Let S = {c1, . . . , cs} be the set of all soft clauses. After encountering kth feasible local
optima, the total weight of soft clauses is k × s. In other words, the more the solver
encounters feasible local optima, the larger the total weight of soft clauses. This is relevant
because a feasible local optimum is often dominated by hard clauses, i.e., a feasible local
optimum is often encountered by satisfying hard clauses. However, when there are many
feasible local optima, soft clauses should be considered more in the score of variables to
improve the cost of the solutions.
The weights of hard and soft clauses are increased upon infeasible and feasible local
optima, respectively, and infeasible local optima are considered in priority. The increase
of weights of soft clauses upon a feasible local optimum can make the solver far from
solutions, and then the solver works with the new greater weights of soft clauses to
hopefully move again toward a better solution via new paths, eventually by increasing
the weights of hard clauses in infeasible local optima along the new paths.
There is no upper bound, neither for the weights of soft clauses nor for the weights of
hard clauses, which greatly simplifies algorithm design.
The best solution found so far in terms of weights defined by Unified-SW is also the best
solution found so far in terms of original weights. To see this, we look at k and denote
the best solution found so far by α∗. When k = 0, i.e., at the beginning, the first solution
found is obviously the best solution found so far. When k > 0, let c denote a falsified soft
clause, w(c) =

∑
c k × wori(c)

avgwsoft
which is the smallest if and only if cost(α∗) =

∑
c wori(c)

is the smallest. Therefore, when a solver finds the best solution so far in terms of weights
defined by Unified-SW, it does not need to test if it is also the best solution found so far
in terms of original weights.

Note that for PMS, which is a particular case of WPMS where both wori(c) and avgwsoft

are 1 for any soft clause c, the weight of each soft clause is increased by 1 in each feasible
local optimum, increasing the importance of the soft clauses w.r.t. hard clauses and hopefully
making the next solution better.

4.3 The USW-LS algorithm
Based on the above Unified-SW, we introduce a new LS algorithm named USW-LS . The
pseudo-code of USW-LS is outlined in Algorithm 1. We use α∗ and cost∗ to denote the
best-found solution so far and the cost value of the best-found solution, respectively, while α

represents the current assignment maintained during the search.
In the USW-LS algorithm, α∗ is initialized as empty, and cost∗ is initialized to positive

infinity. It then iteratively executes the local search process until a termination criterion is
met (Lines 2–20). A round is from line 3 to line 20.
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Algorithm 1 USW-LS .
Input: WPMS instance F , cutoff time.
Output: The best-found solution and its cost, or “No solution found”.

1 α∗ := ∅; cost∗ := +∞;
2 while no terminating criteria are met do
3 α := an initial complete assignment;
4 Initialize clause weights by Unified-SW;
5 L = 10 000 000;
6 for step = 0; step < L; step++ do
7 if α is feasible and cost∗ > cost(α) then
8 α∗ := α; cost∗ := cost(α); L = step + 107;
9 if cost∗ == 0 then

10 return α∗ and cost∗;

11 if (D : {x|score(x) > 0}) ̸= ∅ then
12 v := a variable in D selected by the BMS strategy;
13 else
14 update clause weights by Unified-SW;
15 if ∃ falsified hard clauses then
16 c := a random falsified hard clause;
17 else
18 c := a random falsified soft clause;
19 v := the variable with highest score in c;
20 α := α with v flipped;

21 if α∗ ̸= ∅ then return α∗ and cost∗;
22 else return “No solution found”;

In the local search process, an initial assignment is generated by a unit propagation based
procedure (Line 3) [12]. USW-LS then initializes the weights of all clauses by the Unified-SW
scheme. After initialization, USW-LS conducts the search process (Lines 6–20). During the
search process, whenever USW-LS finds a solution whose cost value is lower than cost∗, α∗

and cost∗ are updated accordingly.
In each search step, let D denote the set of variables with score(x)>0. USW-LS selects

a variable and flips its value depending on two situations. (I) If D is not empty, a variable is
selected from D. Since traversing all elements in D would be time-consuming, a sampling
strategy called BMS (Best from Multiple Selections) [11] is adopted here. Through BMS, t

variables are randomly selected from the D set (Where t is a parameter in BMS, the value
of which is specified in the Experimental setup.), and then the variable with the highest
score among the t variables is chosen to flip. It is shown in [11] that the score of the variable
selected in this way is close to the highest in D with high probability. (II) If D is empty,
indicating that the search is stuck in a local optimum, USW-LS updates the weights of
clauses according to Unified-SW. Then USW-LS randomly selects a falsified clause c, and
picks the variable with the highest score from the selected clause c.

Finally, when any terminating criterion is met, USW-LS reports α∗ and cost∗ if a solution
is found; otherwise, it reports “No solution found”.

5 Experimental Evaluations

In this section, we introduce experimental preliminaries and then conduct extensive ex-
periments on unweighted and weighted benchmarks from the anytime tracks of MaxSAT
Evaluations (MSEs) from 2018 to 2023. First, we compare USW-LS with three state-of-the-
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art LS solvers. Second, we demonstrate the performance enhancement achieved by combining
USW-LS with an SAT-based solver. Third, we present experimental results to demonstrate
the anytime performance exhibited by LS solvers employing different weighting schemes.
Finally, we examine the effectiveness of uniformly adjusting soft clause weights.

5.1 Experimental preliminaries
Benchmarks. Our experiments are conducted on 12 benchmarks, i.e., unweighted and
weighted benchmarks from the anytime tracks of MSEs from 2018 to 2023.

Competitors. In the first experiment, we compare USW-LS with the following three state-
of-the-art LS solvers, all of which employ various weighting schemes. The source codes
of these three solvers are publicly available,3,4,5 and the parameter settings follow those
presented in their papers.

NuWLS [18], which uses the Dist-Weighting scheme.
BandMaxSAT [50], which adopts the Weighting-PMS scheme proposed in SATLike [28]
SATLike3.0 [12], which adopts the Weighting-PMS scheme.

In the second experiment, we combine USW-LS with TT-Open-WBO-Inc (MSE2020
version) [40], which is based on Open-WBO-Inc [24], resulting in a new hybrid solver named
USW-LS-c.

First, we compare USW-LS-c with NuWLS-c, DT-HyWalk, and SATLike-c.
NuWLS-c combines NuWLS with TT-Open-WBO-Inc (MSE2020 version). We use its
source code from MSE 2022.6
DT-HyWalk combines BandMaxSAT with other LS and TT-Open-WBO-Inc (MSE2020
version). We use its source code from MSE 2022.6
SATLike-c combines SATLike with TT-Open-WBO-Inc (MSE2020 version). We use its
source code from MSE 2021.7

Then, we compare USW-LS-c with all hybrid solvers from the anytime track of MSE
2023.8

TT-Open-WBO-Inc-23(G) [43] combines NuWLS with TT-Open-WBO-Inc, where Gluc-
ose4.1 [7] serves as the underlying SAT solver.
TT-Open-WBO-Inc-23(I) [43] combines NuWLS with TT-Open-WBO-Inc, where In-
telSAT [42] serves as the underlying SAT solver.
NuWLS-c-Band [48] combines NuWLS with BandMaxSAT and TT-Open-WBO-Inc.
NuWLS-c-FPS [48] combines NuWLS with the farsighted probabilistic sampling (FPS)
strategy [49] and TT-Open-WBO-Inc.

The purpose of the second experiment is to investigate whether USW-LS could improve
the performance of hybrid solvers by combining LS with SAT-based algorithms. Note that
this experiment does not include NuWLS-c-2023 [17] because NuWLS-c-2023 is identical to
USW-LS-c, combining USW-LS with TT-Open-WBO-Inc.

3 https://github.com/filyouzicha/NuWLS
4 https://github.com/JHL-HUST/BandMaxSAT
5 http://lcs.ios.ac.cn/%7ecaisw/MaxSAT.html
6 https://maxsat-evaluations.github.io/2022
7 https://maxsat-evaluations.github.io/2021
8 https://maxsat-evaluations.github.io/2023
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In the third experiment, we analyze the anytime performance of USW-LS against NuWLS,
BandMaxSAT, and SATLike3.0.

In the fourth experiment, we make an ablation study to compare USW-LS with a variant
identical to USW-LS except that it only increases the weights of the falsified soft clauses in
a feasible local optimum.

Experimental setup. Our USW-LS solver is implemented in C++. USW-LS employs
the BMS strategy with a parameter t denoting the sample count, following the settings of
NuWLS. i.e., for PMS, t is set to 96; for WPMS, t is set to 25.

All solvers are compiled with g++ using the “-O3” option. The experiments are conducted
on a workstation running Ubuntu (version=“ 20.04.4 LTS (Focal Fossa)”) and equipped with
AMD EPYC 7763 3.2GHz CPUs.

Consistent with the rules in the anytime tracks of recent MSEs, we employ two cutoff
times, 60 seconds and 300 seconds. Each solver performs one run within a given cutoff time
on each instance. We record the cost of the best solution found by solver S on instance I,
denoted as costSI . The cost of the best solution found among all solvers in the same table
within the same cutoff time on instance I is denoted as costbI . The cost of the best-known
solution on instance I is denoted as bestI . For each solver S solving a benchmark B within
a cutoff time, we use two metrics to evaluate the performance of S.

#win: the number of instances where the corresponding costbI can be obtained by solver
S on B (i.e., the number of instances on which S wins). The number of winning instances
is a metric widely used to evaluate the performance of LS WPMS solvers.
avgscore: we use scoreSI to denote the competition score of solver S on instance I, if
S could not report any solution on instance I within the cutoff time, then scoreSI = 0.
Otherwise, scoreSI = bestI +1

costSI +1 . We use avgscore to denote the average competition
score of a solver on a benchmark. The competition score is the metric to measure the
performance of anytime solvers in recent MSEs.

The number of instances in each benchmark is indicated by ‘#inst’. For each of the above
two metrics, if a solver obtains a larger metric value on a benchmark, then the solver exhibits
better performance on the benchmark. The results highlighted in bold indicate the best
performance for the corresponding metric.

5.2 Comparison with local search solvers
The comparative results of USW-LS and its LS competitors on all the benchmarks are
shown in Table 1. On all the unweighted and weighted benchmarks, for both 60-second and
300-second cutoff times, USW-LS outperforms all competing solvers in terms of the number
of winning instances (#win) and average scores (avgscore).

For unweighted benchmarks with a 60-second cutoff time, USW-LS outperforms the
second-ranked solver by 28.40-58.57% for #win and 1.54-6.51% for avgscore. With a
300-second cutoff time, USW-LS outperforms the second-ranked solver by 31.48- 63.64%
for #win and 1.33-8.19% for avgscore.
For weighted benchmarks with a 60-second cutoff time, USW-LS exceeds the second-
ranked solver by 45.07-157.58% for #win, and 1.34-7.74% for avgscore. With a 300-second
cutoff time, USW-LS exceeds the second-ranked solver by 65.29-127.08% for #win and
0.98-6.97% for avgscore.

Among these LS solvers, the only distinction between USW-LS , NuWLS, and SATLike3.0
lies in the weighting scheme utilized. Both BandMaxSAT and SATLike3.0 employ the same
weighting scheme, differing only in the strategy introduced by BandMaxSAT for variable
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Table 1 Comparisons of USW-LS with state-of-the-art LS solvers.

Benchmark #inst USW-LS NuWLS BandMaxSAT SATLike3.0

#win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 102 0.7426 69 0.7131 42 0.6455 45 0.5673
Unw_19 299 206 0.7297 151 0.7117 96 0.6575 106 0.6179
Unw_20 262 181 0.7360 127 0.7161 76 0.6679 77 0.6150
Unw_21 155 104 0.6578 81 0.6176 52 0.5778 43 0.5223
Unw_22 179 113 0.7092 78 0.6684 55 0.6287 37 0.5682
Unw_23 179 111 0.6629 70 0.6528 30 0.5738 21 0.5160

Unweighted (300 seconds)
Unw_18 153 109 0.7726 71 0.7479 54 0.6906 46 0.6113
Unw_19 299 213 0.7546 162 0.7447 116 0.6961 116 0.6506
Unw_20 262 187 0.7616 132 0.7435 95 0.6965 90 0.6430
Unw_21 155 111 0.6877 79 0.6419 59 0.6013 46 0.5495
Unw_22 179 126 0.7514 77 0.6945 65 0.6540 44 0.5955
Unw_23 179 111 0.6977 71 0.6881 39 0.6219 34 0.5721

Weighted (60 seconds)
Wei_18 172 103 0.7716 71 0.7614 24 0.6978 18 0.6809
Wei_19 297 192 0.7686 125 0.7419 65 0.6638 41 0.6581
Wei_20 253 162 0.7797 94 0.7436 43 0.6301 36 0.6391
Wei_21 151 75 0.6833 38 0.6343 24 0.5437 27 0.5740
Wei_22 197 105 0.7094 58 0.6751 35 0.6052 25 0.6095
Wei_23 160 85 0.6631 33 0.6182 31 0.5651 15 0.5671

Weighted (300 seconds)
Wei_18 172 111 0.7848 67 0.7772 27 0.7244 16 0.7042
Wei_19 297 200 0.7916 121 0.7715 81 0.7118 54 0.7034
Wei_20 253 170 0.8085 99 0.7784 54 0.6893 39 0.6815
Wei_21 151 74 0.7199 35 0.6817 37 0.6225 28 0.6299
Wei_22 197 109 0.7459 57 0.7124 48 0.6705 28 0.6629
Wei_23 160 83 0.7093 37 0.6630 34 0.6338 16 0.6293

selection after encountering local optima. Experimental results demonstrate that USW-LS
outperforms NuWLS, while NuWLS outperforms SATLike3.0 in terms of #win and avgscore,
indicating that a well-designed weighting scheme can significantly enhance the performance
of LS solvers.

5.3 Improving hybrid solver through USW-LS
Since our experimental results in Table 1 demonstrate that USW-LS performs much better
than state-of-the-art LS solvers for solving WPMS on all benchmarks, we are interested in
investigating whether USW-LS could improve the performance of hybrid solvers compared
to these LS solvers. Therefore, we compare USW-LS-c with NuWLS-c, DT-HyWalk, and
SATLike-c, and the experimental results are shown in Table 2. From Table 2, in terms of
#win and avgscore, our USW-LS-c solver outperforms all the competitors on all benchmarks
and runtimes, indicating that USW-LS can considerably advance the performance of hybrid
solvers.

We submitted USW-LS-c to the anytime track of MSE 2023, where USW-LS-c is referred
to as NuWLS-c-2023. The official results from the anytime track of MSE 2023 indicate that
the top-five solvers are all hybrid, and USW-LS-c won all four categories.
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Table 2 Comparisons of USW-LS-c with hybrid solvers NuWLS-c, DT-HyWalk, and SATLike-c.

Benchmark #inst USW-LS-c NuWLS-c DT-HyWalk SATLike-c

#win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 106 0.8239 74 0.8015 83 0.7960 52 0.7745
Unw_19 299 234 0.8717 175 0.8549 189 0.8349 158 0.8265
Unw_20 262 202 0.8606 138 0.8420 151 0.8257 122 0.8214
Unw_21 155 115 0.8280 86 0.8011 87 0.7870 80 0.7834
Unw_22 179 128 0.8239 75 0.7896 89 0.7776 72 0.7610
Unw_23 179 109 0.7832 73 0.7605 75 0.7268 66 0.7220

Unweighted (300 seconds)
Unw_18 153 98 0.8635 77 0.8501 87 0.8507 52 0.8249
Unw_19 299 228 0.9141 186 0.9031 204 0.8950 160 0.8806
Unw_20 262 190 0.9025 144 0.8888 161 0.8754 121 0.8635
Unw_21 155 116 0.8864 96 0.8752 97 0.8646 80 0.8502
Unw_22 179 125 0.8866 90 0.8773 102 0.8601 83 0.8482
Unw_23 179 118 0.8609 88 0.8490 94 0.8274 84 0.8202

Weighted (60 seconds)
Wei_18 172 101 0.8811 84 0.8772 69 0.8706 76 0.8699
Wei_19 297 185 0.8572 133 0.8411 122 0.8233 123 0.8352
Wei_20 253 144 0.8518 110 0.8386 88 0.8006 92 0.8061
Wei_21 151 75 0.7800 59 0.7481 44 0.7102 46 0.7090
Wei_22 197 105 0.7862 66 0.7617 53 0.7325 60 0.7390
Wei_23 160 89 0.7867 54 0.7790 34 0.7296 44 0.7458

Weighted (300 seconds)
Wei_18 172 108 0.9147 89 0.8985 82 0.9007 87 0.9003
Wei_19 297 197 0.9202 164 0.9054 153 0.9021 137 0.8962
Wei_20 253 163 0.9178 129 0.8949 115 0.8653 106 0.8568
Wei_21 151 83 0.8475 65 0.8317 53 0.7798 52 0.7516
Wei_22 197 116 0.8676 90 0.8516 68 0.7838 62 0.7760
Wei_23 160 96 0.8891 63 0.8703 45 0.8384 50 0.8313

To give a more global assessment of USW-LS-c against state-of-the-art anytime solv-
ers, we compare it with the four other top-five solvers NuWLS-c-Band, NuWLS-c-FPS,
TT-Open-WBO-Inc-23(G), and TT-Open-WBO-Inc-23(I) in the anytime track of MSE 2023
on all benchmarks from the anytime tracks of MSE since 2018. The experimental results are
reported in Table 3. In terms of #win, USW-LS-c outperforms all the competitors on all
comparisons. In terms of avgscore, USW-LS-c outperforms all the competing solvers on 18
out of 24 comparisons. On the other 6 comparisons, USW-LS-c ranks second and slightly
worse than the best.

5.4 Anytime performance analysis
Apart from the fixed-budget performance measures that have been commonly applied for
MSEs and previous work on WPMS, an anytime performance measure [47], which evaluates
the performance of solvers across multiple cutoff times, has been used for assessing four
WPMS LS solvers. We also take this measure into account for comparing our proposed
USW-LS with three LS solvers.
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Table 3 Comparisons of USW-LS-c with hybrid solvers from MSE 2023, TT-OWI-G refers to
TT-Open-WBO-Inc-23(G), TT-OWI-I refers to TT-Open-WBO-Inc-23(I).

Benchmark #inst USW-LS-c TT-OWI-G TT-OWI-I NuWLS-c-Band NuWLS-c-FPS

#win avgscore #win avgscore #win avgscore #win avgscore #win avgscore

Unweighted (60 seconds)
Unw_18 153 85 0.8239 63 0.8097 58 0.8021 70 0.8092 77 0.8101
Unw_19 299 200 0.8717 159 0.8609 160 0.8547 170 0.8639 176 0.8623
Unw_20 262 171 0.8606 117 0.8445 119 0.8402 128 0.8458 139 0.8382
Unw_21 155 92 0.8280 77 0.8086 77 0.8093 77 0.8050 81 0.7930
Unw_22 179 96 0.8239 64 0.8099 63 0.8021 77 0.7921 74 0.7851
Unw_23 179 89 0.7832 61 0.7829 61 0.7615 66 0.7760 66 0.7770

Unweighted (300 seconds)
Unw_18 153 91 0.8635 64 0.8519 77 0.8610 77 0.8556 77 0.8551
Unw_19 299 214 0.9141 163 0.9054 185 0.9108 183 0.9084 187 0.9099
Unw_20 262 180 0.9025 126 0.8913 140 0.9035 141 0.8891 146 0.8862
Unw_21 155 105 0.8864 86 0.8751 81 0.8923 84 0.8549 86 0.8508
Unw_22 179 108 0.8866 78 0.8779 79 0.8861 91 0.8514 88 0.8427
Unw_23 179 112 0.8609 81 0.8563 84 0.8568 87 0.8543 87 0.8443

Weighted (60 seconds)
Wei_18 172 98 0.8811 84 0.8816 65 0.8713 84 0.8761 86 0.8801
Wei_19 297 181 0.8572 123 0.8318 122 0.8393 127 0.8406 103 0.8294
Wei_20 253 140 0.8518 96 0.8335 93 0.8360 95 0.8336 82 0.8291
Wei_21 151 69 0.7800 46 0.7502 42 0.7580 38 0.7526 44 0.7492
Wei_22 197 93 0.7862 67 0.7591 53 0.7542 67 0.7628 51 0.7558
Wei_23 160 85 0.7867 41 0.7585 35 0.7695 45 0.7755 45 0.7727

Weighted (300 seconds)
Wei_18 172 101 0.9147 95 0.9176 71 0.9091 92 0.9062 96 0.9067
Wei_19 297 186 0.9202 149 0.8823 136 0.9109 144 0.8990 135 0.9000
Wei_20 253 153 0.9178 119 0.8926 103 0.8884 107 0.8926 107 0.8944
Wei_21 151 71 0.8475 64 0.8550 49 0.8459 52 0.8342 55 0.8477
Wei_22 197 97 0.8676 91 0.8678 68 0.8356 72 0.8350 68 0.8383
Wei_23 160 90 0.8891 55 0.8466 42 0.8889 49 0.8569 49 0.8686

The empirical cumulative distribution function (ECDF) is used to assess the anytime
performance of solvers. Given a set of target values, i.e., cost, for each WPMS instance, an
ECDF value at time t represents the proportion of targets that have been achieved by a solver
within cutoff time t. Following the suggestion in the previous work [47], we consider a set of
100 cost values that are sampled within the smallest and largest cost values obtained during
the optimization process of all tested solvers. We plot in Figure 1 the averaged ECDFs values
across all tested WPMS instances for 100 cutoff times t that are selected within the range
of [0, 300s] with a logarithmic scale. We can observe that USW-LS generally outperforms
the other tested LS solvers across all the considered cutoff times, and this advantage is
significant, as shown in the figure. Note that the results are aggregated across all tested
WPMS instances such that we do not observe sharp increases at a specific cutoff time or
a flat line in Figure 1, but these behaviors may occur in particular instances as shown in
previous work [47].

SAT 2024
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Figure 1 ECDFs of the tested solvers for two instance sets: Left: Unweighted, Right: Weighted.

5.5 Effects of uniformly adjusting soft clause weights
To examine the effect of uniformly adjusting soft clause weights, we introduce an alternative
version of USW-LS , denoted as USW-LS-alt. The only difference between USW-LS-alt
and USW-LS lies in their approach to adjusting soft clause weights: in USW-LS-alt, if the
assignment is a feasible local optimum, only the weights of falsified soft clauses are increased
by setting k = k + 1, and for each falsified soft clause c, w(c) := k × wori(c)

avgwsoft
.

Table 4 presents the results of USW-LS and USW-LS-alt across all the benchmarks.
From table 4, USW-LS demonstrates superior performance over USW-LS-alt in terms of
both #win. and avgscore. On unweighted benchmarks, USW-LS outperforms USW-LS-alt
by 45.21-71.17% in terms of #win, and exhibits a 4.18-6.23% improvement over USW-LS-alt
for avgscore. For weighted benchmarks, USW-LS surpasses USW-LS-alt more significantly,
with 116.67-305.77% higher #win and 2.18-9.91% better avgscore performance.

Table 4 Comparisons of USW-LS with its alternative version USW-LS-alt.

Benchmark #inst
USW-LS USW-LS-alt USW-LS USW-LS-alt

#win avgscore #win avgscore #win avgscore #win avgscore

60 seconds 300 seconds
Unw_18 153 106 0.7426 73 0.6991 113 0.7726 75 0.7311
Unw_19 299 217 0.7297 142 0.6899 226 0.7546 147 0.7160
Unw_20 262 190 0.7360 111 0.6958 197 0.7616 120 0.7223
Unw_21 155 113 0.6578 77 0.6304 119 0.6877 81 0.6601
Unw_22 179 133 0.7092 83 0.6685 140 0.7514 88 0.7099
Unw_23 179 116 0.6629 75 0.6326 121 0.6977 76 0.6648
Wei_18 172 133 0.7716 58 0.7486 134 0.7848 58 0.7681
Wei_19 297 237 0.7686 72 0.7075 244 0.7916 67 0.7401
Wei_20 253 201 0.7797 57 0.7094 211 0.8085 52 0.7409
Wei_21 151 110 0.6833 44 0.6339 114 0.7199 45 0.6728
Wei_22 197 142 0.7094 43 0.6630 152 0.7459 39 0.6978
Wei_23 160 117 0.6631 54 0.6260 119 0.7093 53 0.6697
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6 Conclusions and Future Work

Most solvers evaluated in the anytime tracks of recent MSEs integrate local search techniques,
showing wide interest in this approach for solving MaxSAT. The main difficulty of local
search is that it frequently falls into local optima, and the main technique to escape from a
local optimum is clause weighting. Unfortunately, designing an effective clause weighting
scheme needs to properly answer many questions, because otherwise, the solver can easily lose
control of the search trajectory. In this paper, we proposed a novel clause weighting scheme
called Unified-SW that provides simple, clever, and effective answers to these questions.

First, Unified-SW distinguishes between feasible local optima and infeasible local optima,
to only increase the weights of hard (soft) clauses in infeasible (feasible) local optima. Second,
in a feasible local optimum, instead of only increasing the weights of the falsified soft clauses
as in some previous approaches, Unified-SW increases the weights of all soft clauses, whether
they are satisfied or not, considering that even the satisfaction of a soft clause can represent
an error that should be repaired. Third, the total increase of the weights of soft clauses is a
constant in a feasible local optimum, proportionally split among all soft clauses, so that the
hierarchy among the soft clauses is kept, and no upper bound is needed for their weights.
Using Unified-SW, the increase of weights of soft clauses in a feasible local optimum can
make the solver far from solutions, the solver then works with the new greater weights of
soft clauses to hopefully move again toward a better solution via new paths, eventually by
increasing the weights of hard clauses in the infeasible local optima along the paths.

We implemented Unified-SW in a new LS solver called USW-LS , and designed four
experiments on all benchmarks from the anytime tracks of MSEs since 2018 to evaluate the
effectiveness of Unified-SW, using three measures: number of winning instances, competition
score used in MSEs, and anytime performance. These experiments show: (1) USW-LS
performs much better than three state-of-the-art LS solvers NuWLS, BandMaxSAT and
SATLike3.0; (2) when combined with an SAT-based solver, USW-LS-c also performs much
better than NuWLS, BandMaxSAT and SATLike3.0 combined with the SAT-based solver;
(3) Being the winning solver in all the 4 categories of the anytime tracks of MSE 2023, USW-
LS-c also performs better than the other four top-five solvers of the anytime track of MSE
2023 on most benchmarks from the anytime tracks of MSEs since 2018; (4) Across multiple
cutoff times, USW-LS performs also better than NuWLS, BandMaxSAT and SATLike3.0; (5)
Uniformly increasing the weights of all soft clauses in a feasible local optimum is important,
because USW-LS is much better than the variant that only increases the weights of falsified
soft clauses.

In the future, we plan to study more deeply the landscape of the search space changed by
Unified-SW for various types of instances. Currently, only falsified hard clauses see their
weight increased in an infeasible local optimum, we will investigate the possibility of also
increasing the weights of all soft clauses if the cost of the current assignment cannot be
improved. As is said above, the total increase of weights of soft clauses in a feasible local
optimum is a constant. We will investigate the possibility of increasing this constant when
the search proceeds and the number of encountered feasible local optima exceeds a threshold.
Finally, we also plan to apply Unified-SW to other optimization problems.
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Abstract
Chronological backtracking is an interesting SAT solving technique within CDCL reasoning, as it
backtracks less aggressively upon conflicts. However, chronological backtracking is more difficult
to maintain due to its weaker SAT solving invariants. This paper introduces a lazy reimplication
procedure for missed lower implications in chronological backtracking. Our method saves propaga-
tions by reimplying literals on demand, rather than eagerly. Due to its modularity, our work can
be replicated in other solvers, as shown by our results in the solvers CaDiCaL and Glucose.
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1 Introduction

In the past few years, chronological backtracking in CDCL-based SAT solving attracted re-
newed interest as it implements less aggressive procedures when backtracking upon conflicts,
particularly for undoing literal assignments stored in the assignment stack. Chronologi-
cal backtracking has been proven sound and complete, while also empirically improving
performance on SAT competition problems [18,20,21].

Without chronological backtracking in SAT solving, the truth value of each literal is set as
early as possible in the solving process. With chronological backtracking, there are, however,
missed lower implications (MLI), i.e., clauses that could have set a literal at a lower SAT
decision level. As a remedy to MLI, IntelSAT [20] and CaDiCaL-1.9.4 [22] fix the level
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Invariant properties for CDCL algorithms (Section 3)

Invariant 1–Weak watched literals: No conflict is missed.

Invariants on implications, native for NCB and WCB (Section 3.1)

Invariant 2–Implied literals: Literals are decisions or implied by a clause C

that is made unit by the partial assignment.

Invariant 3–Topological order : The partial SAT assignment follows a topolog-
ical order of the implication graph.

Strong invariant, non-trivial for CDCL with CB and native in NCB (Section 3.1)

Invariant 4–Strong watched literals: No implication nor conflict can be missed.

Figure 1 Invariant properties for CDCL-based SAT solving and maintained by the different
chronological backtracking (CB) strategies, particularly by non-chronological backtracking (NCB)
and weak chronological backtracking (WCB).

of the assignments. Modifying levels impacts solving performance and significantly clutters
the code; for example, reimplication techniques for detecting MLI have been removed in
CaDiCaL-1.9.5 [4] due to the increased code complexity.

In this paper, we introduce a lazy reimplication procedure for resolving missed lower
implications in chronological backtracking, while also ensuring efficiency in SAT solving.
Doing so, in Figure 1, we state the invariant properties to be maintained during CDCL
and highlight differences between relevant backtracking approaches in SAT solving. In
particular, we consider and adjust variants of non-chronological backtracking (NCB) [23] and
strong chronological backtracking (SCB) [20]. A formal presentation of these invariants and
backtracking variants is given in Section 3. Using the invariants of Figure 1, in Section 4
we introduce a lazy reimplication procedure to handle missed lower implications, with a
particular focus on handling unit implications after backtracking. We also adjust and enhance
the first unique implication point (UIP) algorithm [19] with the knowledge of missed lower
implications. Our approach is sound (Section 5). We implemented our work in the new solver
NapSAT [10] and present our empirical findings in Section 6. To demonstrate the flexibility
of our lazy reimplication techniques, we also implemented the algorithms of Section 4 in
CaDiCaL [5] and Glucose [1], and provide empirical comparisons using these solvers.

Related work. Within CDCL, the truth values of literals are assigned by guessing (deciding)
and propagating them in a trail until a conflict is found. Upon conflict analysis, the trail
is adapted by backtracking, i.e. revoking some assignments and swapping the truth value
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of one variable, called the unique implication point (UIP). The standard approach [23] is
to fix the conflict as early as possible with non-chronological backtracking (NCB) and all
assignments between the current point and the point where the UIP is set are deleted.

A different backtracking approach comes with chronological backtracking (CB) [18, 21].
Here, a less aggressive backtracking scheme is used and some propagations and decisions are
kept. Chronological backtracking may backjump at any level between the UIP and the UIP
falsification point minus one. As a result, chronological backtracking resets a smaller part
of the trail, but it may miss propagations that could have been done earlier if the learned
clause was known beforehand. In this paper, we refer by weak chronological backtracking
(WCB) to the CDCL algorithms that use chronological backtracking mechanism and which
do not detect every propagation as early as possible (see Section 3.2)

For recovering such missed propagations, we define strong chronological backtracking
(SCB). In particular, Nadel [20] introduced a reimplication procedure that eagerly re-assigns
literals detected as missed lower implications to their lowest possible level. We refer to this
SCB technique as eager strong chronological backtracking (ESCB). Our work introduces
a new SCB method, lazy strong chronological backtracking (LSCB). Unlike ESCB, within
LSCB we reimply missed implications on demand. As such, our work is stronger than WCB,
as WCB does not perform reimplications at all. In addition, our technique is shown to be
easier and more flexible to implement than ESCB or WCB (Section 6).

Our contributions. This paper brings the following contributions to chronological back-
tracking in CDCL-based proof search.
1. We formalize invariant properties that need to be maintained during SAT solving with

chronological backtracking (Section 3). Our invariants incorporate and reason over dif-
ferent backtracking strategies.

2. We introduce lazy strong chronological backtracking (LSCB) for on-demand reimplication
of (conflict) (Sec. 4) and prove soundness of our approach (Section 5).

3. We implement our work in the new NapSAT [10, 14] solver (Section 6). To showcase
the flexibility and efficiency of our approach, we integrate LSCB into CaDiCaL [5] and
Glucose [1], and provide experimental comparisons using these solvers.

2 Preliminaries

We assume familiarity with propositional logic and CDCL [6], and use the standard log-
ical connectives ¬, ∧, and ∨. A finite set of elements (e.g. literals) is called conjunctive
(respectively, disjunctive) to indicate that the set is the conjunction (respectively, disjunc-
tion) of its elements. An ordered set is a set S which defines a bijective function pS from
elements of S to naturals, such that pS(e) is the position of the element e in the ordered
set S. We consider the first element of S to have the position 0. Ordered sets are stable
under the removal of elements; that is, for the ordered sets S, T ,U with S = T \ U , we
have ∀e, e′ ∈ S. pS(e) < pS(e′) ⇔ pT (e) < pT (e′). We denote by · set concatenation; for
simplicity, we use · to also denote appending a sequence with an element. We write S[a : b]
to select the ordered elements e in S with positions a ≤ pS(e) ≤ b.

We denote by V a countable set of Boolean variables v. We consider propositional
formulas F in conjunctive normal form (CNF), represented by a conjunctive set of clauses
{C1, C2, . . . , Cn} over V. Clauses are disjunctive sets of literals C = {c1, c2, . . . , cm}, where
a literal ci is either a Boolean variable v or a negation ¬v of a variable v.

SAT 2024
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To efficiently identify unit propagations, SAT solvers track two literals per clause in the
two-watched literal scheme [19]. We denote the watched literals of a clause C by c1 and c2, and
write WL(c1) and WL(c2) for the watched lists of c1 and c2. We have C ∈WL(c1)∩WL(c2).

During SAT solving, solvers keep track of a partial assignment, also called trail and
denoted as the conjunctive ordered set π = τ ·ω, which is split into two parts: (i) τ is the set
of literals that were already propagated and do not need to be inspected anymore (by checking
the watch lists); (ii) ω is the propagation queue containing literals that were implied and
waiting to be propagated. The partial assignment π contains the set πd ⊆ π of decision literals.
Decisions literals in πd are arbitrarily chosen literals when unit propagation cannot be further
used and the truth value of a (decision) literal needs to be picked and assigned. We call unit,
a clause C containing exactly one unassigned literal ℓ and whose other literals are falsified,
i.e., ∃ℓ ∈ C. C \{ℓ}, π |= ⊥∧|ℓ| /∈ |π|. For conflict analysis, the propagation reasons of literals
are analyzed. Therefore, SAT solvers use a ρ function that maps literals to clauses such that
ρ(ℓ) captures the reason for propagating ℓ. The reason for propagating ℓ is the clause C that
implied ℓ under assumption π, that is, [ℓ ∈ π]∧ [ℓ ∈ ρ(ℓ)]∧ [ρ(ℓ)\{ℓ}∧π |= ⊥]. Following [18],
we use δ to represent the (decision) level of ℓ, i.e., the level when a truth assignment to ℓ

was made. Formally, if ℓ is a decision literal, then the level δ(ℓ) = δ(¬ℓ) of ℓ is the number
of decisions preceding and including ℓ, that is δ(ℓ) = |π[0 : pπ(ℓ)]∩πd|. Further, for literals ℓ

implied by ρ(ℓ), we have δ(ℓ) = maxℓ′∈ρ(ℓ)\{ℓ} δ(ℓ′). Finally, δ(ℓ) =∞ for unassigned literals
ℓ. The definition of δ is extended to clauses and trails, with δ(C) = maxℓ∈C δ(ℓ); similarly
for δ(π). The level of the empty set is δ(∅) = 0. We write δ[ℓ← d] to denote that the level
of ℓ is updated to d. We reserve the special symbol ■ to denote undefined clauses during
SAT solving, with δ(■) =∞.

In standard CDCL with non-chronological backtracking (NCB) [23], level δ stores the
number of decisions that appear before in the trail, and is always the lowest level possible.
In CDCL with chronological backtracking, the history of propagations and conflicts may,
however, lead to missed lower implications (MLI), where a MLI captures the fact that a
clause C is satisfied by a unique literal ℓ at a level strictly higher than δ(C \ {ℓ}). Therefore,
in a MLI, the literal ℓ could have been propagated at a lower level in the trail.

▶ Example 1 (Missed Lower Implications – MLI). Figure 2 shows a clause set {C1, . . . , C7}
and a trail π = τ ·ω during CDCL solving with chronological backtracking. The trail diagram
displays, from left to right, the order in which literals are decided and propagated, as well
as the location of the propagation head (symbolized by the dashed line). The propagation
level is symbolized by the height of the step. As a visual aid, literals are colored green, red
or black, symbolizing respectively satisfied, falsified, and unassigned literals. The watched
literals are the first two in the clause.

In the example, the clause set F0 = {C1, . . . , C6} was given as input. The decisions
v1, v2 and v3 were made, then the solver found a conflict in C2 after implying v4 with reason
ρ(v4) = C1. The clause C7 = ¬v3@3 ∨ ¬v1@1 is learned and the solver backtracks to level
δ(C7)− 1 = 2, continuing its propagations until it reaches the assignment shown on Figure 2.
Figure 2 shows that C4 is a MLI. Indeed, v2 is satisfied at level 2, while all other literals are
falsified at level 1. After backtracking to level 1, the implication of v2 by C4 is missed since
(i) ¬v3 was already propagated, and (ii) C4 is watched by v3 and v2.

3 Invariant Properties on CDCL Variants

To properly handle MLI similar to Example 1, in this section we revisit and formalize our
invariants from Figure 1, expressing properties that need to be maintained in (variants of)
CDCL with chronological backtracking.
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C1 = ¬v3@1 ∨ v4
C2 = ¬v3@1 ∨ ¬v4 ∨ ¬v1@1
C3 = v5@1 ∨ v3@1
C4 = v2@2 ∨ v3@1 ∨ ¬v5@1
C5 = v6@2 ∨ ¬v5@1 ∨ v3@1
C6 = ¬v6@2 ∨ ¬v2@2 ∨ ¬v5@2
C7 = ¬v3@1 ∨ ¬v1@1

decision

δ = 1
v1

decision

δ = 2
v2

C7

¬v3

C3

v5

C6

¬v6

C5

⊥
ω →← τ

Figure 2 C4 is a MLI while C5 would be a MLI if v5 was set to true. We use the notation v@1
to indicate that literal v is on level 1.

The crux of our invariant properties is captured by watched literals [19]. They reduce the
number of clauses to be checked when propagating a literal. Invariant 1 therefore expresses
that, as long as CDCL does not falsify one of the watched literals c1, c2 of a clause C, the
clause C is not a conflict. Therefore, when propagating a watched literal ci during CDCL,
only checking the clauses watched by ¬ci is sufficient to not miss any conflict.

▶ Invariant 1 (Weak watched literals). Let π = τ · ω be the current trail. For each clause
C ∈ F watched by the two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ ¬c2 /∈ τ.

Invariant 1 ensures that conflicts are not missed during CDCL. Indeed, if there is a
conflicting clause C, the conflict is found after propagating all literals of C. After propagation,
no more literal has to be propagated, so π = τ . A conflicting clause C thus violates Invariant 1,
and hence the conflict of C is captured during CDCL.

3.1 CDCL Invariants on Implications
We next ensure the soundness of unit implications. Invariant 2 expresses that literals are
either decisions or implied by a sound implication. Note that an implication can be performed
if there is only one unassigned literal that can satisfy a clause C; hence, C is a unit clause.
In addition to ensuring that the solver infers correct literals, Invariant 2 is also relevant for
conflict analysis (see proof of Theorem 13).

▶ Invariant 2 (Implied literals). If a literal ℓ is in the trail π, then ℓ is either a decision literal
or ℓ is implied by π and its reason ρ(ℓ). That is,

∀ℓ ∈ π. ℓ ∈ πd ∨ [ℓ ∈ ρ(ℓ) ∧ [ρ(ℓ) \ {ℓ} ∧ π] ⊨ ⊥] .

To perform conflict analysis with the first unique implication point (UIP) [19], CDCL
solving assumes that literals are organized in a topological sort of the implication graph.

▶ Invariant 3 (Topological order). Trail π is a topological order of the implication graph:

∀ℓ ∈ π. ∀ℓ′ ∈ ρ(ℓ). pπ(¬ℓ′) ≤ pπ(ℓ),

where pπ(ℓ) and pπ(¬ℓ′) are respectively the positions of ℓ and ¬ℓ′ in π.

Invariant 3 holds by construction in CDCL with non-chronological backtracking (NCB) and
chronological backtracking without reimplication. However, Invariant 3 is crucial in any
setting of reimplying literals.

Finally, we impose that Boolean constraint propagation (BCP) in CDCL does not miss
unit implication during proof search. Invariant 4 therefore formalizes that CDCL cannot
have one propagated falsified watched literal without the clause being satisfied.

SAT 2024
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decision

δ = 1
v1

C7

¬v3

C3

v5

ω →← τ

(a) Weak CB.

decision

δ = 1
v1

C7

¬v3

C3

v5

ω →← τ

(b) Restoration SCB.

decision

δ = 1
v1

C4

v2

C7

¬v3

C3

v5

C6

¬v6

C5

⊥
ω →← τ

(c) Eager SCB.

Figure 3 Different CB ways of handling the missed lower implications of Figure 2.

▶ Invariant 4 (Strong watched literals). Consider the trail π = τ · ω. For each clause C ∈ F

watched by the two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ c2 ∈ π.

Invariant 4 strengthens Invariant 1. When a conflicting clause C is detected while
propagating ℓ, the literal ℓ cannot be added to τ without violating Invariant 4. As such, by
imposing Invariant 4, the conflict of C is resolved and the trail is adapted.

3.2 Chronological Backtracking

Invariant 4 holds for CDCL with NCB, since the trail contains monotonically increasing
decision levels. Therefore, within NCB, literals are unassigned in the reverse order of
propagation. In particular, if a literal ℓ is satisfied in a clause C when propagating another
literal ℓ′, the literal ℓ remains satisfied at least until ℓ′ is backtracked.

Weak chronological backtracking (WCB). When considering (variants of) chronological
backtracking in CDCL, Invariant 4 becomes critical, as detailed next. The core idea is to
save parts of the trail without repropagating unlike [15].

▶ Example 5. Let us revisit the example of Figure 2. Figure 3a shows the trail after
backtracking to level 1. Literal v3 is already propagated (v3 ∈ τ), and C4 is still watched by
v2 and v3. Therefore, the implication of v2 is missed, even though Invariant 1 is not violated.

To circumvent the problem of missing implications similar to Example 5, we distinguish
a weak chronological backtracking (WCB) variant of CDCL with chronological backtracking.
Within WCB, Invariant 4 is not necessarily satisfied, as unit implications at lower levels
can be missed. To recover Invariant 4 in variants of CDCL with CB, we adjust and label
two existing solutions in SAT solving: (i) restoration [21], for repairing the trail p after
backtracking; and (ii) prophylaxis [20], for forcing literals at the lowest possible level.

Restoration. We call restoration the approach in which the trail π is repaired by pushing
back the propagation head when propagating [21]. Out-of-order literals are repropagated
whenever they are moved in the trail during backtracking. For example, in Figure 3b, v3 was
the first literal that changed position during backtracking, so this is where the propagation
head is set. When backtracking to level δ, the propagation head is set to pπ(πd[δ]). When
v3 is repropagated, v2 is reimplied. We, therefore, restore Invariant 4 by repropagating
the out-of-order literals. We call this approach restoring strong chronological backtracking
(RSCB), allowing to restore the trail π by propagating more. It is also used in CaDiCaL [5].
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Table 1 CB variants in CDCL, together with their invariant properties.

Inv. 1 Inv. 4 Inv. 6 Inv. 9 Solvers
NCB ✓ ✓ ✓ ✓ Most CDCL solvers
WCB ✓ ✗ ✗ ✗ Our work – NapSAT
RSCB ✓ ✓ ✗ ✗ Maple_LCM_Dist [21], CaDiCaL
ESCB ✓ ✓ ✓ ✓ IntelSAT and CaDiCaL 1.9.4
LSCB ✓ ✓ ✗ ✓ Our work – NapSAT, now in CaDiCaL

Prophylaxis. We name prophylaxis1 the approach in which missed lower implications are
prevented from becoming missed unit implications [20]. Prophylaxis uses an eager reimpli-
cation procedure and imposes the validity of a compatibility invariant; we formalize this
property in Invariant 6. That is, when a clause C is detected to be a missed lower implica-
tion of ℓ, then ℓ is reimplied at level δ(C \ {ℓ}) and its reason for propagation is updated.
Prophylaxis thus enforces our backtrack compatible Invariant 6 by ensuring that no clause
can become unit after backtracking. Furthermore, Invariant 6 guarantees that literals are
always propagated at the lowest level, and conflicts are detected at the lowest level.

▶ Invariant 6 (Backward compatible watched literals). For each clause C ∈ F watched by the
two distinct watched literals c1, c2, we have ¬c1 ∈ τ ⇒ [c2 ∈ π ∧ δ(c2) ≤ δ(c1)] .

▶ Example 7. Figure 3c shows the trail after v2 is reimplied. In this case, v2 was a decision,
and ¬v6 has to be reimplied to level 1 as well. All literals are propagated at the lowest
possible level. Thus, using Invariant 6, the conflict C5 is properly detected at level 1, instead
of level 2. Figure 3c also shows that the trail π no longer follows a topological order of the
implication graph. These issues have to be addressed.

Based on Invariant 6, eager strong chronological backtracking (ESCB) is used in [20,22],
yielding a CDCL method with chronological backtracking that satisfies Invariant 6 by eager
reimplication of missed lower implications. In Table 1 we summarize backtracking strategies
in CDCL, also listing our solution in this respect: lazy reimplication in strong chronological
backtracking (LSCB). Our LSCB approach maintains Invariant 1 and Invariant 4, while
weakening Invariant 6 via Invariant 9, as described next in Section 4 and implemented in
Algorithm 1.

4 Adapting CDCL with Lazy Reimplications

Embedding the prophylaxis approach of Section 3.2 in existing CDCL data structures is
highly non-trivial, due to the rigid and entangled data structures [20, 22], see e.g. [11]. In
addition, reimplying literals [20,22] changes the implication graph, and hence the trail π is
no longer a topological sort of the implications; as such, Invariant 3 must be restored.

While the restoration approach of Section 3.2 offers a practically simpler solution, restora-
tion might require the re-propagation of a large part of π and thus can be computationally
very expensive. For example, while in Figure 3b only one literal had to be re-propagated,
re-propagation could be applied on an arbitrary number of literals.

1 “Prophylaxis” is a chess term referring to a move that deals with a threat before it becomes a problem.
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Our solution: Lazy reimplication in CDCL. To overcome inefficiencies of restoration and
pure prophylaxis, our work advocates a lazy reimplication technique for CDCL with strong
chronological backtracking. To ensure Invariant 4, we reimply literals after backtracking.
That is, we detect missed lower implications eagerly but reimply them lazily.

Our lazy reimplication approach for CDCL-based solving is summarized in Algorithm 1. In
what follows, we describe the key ingredients of Algorithm 1 and revise the CDCL invariants
of Section 3, adjusted to Algorithm 1. To this end, we introduce a lazy reimplication vector λ

to store missed lower implications, where λ is a function from literals to clauses. Intuitively,
the lazy reimplication vector λ stores the lowest

detected missed lower implication for each literal ℓ. The clause λ(ℓ) ̸= ■ is an alternative
reason that would propagate ℓ in trail π, lower than the reason ρ(ℓ). Initially, no clause is
assigned, and ∀ℓ. λ(ℓ) = ■ (that is, the undefined clause). Invariant 8 is asserted to hold
during proof search.

▶ Invariant 8 (Lazy reimplication). If the lazy reimplication reason λ(ℓ) of literal ℓ is defined,
then the clause λ(ℓ) is a missed lower implication of ℓ. That is,

λ(ℓ) ̸= ■ ⇒ ℓ ∈ π ∧ ℓ ∈ λ(ℓ)
∧

(
λ(ℓ) \ {ℓ} ∧ π

)
⊨ ⊥

∧ δ(λ(ℓ) \ {ℓ}) < δ(ℓ)

When a missed lower implication for ℓ is detected, then ℓ is not reimplied directly. Rather,
we store the MLI in λ until ℓ is unassigned during backtracking. For example, if a literal ℓ

is assigned at level 3 and a missed lower implication C for ℓ is detected with δ(C \ {ℓ}) = 1,
then backtracking to level 2 will reassign ℓ from level 3 to level 1 by C.

Using our lazy reimplication vector λ, we weaken Invariant 6 into Invariant 9 such
that, during backtracking, we identify missed lower implications without requiring the re-
propagation of out-of-order literals.

▶ Invariant 9 (Lazy backtrack compatible watched literals). Consider the trail π = τ · ω. For
each clause C ∈ F , if one watched literal c1 of C is falsified by τ , then the other c2 must be
satisfied at a lower level, or a missed lower implication lower than c1 is set in λ.

¬c1 ∈ τ ⇒
(

c2 ∈ π ∧
(
δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)

))
Lazy reimplication for strong chronological backtracking – LSCB. Guided by the reim-
plication and backtracking properties of Invariant 8 and Invariant 9, Algorithm 1 shows our
LSCB algorithm for CDCL with chronological backtracking, as a slight refactoring of weak
chronological backtracking (WCB). In the following algorithms, particularities of LSCB are
highlighted in blue.

An important detail should be noted upon Algorithm 1: in our abstract representation, it
is not explicitly checked whether the learned clause D is different from the conflicting clause
C; such a check, however, should be performed when implementing Algorithm 1. Indeed, as
pointed out in RSCB [18], it is possible that a conflicting clause C does not require conflict
analysis since C might already be a UIP. However, if the highest literal ℓ in C is a MLI,
then the clause might be conflicting again after backtracking (see Algorithm 4).

▶ Example 10. Consider the example of Figure 2. Here, the conflicting clause C5 only has
one literal at the highest level, and, as such, it qualifies as a UIP. Therefore no conflict
analysis is required, we only backtrack to level 1, and then C5 implies v6 at level 1. However,
if ¬v6 was a missed lower implication, then backtracking to level 1 would reimply ¬v6, with
C5 conflicting again; this time, however, C5 would require conflict analysis.
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Algorithm 1 Lazy Reimplication in CDCL with CB.

1: π = τ = ω = πd = ∅
2: ∀ℓ. δ(ℓ) =∞
3: ∀ℓ. WL(ℓ) = ∅
4: ∀ℓ. ρ(ℓ) = λ(ℓ) = ■
5: procedure CDCL(F )
6: for C ∈ F do ▷ Fill the watcher lists
7: c1, c2 ← two literals in C

8: WL←WL[c1 ←WL(c1) ∪ {C}][c2 ←WL(c2) ∪ {C}]
9: while ⊤ do

10: C ← BCP() ▷ Algorithm 2
11: if C = ⊤ then
12: if |π| = |V| then ▷ All variables are assigned
13: return SAT
14: ℓ← Decide()
15: ω ← ω · ℓ, πd ← πd · ℓ, δ ← δ[ℓ← |πd|]
16: continue
17: D ← Analyze(C) ▷ Algorithm 4
18: if δ(D) = 0 then
19: return UNSAT
20: d← any level between δ(D)− 1 and the second highest level of D

21: Backtrack(d) ▷ Algorithm 3
22: ℓ← the unassigned literals in D

23: c2 ← the second highest literal in D

24: ω ← ω · ℓ, δ ← δ[ℓ← δ(C \ {ℓ}], ρ← ρ[ℓ← D]
25: F ← F ∪ {D} ▷ Does nothing if C = D

26: WL←WL[ℓ←WL(ℓ) ∪ {D}][c2 ←WL(c2) ∪ {D}]

Propagation in LSCB. When falsifying a watched literal, Algorithm 1 might need to find a
replacement candidate to become the new watched literal (line 7 of Algorithm 2). We define
the property of the candidate literal with information about its level as below.

▶ Definition 11 (Candidate literal). Let clause C be watched by the literals c1 and c2. with
¬c1 ∈ ω. Then, SearchReplacement(C, c1, c2) from Algorithm 2 returns a candidate
literal r for which one of the following holds:

Invariant 6 is satisfied on C after ¬c1 is added to τ , i.e.
¬r ∈ (τ · ¬c1)⇒ c2 ∈ π ∧ δ(c2) ≤ δ(r);
C is conflicting, propagating, or a MLI for c2. As such, C \ {c2} is unsatisfiable with the
current assignment, and r is at the highest decision level in C \ {c2}, that is(
C \ {c2} ∧ π

)
⊨ ⊥ ∧ δ(r) = δ(C \ {c2})

Concretely, the SearchReplacement(C, c1, c2) procedure iterates over literals of C \
{c2} and stops when it finds a literal r that would satisfy Invariant 6 if c1 was replaced by
r. In case of failure, it returns the highest literal in C \ {c2}. The knowledge of the highest
literal in C \ {c2} is enough to determine the nature and level of the clause.

Algorithm 2 shows our Boolean constraint propagation (BCP) algorithm adapted to
support LSCB. As opposed to standard BCP, Algorithm 2 does not stop when the other
watched literal is satisfied. We need the extra guarantee that either c2 is implied at a level
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Algorithm 2 Boolean Constraint Propagation in LSCB.

1: procedure PropagateLiteral(ℓ)
2: c1 ← ¬ℓ

3: for C ∈WL[c1] do
4: c2 ← the other watched literal in C

5: if c2 ∈ π∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)] then
6: continue
7: r ← SearchReplacement(C, c1, c2)
8: WL←WL[c1 ←WL(c1) \ {C}][r ←WL(r) ∪ {C}]
9: if ¬r /∈ π then

10: continue
11: if ¬c2 ∈ π then ▷ Conflict
12: return C

13: if c2 ∈ π then
14: if δ(c2) > δ(r) ∧ δ(λ(c2) \ {c2}) > δ(r) then
15: λ← λ[c2 ← C] ▷ New or improved MLI
16: continue
17: ω ← ω · c2, ρ← ρ[c2 ← C], δ ← δ[c2 ← δ(r)]
18: return ⊤
1: procedure BCP
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: C ← PropagateLiteral(ℓ)
5: if C ̸= ⊤ then
6: return C

7: ω ← ω \ {ℓ}, τ ← τ · ℓ
8: return ⊤

lower than c1, or it is registered as a MLI before skipping the clause. Further, when a
non-falsified replacement literal cannot be found, Algorithm 2 still changes the watched
literal. While this is not always strictly necessary (for example, in conflicts), systematically
swapping the highest literal allows checking the level of the clause in constant time and
provides cheap useful properties to the clause.

Backtracking in LSCB. When backtracking, our LSCB approach has the information of
whether a clause C violates Invariant 4. Therefore, Algorithm 3 can directly imply those
missed lower implications (line 15 of Algorithm 3).

The order in which literals are reimplied in Algorithm 3 is not important, as shown later
in Theorem 17. It is, however, unclear whether a specific order would impact performance
in problems where the stability of literal position in the trail is important. In such cases,
ordering the reimplications in increasing levels might be beneficial.

Conflict analysis with MLI. As opposed to traditional backtracking, Algorithm 1 does not
guarantee that, once it backtracks to a level lower than the level of the learned clause D, the
clause D will be propagating. Indeed, let the falsified learned clause D = {c1, c2, . . . , cm}
with c1 a unique literal at level δ(D). If we backtrack to level δ(D)−1, c1 might be reimplied
at a lower level, and D would still be a conflict. In response to this, we propose the following
two solutions:
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Algorithm 3 Backtracking and Reimplication.

1: procedure Backtrack(d)
2: Λ← ∅ ▷ Λ is the set that will be reimplied
3: π = τ · ω
4: for ℓ ∈ π do
5: if δ(ℓ) > d then
6: if δ(λ(ℓ) \ {ℓ}) ≤ d then
7: Λ← Λ ∪ {λ(ℓ)} ▷ Store the MLI for later
8: π ← π \ {ℓ} ▷ Unassign ℓ

9: δ ← δ[ℓ←∞], ρ← ρ[ℓ← ■]
10: λ← λ[ℓ← ■] ▷ λ(ℓ) is either used, or no longer valid
11: πd ← π ∩ πd ▷ Remove the unassigned literals
12: τ ← π ∩ τ

13: ω ← π \ τ

14: for C ∈ Λ do ▷ Reimplying the MLI
15: ℓ← the unassigned literal in C

16: ω ← ω · ℓ, ρ← ρ[ℓ← C], δ ← δ[ℓ← δ(C \ {ℓ})]

(Analyze-1) we analyze the conflict and backtrack again until we get a unit clause;

(Analyze-2) we perform conflict analysis with the knowledge of missed lower implications.

In Algorithm 4 we chose option 2. Option 1 will generate the same clause in the end, but
might create some unnecessary ones in the process. We empirically check our intuition in
Section 6 and demonstrate that option 2 indeed works better. We refer to D ⊗ℓ C ′ as the
result of binary resolution applied to the clauses C and D over the literal ℓ.

In Algorithm 4, when possible, we use the lazy reimplication reason λ(ℓ) instead of the
real reason ρ(ℓ) during conflict analysis. The lazy reason λ(ℓ) is guaranteed to introduce
literals at a level lower than δ(C), making it converge to a UIP faster. Once a UIP is obtained,
Algorithm 4 does not stop if there exists a missed lower implication for the last literal at
the conflict level. Furthermore, we adapted the learnt clause minimization approach [24],
adjusted to Algorithm 4 so that both reasons are checked if the literal can be removed.

▶ Example 12. Figure 4 shows a conflict after Algorithm 2 detected a missed lower implica-
tion C6. From Invariant 9, we have λ(¬v3) = C6. Algorithm 1 will then trigger Algorithm 4
to analyse the conflict on C5. During conflict analysis with Algorithm 4, we start from the
conflicting clause D = ¬v7@2 ∨ v5@2 ∨ v6@1 and apply the resolution D ← D ⊗¬v7 C4 to
obtain D = v5@2 ∨ v3@2 ∨ v6@1. We once again apply resolution and have D ← D ⊗v5 C2,
yielding the clause D = v3@2 ∨ v6@1 ∨ ¬v4@1. As this D is a UIP, most CDCL approaches
would stop conflict analysis here. However, in our LSCB approach we know that v3 can
be reimplied at level 1. Therefore, after backtracking to level 1 and reimplying ¬v3 with
Algorithm 3, the clause D would still be conflicting and conflict analysis would need to be
triggered again. Instead we apply the resolution D ← D ⊗v3 C6 to get a clause at level 1,
namely clause D = v6@1 ∨ ¬v4@1 ∨ v2@1. We then continue until the procedure at level 1
and obtain the final clause D = v2@1.
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Algorithm 4 Conflict Analysis.

1: procedure Analyze(C)
2: π ← τ · ω ▷ Array version of the trail.
3: D ← C ▷ Current learned clause.
4: n← |{ℓ : ℓ ∈ D ∧ δ(ℓ) = δ(D)}| ▷ Number of literals at the highest level.
5: while ⊤ do
6: ℓ← the last literal in π falsified in D at level δ(D)
7: if n = 1 ∧ λ(ℓ) = ■ then
8: return D

9: C ′ ← ρ(ℓ)
10: if λ(ℓ) ̸= ■ then
11: C ′ ← λ(ℓ)
12: D ← D ⊗ℓ C ′

13: n← |{ℓ : ℓ ∈ D ∧ δ(ℓ) = δ(D)}|

C1 = ¬v2@1 ∨ v1@1
C2 = ¬v5@2 ∨ v3@2 ∨ ¬v4@1
C3 = ¬v6@1 ∨ v2@1 ∨ ¬v4@1
C4 = v7@2 ∨ v5@2 ∨ v3@1
C5 = v5@2 ∨ ¬v7@2 ∨ v6@1
C6 = ¬v3@2 ∨ ¬v4@1 ∨ v2@1
C7 = v4@1 ∨ v2@1

decision

δ = 1
¬v1

C1

¬v2

decision

δ = 2
¬v3

C7

v4

C2

¬v5

C3

¬v6

C4

v7

C5

⊥
ω →← τ

Figure 4 The clause ¬v3@2 ∨ ¬v4@1 ∨ v2@1 is a missed lower implication in this example. v2

and ¬v4 are falsified at level 1, whereas ¬v3 is only satisfied at level 2.

5 Soundness of Lazy Reimplication

This section proves the soundness and completeness2 of our LSCB approach given in Algo-
rithm 1. We note that Algorithm 1 implements strong chronological backtracking and does
not miss any implication; as such, Invariant 4 holds.

▶ Theorem 13 (Soundness of conflict analysis). Let C ∈ F be a conflicting clause with the
partial assignment π. Then, conflict analysis in Analyze(C) from Algorithm 1 returns a
conflicting clause that is implied by the clause set.

Proof. The starting clause D ← C is conflicting. At each step, D is resolved with a clause
C ′ such that C ′ = ρ(ℓ) or C ′ = λ(ℓ), with ℓ ∈ C ′ and ¬ℓ ∈ D. From the definition of ρ

and λ, we have
(
C ′ \ {ℓ} ∧ π

)
⊨ ⊥. Therefore, the clause D ← D ⊗¬ℓ C ′ is conflicting, and

implied by F, since C ′ ∈ F . ◀

▶ Theorem 14 (No missed unit implication). Algorithm 1 satisfies Invariant 9. As such, our
LSCB method in Algorithm 1 does not miss unit implications.

Proof. We prove that Invariant 9 holds for each building block of Algorithm 1.

2 with details also in the code base of NapSAT
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BCP. Invariant 9 trivially holds at the starting state, where π = ∅. Further, during the
propagation of one literal, Algorithm 2 ensures that for each clause C ∈ F watched by c1
and c2, the following Hoare triple holds

{P}PropagateLiterall(ℓ){Q},

where

P ≡ ¬c1 ∈ τ ⇒ [c2 ∈ π ∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)]]
Q ≡ ¬c1 ∈ (τ · ℓ)⇒ [c2 ∈ π ∧ [δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)]]

By structural induction over the statements of Algorithm 2, we conclude that Invariant 9 is
maintained by BCP.

Backtracking. During backtracking in Algorithm 3, each literal ci is inspected: ci is either
removed from the trail π or ci is kept. Violating Invariant 9 means that a literal c2 from the
trail is removed such that ¬c1 ∈ τ ∧ c2 /∈ π for some clause C = {c1, c2, . . . , cm} (since the
levels are not altered). However, this case is rectified, since either δ(c1) ≤ δ(c2) (and then
¬c1 would be removed from τ), or δ(λ(c2) \ {c2}) ≤ δ(c1) (and then c2 would be reimplied at
level δ(λ(c2)\{c2}) and c2 ∈ π∧δ(c2) ≤ δ(c1) would be true), or δ(λ(c2)\{c2}) > δ(c1) (and
then ¬c1 is also backtracked). As such, backtracking in Algorithm 3 preserves Invariant 9.

Analysis. Within conflict analysis in Algorithm 4, the state of CDCL is not modified, only
read. Therefore, any invariant that held before Algorithm 4 also holds after Algorithm 4.

CDCL. We finally ensure that Invariant 9 is maintained by Algorithm 1 also during its
decision step and while adding a clause to the formula F . First, deciding still preserves
Invariant 9, since it merely adds a non-assigned literal to the propagation queue ω. Second,
after backtracking in Algorithm 1, we know by construction that the learned clause will
have a single literal ℓ that is unassigned. This literal ℓ is then implied at level δ(D \ {ℓ}),
satisfying Invariant 9 since the second watched literal c2 is falsified at level δ(D \ {ℓ}). ◀

▶ Corollary 15 (No missed conflict/implication). Our LSCB method from Algorithm 1 pre-
serves the strong watched literal property of Invariant 4.

Based on the results above, we conclude the soundness and completeness of LSCB.

▶ Theorem 16 (LSCB soundness and completeness). Lazy reimplication with strong chrono-
logical backtracking from Algorithm 1 is sound and complete.

Proof. Theorem 13 implies that clauses added to the clause set are implied by F . By
induction, if ϕ is the original CNF, then if ϕ |= F and F |= C, then ϕ |= F ∪ {C}.
Furthermore, from Corollary 15 we conclude that Invariant 4 holds.

Algorithm 1 returns unsat iff there exists a conflict at level 0; that is, there exists a set
of clauses F ′ ⊆ F such that F ′ |= ⊥. As ϕ |= F , then ϕ |= ⊥, and thus ϕ is unsatisfiable.
Otherwise, Algorithm 1 returns SAT if a model τ exists such that every variable has been
assigned and propagated (π = τ). Based on Invariant 4, no conflict is possible and ϕ |= τ . ◀

▶ Theorem 17 (Topological order in LSCB). The literals reimplied by the backtracking proce-
dure of Algorithm 3 respect the topological order of the implication graph.
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Proof. The reimplied literals cannot depend on each other. Indeed, if they are reimplied,
their implication level before backtracking was higher than d. Therefore, if a literal ℓ depends
on a literal ℓ′ in the implication graph, then δ(ℓ) ≥ δ(ℓ′). If the missed lower implication
λ(ℓ) has a level lower than d, then all literals in λ(ℓ) \ {ℓ} are lower than d, and therefore
were not backtracked. Therefore, since all literals are independent, they can be reimplied in
an arbitrary order at the end of the trail, and still respect the topological order. ◀

6 Empirical Analysis

In this section, we discuss the implementation of Algorithm 1 in our new SAT solver NapSAT.
We also integrated it in CaDiCaL and Glucose, and present our empirical results using
NapSAT, CaDiCaL, and Glucose.

6.1 NapSAT for Lazy Reimplication in CDCL
We implemented our LSCB method from Algorithm 1 in the new SAT solver NapSAT. Our
NapSAT tool is a CDCL solver using the watcher list scheme [19] with blocker literals [9].
NapSAT supports the backtracking variants of NCB, WCB, RSCB, and LSCB at runtime.
In chronological backtracking, the backtracking scheme is purely chronological, that is,
NapSAT always backtracks to one level before the conflict (unlike CaDiCaL). NapSAT
uses the VSIDS decision heuristic [19] with the agility restart strategy [3] and root-level
clause elimination [7]. NapSAT is available at https://github.com/RobCoutel/NapSAT
and consists in a total of ∼5.800 loc, among which the core of the solver represents ∼1.500 loc.

Blocker literals in NapSAT. Blocker literals are useful to reduce the number of pointer
dereferencing of the literal pointer [9]. If the blocker b is assigned at a level higher than the
literal ℓ being falsified, then it might get backtracked before ℓ and a conflict might be missed.
Invariant 9 can therefore be weakened, while still ensuring that no unit implication is missed.

▶ Invariant 18 (Lazy backtrack compatible watched literals with blocker literals). For each
clause C ∈ F watched by the two distinct literals c1, c2 and with blocker b, we have

¬c1 ∈ τ ⇒
(

c2 ∈ π ∧
(
δ(c2) ≤ δ(c1) ∨ δ(λ(c2) \ {c2}) ≤ δ(c1)

))
∨

(
b ∈ π ∧ δ(b) ≤ δ(c1)

)
The eager update of blocking literals is in essence similar to strategies that aggressively
update watched literals during BCP [17].

Experiments. Figure 5 shows the average total number of propagations of NapSAT on the
3-SAT uniform random problems from SATLIB [16]. Our LSCB method from Algorithm 1,
indicated via -lscb, performs better than the other backtracking versions of NapSAT, both
for satisfiable and unsatisfiable instances. Figure 6 shows more details. In particular, it
shows the total number of propagations of each unsatisfiable problem with 250 variables. It
shows that LSCB consistently has fewer propagations than NCB, WCB, and RSCB.

We acknowledge that the number of propagations alone is not always representative of the
real performance of a SAT solver, since propagation in LSCB is slightly more expensive than
in NCB or WCB. However, the number of propagations in NapSAT indicates the impact of

https://github.com/RobCoutel/NapSAT
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(b) Unsatisfiable instances.

Figure 5 Average total number of propagations performed by NapSAT on the SATLIB 3-SAT
random problem, clustered by the number of variables, and backtracking technique employed.
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(c) LSCB vs. RSCB.

Figure 6 Total number of propagations of NapSAT for each unsatisfiable Uniform Random
3-SAT problem from SATLIB. The red line is the equality line. Marks under the equality line favour
our new approach.

missed lower implications. For example, Figure 5 shows that restoring the trail with RSCB
might not be worth finding the missed lower implications in the random 3-SAT benchmarks;
yet, reimplying literals lazily significantly reduces the total number of propagations.

6.2 Integration of LSCB in CaDiCaL and Glucose

LSCB in CaDiCaL. We implemented our LSCB approach from Algorithm 1 in CaDi-
CaL [4], the baseline solver of the hack track of the SAT Competition. Thanks to the
built-in model-based tester Mobical, the most effort came with ensuring that we have
implemented correctly Invariant 4: CaDiCaL does not require watching the literals of two
highest levels when the clause is propagating. This, however, requires iterating over the
clause to find the propagation level, which we do not need.

We remark that we did not change the default backjumping policy of CaDiCaL: when
backjumping from more than 100 levels occurs (following the value implemented in CaDi-
CaL), we resort to backtracking (going one level back). Otherwise, an algorithm similar to
trail reuse for restarts is used to decide how many levels should be kept. Unlike the version
implemented in NapSAT, in CaDiCaL we store the missed level instead of checking the
level of the MLI each time we need the level.
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Table 2 Number of solved instances by different variants of strong backtracking on the SC2023
competition, using a 5.000 s timeout.

CaDiCaL version solved PAR-2 (×103)

base-CaDiCaL = RSCB 248 4.09
LSCB, Analyze-2 and minimization 246 4.16
ESCB 245 4.16
LSCB and Analyze-2 246 4.19
NCB 247 4.19
LSCB and Analyze-1 242 4.24

We tested various configurations, as summarized in Table 2, on the bwForCluster Helix with
AMD Milan EPYC 7513 CPUs, using a memory limit of 16 GB RAM on the problems from
the SAT Competition. Overall, we can see there is little difference between the considered
configurations. In particular, the performance difference between WCB and NCB is limited,
making it unclear if chronological backtracking is important. However, similar to the original
CaDiCaL implementation [18], on the benchmarks from the SAT Competition 2018, there
is an improvement from WCB over NCB. Our intuition is that chronological backtracking
is especially useful when the decision heuristic is picking the wrong literals finding conflicts
late instead of early (like finding a new unit at level 500 instead of level 1). The decision
heuristics seem to perform worse on the 2018 benchmarks, while this did not seem to have
happened since.

While the results in NapSAT seem to indicate a large decrease in the number of
propagations, three factors mitigate this effect in CaDiCaL: (i) propagating a literal ℓ

a second time as in RSCB is cheaper than propagating it for the first time. Most clauses
remaining in the watch list of ℓ will already be satisfied and are faster to check. (ii) RSCB
allows to use of blocking literals more loosely. There is no need to compare the level of the
blocking literal and the propagated one, making them more potent. (iii) Searching for a
replacement literal is slightly more expensive in LSCB since we need to record the highest
literal in the clause.

In a context where propagations are more expensive, such as SMT or user-propagators [8],
these considerations might weigh less on the overall performance of the solver. We will
investigate these applications for future work.

LSCB in Glucose. We also implemented our Algorithm 1 for LSCB into the latest version
of Glucose [1], the SAT solver that pioneered the LBD heuristic for the usefulness of
clauses (only without the minimization part). This is the only solver where we implemented
the LSCB without any existing CB in the code. The entire diff (including new logging
information and more assertions) is less than 1.000 lines. Our actual implementation of
LSCB in Glucose is very close to our abstract Algorithm 1, because the blocker literal is
always exactly the other watched literal. We use the simple heuristic to backtrack one level
if jumping back more than 100, otherwise use the normal backjumping. We did not change
the heuristic to block restarts [2], which is based on the trail length.

While running Glucose with LSCB on the SAT Competition 2023 (Fig. 7b), we ob-
served worse performance. Interestingly, this is mostly due to one family of benchmarks,
SC23_Timetable, that perform much worse with strong backtracking (but are solved even-
tually). On the 2018 benchmarks again (Fig. 7a), we observed a slight performance improve-
ment when using Glucose with LSCB and it seems to be better to trigger chronological
backtracking more often.
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Figure 7 CDF of the different Glucose (without strategy adapting) versions. The constant
indicates when chronological backtracking is triggered instead of backjumping: We apply chronolog-
ical backtracking when NCB would require jumping back more than 100 levels by default, like in
CaDiCaL. In the SAT Competition 2018, the version that triggers chronological backtracking for
more than 50 levels performs best.
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7 Conclusion

We introduce a lazy reimplication procedure to be used in CDCL with (variants of) chronologi-
cal backtracking. We particularly focus on the definitions of weak chronological backtracking
(WCB), restoring strong chronological backtracking (RSCB), eager strong chronological
backtracking (ESCB), and lazy strong chronological backtracking (LSCB). Our invariant
properties on these backtracking variants exploit watched literals. We prove that our ap-
proach of lazy reimplication in strong chronological backtracking (LSCB) yields a sound
and complete SAT solving method. Our implementation in NapSAT, and its integration
with CaDiCaL and Glucose, gives practical evidence that LSCB is significantly easier
to implement than ESCB, while also propagating fewer literals than RSCB, and providing
better guarantees than WCB.

In the future, we intend to extend our LSCB method to reason over virtual literal levels,
that is, levels of missed lower implications if such a clause is detected. We believe such an
extension would allow to converge closer to the guarantees of ESCB, while mitigating both
algorithmic complexities and reimplication costs. Further, we will explore the integration of
chronological backtracking variants in the context of SMT, as a robust approach to handling
arbitrary incremental clauses and expensive theory propagations.
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Abstract
In this paper, we obtain new size lower bounds for proofs in the Polynomial Calculus (PC) proof
system, in two different settings.

When the Boolean variables are encoded using ±1 (as opposed to 0, 1): We establish a lifting
theorem using an asymmetric gadget G, showing that for an unsatisfiable formula F , the lifted
formula F ◦ G requires PC size 2Ω(d), where d is the degree required to refute F . Our lower
bound does not depend on the number of variables n, and holds over every field. The only
previously known size lower bounds in this setting were established quite recently in [Sokolov,
STOC 2020] using lifting with another (symmetric) gadget. The size lower bound there is
2Ω((d−d0)2/n) (where d0 is the degree of the initial equations arising from the formula), and is
shown to hold only over the reals.
When the PC refutation proceeds over a finite field Fp and is allowed to use extension variables:
We show that there is an unsatisfiable AC0[p] formula with N variables for which any PC
refutation using N1+ϵ(1−δ) extension variables, each of arity at most N1−ϵ and size at most Nc,
must have size exp(Ω(N ϵδ/poly log N)). Our proof achieves these bounds by an XOR-ification of
the generalised PHPm,r

n formulas from [Razborov, CC 1998].
The only previously known lower bounds for PC in this setting are those obtained in [Impagliazzo-
Mouli-Pitassi, CCC 2023]; in those bounds the number of extension variables is required to be
sub-quadratic, and their arity is restricted to logarithmic in the number of original variables.
Our result generalises these, and demonstrates a tradeoff between the number and the arity of
extension variables. Since our tautology is represented by a small AC0[p] formula, our results
imply lower bounds for a reasonably strong fragment of AC0[p]-Frege.
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1 Introduction

Propositional proof complexity is the field of study of the complexity of proofs for tautological
Boolean formulae. Cook and Reckhow [6] introduced this area in their seminal work with
the ultimate goal of resolving the question of NP versus coNP using upper/lower bounds for
stronger and stronger proof systems. Polynomial Calculus (PC) is one such propositional
proof system that has received wide attention since its introduction by Clegg, Edmonds and
Impagliazzo [5]. Degree lower bounds for PC and its variant PCR (PC with Resolution)
have been proved starting with the work of Razborov [17], followed by a long series of works
[12, 4, 1, 14, 7]. These translated to size lower bounds through a size-degree connection
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established in [5, 12]. Despite these works showing that we have a reasonable understanding of
PC, there has been little progress towards lower bounds for the stronger system AC0[p]-Frege,
which was one of the main motives for defining PC. Therefore, this indicates that we have to
look at systems stronger than PC in order to get new insights.

Grigoriev and Hirsch [8] introduced one such system called constant-depth PC, where in
addition to the rules of PC we allow extension variables of constant depth to be introduced
and used as new variables. They showed that this system simulates AC0[p]-Frege (at a
proportional depth), making it a suitable target for lower bounds. However, Raz and
Tzameret [16] showed that this system is already powerful enough to simulate the proof
system Cutting Planes (which deals with integer linear inequalities) with polynomially
bounded coefficients. Finally, Impagliazzo, Mouli and Pitassi [10] showed that this system
can simulate at a fixed constant depth AC0[q]-Frege for any prime modulus q, Cutting Planes
and the semialgebraic proof system sum-of-squares SOS with unbounded coefficients, and
can also simulate TC0-Frege at a proportional depth. This implies that general lower bounds
for this system are much harder than lower bounds for AC0[p]-Frege.

The simplest subsystem of the above for which size lower bounds were unknown until
recently is PC over ±1 variables instead of {0, 1}. The switch from the latter basis to the
former can be made using an affine transformation, which preserves degree lower bounds.
However, known techniques based on the size-degree connection fail over this basis since they
rely on terms vanishing when variables are set to zero. Moreover, the Tseitin tautologies
require large PC degree but have small PC size over ±1, precluding the existence of such
a generic connection. Sokolov [18] recently showed how to go past this barrier and proved
size lower bounds for PC over ±1 variables. Impagliazzo, Mouli and Pitassi [11] improved
and generalized these bounds to PC over finite fields Fp with a sub-quadratic number of
extension variables, where each extension variable depends on O(log n) original variables.

Our Results

In this work, we extend the results of both [18] and [11]. For our first result, we show a
generic degree-to-size lifting result for PC over ±1 basis (PC{±1}).

▶ Theorem 1.1. Let F be an unsatisfiable formula over variables x1 · · ·xn, with a polynomial
encoding of degree d0, which requires degree d > d0 to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F ◦ Ind be the formula obtained by replacing each xi by Ind(wi0, wi1, wi2)
for a fresh set of variables wi0, wi1, wi2 ∈ {±1}. Then F ◦ Ind requires size 2Ω(d) to refute in
PC over ±1 basis.

Sokolov showed such a lifting result for the SOS proof system, using a symmetric gadget
with certain properties (e.g. majority). By showing that SOS can simulate PC{±1} over
the reals (with respect to both size and degree), similar to the findings in [3] for the {0, 1}
basis, Sokolov also obtained a SOS degree to PC{±1} size lift over R. In his concluding
remarks, Sokolov posed the question of directly proving a degree-to-size lifting result for
PC{±1}, irrespective of the field. Our result addresses this question, offering a lifting result
for PC{±1} over any field F using a one-bit indexing gadget.

Furthermore, Sokolov’s PC{±1} size lower bounds over R for lifted formulas are of the
form 2Ω((d−d0)2/n) (where n is the number of variables, d0 is the degree of the initial
equations arising from the unlifted formula, and d is the SOS degree lower bound for unlifted
formula), yielding meaningful results only when d = ω(

√
n). In contrast, our result offers

meaningful PC{±1} size lower bounds for lifted formulas as long as the unlifted formulas have
a superconstant PC degree lower bound. For instance, the graph version of the Pigeonhole
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Principle (GPHP) based on a sufficiently expanding bipartite graph has a constant degree
proof over SOS [9] but has a degree of Ω(n) over PC [1, 14]. Hence, using Sokolov’s lifting
theorem with GPHP as an unlifted formula yields nothing, whereas our result shows that
GPHP lifted with a one-bit indexing gadget has exponential size in PC{±1} irrespective of
the field. This also gives a straightforward exponential size lower bound for PC{±1}, a result
only recently proven in Sokolov’s work. Lastly, we believe that our result is arguably simpler
to prove. This result is inspired by the work of Krause and Pudlák [13].

As corollaries of this result, we also obtain (1) a size lower bound in PC±1 for random
3-CNF formulas lifted with one bit indexing, Corollary 3.8, (2) an arguably simpler proof of
the size separation between PC{±1} and SOS{±1}, Corollary 3.9, and (3) an improved version
of the degree-to-size lifting for SOS{±1}, Theorem 3.10.

In our next result, we strengthen the lower bounds of [11] for PC over finite fields to
handle a sub-quadratic number of extension variables, each of which is of polynomial size and
depends on a polynomial fraction of the original variables. While [11] showed lower bounds
under the same setting for a sub-quadratic number of extension variables, they restricted the
arity of these extension variables, i.e., the number of original variables they can depend on, to
be logarithmic in the number of original variables. Thus, we have an exponential improvement
over the result of [11] in the arity of the extension variables provided the extension axioms
remain small. Moreover, the constraint of polynomial-sized extension axioms in our result is
also implicitly present in [11], as they restrict the arity of extension axioms to be logarithmic
in the number of original variables, thereby only allowing polynomial-sized extension axioms.

▶ Theorem 1.2. For every N > 0 large enough, any 1 > ϵ, δ > 0, constant c > 0, and prime
p, there exists a tautology F over N variables such that any PC refutation of F over Fp with
N1+ϵ(1−δ) extension variables, each depending on N1−ϵ variables of F and of size at most
N c, requires size exp(Ω(N ϵδ/poly logN)).

Related work

As mentioned earlier, our lower bounds strengthen those in [18], [11]. For Polynomial Calculus
with extension variables, over the reals, stronger lower bounds have been shown in [2], but
these are incomparable to our result in Theorem 1.2 as we primarily focus on finite fields.

Our Techniques

In both our results, the notion of quadratic degree introduced in [18] plays a crucial role.
This is the maximum degree that can be obtained from a PC refutation by multiplying any
two terms that appear in the same line; see Definition 3.2. Sokolov’s insight was that it is
easier to reason about this measure for a refutation, and at the same time, it does carry
information about the usual degree. In particular, a refutation with low quadratic degree
can be transformed into one with low degree; Lemma 3.7. An adaptation of this measure
and this method was subsequently used in [11] to similarly reason about refutations using
extension variables. A non-trivial part in both these is establishing that if a variable appears
in the refutation but not in any axiom (other than the Boolean axiom or an extension axiom
of a specific type), then it can be removed from the proof; Lemmas 3.4 and 4.13. This seems
self-evident but needs to be done with care.

To prove our first result Theorem 1.1, we follow Sokolov’s approach, but we employ a lift
by the (asymmetric) one-bit Indexing gadget. The gadget, on variables w0, w1, w2, selects
the value of w1 if w0 = −1 (in this case, w2 is irrelevant) and that of w2 otherwise (now w1
is irrelevant). If there is a small enough proof, then the probabilistic method guarantees

SAT 2024
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the existence of an assignment to all the selector variables so that under this restriction,
every high-degree quadratic term contains an irrelevant variable. The restricted refutation is
in fact a refutation of the unlifted formula, but may use irrelevant variables along the way.
Such irrelevant variables can be removed from the restricted proof as discussed above, and
then Sokolov’s transformation from low-quadratic-degree to low-degree can be employed,
yielding a contradiction.

To prove our second result, we closely follow the approach of [11], which we outline in
Section 4. However, to handle extension variables of large arity and polynomial size, we use a
similar idea as above; composing a hard tautology with a simple gadget. The gadget we use
here is just the XOR2 gadget (the parity of two variables). We begin by considering family of
restrictions where, for each XOR2 gadget, one of the variables is assigned a random bit while
the other variable remains free. Such restrictions recover the hard formula (possibly with
some variables negated). Using the probabilistic method once again, it is easy to guarantee
the existence of one such restriction under which every extension variable axiom, despite
having a large arity, reduces to logarithmic degree due to its polynomial size. Thus the
problem reduces to proving a size lower bound for the original unlifted tautology, where
extension axioms are bounded by logarithmic degree. Such extension variables can be handled
using the approach of [11] by further carefully chosen restrictions of small size and even
smaller Hamming weight; this size lower bound is shown in Theorem 5.5. The hard formula
we choose is the generalised Pigeon-Hole-Principle formula PHPm,r

n , introduced by Razborov
in [17] (see Proposition 5.2), and we show that applying such small restrictions preserves
the degree hardness shown by Razborov. The system of polynomials over Fp underlying our
tautology is not a translation of a small CNF formula (as in [11]). Nevertheless, they can be
represented by small size, low depth AC0[p] circuits. Therefore, our lower bounds still imply
lower bounds for (the corresponding fragment of) AC0[p]-Frege.

We note here that the notions of Quadratic degree and the associated operation Split

which reduces it were introduced by Sokolov [18] and generalized in Impagliazzo, Mouli,
Pitassi [11]. Since we extend results of both works, we use two different but very related
notions of Quadratic degree and Split in this paper: in Section 3 we use the notions from [18]
and in Sections 4 and 5 we use the notions from [11].

Organisation of the Paper

In Section 2, we include the basic relevant definitions of the proof systems. In Section 3 we
describe the setting where the encoding is over ±1, and prove Theorem 1.1. In Section 4, we
consider the setting where extension variables are used, and describe all the facts and results
from [11] that we crucially use. In Section 5 we prove Theorem 5.5 and Theorem 1.2.

2 Preliminaries

We follow the notation from [18, 11].

▶ Definition 2.1 (Polynomial Calculus/Polynomial Calculus Resolution). Let Γ = {P1 . . . Pm}
be an unsolvable system of polynomials in variables {x1 . . . xn} over F. A PC (Polynomial
Calculus) refutation of Γ is a sequence of polynomials {R1 . . . Rs} where Rs = 1, and for
every ℓ ∈ [s], Rℓ is either a polynomial from Γ, or is obtained from two previous polynomials
Rj , Rk, j, k < ℓ, by one of the following derivation rules:

Rℓ = αRj + βRk for α, β ∈ F
Rℓ = xiRk for some i ∈ [n]
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The size of the refutation is
∑s

ℓ=1 |Rℓ|, where |Rℓ| is the number of monomials in the
polynomial Rℓ. The degree of the refutation is maxℓ deg(Rℓ).

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of
Boolean variables {x1 . . . xn, x̄1 . . . x̄n} where {x̄1 . . . x̄n} are twin variables of {x1 . . . xn}.
That is, over the {0, 1} encoding, the equations x2

i − xi = 0, x̄i
2 − x̄i = 0 and xi + x̄i − 1 = 0

are treated as axioms. Similarly, over the ±1 encoding, the equations x2
i − 1 = 0, x̄i

2 − 1 = 0
and xix̄i + 1 = 0 are treated as axioms.

In the literature, the terms PC and PCR are often used interchangeably. The notion of
degree is the same in both, but size in PC with the {0, 1} encoding of Boolean variables can
be much larger than in PCR. Throughout this paper, we say PC but really mean PCR. In
particular, our size lower bounds are for PCR.

Note that the minimal degree required to refute a formula is independent of whether
Boolean variables are encoded over {0, 1} or over ±1. However, the minimal size crucially
depends on the encoding. As is well known [4], suitable Tseitin formulas require degree n,
hence they require size exp(Ω(n)) over the {0, 1} basis using size-degree connection, but have
linear-size refutations over ±1.

As is standard, we work in the ideal modulo the Boolean axioms, and hence the polynomials
in all lines are multilinear in the original variables. Technically, on deriving a higher degree
term, it has to be cancelled by using suitable multiples of the Boolean axiom; however, these
steps do not significantly alter the size or degree of the refutation.

▶ Definition 2.2 (PC plus Extension Axioms). Let Γ = {P1 . . . Pm} be a set of polynomials in
variables {x1 . . . xn} over a field F, with no common zero. The polynomials in Γ are referred
to as the (initial) axioms. Let z = z1 . . . zM be new extension variables with corresponding
extension axioms zj − Qj(x1 . . . xn). A PC + Ext (PC plus extension) refutation of Γ with
M extension axioms Ext = {zj − Qj(x1 . . . xn) | j ∈ [M ]} is a PC refutation of the set of
polynomials Γ′ = {P1 . . . Pm, z1 − Q1 . . . zM − QM }. The size of the refutation is the total
size of all lines in the refutation, including the polynomials in Γ′ (where the size of a line
P ∈ Π is the number of monomials in P ). The degree of the refutation is the maximum
degree of any line in the refutation or in Γ′.

Similar to [11], our notion of extension variables is not recursive in the sense that new
extension variables cannot be defined as functions of existing ones. Our extension variables
are only allowed to depend on the original variables of the tautology.

We also consider the Sum-of-Squares (SOS) proof system, which is a semi-algebraic proof
system. While algebraic proof systems (like PC) are defined over any field and are based
on polynomial equalities, semi-algebraic proof systems are defined only over R and are
based on polynomial inequalities. SOS serves as an analogue to the algebraic Nullstellensatz
proof system (a static version of PC), albeit for polynomial inequalities over the reals,
contrasting Nullstellensatz’s treatment of polynomial equalities over arbitrary fields. Similar
to Nullstellensatz, SOS is a static proof system.

We specifically consider SOS over Boolean variables taking values in {+1,−1}. Formally,

▶ Definition 2.3 (Sum-of-Squares over {±1} Basis). Let Γ = {f1 = 0, . . . , fm = 0;h1 ≥
0, . . . , hs ≥ 0} be an unsolvable system of polynomial equalities and inequalities over Boolean
variables {x1, . . . , xn} taking values in {+1,−1}. Let R = x2

1 − 1 = 0, . . . , x2
n − 1 = 0 be the

range axioms enforcing xi’s to be ±1. A SOS±1 (Sum-of-Squares over {±1} basis) refutation
of Γ is an explicit list of real polynomials (q0, . . . , qs; p1, . . . , pm; r1, . . . , rn) such that

q0 +
s∑

i=0
qihi +

m∑
i=1

pifi +
n∑

i=1
ri(x2

i − 1) = −1.

and for each i ∈ {0} ∪ [s], qi is a sum of squares of polynomials.

SAT 2024
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The degree of the SOS refutation is max(deg(q0),maxi(deg(qi) + deg(hi)),maxi(deg(pi) +
deg(fi))). The size of the SOS refutation is |q0| +

∑s
i=0(|qi| + |hi|) +

∑m
i=1(|pi| + |fi|), where

|p| is the number of monomials in the polynomial p.

To define the degree and size, we have omitted the consideration of terms involving
range axioms, as they do not significantly affect the degree or size of the proof. Henceforth,
we will proceed under the assumption that all computations are performed modulo the
ideal generated by the range axioms. Consequently, all polynomials involved are treated as
multilinear. Furthermore, given our focus on the ±1 basis for SOS, we have assumed the
absence of twin variables, as the variable x̄ can be readily substituted with −x.

3 PC size lower bounds over ±1 by lifting with one-bit indexing

In this section we prove that if a tautology F requires PC degree d, then the tautology F ′

obtained by lifting each variable in F with a one-bit indexing gadget (over a fresh set of
variables) requires PC size 2Ω(d) over ±1.

▶ Definition 3.1 (One-bit indexing gadget). Let w0, w1, w2 be variables taking values in {±1}.
The function Ind(w0, w1, w2) is defined as follows: Ind(−1, w1, w2) = w1 and Ind(1, w1, w2) =
w2. We call w0 the selector variable and w1, w2 the data variables of the gadget.

Lifting a Boolean formula F by this gadget for each variable means introducing three fresh
variables w0, w1, w2 corresponding to each variable w in F , and replacing each occurrence of
w in F with an expression equivalent to (1−w0)w1/2+(1+w0)w2/2, and adding the Boolean
axioms w2

j = 1 for j = 0, 1, 2. (Note that if F is in CNF with narrow (logarithmic width)
clauses, then the lifted formula is also expressible in CNF with only polynomial blowup.)

Our idea is to consider refutations of F lifted by the indexing gadget, then apply a
restriction to the selector variables yielding a refutation of F with low quadratic degree, and
hence obtain a small degree refutation of F . The quadratic degree of a refutation is defined
in [18] using the notion of lazy representations of polynomials, and is rephrased below:

▶ Definition 3.2 (Quadratic set, Quadratic degree, Quadratic terms over ±1; taken from [18],
Section 3.2). Given a proof Π over ±1 variables, the Quadratic set of Π, denoted Q(Π), is
the set of pairs of terms Q(Π) = {(t1, t2) | t1, t2 ∈ P for some line P ∈ Π}.
Denote by QT (Π) the set of quadratic terms {t1t2 | (t1, t2) ∈ Q(Π)}, where the product is
modulo the axioms x2

i = 1.
The Quadratic degree of Π is the max degree of a term in QT (Π).
Informally, Quadratic degree is the max degree of the square of each line (before cancellations).

When we apply the chosen restriction to the selector variables in F ◦ Ind, the irrelevant
variables no longer appear in any of the axioms (except the axioms x2

i = 1; we work modulo
those anyway). However, they may still appear in the refutation, and we need to eliminate
them. For this, we use the Split operation introduced in [18].

▶ Definition 3.3 (Split operation over x [18], Section 5.4). Given a proof Π = (P1, P2, . . . , Pt)
and a variable x ∈ {±1}, each line Pi of Π is of the form Pi,1x + Pi,0, where Pi,1, Pi,0 do
not contain x. The Split operation at x, denoted by Splitx(Π), is the sequence Π′ with the
lines {P1,1, P1,0, P2,1, P2,0, . . . , Pt,1, Pt,0}.

The following lemma shows that Split of a refutation is a valid refutation whenever the
variable we are splitting on does not appear in any axioms except x2 = 1. (That is, x has no
role in the tautology we are considering, but is possible introduced along the way and then
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eliminated. The gadget variables rendered irrelevant by our chosen restriction are like this.)
This is in fact a special case of a more general statement shown in [18], and we only need
this case. For ease of reading, we include here a proof of just this special case.

▶ Lemma 3.4. Suppose that Π is a proof and x is a variable that does not appear in any
axioms of Π except x2 = 1. Then Splitx(Π) outputs a valid proof of the axioms of Π, with no
line containing x.

Proof. Let Π be the sequence P1, . . . , Pt. We show by induction on the line number j that
both Pj,1 and Pj,0 are derivable and x-free.

If Pj is an axiom, then it is free of x. So the Split version is Pj,1 = 0, Pj,0 = Pj , and
both these polynomials are derivable.

If Pj = αPi + βPk for some i, k < j, then Pj,b = αPi,b + βPk,b for b = 0, 1.
If Pj = yPi for some i < j and some variable y ̸= x, then Pj,b = yPi,b for b = 0, 1.
If Pj = xPi for some i < j, then since x2 = 1 we obtain Pj,1 = Pi,0 and Pj,0 = Pi,1.
Thus all the lines Pj,b are derivable and do not contain x.
Since the last line of the proof is Pt = 1, we have Pt,1 = 0 and Pt,0 = Pt = 1. Thus

Splitx(Π) derives 1 and is a valid proof from the axioms of Π. ◀

▶ Remark 3.5. It may help to visualise the Splitx process as follows. Consider the case
where the derivation structure underlying Π is tree-like. The tree T is rooted at Pt, and is
unary-binary: linear combination nodes have two children and variable-multiplication nodes
have one child. The Splitx process makes two nodes P0, P1 for each node P of T , and ends up
creating a forest with two trees T0, T1. The desired refutation is T0, since Pt,0 = 1 whereas
Pt,1 = 0. It can be seen that T0 may also be obtained directly from T as follows: for each
axiom node, if the number of edges along the path to the root labeled by multiplication with
x is odd, replace the axiom by 0. (The construction above would have ended at a source
node which is a P1 copy of an axiom, and since axioms are x-free, a P1 copy of an axiom is
0.) Then, replace each edge label ×x by the label ×1.

The lemma below shows that Splitx removes all quadratic terms containing x from the
proof, without introducing any new quadratic terms.

▶ Lemma 3.6. Let Qx(Π) be the set of pairs (t1, t2) ∈ Q(Π) such that x ∈ t1t2, and let
QT x(Π) be the corresponding set of quadratic terms.
If (t1, t2) ∈ Q(Splitx(Π)), then t1 and t2 are both x-free, and at least one of (t1, t2), (t1x, t2x),
is in Q(Π). Thus QT (Splitx(Π)) ⊆ QT (Π) \ QT x(Π).

Proof. Consider a pair (t1, t2) ∈ Q(Splitx(Π). That t1, t2 are x-free follows from Lemma 3.4.
The pair (t1, t2) is contributed to Q(Splitx(Π) by Pb for some line P = xP1 + P0 of Π and
some b ∈ {0, 1}. If P0 contributes the pair, then P also contributes the pair to Q(Π). If P1
contributes the pair, then P contributes the pair (t1x, t2x) to Q(Π). ◀

Finally, we note below that a proof with low quadratic degree can be transformed into a
proof of low (usual) degree. This lemma is proved in [18], Lemma 3.6 using the notion of
lazy representation of polynomials. For completeness, we include here a very similar proof
but without explicitly using this notion.

▶ Lemma 3.7 ([18], Lemma 3.6). Let Π be a refutation of a set of axioms F of degree d0
with Quadratic degree at most d. Then there exists a refutation Π′ of F with (usual) degree
at most 2 max(d, d0).

SAT 2024



10:8 New Lower Bounds for Polynomial Calculus over Non-Boolean Bases

Proof. Let Π = {Pj}j . Now, consider Π′ = {P ′
j}j where P ′

j = tjPj , with each tj ∈ Pj

carefully selected. Since the degree of tjPj is bounded by the Quadratic degree of Pj , every
line in Π′ is of degree at most d. However, Π′ is not an immediate valid refutation of F ,
but it can be transformed into one. We will show that each line of Π′ can be derived from
previous lines and axioms of F in degree at most 2max(d, d0), completing the proof. We
proceed by induction on line number j.

If Pj is an axiom, then we set tj to be an arbitrary term in Pj and derive P ′
j = tjPj in

degree 2d0 starting from Pj .
(Note that in [18], it is claimed that this step can be derived in degree d0. But this is not
always so. For instance, if p = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 has degree d0 = 3, and
d = 2, then for any term t ∈ p, tp has degree 2 but needs degree 4 > max{d, d0} for the
derivation. )

If Pi = xPj for some j < i, then we select ti = xtj , and consequently, P ′
i = tiPi = tjPj =

P ′
j is derived without raising the degree.

Finally, if Pi = Pj1 + Pj2 , we choose ti to be an arbitrary term in Pi and derive
P ′

i = tiPi = titj1P
′
j1

+ titj2P
′
j2

. We argue that the degree of both titj1 and titj2 is at most d,
and as a result, P ′

i can be derived from P ′
j1

and P ′
j2

in degree at most 2d, which completes
the proof. To justify this assertion, let ti ∈ Pj1 without loss of generality (every term in
Pi appears in either Pj1 or Pj2). Then degree of titj1 is bounded by the Quadratic degree
of Pj1 and hence by d. Additionally, if tj2 ∈ Pi, then the degree of titj2 is bounded by the
quadratic degree of Pi and is also bounded by d. In the case where tj2 ̸∈ Pi, it means that it
was cancelled in the sum and therefore tj2 ∈ Pj1 and so degree of titj2 is bounded by the
Quadratic degree of Pj1 and is again bounded by d.

Thus all lines in Π′ can be derived from previous lines and axioms of F in degree at most
2max(d, d0). Since the last line of Π′ is 1, we get that Π′ can be successfully transformed
into a valid proof of F of degree 2max(d, d0). ◀

We conclude this section with a proof of Theorem 1.1, which we restate here for convenience.

▶ Theorem 1.1. Let F be an unsatisfiable formula over variables x1 · · ·xn, with a polynomial
encoding of degree d0, which requires degree d > d0 to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F ◦ Ind be the formula obtained by replacing each xi by Ind(wi0, wi1, wi2)
for a fresh set of variables wi0, wi1, wi2 ∈ {±1}. Then F ◦ Ind requires size 2Ω(d) to refute in
PC over ±1 basis.

Proof. Let F ′ denote the formula F ◦ Ind.
Towards a contradiction, let Π be a refutation of F ′ of size 2cd for a small enough c > 0.

An assignment ρi to the selector variable wi0 sets the gadget to one of the two data variables
wij , j ∈ {1, 2}; we say that the other data variable is irrelevant. (If ρi sets wi0 = −1 then
wi2 is irrelevant, else w1 is irrelevant.) We construct an assignment ρ to the selector variables
such that for every pair (t1, t2) ∈ Q(Π|ρ

) with deg(t1t2) ≥ d/2, t1t2 contains an irrelevant
variable. The rest of the proof is simple: we apply this ρ to Π to obtain a refutation of a copy
of F without irrelevant variables. However, the irrelevant variables may still appear in the
proof. We then repeatedly apply Split over each irrelevant variable, to obtain a refutation Π′

of F with no irrelevant variables anywhere. (By Lemma 3.4, the result of Split is a valid
refutation.) Since every high-degree pair contains an irrelevant variable, and by Lemma 3.6
all pairs where the product contains an irrelevant variable are removed from the proof, Π′

does not contain any high-degree pair and hence has Quadratic degree less than d/2. Using
Lemma 3.7, we get a refutation of degree less than d of F , contradicting our assumption.
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We now show the existence of ρ through a probabilistic argument. Let t1t2 ∈ QT (Π)
with degree in the data variables at least d/2. If, for some gadget, the product t1t2 contains
both data variables, then for any assignment ρ, t1t2 would contain an irrelevant variable.
So without loss of generality we can assume that t1t2 contains only one data variable from
every copy of the gadget. Now, pick a ρ uniformly at random from {±1}n; i.e. pick the data
variable at random in each gadget. For a data variable in t1t2, the probability that it is picked
is equal to 1/2. Therefore, the probability that t1t2 does not contain any irrelevant variable
is at most (1/2)d/2. Since there are only 2cd terms and therefore 22cd pairs in the proof, the
union bound guarantees that there exists a restriction with the required property. ◀

As a corollary, we obtain an exponential size lower bound for PC{±1} by using any
unsatisfiable CNF formula with a PC degree Ω(n) and lifting it with a one-bit indexing
gadget. Specifically, by combining the lifting theorem with the result of Alekhnovich and
Razborov [1] regarding the PC degree of random CNF formulas, we get the following corollary:

▶ Corollary 3.8. Let ψ be a random 3-CNF formula on m = O(n) clauses. Then, with high
probability, any PC{±1}-proof of ψ ◦ Ind has size exp(Ω(n)).

Another corollary of our lifting result is an easy separation between SOS proof size and
PC proof size over the {±1} basis, a result recently shown by Sokolov [18]. Sokolov showed
that the graph version of the Pigeonhole Principle (GPHP) based on sufficiently expanding
bipartite graphs has an exponential size lower bound for PC{±1}. Together with the constant
degree and polynomial size upper bound on SOS-proofs (independent of the basis) of GPHP
from [9], he established an exponential separation. We can now achieve an exponential
separation simply by using our lifting theorem.

▶ Corollary 3.9. Let ψ be the GPHP formula on sufficiently expanding bipartite graphs, and
let ψ′ be its lift by the one-bit indexing gadget. Then ψ′ requires exponential size over PC{±1},
but has a polynomial size proof over SOS{±1}.

Proof. The GPHP formulas require Ω(n) PC degree [1, 14]. Hence, by Theorem 1.1, their
lift with a one-bit indexing gadget requires exponential size over PC{±1}.

Since GPHP has a constant degree and polynomial size proof over SOS{±1}, lifting it
with a one-bit indexing gadget will still yield a polynomial size proof. ◀

A proof similar to the PC lifting theorem also works for the SOS proof system, where
given a refutation

∑
i pifi +

∑
j q

2
j = −1 of axioms fi = 0, the operation Split at an irrelevant

variable x is defined (following [18]) as the refutation obtained by averaging the values of pi

and q2
i at x = 1 and x = −1 (this is a valid refutation since x is irrelevant). As a result, we

also obtain a degree-to-size lifting theorem for SOS±1 for the one-bit indexing gadget.

▶ Theorem 3.10. Let Γ = {f1 = 0, . . . , fm = 0;h1 ≥ 0, . . . , hs ≥ 0} be an unsolvable system
of polynomial equalities and inequalities of degree d0 over (±1)-valued Boolean variables
{x1, . . . , xn}. Let Ind denote the one-bit indexing gadget. If d > d0 is the minimal degree of
an SOS±1 refutation of Γ, then any SOS±1 refutation of Γ ◦ Ind has size 2Ω(d−d0).

Proof. Let f ′
i = fi ◦ Ind and h′

i = hi ◦ Ind. Then Γ ◦ Ind = {f ′
1 = 0, . . . , f ′

m = 0;h′
1 ≥

0, . . . , h′
s ≥ 0}. The input variables to Γ ◦ Ind are {wi0, wi1, wi2|i ∈ [n]}, where xi =

Ind(wi0, wi1, wi2). We refer to wi0 as the selector variable of the indexing gadget, while wi1
and wi2 are termed as data variables.

Now, towards a contradiction, assume that we have an SOS±1 refutation

π = (q0, . . . , qs; p1, . . . , pm)
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of Γ ◦ Ind with a size of 2c(d−d0) for a sufficiently small c ∈ (0, 1):

q0 +
s∑

i=0
qih

′
i +

m∑
i=1

pif
′
i = −1.

Consider an assignment ρi to the selector variable wi0, setting the gadget to one of the
two data variables wij , where j ∈ {1, 2}. We denote the other data variable as irrelevant. (If
ρi sets wi0 = −1, then wi2 is irrelevant; otherwise, wi1 is irrelevant.) For an assignment ρ
to selector variables and a monomial t over wij variables, we deem it irrelevant w.r.t ρ if
it contains an irrelevant data variable. Moreover, we term a monomial as fat if it contains
more than d− d0 data variables.

Considering a uniformly random assignment ρ to selector variables, note that a fat
monomial becomes irrelevant w.r.t. ρ with a probability of at least 1−1/2d−d0 . Let H be the
set of fat monomials among the polynomials (q0, . . . , qs; p1, . . . , pm). Since |H| ≤ 2c(d−d0), by
the union bound, there exists an assignment ρ to selector variables such that every monomial
in H is irrelevant w.r.t ρ. We select such a restriction ρ.

Now, we observe:
Γ ◦ Ind|ρ reduces to Γ over relevant data variables.
For each i ∈ [n], let wiji

, j ∈ {1, 2}, be irrelevant data variables under assignment ρ.
Then, π under restriction ρ becomes:

q0|ρ +
s∑

i=0
(qi|ρ)(h′

i|ρ) +
m∑

i=1
(pi|ρ)(f ′

i |ρ) = −1.

Since h′
i|ρ = hi and f ′

i |ρ = fi, and since a sum-of-squares (the polynomials qi’s) restricted
by ρ is still a sum-of-squares, we see that π|ρ is an SOS±1 refutation of Γ.

Note that the restrictions qi|ρ, pi|ρ, may still contain irrelevant data variables, which
eventually cancel out in the refutation π|ρ. We eliminate these by assigning them values in
{+1,−1} uniformly at random and considering the expected resulting value on each side of
the equation. Since the refutation π|ρ is a polynomial identity, it will remain an equality if
we take expectations on both sides.

Letting EI denote Ew1j1 ,...,wnjn
, and using linearity of expectation, we get

−1 = EI

[
q0|ρ +

s∑
i=0

(qi|ρ)hi +
m∑

i=1
(pi|ρ)fi

]

= EI [q0|ρ] +
s∑

i=0
EI [qi|ρ]hi +

m∑
i=1

EI [pi|ρ] fi.

Note that if a polynomial is a sum of squares of polynomials over variables taking values
in {+1,−1}, then assigning a subset of variables to values uniformly and randomly results
in a random polynomial whose expectation is still a sum of squares. For instance, with
a single square Q = P 2 = (sx + r)2 where x takes values in {+1,−1} and s, r are x-free,
Ex[Q] = Ex[(sx+ r)2] = Ex[s2x2 + r2 + 2xsr] = s2 + r2. Hence we see that

π′ = (EI [q0|ρ],EI [q1|ρ], . . . ,EI [qs|ρ]; EI [p1|ρ], . . . ,EI [pm|ρ])

is a valid SOS±1 refutation of Γ.
Furtherrmore, since under ρ each fat monomial in π contains an irrelevant variable, all

the fat monomials vanish under expectation. Thus, each polynomial in π′ has degree less
than d− d0, and π′ is a refutation of Γ of degree less than d, leading to a contradiction. ◀
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This improves Sokolov’s lifting theorem for SOS±1, where he lifted SOS±1 degree d to
exp(Ω( (d−d0)2

n )) SOS±1 size, where d0 represents the degree of the initial polynomial system.
Consequently, his findings are only significant when d = ω(

√
n), whereas our results are

applicable for any superconstant degree lower bound. One notable example is the ordering
principle; as shown in [15], its SOS degree is Ω(n1/4). Thus, lifting the ordering principle
with a one-bit indexing gadget will yield exponential size lower bounds using our lifting
result, whereas previous results would fail to achieve this.

4 PC with extension variables over finite fields

We now consider the setting where the encoding is over {0, 1}, the arithmetic is over finite
fields, and extension variables are allowed; this is the setting for our second main result
Theorem 1.2. In this setting, a size lower bound was obtained in [11] provided the extension
variables are subquadratic in number and at most logarithmic in arity. We follow that
approach but improve the result substantially. In this section, we first outline the framework
of [11], then describe at a high level the outline of our proof of Theorem 1.2, and then present
the relevant definitions/lemmas from [11] that we need to use. The actual formal proof of
Theorem 1.2 appears in the next section.

4.1 The approach in [11]

We first outline the framework of [11], whose lower bounds we improve. The proof of the
lower bound in [11] proceeds as follows.

Given a small refutation of a well chosen tautology F in PC with extension variables, pick
an extension variable z with extension axiom z−Q that contributes to a lot of pairs of terms
of high Quadratic degree (which is a notion similar to Quadratic degree for ±1 variables as in
Definition 3.2, but generalized to Fp-valued variables; see Definition 4.5). Extension variables
are not necessarily Boolean; z can take a subset of values in the underlying field (over all
possible values to the Boolean variables in Q). If this subset includes zero, apply the partial
assignment that sets z = 0 to the proof to remove all contributions of z to Quadratic degree.

If not, z appears in each line of the proof in the form Pℓ−1z
ℓ−1 + · · · + P1z + P0 where

ℓ is the least value such that zℓ is a constant. The contributions of z to Quadratic degree
therefore come from interactions of the polynomials Piz

i and Pjz
j , over all pairs (i, j), i ̸= j.

Now pick a good pair (i, j) which contributes at least a 1/p2 fraction of the contributions of
z to high Quadratic degree. The key step is to obtain a proof which separates the pair of
polynomials Pi and Pj in each line into two different lines, using an operation called Split, see
Definition 4.12. (Again, this is similar in spirit to the Split operation from Definition 3.3, but
more nuanced.) Split essentially equates each line P to a polynomial of the form R1z

i +R0z
j ,

and solves for R1 and R0 in terms of P . In order for Split to output a valid proof, though,
some preconditions needs to be satisfied: the axioms need to be free of z except for the
range axiom for z, and this range needs to be such that zi and zj are linearly independent,
i.e. zi ̸= czj or zi−j ̸= c. That is, z needs to take on at least two values a, b such that
ai−j ̸= bi−j . Therefore there are two tasks at hand: getting rid of the extension axiom z−Q,
and doing it in such a way that zi−j is not set to a constant. It is shown that a restriction
to Q can be chosen that sets it to the form (b− a)x+ a, with a, b satisfying the precondition
for Split. Once this happens, Split is applied to reduce a fraction of high degree terms (after
applying an additional restriction to make sure x does not occur in the axioms, and then
setting x = (b− a)−1(z − a) in order to get rid of the extension axiom).

SAT 2024



10:12 New Lower Bounds for Polynomial Calculus over Non-Boolean Bases

This process is repeated until the proof is of low Quadratic degree. Then an argument
from [18] (adapting Lemma 3.7 to the extension-variables setting) is used to move to a low
(usual) degree proof of the tautology F|ρ

, where ρ is the union of all restrictions ρi applied in
this process. This contradicts the degree lower bound for F|ρ

. An important element of this
proof is to ensure that none of the restrictions ρis make the tautology easy. To ensure this,
cleanup operations are performed at each iterations using additional restrictions, to restore
to a sub-copy of F where hardness is preserved. These operations work correctly provided
each extension variable depends on only O(log n) of the n variables of F . Also the number
of iterations of this process has to be bounded as well, which gives an upper bound of o(n2)
on the number of extension variables in order to get mildly exponential lower bounds.

4.2 Our proof outline

We largely follow the above approach for our lower bound, but show that sub-quadratically
many extension variables with extension axioms that are polynomial sized and depend on a
polynomial fraction of original variables can be handled.

For this we first reduce the above problem to handling low degree extension variables, by
a simple parity lift. Let F be a tautology and let F ′ be obtained by replacing each input
variable x of F by a two bit parity gadget, i.e. x = w1 ⊕w2. Suppose that there is a PC proof
of F ′ which uses extension variables of size bounded by N c. In each copy of the gadget we
select one variable at random and set the other variable to zero or one with equal probability,
recovering a copy of F (possibly renaming some variables by their negations). It is easy
to see using a probabilistic argument that there exists a restriction where each extension
variable is of degree at most O(logN).

Thus the problem reduces to proving lower bounds for F where extension axioms z −Q

are degree bounded. We then show that when dealing with such extension variables, the
aforementioned process that picks an extension variable z and either sets it to zero or restricts
it to the form (b − a)x + a can be performed with restrictions whose hamming weight is
bounded by the degree of Q.

Finally, we observe that the tautology PHPm,r
n introduced by Razborov [17], which maps

all r sized subsets of [m] to n holes, is immune to such restrictions and can be cleaned up to
restore hardness. This completes our proof.

For the rest of the article, we fix the finite field Fp, p > 2 (since for the case of p = 2
lower bounds for PC with extension variables can be obtained through standard size-degree
tradeoffs, see the discussion in [11], Section 3).

4.3 Relevant material from [11]: Support, Quadratic Degree, Split

Here we introduce the terminology of [11] and state some lemmas about Quadratic degree
and Split from the same. The reader familiar with [11] can directly jump to Section 5.

As noted above, the notions of Quadratic degree and Split here are not the same as in
Definitions 3.2 and 3.3. To define them appropriately in this setting, we first need some
auxiliary notions.

▶ Definition 4.1 (Support of a variable, Singular/Nonsingular variables. [11], Defs 10,11). Let
z −Q(wi1 , . . . , wiκ

) = 0 be an extension axiom associated with z. The set vars(Q) is defined
as vars(Q) = {wi1 , . . . , wiκ}, and is sometimes also written as vars(z), the set of variables
that z depends on.
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The support of z, supp(z) ⊆ [0, p−1], is equal to the set of all values that z can take under
Boolean assignments to vars(z). That is, supp(z) = {Q(α) | α ∈ {0, 1}|vars(Q)|} ⊆ [0, p− 1].
Sometimes this is also denoted by supp(Q).

We say that z is a Singular variable if 0 ∈ supp(z), otherwise it is NonSingular.
For a Boolean variable w, supp(w) = {0, 1} as enforced by the Boolean axiom w2 = w.

As we apply restrictions to a proof (and hence to all the defining axioms), 0 may get
removed from the support of a variable. Thus an extension variable can change from Singular
to NonSingular, but not the other way around. However, Boolean variables that are not set
by the restriction are always Singular.

▶ Definition 4.2 ([11], Definition 12). Let A ⊆ [1, . . . , p− 1], A ̸= ∅. Define ℓ(A) to be the
least ℓ ∈ [1, p− 1] such that the set {aℓ | a ∈ A} is singleton. For a Nonsingular z, define
ℓ(z) = ℓ(supp(z)).

The following lemma from [11] is stated without proof.

▶ Lemma 4.3 ([11], Lemma 13). Let z be a Nonsingular extension variable with extension
axiom z − Q = 0. Then the following polynomial equations are implied by (and therefore
derivable from) the extension axiom for z plus the Boolean axioms for all variables in vars(Q),
in degree at most |vars(Q)|.
1. z −Q′ = 0, where Q′ is the multilinear version of Q;
2. For any A′ ⊆ [0, p− 1] such that supp(z) ⊆ A′, Πa∈A′(z − a) = 0;
3. zℓ(z) − c = 0 for some c ∈ F∗

p.

In particular, if z is Nonsingular, then the polynomial equation zp−1 − 1 = 0 is implied
by z −Q = 0 together with the Boolean axioms for vars(Q).

▶ Definition 4.4 ([11], Definition 14). For a term t and a variable w, deg(t, w) is equal to
the degree of w in t. Note that since we are working over Fp, deg(t, w) < p for any variable
w. For a term t, the degree of t, denoted deg(t), equals

∑
w∈vars(t) deg(t, w).

Quadratic degree

The following definition of Quadratic degree is taken from [11].

▶ Definition 4.5 (Quadratic degree [11], Definition 10). Let V be a set of variables and let
S be a subset of V . For a pair of terms t1, t2 over V , and a variable w ∈ V , we define
QdegS(t1, t2, w) as follows. If w ∈ S, then QdegS(t1, t2, w) = 1 if w occurs in at least one
of t1 or t2; if w ̸∈ S, then QdegS(t1, t2, w) = 1 if and only if deg(t1, w) ̸= deg(t2, w). The
overall quadratic degree of the pair t1, t2, QdegS(t1, t2), is equal to

∑
w∈V Qdeg

S(t1, t2, w).
The quadratic degree of a polynomial P is equal to the maximum quadratic degree over all
pairs (t1, t2) such that t1, t2 ∈ P . For a proof Π, the quadratic degree of Π is the maximum
quadratic degree over all polynomials P ∈ Π.

▶ Remark 4.6. The above definition of Quadratic degree treats the variables in the set S
differently from the rest of the variables. Typically S will not be explicitly specified, but will
be assumed to be the set of Singular variables. This means that the notion of Quadratic
degree depends on knowing which variables have zero in their support. For instance, for the
pair (z1, z1z2), the Quadratic degree is two if z1 can take the value zero and one if z1 does
not take the value zero. We observe that Quadratic degree always decreases when a variable
changes from being Singular to Nonsingular, and make sure that this is the case when we
prove our lower bound. This follows the approach of [11] whose lemmas we state below.
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▶ Lemma 4.7 ([11], Lemma 16). Let V be a set of variables and let S and T be subsets of V
such that T ⊆ S. Then for any two terms t1, t2 over V , QdegT (t1, t2) ≤ QdegS(t1, t2).

Since applying a restriction cannot make NonSingular variables Singular, Lemma 4.7
implies that the Quadratic degree of any two terms t1, t2, Qdeg(t1, t2) with respect to the
currently Singular variables cannot increase after applying the restriction. This is stated as
Corollary 17 in [11].

▶ Lemma 4.8 ([11], Lemma 20). Let Π be a PC + Ext refutation of F and let z be a
Nonsingular variable. Let Π′ be the proof obtained from Π by reducing each line of Π by
zℓ(z) − c = 0 for some c ∈ F∗

p. Then for any d ≥ 0, the number of pairs of terms of Quadratic
degree at least d in Π′ is at most that of Π.

We will use the following lemma from [11], which is a generalization of the argument
from [18] that shows how to convert a proof with low Quadratic degree to one with low
degree.

▶ Lemma 4.9 ([11], Lemma 21). Let F be a set of unsatisfiable polynomials of degree d0 with
a PC refutation of Quadratic degree at most d ≥ d0 over Fp. Then F has a PC refutation of
degree at most 3pd.

The Split operation

In this section, we define the operation Split and state its properties. We will only need
to handle variables whose only axiom is (z − a)(z − b) = 0 for a, b ∈ F∗

p, as we will apply
an assignment to any general extension variable to reduce to this case. Below we state the
relevant lemmas from [11].

▶ Lemma 4.10 ([11], Lemma 23). Let z be an extension variable such that supp(z) = {a, b},
where a ̸= b and a, b ∈ F∗

p and let P be any polynomial. Then, for any two distinct numbers
i, j where i < j and aj−i ≠ bj−i, there exists a unique polynomial R = R0z

i +R1z
j such that

R = P mod (z − a)(z − b).

▶ Remark 4.11. It can be checked that for polynomial P =
∑

l<ℓ(z) Plz
l, the polynomials

R0, R1 have the following form:

R0 = Pi +
∑

l<ℓ(z),l ̸=i,j

c0lPl

R1 = Pj +
∑

l<ℓ(z),l ̸=i,j

c1lPl

for some constants c1i, c0i ∈ Fp. Note that any pair of terms (t1, t2) occurring in either R1
or R0 also occurs in P as (t1zi′

, t2z
j′) with (i′, j′) ̸= (i, j). That is, the contribution to

Quadratic degree of P by the interaction of zi and zj is removed.

▶ Definition 4.12 (Split [11], Definition 24). Let z be an extension variable with extension
axiom z − Q = 0 such that supp(z) = {a, b} ⊆ [1, . . . , p − 1]. For any polynomial P and
for every i < j such that aj−i ̸= bj−i, let R = R0z

i +R1z
j be the unique polynomial given

by Lemma 4.10 such that R = P mod (z − a)(z − b). Then Splitz,i,j(P ) is defined to be
the pair of polynomials {R0, R1}. For a proof Π, and an extension variable z such that
supp(z) = {a, b}, Splitz,i,j(Π) is the sequence of lines Splitz,i,j(P ), over all P ∈ Π.
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▶ Lemma 4.13 ([11], Lemma 25). Let Π be a refutation of a set of unsatisfiable polynomials
F . Let z be a variable that occurs in Π such that the polynomials in F do not contain z

except for the axiom (z − a)(z − b) = 0 for some a, b ∈ F∗
p. Then for any i, j such that i < j

and aj−i ̸= bj−i, Π′ = Splitz,i,j(Π) forms a valid refutation of F modulo (z − a)(z − b).

5 Proof of the lower bound from Theorem 1.2

5.1 The tautology
We use the PHPm,r

n tautology defined in [17]; it is a variant of the Pigeonhole principle. In
this variant, there are m “fractional” pigeons, r fractional parts add up to a whole “pigeon”,
and there are n holes. The Boolean variables determine which part goes into which hole. A
fractional part can participate in multiple pigeons, and can be assigned to multiple holes.
The constraints enforce that no two r-sized subsets are mapped to the same hole, and no
r-sized subset is mapped to more than one hole. When

(
m
r

)
> n, this is unsatisfiable. We

describe the formula formally below.

▶ Definition 5.1 (PHPm,r
n ; Def 4.1 in [17]). Let m,n, r > 0 be such that

(
m
r

)
> n. Let xij,

for i ∈ [m], j ∈ [n], be variables that indicate the mapping of elements of [m] to holes in [n].
For a subset I of [m], abbreviate the term

∏
i∈I xij to tIj; note that tIj is only shorthand

and not a variable in the formula. Then PHPm,r
n is the following set of equations.

tI1 + tI2 + · · · + tIn = 1 ∀I ⊂ [m], |I| = r

tIj = 0 ∀I ⊂ [m], |I| = r + 1; ∀j ∈ [n]
tIj1tIj2 = 0 ∀I ⊂ [m], |I| = r; ∀j1, j2 ∈ [n], j1 ̸= j2.

(Note that the last set of constraints is already implied by the first two constraint sets.
It is nonetheless included, in [17], where a degree lower bound is shown even when these
constraints are explicitly given and do not have to be derived.)

Additionally, we note that although the axioms defining PHPm,r
n do not have small CNF

representations, they can be represented by linear sized depth two AC0[p] circuits. For our
size lower bound on PC + Ext, we use an XOR lifted version of this tautology, which still has
linear sized depth four AC0[p] circuits. Therefore, we reiterate that our lower bounds still
imply lower bounds for some fragment of AC0[p]-Frege.

We state the lower bound from [17] on the degree of PC proofs for PHPm,r
n .

▶ Proposition 5.2 ([17], Theorem 4.2). For any ground field F and any m, r, n > 0 such that(
m
r

)
> n, PHPm,r

n requires proofs of degree n/2 + 1 to refute in PC over F.

5.2 The lower bound
We begin by showing in Theorem 5.5 a weak size lower bound for the PHPm,r

n formulas in PC
when extension variables are allowed, provided the degree of the extension axioms is bounded.
To establish the strong lower bound in Theorem 1.2, as discussed in Section 4.2, we show
that a lift with the parity gadget (an XOR-ification of the formula), followed by a well-chosen
restriction, achieves a degree-reduction of the extension axioms, and use Theorem 5.5.

The weak size lower bound of Theorem 5.5 also uses degree reduction, but it reduces the
quadratic degree of the proof. A crucial ingredient in the quadratic-degree-reduction step is
finding low-Hamming-weight assignments with certain nice properties. We first prove the
existence of these assignments, and then show the weak lower bound.
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▶ Lemma 5.3. Let z be an extension variable with the extension axiom z −Q and let l < p

be a constant such that Ql is not a constant, i.e. supp(Ql) is not singleton. Then there exists
a partial assignment σ of Hamming weight at most l deg(Q), such that for some x ∈ vars(z),
Q|σ

= (b− a)x+ a for some a, b with al ̸= bl.

Proof. Let X be the set of variables of Q and let x be a variable that appears in Ql. Since
Ql is not a constant, such a variable always exists. Fix a total ordering over monomials in X

that respects degree. Let M be the least monomial in Ql according to this ordering that
contains x. Let σ be an assignment to X \ {x} obtained as follows: we set every variable
in M other than x to one, and every other variable in X \ {x} to zero. Note that this sets
every monomial lesser than M to a constant since it does not contain x. The same is true
for monomials greater than M that do not contain x. Since the ordering respects degree and
M is minimal according to it, any monomial greater than M that contains x also contains at
least one variable that is not in M and hence is set to zero by σ. Therefore, M is the only
monomial containing x in Ql that survives the restriction under σ; thus (Ql)|σ

= αx+ β for
some α ̸= 0. Since (Ql)|σ

= (Q|σ
)l is not a constant and σ sets all variables except x, Q|σ

cannot be a constant and must take the form (b− a)x+ a, where al = β ̸= α+ β = bl. By
our choice of σ, it has Hamming weight at most the degree of the monomial M, which is
bounded above by deg(Ql) ≤ l deg(Q). ◀

This lemma will enable us to satisfy the necessary precondition for applying a Split
operation on the variable z, when required.

▶ Corollary 5.4. Suppose that z is an extension variable with the extension axiom z −Q,
where 0 ∈ supp(Q). Then there exists an assignment of Hamming weight at most p deg(Q)
which sets Q to zero.

Proof. If supp(Q) = {0}, then any assignment to vars(Q) will do.
If supp(Q) is not a singleton, then for every l ∈ [p− 1], Ql is not a constant, and thus

we can choose l = p− 1 in Lemma 5.3. We thus obtain a partial assignment σ of Hamming
weight (p − 1) deg(Q) such that Q|σ

= (b − a)x + a, with (Q|σ
)p−1 not a constant; i.e.

ap−1 ̸= bp−1. This means that exactly one of a, b is zero. Setting the value σx to be 0 if
a = 0 and 1 otherwise, we see that Q|σ∪σx

= 0. The Hamming weight of σ ∪ σx is at most
(p− 1) deg(Q) + 1 ≤ p deg(Q). ◀

We now state and prove our main theorem of this section.

▶ Theorem 5.5. Let Π be a PC refutation of PHPm,r
n with M extension variables, each of

degree ≤ k and depending on ≤ κ variables of PHPm,r
n , such that r > 2pk. Then the size of

Π is at least exp(Ω(n2/(M +mn)κk)).

Proof. Let s be the size of the given refutation Π.
For a threshold d that we will choose later and depends on s, we will first show how

to reduce the Quadratic degree to at most d. This will be achieved by finding a suitable
restriction, in stages, that kills all quadratic terms of quadratic degree more that d. In the
process, the restricted formula will become PHPm,r

n′ for some n′ ∈ Θ(n). Using Lemma 4.9 we
will convert this to a PC proof of PHPm,r

n′ of degree at most 3pd but with extension variables,
and then by directly substituting the extension axioms, to a PC proof of degree at most 3pkd
without extension variables. Finally, using the degree lower bound from Proposition 5.2, we
will obtain the desired lower bound on s.

(Note that the notion of quadratic degree is defined with respect to some set S of variables.
We assume that S is the set of Singular variables (those which can potentially take the value
0), and while finding the suitable restriction, we update S in each stage. Boolean variables
are Singular unless set to 1 by the restriction.)
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Let H be the set of all pairs of terms in Π of Quadratic degree more than d. We know that
|H| ≤ s2. In each iteration, we will find a restriction that removes a fraction α of the pairs
from H, for α = d

4p2(M+mn) , and removes no more than κ holes from the formula. Thus for
a t satisfying (1 − α)t|H| ≤ (1 − α)ts2 < 1, after t iterations, no high-degree quadratic terms
survive, and the number of remaining holes is n′ ≥ n− tκ = n(1 − tκ/n). Since 1 − α ≤ e−α,
note that t is roughly 2 log s/α. At this point, the choice for d is clearer; we choose d so that
tκ/n is a small enough constant; say tκ/n ≤ 1/2. Choosing d so that α = 4κ log s

n does the
trick; in particular, d = 16p2(M+mn)κ log s

n . With this choice of d, continuing with the outline
above, we obtain a PC proof of degree 3pkd without extension variables for PHPm,r

n′ with
n′ ≥ n/2. From Proposition 5.2, we conclude that 3pkd ≥ n′/2 ≥ n/4, and plugging in the
chosen value of d, we see that log s ≥ Ω

(
n2

kp3(M+mn)κ

)
.

Now we come to the main part of the proof, namely showing how to obtain the desired
restriction in each iteration.

In each iteration, we first perform the following preprocessing steps. For each extension
variable z with extension axiom z −Q, we compute its support and check whether zero is in
it. If not, we compute ℓ(z) (Definition 4.2) and reduce the proof by zℓ(z) = c. By Lemma 4.3
the latter is derivable from the extension axiom, and by Lemma 4.8, it does not raise the size
of H. Moreover, our measure of Quadratic degree can only decrease when variables switch
from Singular to Nonsingular; see comment after Lemma 4.7.

We then pick a variable y that by an averaging argument contributes to the quadratic
degree of at least a d/(M +mn) fraction of pairs in H. There are three cases to consider.

Case 1. y is an original Boolean variable, say xuv for some u ∈ [m], v ∈ [n]. We choose the
restriction that sets all variables xw,v to 0, thus removing the hole v from the formula. Since
xuv is also set to 0 this way, d/(M +mn) fraction of pairs in H are killed.

Case 2. y is an extension variable, say z, with the extension axiom z−Q, with 0 ∈ supp(Q),
with deg(Q) ≤ k and |vars(Q)| ≤ κ.

By Corollary 5.4, we can find an assignment σ to vars(Q) that has Hamming weight at
most pk and sets Q to 0. We apply this assignment to the proof, additionally setting z to
zero in the proof as well. We then look at how this assignment affects the tautology, and
apply an additional assignment to restore to PHPm,r

n′ where n′ ≥ n− κ.
We say that a hole v is affected if for some u, the variable xuv is set by σ. Note that at

most κ holes are affected since σ only sets variables in vars(Q). We say that an assignment
commits a pigeon I ∈

([m]
r

)
to a hole v if it sets the term tIv to 1. Now note that σ does

not commit any pigeon I to any affected hole v, because each term tIv is the product of r
variables, and the Hamming weight of σ is at most pk which is less than r/2. Thus we are free
to remove an affected hole from the formula. We do so by setting to zero all unset variables
xuv for each affected hole v; this makes tIv = 0 for all affected holes v and all pigeons I. The
resulting formula is PHPm,r

n′ where n′ ≥ n− κ, and applying the restriction to the current
refutation gives a new refutation of this reduced formula with at most (1 − d/(M +mn))|H|
pairs of Quadratic degree d or more.

Case 3. y is an extension variable, say z, with the extension axiom z−Q, and 0 ̸∈ supp(Q).
This is the trickiest case.

We need to find a suitable assignment to the variables in vars(Q) to kill many high-degree
quadratic terms involving z. Recall from Definition 4.5 that, since z is non-singular, z
contributes to the degree of a quadratic term pair through terms t1, t2 where the degrees
of z in t1 and t2 are different. By averaging, we can pick indices 0 ≤ i < j ≤ p − 1 such
that pairs of terms of the form (t1zi, t2z

j) contribute at least a d/p2(M +mn) fraction of
the contribution of z. Since we had preprocessed using Lemmas 4.3 and 4.8, we know that
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i, j < ℓ(z), so zj−i is not a constant. Hence, using Lemma 5.3 with l = j − i, once again
we obtain an assignment σ of Hamming weight ≤ lk such that Q|σ

= (b− a)xuv + a, where
aj−i ̸= bj−i and xuv is some variable of PHPm,r

n .
We would like to apply Splitz,i,j to remove the contribution of these term pairs with

zi, zj (see Section 4.3 and Remark 4.11) and reduce high Quadratic degree terms. But
first we need to meet the preconditions for applying Splitz,i,j . In particular, we need to
get rid of all axioms containing z, except for (z − a)(z − b) = 0; even the extension axiom
z = (b− a)xuv + a must be eliminated. We also need to restore to a version PHPm,r

n′ . To this
end, we apply σ and perform cleanup in a way similar to Case 2, before applying Splitz,i,j .
The only difference is that here we need to get rid of all axioms containing xuv, without
actually setting the latter.

We handle holes v′ other than v affected by σ exactly as in Case 2; all variables touching
this hole (xwv′) but unset by σ are now set to 0, eliminating hole v′.

For the hole v, all variables touching this hole (xwv) but unset by σ are now set to 0,
but xuv is left unset. Nonetheless, we claim that all occurrences of xuv in the axioms are
now eliminated. This is because every such occurrence is in a term tIv, for some subset I of
[m] of size at least r. Since σ sets at most lk < pk variables to one and r > 2pk, each such
occurrence contains at least two variables unset by σ, and in particular contains an unset
variable other than xuv. Therefore, setting all variables of hole v (other than xuv) which are
unset by σ to zero gets rid of all such occurrences and thereby eliminates hole v.

Thus, we end up with a refutation of PHPm,r
n′ for n′ ≥ n− κ such that all affected holes

are eliminated, and xuv is still unset but does not appear in the axioms.
We now intend to substitute xuv = (b− a)−1(z − a). Note that under this substitution,

the extension axiom gets eliminated (becomes 0 = 0) and the Boolean axiom x2
uv − xuv = 0

reduces to (z − a)(z − b) = 0. This is possible by Lemma 4.3(2), and will enable us to
satisfy all the preconditions to apply Split on z. However, there is a still a catch. The
substitution might actually blow up the number of pairs in H, because it creates three
additional pair of terms for every pair of terms (t1, t2) containing x. To handle this, we
note that if the substitution blows up the number of high Quadratic degree pairs to more
than 3d|H|/4p2(M +mn), then this implies that at least a d/4p2(M +mn) fraction of pairs
of terms in H must have contained xuv before this substitution. (The same argument is
also used in [11].) In this case, we can just set xuv = 0 instead of the above substitution;
this will remove a d/4p2(M +mn) fraction of pairs of terms (and prevent the need to use
Split). Otherwise, we apply the substitution, introducing at most 3d|H|/4p2(M +mn) new
pairs of terms, and then use Splitz,i,j to obtain a valid refutation of the reduced formula
(Lemma 4.13), removing at least the d|H|/p2(M +mn) pairs of terms which had quadratic
degree with a contribution from z, i, j. Either way, the number of high-degree quadratic
terms reduces by a fraction at least d/4p2(M +mn). Thus, we obtain a refutation of PHPm,r

n′

with at most (1 − d/4p2(M +mn))|H| pairs of terms of Quadratic degree at least d, with
n′ ≥ n− κ.

This completes the description of how to extract a good restriction in each iteration. The
fraction of high-degree Quadratic pairs eliminated is at least d/(M +mn) in the first two
cases and at least d/4p2(M +mn) in case 3. So in every case, at least α = d/4p2(M +mn)
fraction of the pairs is removed. With the analysis given in the beginning of this proof, the
proof of Theorem 5.5 is now complete. ◀

Finally, applying a lift with the XOR2 gadget and by choosing the parameters carefully,
we obtain our claimed lower bound of Theorem 1.2.
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▶ Theorem 1.2. For every N > 0 large enough, any 1 > ϵ, δ > 0, constant c > 0, and prime
p, there exists a tautology F over N variables such that any PC refutation of F over Fp with
N1+ϵ(1−δ) extension variables, each depending on N1−ϵ variables of F and of size at most
N c, requires size exp(Ω(N ϵδ/poly logN)).

Proof. Pick an arbitrary n, and set r = 100p(c + 2) log n and m = 2r, so that
(

m
r

)
> n.

Let G be the formula PHPm,r
n . Let F be the formula obtained be composing G with the

parity gadget on two variables; F = G ◦ XOR2. That is, replace each variable x in G by
the XOR of two new variables x1 and x2. The number of variables in the formula F is
N = 2mn = Θ(n log n).

Suppose we are given a PC refutation Π of F of size s, that uses no more than N1+ϵ(1−δ)

extension variables, each of arity bounded by N1−ϵ and size bounded by N c. We will recover
from Π a refutation of G, and then use Theorem 5.5 to obtain the stated lower bound on s.

Set k = 10(c+ 2) logN ; then r > 2pk. We will find a restriction that reduces F to G, and
reduces the degree of all extension axioms in Π to at most k. Note that the total size of all
the extension axioms put together is at most N c ×N1+ϵ(1−δ) < N c+2. Let ρ be a restriction
that independently, for each variable x of G, picks one of x1, x2 uniformly at random, and
sets it to 0 or 1 with equal probability. For any term t of degree at least k, the probability
that t survives after applying ρ is at most (3/4)k. By the union bound, the probability that
some term in an extension axiom survives ρ is at most N c+2(3/4)k, which is strictly less
than 1 for our choice of k. Hence there exists a restriction ρ that sets exactly one variable in
each XOR gadget, and which reduces all extension axioms to degree at most k. A suitable
renaming of the surviving variables (and interchanging with the negated literal if necessary)
recovers G.

We thus have a PC refutation Π′ = Π|ρ
of G of size at most s. The number of extension

variables in Π′ is M = N1+ϵ(1−δ) = Õ(n1+ϵ(1−δ)), and each has arity at most κ = Õ(n1−ϵ)
and degree at most k = Θ(log n). Further, M + mn = θ(M). Also as already noted,
r > 2pk. Hence by Theorem 5.5 we conclude that s is at least exp(Ω̃(n2/(M +mn)κk)) =
exp(Ω̃(n1+ϵ/n1+ϵ(1−δ))) = exp(Ω̃(N ϵδ)) (where the Õ, Ω̃ notation hides poly log factors).
This is the claimed bound. ◀

6 Conclusion

We have obtained new size lower bounds for the PC proof system in two different settings.
Over the {±1} basis over any field, our lower bound is established through degree-to-

size lifting (Theorem 1.1), and our method also yields a stronger (than previously known)
degree-to-size lifting for the SOS proof system (Theorem 3.10).

Over finite fields of prime order, when extension variables are allowed, our lower bound is
achieved by using XOR-ification on a carefully chosen unsatisfiable system of inequalities.
We believe that this bound should also hold in fields of finite characteristic.

As mentioned in the precursor to our work [11], our generalization of PC can be viewed
as a fragment of AC0[p]-Frege of depth “2.5”, consisting of circuits with a mod p gate at
the top, AND/OR gates in the middle, and a layer of gates that encode extension variables
at the bottom. Thus lower bounds in this paper and those in [11] can be seen as progress
towards proving lower bounds for depth 3 AC0[p]-Frege. However the latter are proved for
CNF tautologies. Our bounds, while not for CNFs, are for tautologies that have small depth
2 AC0[p] circuits and therefore can still be seen a progress towards this goal. It is an open
problem to match our lower bounds for a CNF tautology.
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On the Relative Efficiency of Dynamic and Static
Top-Down Compilation to Decision-DNNF
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Abstract
Top-down compilers of CNF formulas to circuits in decision-DNNF (Decomposable Negation Normal
Form) have proved to be useful for model counting. These compilers rely on a common set of
techniques including DPLL-style exploration of the set of models, caching of residual formulas, and
connected components detection. Differences between compilers lie in the variable selection heuristics
and in the additional processing techniques they may use. We investigate, from a theoretical
perspective, the ability of top-down compilation algorithms to find small decision-DNNF circuits for
two different variable selection strategies. Both strategies are guided by a graph of the CNF formula
and are inspired by what is done in practice. The first uses a dynamic graph-partitioning approach
while the second works with a static tree decomposition. We show that the dynamic approach
performs significantly better than the static approach for some formulas, and that the opposite also
holds for other formulas. Our lower bounds are proved despite loose settings where the compilation
algorithm is only forced to follow its designed variable selection strategy and where everything else,
including the many opportunities for tie-breaking, can be handled non-deterministically.
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1 Introduction

The foundation of knowledge compilation is the idea that different representations of a
function facilitate solving different kind of problems. Classes of representations where specific
problems become tractable are studied under the name of (compilation) languages [10, 11, 12].
The purpose of (knowledge) compilers is to transform (or compile) propositional formulas,
circuits, or other, into a target language where some intractable problems become solvable
in polynomial time. Compilers to languages where model counting is linear-time are, for
obvious reasons, particularly investigated. In practice, one of the main language for doing
model counting is decision-DNNF : the class of circuits in decision decomposable negation
normal form [20], with compilers building decision-DNNF circuits from CNF formulas such
as c2d [9], dsharp [19], d4 [17] and the compiler version of sharpsat-TD [16, 15].

From a complexity theory point of view, compilation is often seen as a preprocessing task
where only the size of the compiled form (that is, the output of the compiler) matters [4, 6].
In practice of course, running time matters, and perhaps is the priority since a compiler that
ends rapidly is also guaranteed to construct a reasonably small compiled form (though the
converse is not true). So practical compilers use strategies, heuristics and whatnot to try to
terminate within a certain time window. But then we ask what are the consequences of these
implementation choices on their ability to find small compiled forms. Are there formulas
that admit small decision-DNNF circuits but for which our compilers always construct
large circuits? In this paper, we answer this question positively for two, hopefully realistic,
algorithms for top-down compilers of CNF to decision-DNNF. More precisely, we confront
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the two algorithms by finding formulas that are hard to compile for one, in the sense that it
returns super-polynomial-size compiled forms, but easy to compile for the other, and vice
versa. The two algorithms share many similarities and are top-down.

Top-down compilation refers to a compilation based on an exhaustive DPLL search that
uses caching and independent components identification. Here, “exhaustive” means that the
DPLL procedure does not stop after finding one model of the formula but keeps searching
for all of them. Caching allows to save time and memory by preventing the compiler to work
twice on the same formula [1, 23, 9]. Independent components identification also speeds up
compilation by determining when a formula can be split into independent subformulas that
are then compiled separately [14, 8, 1]. Without this mechanism, the compiled form are
FBDDs (free binary decision diagrams) [13], which are generally significantly less succinct
than decision-DNNF circuits [2]. In practice, identifying independent subformulas means
checking whether some graph of the formula has several connected components. Compilers
work toward splitting the graph through heuristics and strategies that guide the choices of
the branching variables [18]. The idea is to favor variables that belong to certain cutsets,
or separators, of the graph. This is explicit in a compiler like d4 that uses (hyper)graph
partitioning tools to find such cutsets. In c2d, the cutsets are computed beforehand from
recursive graph partitioning or from a tree decomposition and organized in a data structure
called a dtree that is passed on to the compiler. In a model counter like sharpsat-TD, cutsets
are hidden in a tree decomposition used to influence the scores of the variables to branch on.
The two top-down compilation algorithms we study are inspired by these compilers. The
first one always branch on variables from a cutset determined by a static tree decomposition
of the primal graph of the original CNF and the second dynamically looks for cutsets that
are balanced separators of the graph of the current formula.

Results on the efficiency of static decomposition-based model counters compared to
dynamic model counters or compilers are not novel. For instance, more than twenty years
ago, for model counting, the authors of [1] showed that decomposition-based techniques
like recursive conditioning [7] do not poly-time simulate a dynamic variant of the counting
algorithm #DPLLCache. But these are results on running time, and besides they are proved
for unsatisfiable formulas. This is not very useful for us since we only care about the size
of the compiler output and, even if it takes a long time, a good compiler always returns
a constant-size output on unsatisfiable inputs. In addition, we want our algorithms to be
realistic in their variable selection behavior, so they cannot be completely non-deterministic.
It is typically not clear for which deterministic version of #DPLLCache the results of [1] still
hold. Closer to our work, the authors of [5] show lower bounds on the size of decision-DNNF
circuits that are structured-decomposable which they argue correspond the circuits constructed
by c2d. This is true if certain features of compilers are disabled, in particular inprocessing
techniques like unit propagation, which is not something we want for our results. Yet we
believe it is true that the compilers based on static decompositions construct circuits “more
structured” (though not structured-decomposable) than those relying on more dynamic
approaches. Our lower bounds on the static decomposition-based compilation algorithm are
in fact proved using some different notion of structuredness. These lower bounds are not
surprising since it is known that structured-decomposability tends to dramatically increase
the size of the circuits [22]. But then it is a bit more surprising that our decomposition-based
algorithm can largely outperform our dynamic algorithm, whose output is barely structured,
on specific instances.

The paper is organized has follows. We start with some preliminaries in Section 2. In
Section 3 we describe our framework for top-down compilation and the loose settings in
which we our results fit: basically the cutset selection mechanism is strict but every other
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procedures (caching, inprocessing, variable selection inside the cutset) are mostly undefined,
so that positive upper bound results hold even with naive procedures and negative lower
bound results hold even with non-deterministic procedures. We then show in Section 4
that the static approach returns compiled forms that have some “structure”. We use this in
Section 5 to design functions that are easy to compile in the dynamic approach but hard for
the static approach. Finally we prove that the opposite holds for other functions in Section 6.

2 Preliminaries

We use the notations [n] = {1, 2, . . . , n} and [0, n] = {0, 1, . . . , n}.
The domain of a Boolean variable is {0, 1} ({false, true}). An assignment to a set X of

Boolean variables is a mapping α : X → {0, 1}. A partial assignment to X is an assignment
to a subset of X. A Boolean function f over X maps the assignments to X to {0, 1}. α is a
model of f when α ∈ f−1(1). We sometimes write f(X) to precise that f is a function over
X. When X is not explicit we refer to it as var(f). Given a partial assignment α to var(f),
we denote by f |α the Boolean function over var(f) \ var(α) whose models are the models of
f consistent with α and projected onto var(f) \ var(α). Constants 0 and 1 are sometimes
seen as functions over ∅.

A literal is a variable x or its negation ¬x, also written x̄. The negated literal ℓ̄ equals
x if ℓ = x̄, and equals x̄ if ℓ = x. A clause is a disjunction of literals and a CNF formula
(Conjunctive Normal Form) F is a conjunction of clauses. CNF formulas are sometimes
seen as sets of clauses, and we write c ∈ F to mean c ∈ clause(F ). For us, F |α is the CNF
formula obtained by removing all clauses of F containing literals satisfied by α, and all
literals falsified by α from the remaining clauses. If F |α is empty, then it is replaced by 1. If
F |α contains an empty clause, then it is replaced by 0. The primal graph GF of F is the
graph whose vertices are F ’s variables and such that there is an edge between x and y if
and only if there is a clause c ∈ F such that x ∈ var(c) and y ∈ var(c). The connected
components of GF correspond to the the largest subformulas of F that share no variable.
We denote by components(F ) the set of these subformulas.

2.1 Graphs Separators and Tree Decompositions
For T a tree and t and t′ two nodes T , t ≤T t′ means that t′ is an ancestor of t or that t′ = t,
whereas t <T t′ means that t′ is an ancestor of t and t ̸= t′. Let G be a graph with vertex set
V (G) and edge set E(G). For V ⊆ V (G), G[S] is the graph with vertex set S and edge set
{{u, v} | u ∈ S, v ∈ S, {u, v} ∈ E(G)}. We write G− S = G[V (G) \ S]. A tree decomposition
T of G is a pair (T, b) where T is a rooted tree and b is a function b : V (T )→ P(V (G)) such
that

for every v ∈ V (G), there exists t ∈ V (T ) such that v ∈ b(t);
for every {u, v} ∈ E(G), there exists t ∈ V (T ) such that {u, v} ⊆ b(t);
for every v ∈ V (G), T [{t | v ∈ b(t)}] is connected (so it is a tree).

The set b(t) is called the bag of t. The width of T is the maximum size of a bag, so
maxt∈V (T ) |b(t)|. The treewidth of G, noted tw(G), is the minimum width for a tree decom-
position of G minus 1. We denote by b↓(t) the union of b(t) and of the bags of all descendants
of t, i.e., b↓(t) =

⋃
t′≤T t b(t′).

Suppose G is connected. A separator of G, or a cutset of G, is a subset S ⊆ V (G) such
that G− S has more than one connected component. For δ ∈ [0, 1], a δ-balanced separator of
G is a separator S of G such that every connected component of G− S has at most δ|V (G)|
vertices. We denote by sδ(G) the smallest size of a δ-balanced separator of G.
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(1∨2∨3)(1̄∨2̄)(2̄∨3)(1̄∨3)(3̄∨7)(3̄∨8)(7∨8)(1∨
2∨ 5̄∨6)(1∨2∨5∨4)(1̄∨ 3̄∨4∨5)(1̄∨ 3̄∨ 4̄∨5)

Primal graph:
1 2 3

6 5 4 7 8

Tree decomposition:

1, 2, 3

1, 2, 3, 4, 5 3, 7, 8
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7

8

4

5 5

1

Figure 1 A CNF formula and a decision-DNNF circuit that represents it.

2.2 Decision-DNNF Circuits
A decision-DNNF (decision Decomposable Negation Normal Form) circuit is a directed
acyclic graph with a single source and whose nodes are of three types: sinks, decision nodes
and decomposable ∧-nodes. Each node v computes a Boolean function ⟨v⟩ over var(v).

A sink has out-degree 0 and is labeled by a constant c ∈ {0, 1}. Here ⟨v⟩ = c and
var(v) = ∅.
A decision node v is labeled by a Boolean variable x and has two children: the 0-child v0
and the 1-child v1, with x ̸∈ var(v0) ∪ var(v1). We write v = ite(x, v1, v0) (if x then v1
else v0). Here ⟨v⟩ = (x̄ ∧ ⟨v0⟩) ∨ (x ∧ ⟨v1⟩) and var(v) = {x} ∪ var(v0) ∪ var(v1).
A decomposable ∧-node v is labeled by the conjunction symbol ∧, it has children v1, . . . , vk

with k ≥ 1 such that var(vi) ∩ var(vj) = ∅ for every i ̸= j. The node is interpreted as
⟨v⟩ = ⟨v1⟩ ∧ · · · ∧ ⟨vk⟩ and var(v) = var(v1) ∪ · · · ∪ var(vk).

A decision-DNNF circuit C with source node v computes, or represents, the Boolean function
⟨v⟩ over var(n). We directly see C as a Boolean function and write var(C) = var(v).
Graphically, for α an assignment to var(C), the value C(α) = ⟨v⟩(α) can be determined
starting from v and by descending the circuit as follows: upon encountering the node u, if u

is a decision node for x then continue from its α(x)-child, if u is sink then stop, and if u is
a decomposable ∧-node then continue the from all its children u1, . . . , uk in parallel. If at
least one sink 0 is reached then C(α) = 0, otherwise C(α) = 1. Given a partial assignment β

to var(C), a decision-DNNF circuit for C|β is constructed as follows: for every x ∈ var(β)
and every decision node v = ite(x, v1, v0) in C, redirect all parents of v to vβ(x) and delete v.
Once this is done, remove all subcircuits not reachable from the source.

An example of decision-DNNF circuit is shown in Figure 1. Graphically, a decision node
for x is represented with a circle labeled by x. It is connected to its 0-child by a dashed line
and to its 1-child by a solid line. Only the 1-sink is represented in Figure 1. Missing outputs
for decision nodes go straight to the 0-sink.

3 A Framework for Top-Down Compilation to decision-DNNF

Algorithm 1 encompasses the behavior of top-down compilers from CNF to decision-DNNF.
It is largely inspired from [17]. The priority of the algorithm is to split the primal graph
GF of the input formula F . This is done by selecting a cutset of the graph, that is, a set of



A. de Colnet 11:5

vertices/variables whose removal leaves the graph disconnected. Assigning a variable to 0 or 1
removes at least this variable from the graph. The cutset variables are assigned in all possible
ways until the graph is disconnected, which may happen before all are assigned. Every
variable assignment adds a decision node to the circuit (line 11). Between two successive
variable assignments, the algorithm checks whether the graph is disconnected and, if so, a
decomposable ∧-node is created and the subformulas for each components are dealt with
independently (line 7). The cutset is reset to ∅ for these subformulas to notify that a new
cutset must be computed. Due to its recursive nature, Compile requires two arguments: F

and a subset S of F ’s variables that corresponds to what remains of the cutset. When S is
empty (which is the case initially) we write Compile(F ) instead of Compile(F, ∅).

Cutset selection corresponds to the procedure selectCutset. It is the one procedure
where the two algorithms studied in this paper behave differently. In the dynamic approach,
selectCutset(F ) returns a balanced separator of GF whose size is minimal, or close to
minimal. In the static approach, we have access to a tree decomposition T of GF or of a
supergraph of GF and selectCutset(F ) returns the bag of a highest node of T which has a
non-empty intersection with var(F ). There will always be a unique such node in our settings.
We give names to the two variants of Compile.

Compiled,ϵ(F ) is the algorithm Compile where selectCutset(F ) returns a 2/3-balanced
separator of GF of size at most (1 + ϵ)s2/3(GF ).
Compiles(F, T ) is the algorithm Compile with an extra argument: a tree decomposition
T that remains constant through the whole algorithm, and where selectCutset(F )
returns a highest bag of T that has a non-empty intersection with var(F ).

The dynamic approach requires solving a hard problem (graph balanced-partitioning) several
time during compilation while the static approach requires a hard preprocessing step, namely
computing a tree decomposition whose width is close to minimal. We disregard running times
in this paper, so we just ignore the complexity of these problems. However, to be a bit closer
to reality we try not to put too much constrain on selectCutset, hence the requirement
that the size of the cutset in the dynamic approach is minimal up to a fixed constant factor.
One forces the dynamic compile algorithm to find a minimal-size cutset by setting ϵ = 0. We
will write Compiled instead of Compiled,0. Similarly, for the static approach, we will allow
tree decompositions of width minimal up to a fixed constant factor. We leave tie-breaking
non-deterministic when several candidates exist for the output of selectCutset. We stress
out that the two variants of Compile work on the primal graph. Practical compilers may
choose other graphs, like d4 which uses a dual hypergraph of F [17].

Variable selection corresponds to the procedure selectVariable for selecting the
next variable to assign in the cutset. We leave this procedure undefined. One can select
variables in a predefined order, or use frequency-based heuristic, or heuristics influenced by
the outcome of the algorithm on previous branches like VSIDS, or a non-deterministic oracle,
etc. Our results are agnostic to this procedure. The only rule is to not select a variable
outside of the cutset. For the static approach, this is actually a deviation from practical
tree-decomposition-based compilers and model counters. For instance, sharpSAT-TD [16]
selects variables based on a score computed using the depth of the variables in the tree
decomposition but also their frequency and VSIDS scores. On the one hand, the depth
component of the score makes it more likely to select a variable appearing in the highest bag
of the decomposition, which corresponds to our cutset in the static approach. On the other
hand, the VSIDS and frequency components can force the selection of a variable outside of
the cutset. It has been noticed that the depth component is dominant in practice and that
the other components mostly serve as a tie-breaking mechanism [16, Section 5]. So we think
our model is quite realistic. Though we do not know if it is for the functions that we use to
prove our results.
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Caching allows to avoid constructing a decision-DNNF for the same formula twice. By
default, cache(F ) equals nil for every formula F . We consider two caching variants: one
realistic, the other idealized. The realistic caching is syntactical : in Line 5, cache(F ) ̸= nil
means that the formula F has already been seen in previous calls to the algorithm. The
idealized caching is semantical: in Line 5, cache(F ) ̸= nil means that some formula F ′

logically equivalent to F , with var(F ′) ⊆ var(F ), has been seen in previous calls (for instance
F = (x1∨x2∨x3)∧ (x1∨ x̄3) and F ′ = (x1∨x2)∧ (x1∨ x̄3)), and then cache(F ) is defined as
cache(F ′). The condition var(F ′) ⊆ var(F ) is here to avoid situations where decomposability
of ∧-nodes would be compromised because of caching. We write Compile[smc](. . . ) to precise
that semantical caching is used. Otherwise, syntactical caching is used (no caching is not
allowed).

Inprocessing simplifies the formula between every two variable selections. This is the
procedure process(F ) at Line 2. Here it returns a modified formula for F and a term
(a conjunction of literals) τ . A classical procedure is unit propagation: while there is a
unit clause ℓ ∈ F , ℓ is added to the term τ and F is replaced by F |ℓ. Unit propagation
is linear-time, but we can also have more complex processing procedures like satisfiability
checking: if F is unsatisfiable, then it is replaced by 0. The stronger procedure we consider
is backbone identification: τ contains all literals ℓ such that F |= ℓ and F is replaced by
F |τ . Note that backbone identification subsumes both unit propagation and satisfiability
checking. Indeed if F is unsatisfiable, then F |= x and F |= x̄ for every x and we just assume
process(F ) returns (0, {x, x̄|x ∈ var(F )}). A compiler may implement several processing
techniques at the same time. In practice NP-hard processing procedures require calling an
external SAT solver. Again, we just disregard the running time of process and assume it
is sound and complete. We write Compile[bb](. . . ) when backbone identification is enabled
(and a fortiori unit propagation and satisfiability checking). Without [bb] inprocessing is
disabled (even unit propagation), then process(F ) returns (F, ∅). When τ is not empty,
then it is added to the output with a ∧-node at line 7 or 11. For instance, if F = (x1) ∧
(x̄1 ∧ x̄2)∧ (x2 ∨ x̄1 ∨ x3)∧ (x4 ∨ x5 ∨ x6)∧ (x̄3 ∨ x̄4 ∨ x̄5 ∨ x6), and backbone identification is
enabled, then process(F ) = ((x4 ∨ x5 ∨ x6)∧ (x̄4 ∨ x̄5 ∨ x6), x1 ∧ x2 ∧ x3) and the algorithm
goes through lines 9, 10 and 11. Say x4 is selected line 10, then line 11 returns the following:

∧

x1 x2 x3 x4

0 1
Compile

(x5∨x6, S−x4)
Compile

(x̄5∨x6, S−x4)

Figure 2

where each literal of τ = x1 ∧ x2 ∧ x3 is converted into a decision node to make sure
that the resulting circuit is a decision-DNNF. Admittedly, in this paper we are far from
exhaustive when it comes to inprocessing, for instance we do not consider literal equivalences
detection [17], vivification [21], elimination of redundant clauses, etc.

4 Decision-DNNF Organized by Tree Decompositions

The output of Compiles(F, T ) is a decision-DNNF circuit organized by T . We introduce
this notion in this section. In a decision-DNNF circuit, a path from the source to a sink
is a sequence of nodes (v1, v2, . . . , vk) with v1 the source, vi+1 a child of vi, and vk a sink.
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Algorithm 1 The general Compile procedure.
1: input: a CNF formula F , a set of variable S ⊆ var(F )
2: (F, τ)← process(F ) // τ is a conjunction of literals
3: S ← S \ var(τ)
4: if F = 0 or F = 1 then return F

5: if cache(F ) ̸= nil then return cache(F ) // cache check
6: if F has more than one connected component then
7: C ← τ ∧

∧
H∈components(F ) Compile(H, ∅) // create a decomposable ∧-node

8: else
9: if S = ∅ then S ← selectCutset(F )

10: x← selectVariable(S, F )
11: C ← τ ∧ ite(x, Compile(F |x, S − x), Compile(F |x̄, S − x)) // create a decision node
12: end if
13: cache(F )← C // cache update
14: return C

Note that, when i < k, vi may be a decision node or an ∧-node. We use · to denote path
concatenation. For instance (v1, v2, v3, v4) = (v1, v2) · (v3, v4). A variable x appear in a path
p if p contains a decision node for x. For T = (T, b) and x ∈ var(F ) we denote by tx the
highest node of T whose bag contains x, that is, x ∈ b(tx), and there is no t ∈ V (T ) such
that both tx <T t and x ∈ b(t).

▶ Definition 1. Let F be a CNF formula and let T = (T, b) be a tree decomposition of GF .
A path p in a decision-DNNF circuit C is organized by T when, for every two decision
nodes vx and vy on p for the variables x and y, respectively, vx appears before vy in p only if
ty ≤T tx. C is organized by T when all its paths are organized by T .

For example, the decision-DNNF circuit of Figure 1 is organized by the tree decomposition
shown in the same figure. Readers well-versed in knowledge compilation may know the
concept of structured-DNNF circuits [22] and may see similarities with our circuits organized
by tree decompositions. But they should also note that the circuit shown in Figure 1 is
not structured-decomposable. Indeed, a structured-DNNF circuit cannot have the two paths
highlighted in the figure since they both contain the variables 2, 3, 4, 5 but in different order.

We are show that the output of Compiles[smc, bb](F, T ) is organized by T . We call
residual component of F any R ∈ components(F |α) where α is a partial assignment to
var(F ). Note that GR is connected.

▶ Lemma 2. Let F be a CNF formula, let T = (T, b) be a tree decomposition of GF and
let R be a residual component of F such that var(R) ̸= ∅. Then there is a unique highest
tR ∈ T such that var(R) ∩ b(tR) ̸= ∅.

Proof. Let t1, . . . , tk be the highest nodes in T whose bags intersect var(R). Suppose, toward
a contradiction, that k > 1. Then let t be the least common ancestor of t1, . . . , tk. t has
at least two children cℓ and cr such that some ti is a descendant of cℓ (or is cℓ itself) and
some tj , j ̸= i, is a descendant of cr (or is cr itself). By assumption, var(R) ∩ b(t) = ∅. As
a general property of tree decompositions, b(t) is a vertex separator of GF [b↓(t)] such that
no component of GF [b↓(t)]− b(t) contains at the same time variables from b↓(cℓ) \ b(t) and
variables from b↓(cr) \ b(t). So, since GR is a subgraph of GF [b↓(t)]− b(t), we cannot have
that GR is connected and intersect both b(ti) and b(tj). This is a contradiction, so k = 1. ◀

▶ Lemma 3. Let F be a CNF formula and T be a tree decomposition of GF . Compiles(F, T )
returns a decision-DNNF circuit organized by T and representing F .
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Proof. Here we have no inprocessing and only syntactical caching. Let T = (T, b) and let C

be the output of Compiles(F, T ). The statement follows from Lemma 2 and the fact that,
given any residual component R of F , Compiles(R, T ) constructs a decision-DNNF circuit
over var(R). Indeed, suppose C contains a path that violates Definition 1, that is, the path
contains a decision node vx for a variable x before the decision node vy for the decision
node y whereas ty ≰T tx. Let R be the residual component of F for which Compiles(R, T )
constructed the node vx. We have {x, y} ⊆ var(R). By Lemma 2, Compiles(R, T ) must
select a variable from b(tR) and, by uniqueness of tR, tR is either ty or a strict ancestor of
both tx and ty. In both cases x ̸∈ b(tR) so Compiles(R, T ) cannot select x and thus does
not construct vx. A contradiction. ◀

▶ Remark 4. Decision-DNNF circuits organized by tree decompositions lie between general
decision-DNNF circuits and decision-structured-DNNF circuits (see for instance [5]). In the
extreme case where T is a single bag containing all variables, every decision-DNNF circuit
is organized by T . Thus, the “one-bag” tree decomposition, while useless in practice, is
the best for Compiles (more possibility for the output). But this is only because the only
constraint for variableSelect is to select a variable from the bag. Using the “one-bag” tree
decomposition essentially means lifting that constraint.

Lemma 3 still holds when non-deterministic caching is enabled.

▶ Lemma 5. Let F be a CNF formula and T be a tree decomposition of GF . Algorithm
Compiles[smc](F, T ) returns a decision-DNNF circuit organized by T that represents F .

Proof sketch. We start with a trivial but key observation. Let p = (v1, . . . , vk) and p′ =
(v′

1, . . . , v′
h) be two paths organized by T . For some i ∈ [k − 1] and some j ∈ [h − 1] let

p1 = (v1, . . . , vi), p2 = (vi+1, . . . , vk), p′
1 = (v′

1, . . . , v′
j), p′

2 = (v′
j+1, . . . , v′

h). If for every
variable x appearing in p1 and every variable y appearing in p′

2 we have ty ≤T tx, then the
path p1 · p′

2 is organized by T .
Now consider a run of Compiles[smc](F, T ). Suppose every paths constructed up to the

call Compiles[smc](R, S, T ), with R a residual component of F , are organized by T . Let p

be the path corresponding to the branch that lead to Compiles[smc](R, S, T ) and suppose
that for all y ∈ var(R) and all x ∈ var(p) we have ty ≤T tx. Assume Compiles[smc](R, S, T )
identifies that there exists a CNF formula R′ with C ′ = cache(R′) ̸= nil such that R is
logically equivalent to R′ and such that var(R′) ⊆ var(R). Since var(C ′) ⊆ var(R′), for all
y ∈ var(C ′) and x ∈ var(p), ty ≤T tx holds true. So, by the previous observation, since all
paths in C ′ are organized by T , concatenating a path of C ′ to p does not create any path
not organized by T . So, if Compiles(F, T ) returns a circuit organized by T , then so does
Compiles[smc](F, T ). ◀

Now let us further assume that process does backbone identification. Given F ,
process(F ) returns τ = ite(ℓ1, 1, 0) ∧ · · · ∧ ite(ℓk, 1, 0) where F |= ℓi for every literal
ℓi (k = 0 and τ = 1 if no such literal exists), and replaces F by F |ℓ1 . . . ℓk. When k > 0
the algorithm calls the decision nodes of τ are conjoined to the circuit. We say that these
decision nodes have been inferred from backbone identification. Let p = (v1, v2, . . . , vk) be
a source-to-sink path in C. There can be only one decision node inferred from backbone
identification in this path: vk−1 (vk is a sink). Every decision node vi appearing before vk−1
on this path is for a variable yi that has been selected from a bag of the tree decomposition.
Let us call x the variable for vk−1. For any given yi we have tx ≤T tyi

. Indeed, let R be
the connected residual formula of F such that the call Compiles(R, T ) constructed vi. By
Lemma 2, since x ∈ var(R), we have that tx ≤T tR, and since yi was selected we also have
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tR = tyi . So we see that adding backbone identification, and a fortiori unit propagation
or satisfiability testing, does not change the fact that Compiles returns a decision-DNNF
organized by T .

▶ Lemma 6. Let F be a CNF formula and T be a tree decomposition of GF . Algorithm
Compiles[smc, bb](F, T ) returns a decision-DNNF circuit organized by T that represents F .

We finish this section with a result on the manipulation of decision-DNNF circuits
organized by tree decomposition which will be needed in proofs to come. For S ⊆ V (G) we
denote by T − S the tree decomposition of G− S obtained from T by removing every vertex
of S from its bags. Formally, when T = (T, b), we have T − S = (T, b′) with b′(t) = b(t) \ S.

▶ Lemma 7. conditioning Let F be a CNF formula let C be a decision-DNNF circuit
organized by the tree decomposition T of GF . Let α be a partial assignment to F . Then C|α
is a decision-DNNF circuit organized by the tree decomposition T − var(α) of GF − var(α).

Proof. We prove the statement when α is an assignment to a single variable x. The
lemma then follows by induction. Then C|α is obtained by replacing every decision node
ite(x, v1, v0) by vα(x). It is readily verified that the paths in C|α are subpaths of paths of
C: let v = ite(x, v1, v0), then a path p0 · (v, v¬α(x)) · p1 in C is not kept in C|α while a path
q = q0 · (v, vα(x)) · q1 in C becomes q′ = q0 · (vα(x)) · q1 in C|α. For every variable different
from x, the highest node whose bag contains it in T − {x} is the same as in T , so if q is
organized by T then q′ is organized by T − {x}. ◀

5 Hard Functions for Static Top-Down Compilation

In this section we show that there are CNF formulas that are hard for Compiles but easy for
Compiled.

▶ Theorem 8. There is an infinite class F of CNF formulas and a constant δ ∈ (0, 1]
such that, for every F ∈ F over n variables and every tree decomposition T of GF of width
O(tw(GF )), the following holds:

Compiled(F ) returns a decision-DNNF circuit of size nO(1);
Compiles[smc, bb](F, T ) returns a decision-DNNF circuit of size 2Ω(nδ).

One can see that, as n increases, tw(GF ) has to become negligible compared n, because
if tw(GF ) = Ω(n) then the “one-bag” tree decomposition becomes an option and Compiles

essentially finds the smallest decision-DNNF (see Remark 4). One can also guess that tw(GF )
cannot bounded by a constant for all F ∈ F , because Compiles should be able to create
circuits on size 2O(tw(GF ))nO(1). Grid graphs are convenient to get a treewidth that is large
enough and yet vanishingly small compared to n. We start with some preliminaries on grid
graphs. Then we describe our functions and explain why Compiled is effective on them.
Finally, we prove the lower bound for Compiles.

5.1 Grid Graphs and Spine Graphs
The grid graph gridn,m contains n×m vertices {xij | i ∈ [n], j ∈ [m]} connected in n rows
and m columns. Grid graphs have a nice well-known properties that we are going to use
several time.

▶ Lemma 9. For every fixed δ ∈ [0, 1), the gridn,n as no δ-balanced separator of size o(
√

n).
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(a) Grow(2). (b) Gcol(4). (c)

Figure 3 Spine subgraphs of grid4,6.

Proof. For S ⊆ V (gridn,n), Let ∂(S) = {{u, v} ∈ E(gridn,n) | u ∈ S, v ̸∈ S}. By [3,
Lemma 3], for every S of size |S| ≤ n2/2, |∂(S)| ≥ min(n, 2

√
|S|) holds true. Suppose S is a

δ-balanced separator of gridn,n. Let V1, V2, . . . be the components of gridn,n − S. There is
V ′, a union of some components of gridn,n−S such that |V ′| ≤ n2/2 and |V ′| = Ω(n2− |S|).
Indeed suppose there is a component Vj of size δn2/2 ≤ |Vj | ≤ δn2. If |Vj | ≤ n2/2 we
can choose V ′ = Vj and we are done. If |Vj | ≥ n2/2 then we choose V ′ =

⋃
i̸=j Vi and

obtain |V ′| ≥ n2 − |S| − |Vj | ≥ (1 − δ)n2 − |S|. But when Vj does not exist, we let V ′

be V1 ∪ · · · ∪ Vi for the largest i such that |V1 ∪ . . . Vi| ≤ (n2 − |S|)/2, then we have that
|V ′| + |Vi+1| ≥ (n2 − |S|)/2 and |V ′| ≥ ((1 − δ)n2 − |S|)/2. Now, |V ′| ≤ n2/2 implies
that |∂(V ′)| ≥ min(n, 2

√
|V ′|) = Ω(

√
n2 − |S|). It follows that if |S| = o(

√
n), then

|∂(V ′)| ≥ Ω(n). So removing Ω(n) edges is needed to disconnect V ′ from the rest of the
grid. But every vertex in gridn,n has degree at most 4, so removing the vertex set S cannot
remove more than 4|S| = o(

√
n) edges. So removing S is not enough to disconnect V ′ from

the rest of the grid, a contradiction. ◀

For n and m fixed, we write rowi = {xi1, . . . , xim} and colj = {x1j , . . . , xnj}. An edge
{xij , xi j+1} is called an edge of the ith row. An edge {xij , xi+1 j} is called an edge of the
jth column.

▶ Definition 10 (Spine subgraphs). A spine subgraph of G = gridn,m is a subgraph Grow(i),
i ∈ [n] whose edge set comprises all column edges plus all edges of the ith row, or a subgraph
Gcol(j), j ∈ [m], whose edge set comprises all row edges plus all edges of the jth column.
The unique row (resp. column) of Grow(i) (resp. Gcol(j)) is called its spine.

Examples of spine subgraphs are shown in Figures (3a) and (3b). For an unspecified spine
subgraph H, we refer to its spine as spine(H). For every i, k ∈ [n] and j, ℓ ∈ [m], the vertex
xij is at distance |i− k| from Grow(k)’s spine and at distance |j − ℓ| from Gcol(ℓ)’s spine.

▶ Definition 11. For S ⊆ V (gridn,m) and a spine subgraph H of gridn,m, the vertex xij

sees H’s spine despite S if there is no vertex of S \ {xij} on the shortest path connecting xij

to H’s spine.

An example is shown in Figure (3c). The vertices of S are circled in red. The vertices
that see the spine despite S are in black. The vertices that do not are in white. Note that
not all vertices in S see the spine.

▶ Lemma 12. Let c > 1 be a constant, G = gridn,m with m ≥ (3c + 1)n, and S ⊆ V (G)
with n/3 ≤ |S| ≤ cn. For n large enough, there is a spine subgraph H of G such that no
vertex of S is at distance fewer than 2 from spine(H) and such that at least Ω(

√
n) vertices

of S see spine(H) despite S.
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Proof. Let I = {i | ∃j, xij ∈ S} and let J = {j | ∃i, xij ∈ S} be the indexes of the rows and
columns, respectively, that intersect S.

If |I| <
√

n/3, then at least one row indexed in I contains
√

n vertices of S. So |J | ≥
√

n.
Moreover, |I| <

√
n/3 implies that at least n−

√
n/3 rows do not intersect S and thus at

least 1
3 (n −

√
n) rows do not intersect S and are such that they neighboring rows do not

intersect S (the neighboring rows of rowi being rowi+1 and rowi−1). Let H be the spine
subgraph Grow(i) for any of these rows. Then all vertices of S are at distance at least 2
from spine(H). Finally, for every j ∈ J , there is one vertex of S ∩ colj that sees spine(H)
despite S.

Now suppose |I| ≥
√

n/3. Since |S| ≤ cn, at least one of the m columns does not intersect
S and is such that its neighboring columns do not intersect S either. Let H be the spine
subgraph for that column. Then spine(H) ∩ S = ∅ and all vertices of S are at distance at
least 2 from spine(H). Finally for every i ∈ I, there is one vertex of S ∩ rowi that sees
spine(H) despite S. ◀

5.2 The Hard Functions
We assume the tree decompositions given to Compiles have minimal width up to a constant
factor ρ ≥ 1 and we write n′ = ⌈12ρ + 1⌉n. There are O(n) spine subgraphs of gridn,n′ . In
this section, we call them H1, H2, . . . For each Hi we have a CNF formula

FHi
=

∧
{x,y}∈E(Hi)

(x ∨ y).

We introduce s = log(n) + O(1) variables Z = {z0, . . . , zs−1} such that 2s is greater than
the number of spine subgraphs. The Z-variables are used as selectors. Every assignment to
Z is interpreted as a number between 1 and 2s by w(Z) = 1 +

∑s−1
k=0 zk2k. We denote by

(w(Z) ̸= i) the clause satisfied exactly by the assignments α to Z verifying w(α) ̸= i. Let X

be the variables/vertices of gridn,n′ . We define

SelectSpinen(X, Z) =
∧

i∈[2s]

∧
c∈FHi

((w(Z) ̸= i) ∨ c).

We then introduce a copy of gridn,n′ over a new set of variables/vertices X ′, and we define

Fn(X, X ′, Z) = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z). (1)

The Fn are our hard functions. Notice that the same selectors are used for the two SelectSpine

formulas. The reason for copying the variables is to help Compiled chooses Z as its first
cutset. Indeed, the primal graph of Fn looks like Figure 4. Intuitively, Z is the smallest
2/3-balanced separator of this graph: only O(log(n)) vertices, whereas cutting through one
of the two grids requires Ω(n) vertices. So, Compiled starts by assigning all variables of
Z in every possible way. This represents only O(n) branches that each leads to a formula
FH(X) ∧ FH′(X ′) for two spine subgraphs H and H ′ over disjoint set of variables. The
algorithm create a decomposable ∧-node to deal with FH and FH′ independently and easily
compile them into small decision-DNNF circuits.

▶ Lemma 13. For every n > 0, Compiled(Fn) returns a decision-DNNF circuit of size nO(1),
where Fn(X, X ′, Z) = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z) is defined as in (1).

Proof sketch. The primal graph of Fn = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z) is
connected. So Compiled(Fn) first computes a minimal-size 2/3-balanced separator of GFn

.
Z is a 2/3-balanced cutset of GFn

so a minimal-size 2/3-balanced cutset S of GFn
contains

no more than O(log(n)) variables.
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Z-clique

fully connected fully connected

X-grid X ′-grid

Figure 4 The primal graph of SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z).

Suppose S does not contain Z in its entirety. By Lemma 9, there are no 3/4-balanced
separator of size O(log(n)) of an n× n grid. Let GX be the X-grid and GX′ be the X ′-grid.
Both GX − S and GX′ − S contain a connected component of size at least 3nn′/4. Let ΓX

and ΓX′ be these components. But then ΓX and ΓX′ are connected to a vertex z ∈ Z \ S in
GFn − S and thus GFn − S has a connected component of size at least 6nn′/4. The number
of variables of Fn is 2nn′ + O(log(n)) and 6nn′/4 > 4nn′/3 + O(log(n)) for n large enough.
So S is not a 2/3 balanced separator if it does not contain Z. And since Z is a 2/3-balanced
cutset of GFn

, we have S = Z.
As long as one Z-variable is left unassigned, the primal graph of the formula remains

connected and, since there is no inprocessing mechanisms here, Compiled(Fn) keeps assigning
all Z-variables in all possible way without creating decomposable ∧-nodes. This amounts for
O(n) branches in the algorithms. When, at the end of a branch, all Z-variables are assigned
the algorithm makes a call Compiled(FH ∧ FH′) with H a spine subgraph of the X-grid and
H ′ a spine subgraph of the X ′-grid. A decomposable ∧-node is created and the algorithm calls
Compiled(FH) and Compiled(FH′). H and its connected subgraphs all have 2/3-balanced
separators of constant size, so Compiled(FH) only need O(log(|H|)) = O(log(n)) recursive
calls to finish. ◀

5.3 Lower Bounds for Compiles

We now prove a 2Ω(
√

n) lower bound on the size of the decision-DNNF circuits returned
by Compiles for Fn when given a tree decomposition T = (T, b) of GFn

of width at most
ρ · tw(GFn).

We give some intuition for why the lower bound holds true. Just like Compiled, Compiles

can assign the Z-variables first if they are in the highest bags of T , then it would find O(n)
subformulas of the form FH ∧ FH′ with H a spine subgraph of the X-grid and H ′ a spine
subgraph of the X ′-grid. In such a situation, Compiles will create ∧-nodes and compile FH

and FH′ separately. Let H1, H2, . . . , H2n be the spine subgraphs of the X-grid. The problem
is that Compiles uses the same tree decomposition to compile FH1 , FH2 , . . . , FH2n . For each
i ∈ [2n], there is indeed a tree decomposition T of the X-grid such that Compiles(FHi

, T )
constructs a small circuit, but there is no tree decomposition of the X-grid that simultaneously
give a small circuit for all i. And Compiles is stuck with a unique tree decomposition of GFn

(which contains a tree decomposition of the X-grid), so for some FHi
the circuit constructed

will be large.
Of course the lower bound has to be proved even in cases where the Z variables are not

assigned first. For T fixed, we give a spine subgraph H such that FH does not admit small
decision-DNNF circuits organized by T . Then we will just use Lemma 7 to extract in from a
decision-DNNF circuit C representing Fn and organized by T , a decision-DNNF circuit C ′

representing FH and organized by T . If C ′ is large, then C must be large and we will be
done.
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For a given path p of T we let b(p) =
⋃

t∈p b(t).

▶ Lemma 14. Let T be a tree decomposition of width w > 0, there is a path p from its root
to a node such that w ≤ |b(p)| ≤ 2w.

Proof. Let t be one of the highest nodes of T with |b(t)| = w and let q be the path from T ’s
root to t. For every node s ∈ q, let qs be the path from T ’s root to s. For two consecutive
s, s′ in q, s before s′, we have |b(qs′)| − |b(qs)| ≤ w. So, since |b(qt)| = |b(q)| ≥ |b(t)| = w,
there must be a node s ∈ q such that w ≤ |b(qs)| ≤ 2w. ◀

It is known that tw(gridn,n) = n and that there are tree decompositions of gridn,n′ of
width n + 1, so tw(gridn,n′) = n. It is not hard to see that tw(Fn) is at least n and at most
n + O(log(n)) and thus, the width of T is between n and 2ρn for n large enough. The set
b(p) from Lemma 14 for T then contains between n and 4ρn variables from X, X ′ and Z.
There are only O(log(n)) variables in Z so |b(p)∩X| ≥ n/3 or |b(p)∩X ′| ≥ n/3 (for n large
enough). Assuming |b(p) ∩ X| ≥ n/3 holds and setting S = b(p) ∩ X, we claim that the
spine subgraph H, given by Lemma 12 for S in the X-grid, is such that FH has no small
decision-DNNF circuit organized by T .

▶ Lemma 15. For every tree decomposition T of width at most 2ρn of GFn
, there is a

spine subgraph H of the X-grid or of the X ′-grid such that all decision-DNNF circuits that
represent FH and are organized by T have size 2Ω(

√
n).

The proof appears in the next section. We try to give a high-level idea, suppose H is
the spine subgraph represented on the left of Figure 5a. The S-vertices/variables are circled
in red. Since H is found using Lemma 12, many S-vertices see spine(H) despite S and all
S-vertices are at distance at least 2 from spine(H). If we have a decision-DNNF circuit C

organized by T for FH , then we can assign all variables that do not see the spine to 1 (the
white vertices on the figure) and we obtain another decision-DNNF circuit C ′ organized by
T (by Lemma 7) for the formula FH′ where H ′ is shown on the right. Only the S-variables
that see the spine remain, call them S′. In C ′, these variables are assigned first. But one
cannot disconnect H ′ by removing any subset of S′. Also, unit propagation or backbone
identification can only infer the value for the direct neighbors of the S′ variables, but these
neighbors are not on the spine and so their removal along with S′ will let the graph connected.
So we are essentially condemn to assign all the S′-variables and sometimes their neighbors in
H ′, and this create 2Ω(|S′|) = 2Ω(

√
n) nodes in C ′.

(a) S-vertices are circled. Black vertices see the
spine despite S.

(b) The induced subgraph H[V ]. S′-vertices are
circled. η(S′)-vertices are squared.

Figure 5

So to prove Theorem 8, the upper bound on Compiled’s output is Lemma 13, and the
lower bound on Compiles’s output follows from Lemmas 6, 7 and 15 since, from the output of
Compiles[smc, bb](Fn, T ), one obtains a decision-DNNF organized by T for FH by assigning
the Z-variables to select only the clauses of FH .
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5.4 Proof of Lemma 15
Before starting, let us make a simple observation on the formulas defined over graphs like
FH . We say that a formula F can be decomposed if it can be written as f ∧ g where f and g

are Boolean functions with var(f) ̸= ∅, var(g) ̸= ∅, and var(f) ∪ var(g) = ∅.

▷ Claim 16. Let G be a connected graph whose vertices are seen as variables. The formula
FG =

∧
{x,y}∈G x ∨ y cannot be decomposed. In particular, its backbone is empty.

Proof. Consider a partition (X1, X2) of var(FG) = V (G) where X1 and X2 are non-empty.
We prove that FG ̸≡ f(X1) ∧ g(X2). We have an edge (x1, x2) of G such that x1 ∈ X1 and
x2 ∈ X2. If FG ≡ f ∧ g then we cannot have that f has a model where x1 is set to 0 and
that at the same time g has a model where x2 is set to 0, for otherwise f ∧ g would have a
model that falsifies x1 ∨ x2. Since FG has models where x1 is set to 0 and others where x2 is
set to 0, FG is not equivalent to f(X1) ∧ g(X2). ◁

As explained before, we use the path p from Lemma 14 and we assume, without loss
of generality, that |b(p) ∩X| ≥ n/3. Let H be the spine subgraph given by Lemma 12 for
the X-grid and S = b(p) ∩X. We call S′ the vertices of S that see spine(H) despite S. By
Lemma 12, we have |S′| = Ω(

√
n). Let V ⊆ X be the set of vertices of the whole grid that

see spine(H) despite S and let V̄ = X \ V . It holds that spine(H) ∪ S′ ⊆ V . For instance,
if H is the spine subgraph represented in Figure (5a) with the S-vertices circled, then the
black vertices are V . H[V ] is then the subgraph represented in Figure (5b).

Let C be a decision-DNNF circuit organized by T and let β be the assignment to
Z ∪X ′ ∪ V̄ that sets all variables of V̄ ∪X ′ to 1 and that sets Z to select the subgraph H.
By Lemma 7, C ′ = C|β is a decision-DNNF circuit computing Fn|β = FH |β = FH−V̄ =
FH[V ] =

∧
{x,y}∈E(H[V ])(x∨y), and that is organized by T ′ = (T, V ∩ b). We write b′ = V ∩ b.

We prove several intermediate claims.
For t a node in p, pt is the subpath of p from the root node of T to t. Recall that

b(p) =
⋃

t∈p b(t).

▷ Claim 17. Let t be a node of p such that b′(pt) ⊆ S′. If t has a child c not in p such that
b′

↓(c) ⊈ S′, then for all x ∈ S′, t ≤T tx.

Proof. S′ ⊆ b(p) so, for all x ∈ S′, tx ∈ p. Suppose there exists x ∈ S′ and t ∈ p such that
tx <T t and t has a child c ̸∈ p with b′

↓(c) ⊈ S′. We have that c ̸∈ p. Let y ∈ b′
↓(c) \S′. Then

x ̸∈ b′(t) and, since b′(t) ⊆ b′(pt) ⊆ S′, we have y ̸∈ b′(t). So there are variables not in b′(t)
appearing in bags under two distinct children of t and thus b′(t) is a separator of H[V ] such
that H[V ]− b′(t) has two non-empty components. But that cannot be, because b′(t) ⊆ S′

and neither S′ nor any of its subset is a separator of V [H]. ◁

p contains the root r of T and b(p) ∩X = S, so b′(r) ⊆ S′ holds. So by Claim 17, on any
path from C ′’s root to a sink, the variables of S′ appear first: every path q from C ′’s source
to the 1-sink, can be written q′ · q′′ where only variables of S′ appear in q′ and where the q′′

contains no variable of S′.
There can be ∧-nodes in q′. But there are particular ∧-nodes. A decomposable ∧-node is

called an ∧∗-node if exactly one of its children does not compute a term, i.e., a conjunction of
literals. The child in question is called the non-term part of the node, and the term obtained
as the conjunction of all terms under all other children is called the term part of the node.
For instance, Figure 2 represents a ∧∗-node: the first three children all represent terms but
the fourth one (on the right) does not. We are going to prove that every ∧-node appearing
in q′ is ∧∗-node
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For v ∈ S′, we denote by η(v) its unique neighbor in H[V ] and for any given S′′ ⊆ S′ we
write η(S′′) = {η(v) | v ∈ S′′}. See for instance Figure (5b).

▷ Claim 18. Let α be a partial assignment to S′. FH[V ]|α is equivalent to τα ∧ FHα where
τα =

∧
α(v)=0 η(v) and Hα = H[V ] − (var(α) ∪ var(τ)) is connected, and FHα

cannot be
decomposed.

Proof. The clause v ∨ η(v) forces that if α(v) = 0, all models of FH[V ]|α must assign η(v)
to 1. For convienence, see τα as the assignment η(v) that sets η(v) tp 1 for all v such that
α(v) = 0. Then FH[V ]|α = τα ∧ FH[V ]|τα = τα ∧ FH[V ]−var(α)−var(τα) = τα ∧ FHα

. Since all
vertices of S′ are at distance 2 from spine(H), we have that H[V ] − var(α) − var(τα) is
connected. So by Claim 16, FHα

is not decomposable. ◁

▷ Claim 19. Let q = (v1, . . . , vm) = q′ · q′′ be a path in C ′ with only variables of S′

appearing in q′ and no variables of S′ appearing in q′′. Let γ be the (partial) assignment
to S′ corresponding to q′. Then every ∧-node vl in q′ is a ∧∗-node whose term part is a
subterm of τγ =

∧
γ(v)=0 η(v).

Proof. Let vk be the first ∧-node in q′ and let α be the assignment corresponding to
(v1, . . . , vk). By Claim 18, vk is a ∧∗-node whose term part is τα =

∧
α(v)=0 η(v) or a subterm

of τα, which is itself a subterm of τγ .
Now suppose vℓ is some ∧-node in q′, let again α be the assignment corresponding to

(v1, . . . , vℓ) and suppose all ∧-nodes before vℓ on that path are ∧∗-nodes whose term parts
are subterms of τα. By Claim 18, FV [H]|α is equivalent to FHα ∧ τα where FHα is not
decomposable, so C ′

vℓ
computes FHα

∧ τ ′ where τ ′ is τα minus all term parts of all ∧∗-nodes
before vℓ. So vℓ is a ∧∗-node whose term part is τ ′ or a subterm of τ ′, and therefore a
subterm of τγ . ◁

FH[V ]|γ is satisfiable for every complete assignment γ to S′ so, for every γ, we can
construct a path q as follows: starting from v1, if the current node v is a decision node for
x ∈ S′, follows the γ(x)-child of v, if instead v is a ∧∗-node then follow the non-term child,
and otherwise adds v to q and stops. This path is unique. We call it qγ . We claim that qγ is
not missing any variable of S′

▷ Claim 20. For every complete assignment γ to S′, qγ contains one decision node for every
variable in S′.

Proof. Let v be the last node of qγ . Let α be the variable assignment to S′ corresponding to
qγ . Clearly α is consistent with γ, but we have to show that var(α) = var(γ). By Claim 18,
FH[V ]|α is equivalent to FHα ∧ τα where Hα = H [V ]− (var(α)∪ var(τα)). By Claim 19, the
term part of the ∧∗-nodes in q are subterms of τα. So C ′

v represents a function FHα
∧ τ ′ for

τ ′ a subterm of τα (τ ′ is possibly empty). C ′
v has models and counter models so v is not

a sink, it also not a ∧∗-node by construction of qγ , nor is it a more general decomposable
∧-node because FHα

is not decomposable. So v is a decision node for a variable y, and
y ̸∈ S′ by construction of qγ . If α is not a complete assignment of S′, then Hα contains
a variable/vertex x of S′. x is essential in FHα

so it must appear in C ′
vm

. Let y be the
variable for vm. Since y ̸∈ S′, we deduce from Claims 17 that ty <T tx. So x cannot exist
for otherwise C ′ would not be organized by T ′. ◁

Now, the circuit C ′
v rooted under the last node v of qγ computes FHγ

∧ τ , where τ is τγ

or a subterm of τγ . We can then show that the functions computed are logically distinct for
distinct γ.
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▷ Claim 21. Let γ and γ′ be distinct complete assignments to S′ and let v and v′ be the
last nodes of qγ and q′

γ , respectively, then C ′
v and C ′

v′ are not logically equivalent

Proof. Let x ∈ S′ be a variable where γ(x) ̸= γ′(x). Say γ(x) = 1. C ′
v computes FH′ ∧ τ

for τ a subterm of τγ =
∧

γ(v)=0 η(v) and H ′ = H[V ] − S′ − var(τ). Note that η(x) is in
H ′ so FH′ and C ′

v essentially depend on η(x) and have models where η(v) is set to 0. C ′
v′

computes FH′′ ∧ τ ′ for τ ′ a subterm of τγ′ =
∧

γ′(v)=0 η(v) and H ′′ = H[V ]− S′ − var(τ ′).
Either η(x) is in τ ′ and then C ′

v′ |= η(x), or η(x) is not in τ ′ and then C ′
v′ does not depend

on η(x). In both cases, C ′
v and C ′

v′ are not logically equivalent. ◁

So we have 2|S′| paths (one per γ) each containing a unique node. So C ′ contains at least
2|S′| = 2Ω(

√
n) nodes and this finishes the proof of Lemma 15.

6 Hard Functions for Dynamic Top-Down Compilation

We show the opposite variant of Theorem 8.

▶ Theorem 22. There is an infinite class F of CNF formulas and a constant δ ∈ (0, 1] such
that, for every F ∈ F over n variables we have tw(GF ) = o(n) and

Compiled,ϵ[smc, bb](F ) returns a decision-DNNF circuit of size 2Ω(nδ);
there exists a tree decomposition T of width O(tw(GF )) such that Compiles(F, T ) returns
a decision-DNNF circuit of size nO(1).

There is an asymmetry compared to Theorem 8 though: Theorem 22 is a positive result for
the static compilation approach for some well-chosen tree decomposition of close-to-minimal
width. The result does not hold for all tree decompositions of with the same width.

For the proof we will have δ = 1/4. We have not looked to optimize this exponent and we
could probably do better with formulas more cleverly crafted (but probably more complex).
The point here is just to show that one algorithm has a polynomial size output while the
other does not.

It is counter intuitive that, in our settings where many aspects of the algorithms are
non-deterministic, the dynamic approach can be outperformed by its static counterpart. The
idea is to design formulas where there is a clear optimal order to evaluate variables that can
be hinted to the static approach via the tree decomposition, while the dynamic approach
cannot take advantage of it. The hard formulas are of the form

Fn(X, X ′, X ′′) = Ln(X, X ′) ∧Rn(X, X ′′)

Ln and Rn only share the X-variables. Roughly put, Ln’s role is to ensure that the first
cutset selected by Compiled,ϵ contains X, and Rn is a formula that is hard to compile when
the X-variables are the first selected to be assigned. There are many possibilities for Ln and
Rn. Let us start with the formula chosen for Rn.

Rn(X, Y, Z) =
∧

i∈[0,n−1]

∧
j∈[n]

(x̄i+1 ∨ yj+in ∨ zj+in) ∧ (z̄1 ∨ · · · ∨ z̄n2)

with X = {x1, . . . , xn}, Y = {y1, . . . , yn2} and Z = {z1, . . . , zn2} (so X ′′ = Y ∪ Z).

▶ Lemma 23. Let S such that X ⊆ S and |S| = O(n). The decision-DNNF circuit returned
by Compiled,ϵ[smc, bb](Rn, S) has size at least 2Ω(n).
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Proof. We call a clause x̄i+1 ∨ yj+in ∨ zj+in a small clause and z̄1 ∨ · · · ∨ z̄n2 the big clause.
Since |S| = O(n), we have that |(Y ∪Z) \ S| = Ω(n2). Now let I ⊆ [n] such that i ∈ I if and
only if zj+in ̸∈ S and yj+in ̸∈ S for some j ∈ [n]. Since |S| = O(n), we have that |I| = Ω(n).

Let β be the assignment that maps all variables in (Y ∪Z)∩S to 1 and all xi for i ̸∈ I to
0. For α a partial assignment to S consistent with β, the graph of Rn|α remains connected
because α does not satisfies the big clause. The small clauses that remain in Rn|α are of the
form x̄i+1 ∨ yj+in ∨ zj+in or yj+in ∨ zj+in. We claim that the backbone of Rn|α is empty.
To show this, it is sufficient to describe two families of assignments that satisfy Rn|α:

all assignments that set all Y -variables to 1 and one remaining Z-variable to 0 satisfy
Rn|α;
for any yj ∈ var(Rn|α), zj must be in var(Rn|α) (because they appear together in a
small clause), and there must be zj′ ∈ var(Rn|α) \ {zj} (because S is too small to leave
Rn|α with only one Z-variable) so assigning yj to 0, zj to 1, zj′ to 0 and all remaining
variables to 1 satisfies Rn|α.

So, in each branch followed by Compiled,ϵ[smc, bb](Rn, S) that leads to the residual formula
Rn|α for some α consistent with β, no decomposable ∧-nodes are created because the graph
always stays connected, and process has no effect because the backbone is always empty.
So for each complete assignment α to S consistent with β, the corresponding branch of the
algorithm creates only decision nodes. For any two distinct complete assignments α and
α′ to S consistent with β, if α and α′ disagree on a variable, then it is some X-variable xi

for i ∈ I and we have that Rn|α ̸≡ Rn|α′ because one formula essentially depends on some
yj+in ̸∈ S while the other does not. So even with semantical caching, the circuit contains at
least one distinct node per α, so at least 2|I| = 2Ω(n) nodes. ◀

Now for Ln consider two disjoint n2 × n2 grids G1 and G2 with vertices V = {vij | i, j ∈
[n2]} and U = {uij | i, j ∈ [n2]}, and the two formulas FG1(V ) =

∧
(v,v′)∈E(G1)(v ⇔ v′) and

FG1(U) =
∧

(u,u′)∈E(G2)(u⇔ u′). Then

Ln(X, U, V ) =
∧

c∈FG1 ∧FG2

c ∨ x1 ∨ · · · ∨ xn ≡ (FG1 ∧ FG2) ∨ x1 ∨ · · · ∨ xn

FG1 and FG2 are trivial. Their only models are the assignments where all V -variables and
all U -variables are set to 0 or 1. Arguably we could have designed less trivial formulas.
Most formulas with a grid-like primal graphs that are easy to compile would be acceptable
substitutes. We are only interested in their primal graphs for the following lemma.

▶ Lemma 24. For n large enough, every 2/3-balanced separator S of GLn∧Rn of size O(n)
contains X.

Proof. Suppose S does not contain X in its entirety. By Lemma 9, there are no 3/4-balanced
separator of G1 or G2 of size O(n). Thus both GF1 − S and GF2 − S contain a connected
component of size at least 3n4/4. Let H1 and H2 be these components. But then H1
and H2 are connected to a vertex x ∈ X \ S in GLn∧Rn

− S and thus GLn∧Rn
− S has

a component of size at least 6n4/4. The number of variables of Ln ∧ Rn is 2n4 + O(n2)
and 6n4/4 > 4n4/3 + O(n2) for n large enough. So S is not a 2/3 balanced separator of
Ln ∧Rn. ◀

It is readily verified that the backbone of Ln∧Rn is empty and that its graph is connected,
so the first task of Compiled,ϵ[smc, bb](Ln ∧Rn) is to find a balanced separator S of minimal
size up to a factor (1 + ϵ). Thus Compiled,ϵ[smc, bb](Ln ∧ Rn) returns the same circuit as
Compiled,ϵ[smc, bb](Ln ∧Rn, S). By Lemma 24, the chosen separator S contains X and has
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size O(n). If S ⊆ X ∪ Y ∪ Z then by Lemma 23 we have that Compiled,ϵ[smc, bb](Ln ∧Rn)
returns a circuit of size 2Ω(n). Even if S contains some U - and V -variables, we can show that
the same lower bounds hold. This is because assigning U - and V -variables cannot disconnect
the primal graph as long as some X-variables are left unassigned and the impact of assigning
such variables on the backbone of the formula is quasi-null.

▶ Lemma 25. Compiled,ϵ[smc, bb](Ln ∧Rn) returns a circuit of size 2Ω(n).

Proof sketch. By Lemma 24, Compiled,ϵ(Ln ∧Rn) selects a separator S of size O(n) that
contains X. S may contain some U - and V -variables but, once an X-variable is set to 1, all
clauses of Ln disappear and all U - and V -variables with them. Compiled,ϵ(Ln ∧Rn) returns
the same circuit as Compiled,ϵ(Ln ∧Rn, S).

We follow the proof of Lemma 23. The set I and the assignment β are defined the same
way. For α a partial assignment to S consistent with β and that either assigns an X-variable
to 1 or does not assign two X-variables, the graph of (Ln ∧Rn)|α remains connected. Indeed
α does not satisfies the big clause of Rn because it is consistent with β, and if it assigns an
X-variable to 1 then the part of the graph for Ln vanishes, otherwise if some X-variable is
left unassigned then Ln’s graph and Rn’s graph remains connected through that variable.

We claim that the backbone of (Ln ∧Rn)|α is empty. If α sets an X-variable to 1 then
(Ln ∧ Rn)|α = Rn|α so we can just use the proof of Lemma 23. Otherwise, α sets all its
X-variables to 0 but let at least 2 unassigned. In this case, clauses of Ln|α still exist and
contain two X-variables x and x′. We can then extend the assignments to the Y -variables
and the Z-variables described in the proof of Lemma 23 by setting one of x or x′ to 0 and
the other to 1. Such assignments satisfy Ln ∧Rn|α and suffice to show that no X-, Y -, Z-,
U - or V - literals can be in the backbone of Ln ∧Rn|α.

So, each branch followed by Compiled,ϵ[smc, bb](Ln ∧ Rn, S) for one of the assignment
α described above leads to the residual formula (Ln ∧ Rn)|α without creating a single
decomposable ∧-node nor benefiting from process. In particular, along each branch for each
a complete assignment α to S′ that is consistent with β and assigns at least one X-variable
to 1, the algorithm creates only decision nodes. Since for any two such complete assignments
α and α′ we have that (Ln ∧Rn)|α = Rn|α and (Ln ∧Rn)|α′ = Rn|α′, and since we know
by the proof of Lemma 23 that Rn|α ̸≡ Rn|α′, we deduce that each branch for these α

contains a unique node. So there is are least 2|I| − 1 = 2Ω(n) nodes (−1 because we remove
the assignment where all X-variables are set to 0). ◀

It remains to study Compiles on Ln ∧Rn. There is a tree decomposition we can use to
force Compiles to assign the variables in the right order π, namely:

π : x1, y1, z1, y2, z2, y3, z3, . . . , yn, zn,

x2, y1+n, z1+n, y2+n, z2+n, y3+n, z3+n, . . . , y2n, z2n, . . .

xn, y1−n+n2 , z1−n+n2 , y2−n+n2 , z2−n+n2 , . . . , yn2 , zn2 , . . .

where the U -variables and the V -variables are put at the end in any order. This is basically
the reading order of the X, Y, Z-variables as they appear in Rn. To force Compiles to
read the variable in that order, it suffices to use a nice path decomposition, that is, a tree
decomposition T = (T, b) where T is a path and where, first the root bag is empty and,
second, for every two consecutive nodes t and t′ in T , b(t) = b(t′) ∪ {x} or b(t) = b(t′) \ {x}
for some variable x. In a nice path decomposition, the function x 7→ tx is injective (recall
that tx is the highest node of T whose bag contains x): there is a total order σ in which
the variables appear in the bags of T . So a decision-DNNF circuit organized by a nice
path decomposition is guaranteed that on all its paths, the ordering of the variables for the
decision nodes is consistent with σ. We just have to make sure that σ = π.
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We use a nice path decomposition where, in a nutshell, the X, Y, Z-variables are added
to the bags in the order given by π until we obtain one big bag containing X ∪ Y ∪ Z, then
Y ∪ Z are removed and the remaining is an O(n2)-width path decomposition of G1 with X

added to all bags, followed by an O(n2)-width path decomposition of G2 with X is added to
all bags. The treewidth of Ln ∧Rn is Θ(n2) because of the n2 × n2 grids in Ln, so the path
decomposition has width O(tw(GLn∧Rn)).

▶ Lemma 26. There exists a tree decomposition T of width O(tw(GLn∧Rn
)) such that

Compiles(Ln ∧Rn, T ) returns a circuit of size nO(1).

Proof sketch. In the circuit returned by Compiles(Ln ∧Rn, T ), the decision nodes follow
the order π. The clauses (x̄i ∨ yj+in ∨ zj+in are then falsified or satisfied in increasing order
of i and j. For every assignment α to {xi, yj+in | i < k and j + in ≤ h}, only a constant
number of formulas (Ln ∧Rn)|α are possible, so syntactical caching ensures that there are
only a constant number of decision nodes labeled by the same variable in the circuit. ◀

Theorem 22 follows from the combination of Lemmas 25 and 26.

7 Conclusion

We have studied the relative efficiency of two top-down compilation algorithms. Both use
variable selection mechanisms inspired from practical compilers. They both select batches of
variables that correspond to separators of the primal graph, but one uses a dynamic graph
balanced-partitioning approach while the other relies on a pre-computed tree decomposition.
We have shown that the two algorithms construct large decision-DNNF circuits on instances
that yet admit polynomial-size decision-DNNF circuits. Moreover we have shown that there
are instances where only one of two approaches fails to construct a small circuit. Often in
knowledge compilation, we compare languages saying that they offer small compiled forms
for different kind of functions. What we show here is that even within the same language,
similar comparisons are possible for the compilation algorithms: the classes of formulas for
which two compilers to decision-DNNF are able to find polynomial-size compiled forms can
be distinct and not included in one another. This calls for criterion for deciding to which
compilers an instance should be sent.
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Abstract
In this paper, we revisit SAT encodings of the partial-ordering based ILP model for the graph
coloring problem (GCP) and suggest a generalization for the bandwidth coloring problem (BCP).
The GCP asks for the minimum number of colors that can be assigned to the vertices of a given
graph such that each two adjacent vertices get different colors. The BCP is a generalization, where
each edge has a weight that enforces a minimal “distance” between the assigned colors, and the goal
is to minimize the “largest” color used.

For the widely studied GCP, we experimentally compare the partial-ordering based SAT encoding
to the state-of-the-art approaches on the DIMACS benchmark set. Our evaluation confirms that
this SAT encoding is effective for sparse graphs and even outperforms the state-of-the-art on some
DIMACS instances.

For the BCP, our theoretical analysis shows that the partial-ordering based SAT and ILP
formulations have an asymptotically smaller size than that of the classical assignment-based model.
Our practical evaluation confirms not only a dominance compared to the assignment-based encodings
but also to the state-of-the-art approaches on a set of benchmark instances. Up to our knowledge,
we have solved several open instances of the BCP from the literature for the first time.
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1 Introduction

The graph coloring problem (GCP) asks for assigning a set of positive integers, called colors,
to the vertices of a graph such that no two adjacent vertices have the same color while
minimizing the number of colors used. The problem has numerous applications, e.g. in
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register allocation [3], scheduling [15], and computing sparse Jacobian matrices [6]. For this
reason, this problem has been the subject of a vast amount of literature (see e.g., [16][12] for
surveys). However, finding an optimal coloring is known to be NP-hard, and compared to
other NP-hard problems, like the travelling salesman problem or the knapsack problem, only
relatively small instances can be solved to optimality. A generalization of the graph coloring
problem is the bandwidth coloring problem (BCP). In this problem, every edge {u, v} in the
graph has an additional weight d({u, v}), and for a coloring to be valid, the difference of
the colors c(u) and c(v) must be at least d({u, v}) (i.e. |c(u) − c(v)| ≥ d({u, v}). The goal
is to minimize the largest used color. Note that for uniform edge distances d(e) = 1 for
all edges e ∈ E, the BCP reduces to the GCP. The problem has applications in frequency
assignment [5], where transmitters close to each other need to be assigned to sufficiently
differing frequencies to prevent interference.

In this paper, we concentrate on exact approaches for solving the above mentioned
problems GCP and BCP, in particularly SAT approaches as well as integer linear programming
(ILP) approaches, which are both state-of-the-art for solving coloring problems on graphs
(see, e.g., [11, 14, 9, 8]).

SAT approaches are based on encoding the problem as a Boolean Satisfiability problem.
A possible encoding consists of introducing color variables xv,i, where a true assignment
of xv,i represents assigning vertex v with color i (e.g., [11, 4]). Other methods are based
on Zykov’s tree induced by Zykov’s deletion-contration recurrence (e.g., [9, 8]), in which
the models contain variables su,v that encode if vertices u and v have the same or different
colors. Heule, Karahalios and van Hoeve [11] have introduced the algorithm CliColCom in
which they alternatingly solve a maximum clique problem and a graph coloring problem
using SAT approaches, where the solution from one problem helps finding a solution for the
other problem and vice versa. Most relevant to this work are the SAT encodings suggested
by Tamura et al. [21] and Ansótegui et al. [1], which contains binary variables yv,i for every
vertex v and possible color i, indicating if color i is smaller than vertex v. Although the
experimental evaluation in [21] has shown that this encoding has dominated the assignment
SAT encoding, these results have caught little attention in the recent literature.

The most natural ILP model is the assignment-based ILP model, which directly assigns
colors to vertices by introducing binary variables xv,i that (similar to the color variables in
SAT) decide if vertex v is assigned to color i. A drawback of this formulation is the presence
of symmetries in the solution space: For a valid coloring, any permutation of the color labels
provides another equivalent solution leading to a significant larger search space. Mendez-Diaz
and Zabala [19] have suggested additional symmetry-breaking constraints, that completely
eliminate this type of symmetry. Mutzel and Jabrayilov [13] have proposed ILP formulations,
which are based on formulating the coloring problem as a partial-ordering problem (POP).
This model suggests ordering the colors and placing the vertices relatively in this order,
analogous to the ordering encoding in [21] and [1] for SAT. It has been shown that for sparse
graphs, the simple assignment and partial-ordering based models show good performance
[13] and that the partial-ordering based models dominate the assignment-based models.
Furthermore, [14] have shown theoretical advantages of POP over the assignment ILP. A
rather complex but also competitive ILP model is based on the set covering formulation [18]
(see, e.g. [10]), which uses the fact that a coloring describes a partitioning of the vertices into
independent sets, and contains a variable xs for every independent set s in the graph, that
decides if s is a set of vertices corresponding to a color class in the coloring. Because there
can be an exponential amount of independent sets, the formulation cannot be solved using
standard techniques and instead has to be solved using column generation methods.
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For the bandwidth coloring problem, there mainly exist numerous heuristic algorithms [17].
Two exact approaches are presented in [5]. The first approach uses a constraint programming
formulation, which contains |V | variables x(v) ∈ [1, H] for v ∈ V and |E| constraints
|x(u) − x(v)| ≥ d({u, v}) for every {u, v} ∈ E. The second one is based on the assignment-
based ILP model, which contains constraints for every edge {u, v} and every pair of colors
i, j having a smaller difference than d({u, v}). A drawback of this model is the high number
of constraints, which depends on the size of the edge weights. We are not aware of any other
exact approaches for the bandwidth coloring problem in the literature.

Our contribution. Motivated by the recent interest of the ILP community in partial-
ordering based ILP models, we revisited SAT encodings of the partial-ordering based model for
the GCP and generalize them to the BCP. For the GCP, we also strengthen the model using
the symmetry-breaking constraints by Mendez-Diaz and Zabala [19] in order to eliminate
the inherent symmetries in the solution space. Our experimental evaluation for the GCP
shows that the partial-ordering based SAT encoding of the POP model outperforms the
assignment-based SAT encoding as well as all evaluated ILP formulations from the literature
on the DIMACS benchmark set.

Moreover, for the bandwidth coloring problem, we suggest a new modification of the
partial-ordering based SAT and ILP models, which needs only one constraint per edge and
color. Compared to the assignment based model for bandwidth coloring presented in [5], it
has an asymptotically smaller number of constraints. This advantage of a more compact
formulation size holds true for the SAT as well as the ILP formulations. Our computational
experiments for the bandwidth coloring problem confirm that the new SAT encodings clearly
outperform not only the classical assignment-based formulations but also the published
state-of-the-art approaches. Our new SAT encodings solve much more instances to provable
optimality within one hour of running time than the published approaches and have a
significantly lower runtime on a large part of the instances.

2 State-of-the-art encodings

First, we present state-of-the-art encodings (models) that are relevant for our work. Subse-
quently, we discuss the state-of-the-art on exact solvers for the GCP and the BCP.

We use the following notation: For a graph G = (V, E), we denote its vertex set by V (G)
and its edge set by E(G). Each edge of an undirected graph is a 2-element subset e = {u, v}
of V (G). The end vertices u, v of an edge {u, v} are called adjacent vertices or neighbors. For
given positive edge distances d(u, v) for all u, v ∈ V (G), we denote the average edge distance
in G with d̄ . Each valid coloring partitions the vertices into independent sets, where each
independent set corresponds to the set of vertices assigned to a specific color.

The formal definitions of the graph coloring variants studied in the paper are as follows.
Given an undirected graph G = (V, E), the graph coloring problem (GCP) asks for an
assignment c : V → N minimizing maxv∈V c(v), such that c(u) ̸= c(v) for all {u, v} ∈ E.
Given an undirected graph G = (V, E) and edge distances d : E → N, the bandwidth coloring
problem (BCP) asks for an assignment c : V → N satisfying |c(u) − c(v)| ≥ d({u, v}) for all
{u, v} ∈ E, that minimizes maxv∈V c(v).

2.1 Integer programming formulations
In the next section, we discuss the ILP models that are relevant for this work. We use H to
denote an arbitrary upper bound on the solutions of GCP and BCP, respectively. For example,
a trivial upper bound for the GCP is H = |V | and for the BCP is H = |V | · max{de : e ∈ E}.
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2.1.1 The assignment models (ASS-I) and (ASS-I-B)
The classical ILP model for graph coloring is based on directly assigning a color i = 1, ..., H

to each of the vertices v ∈ V . For this it introduces binary variables xv,i ∈ {0, 1} for each
i = 1, ..., H and v ∈ V , which indicate if color i is assigned to vertex v (in this case xv,i = 1,
otherwise xv,i = 0). To model the objective function, additional binary variables wi for all
colors i = 1, ..., H are introduced, which indicate if a color i is used. This model is given by:

min
H∑

i=1
wi

s.t.
∑H

i=1 xv,i = 1 ∀v ∈ V (1a)
xu,i + xv,i ≤ wi ∀{u, v} ∈ E, i = 1, ..., H (1b)
wi ≤

∑
v∈V xvi ∀i = 1, . . . , H (1c)

wi ≤ wi−1 ∀i = 2, . . . , H (1d)
xv,i, wi ∈ {0, 1} ∀v ∈ V, i = 1...H (1e)

Equation (1a) ensures that each vertex is colored with exactly one color. Equation (1b)
guarantees that adjacent vertices have different colors and that variable wi is set to 1 if
a vertex is colored with i. Finally, the objective minimizes the number of used colors. A
main drawback of the original model using (1a), (1b), and (1e) only is that there are

(
H
χ

)
possibilities to select χ from H colors. This results in many optimal solutions that are
symmetric to each other. In order to overcome this symmetry, Mendez-Diaz and Zabala [19]
have suggested to add the constraints (1c) and (1d).

The model contains additional symmetries that arise due to the arbitrary labeling of the
colors: For every valid solution, one can obtain an equivalent solution by swapping the labels
of two colors. Mendez-Diaz and Zabala [19] propose additional constraints to break these
symmetries:

xv,i = 0 ∀i > v, v ∈ 1, ..., H (2a)

xv,i ≤
v−1∑

u=i−1
xu,i−1 ∀v ∈ V \ {1, |V |}, i = 2, ..., H (2b)

The assignment model, strengthened with the symmetry-breaking constraints, has the form

ASS-I : min
{ H∑

i=1
wi : x, w satisfy (1a)–(1e), (2a)–(2b)

}
.

Adaptation of the assignment model to the bandwidth coloring model

Dias et al. [5] suggested an extension to the assignment model to solve the bandwidth coloring
problem. The idea is to modify the edge constraints (1b), such that for every edge e and
every pair of colors i, j with |i − j| < d(e), at most one of the two colors can be assigned to
the two incident vertices. The full model presented in the paper is given below:

ASS-I-B : min zmax

s.t.
∑H

i=1 xv,i = 1 ∀v ∈ V (3a)
xu,i + xv,j ≤ 1 ∀e = {u, v} ∈ E,

∀i, j = 1, ..., H with |i − j| < d(e) (3b)
zmax ≥ i · xv,i ∀v ∈ V, i = 1, ..., H (3c)
xv,i ∈ {0, 1}, zmax ∈ R ∀v ∈ V, i = 1, ..., H (3d)
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To describe the largest used color, the formulation uses a continuous variable zmax instead
of using H binary variables w1, ..., wH , since in an optimal solution of the BCP the largest
assigned color can be greater than the number

∑H
i wi of assigned colors. Constraints (3c)

ensure that if there is a vertex with color i, then the largest used color zmax is at least i,
i.e. there is no used color larger than zmax. The correctness of the model has been shown in
[5], we analyze the size of the model in the following.

▶ Lemma 1. ASS-I-B contains H · |V | + 1 variables and (H + 1) · |V | + H · |E|(2d̄ − 1) −∑
e∈E

(
d(e)2 − d(e)

)
constraints.

Proof. Obviously, the model contains H · |V | + 1 variables and (H + 1) · |V | constraints of
type (3a) and (3c). The number of edge constraints in (3b) can be rewritten as∑

e∈E

|{(i, j) ∈ 1, ..., H : |i − j| < d(e)}| =
∑
e∈E

(
H · (2d(e) − 1) − (d(e)2 − d(e))

)
= 2H

∑
e∈E

d(e) − H|E| −
∑
e∈E

(
d(e)2 − d(e)

)
= H · |E|(2d̄ − 1) −

∑
e∈E

(
d(e)2 − d(e)

)
.

where d̄ is the average edge distance in G. The first equality can be derived as follows: For
every color i, the interval of colors j satisfying |i − j| < d(e) is j ∈ [i − d(e) + 1, i + d(e) − 1].
This interval contains exactly 2d(e) − 1 elements, which for the H colors i = 1, ..., H leads to
H ·(2d(e)−1) pairs (i, j) in total. However, we have to subtract the pairs we counted for which
j < 1 or j > H . For every i with i−d(e) < 1, there exist exactly d(e)− i pairs (i, j) for which
j < 1: (i, 0), (i, −1), ..., (i, i−d(e)+1). In total, we have

∑d(e)
i=1 (d(e)− i) = (d(e)2 −d(e))/2 of

such pairs. For j > H the situation is symmetrical, leading to a total number of d(e)2 − d(e)
of pairs we need to subtract for each edge. ◀

2.1.2 The partial-ordering based model (POP-I) for the GCP
Jabrayilov and Mutzel [13] have suggested to interpret the coloring problem as a partial-
ordering problem (POP). An advantage of this model is that it has less inherent symmetries
between the colors than the assignment model. This model considers the colors 1, ..., H to
be linearly ordered. Each vertex is then ordered relative to the colors, i.e., for each vertex its
relative position with respect to the colors is determined. A color is then indirectly assigned
to a vertex v if it is neither larger nor smaller than v. The variables yv,i for all v ∈ V and
i = 1, ..., H indicate if color i is smaller than vertex v. In case i is smaller than v in the
partial order (denoted by v ≻ i), we have yv,i = 1, otherwise yv,i = 0. The color of a vertex is
then the smallest color that is not smaller than v, i.e., the color i for which yv,i−1 − yv,i = 1
or in the case yv,1 = 0 the color i = 1. The partial-ordering based model has the following
form, where q is an isolated dummy vertex added to G:

min 1 +
H∑

i=1
yq,i

s.t. yv,H = 0 ∀v ∈ V (4a)
yv,i − yv,i+1 ≥ 0 ∀v ∈ V, i = 1, ..., H − 1 (4b)
yu,1 + yv,1 ≥ 1 ∀{u, v} ∈ E (4c)
yu,i−1 − yu,i + yv,i−1 − yv,i ≤ 1 ∀{u, v} ∈ E, i = 2, ..., H (4d)
yq,i − yv,i ≥ 0 ∀v ∈ V, i = 1, ..., H − 1 (4e)
yv,i ∈ {0, 1} ∀v ∈ V, i = 1, ..., H (4f)

SAT 2024



12:6 SAT Encoding of Partial Ordering Models for Graph Coloring Problems

Constraints (4a)–(4c) ensure that each vertex receives exactly one color from 1, ..., H . Every
adjacent pair of vertices must receive different colors. This is guaranteed by constraints (4d).
Constraints (4e) enforce that there is no vertex v ∈ V with v ≻ q, i.e., the dummy vertex q

has the largest used color. The objective function minimizes the number of colors
∑H

i=1 yq,i

smaller than q incremented by one for the color assigned to q.
The variables of the partial-ordering based model and those of the assignment model are

related in the following way:

xv,1 = 1 − yv,1 ∀v ∈ V (5a)
xv,i = yv,i−1 − yv,i ∀v ∈ V, i = 2, ..., H (5b)

Using these equations, the symmetry-breaking constraints (2a)–(2b) can be modified for the
partial-ordering based model:

(2a) ⇒ yv,v = 0 ∀v ∈ 1, ..., H (6a)

(2b) ⇒ yv,i ≤
v−1∑

u=i−1
(yu,i−1 − yu,i) ∀v ∈ V \ {1, |V |}, i = 2, ..., H (6b)

The partial-ordering based model, strengthened with the symmetry-breaking constraints,
has the form

POP-I : min
{

1 +
H∑

i=1
yq,i : y satisfy (4a)–(4f), (6a)–(6b)

}
.

Notice that in [13] the vertex q is chosen from V . However, this would cause a conflict
with the symmetry-breaking constraints. To avoid the conflict we add q as a new isolated
vertex.

2.1.3 The hybrid partial-ordering based model (POPH-I)
Jabrayilov and Mutzel [13] observed that for growing graph density, the constraint matrix of
the model (POP-I) contains more nonzero elements than the (ASS-I) constraint matrix. This
is due to constraints (4d), which are responsible for adjacent vertices having different colors
and contain four nonzero coefficients instead of the three in the corresponding constraints
(1b) in (ASS-I). To circumvent this problem, they suggest a hybrid model (POPH-I): In this
model, they include the variables xv,i ∈ {0, 1} with the constraints (5a)-(5b) and substitute
the constraints (4d) by:

xu,i + xv,i ≤ 1 ∀e = {u, v} ∈ E, i = 1, ..., H (7)

The hybrid model, strengthened with the symmetry-breaking constraints, has the form

POPH-I : min
{

1 +
H∑

i=1

yq,i : x, y satisfy (1e), (4a)–(4b), (4e)–(4f), (5a), (5b), (7), (6a), (2b)
}

.

2.2 SAT encodings (ASS-S) and (ASS-S-B)
Similar to the ILP encoding, the assignment model for graph coloring can also be encoded as
a Boolean Satisfiability Problem (SAT). Since SAT is a decision problem, we cannot directly
optimize the number of used colors. To find the chromatic number of a graph, one therefore
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encodes the k-colorability problem (i.e., the problem of deciding if a given graph can be
colored using k colors). The assignment constraints (1a) and (1b) are sufficient to model the
k-colorability. These constraints can be encoded using the following clauses:∨k

i=1 xv,i ∀v ∈ V (8a)
¬xu,i ∨ ¬xv,i ∀{u, v} ∈ E, i = 1, ..., k (8b)
xv,i ∈ {True, False} ∀v ∈ V, i = 1, ..., k

To encode that each vertex is also assigned to at most one color, one possible encoding is
the sequential encoding [20], where the idea is to build a count-and-compare hardware circuit
and translate it into conjunctive normal form (CNF). This encoding adds 3k − 4 clauses and
k − 1 auxiliary variables sv,i, i = 1, ..., k − 1 per vertex v:

¬xv,i ∨ sv,i ∀v ∈ V, i = 1, ..., k − 1 (9a)
¬sv,i−1 ∨ sv,i ∀v ∈ V, i = 2, ..., k − 1 (9b)
¬xv,i ∨ ¬sv,i−1 ∀v ∈ V, i = 2, ..., k − 1 (9c)
¬xv,k ∨ sv,k−1 ∀v ∈ V (9d)

We remark that enforcing each vertex to have at most one color is not strictly necessary,
however, it may improve performance as it eliminates redundant solutions from the search
space. In our initial experiments, only enforcing each vertex to have at least one color or using
the standard binomial encoding for the at-least-1 constraints showed subpar performance.

Translating the symmetry-breaking constraints (2a)-(2b) adds the following clauses:

¬xv,i ∀i > v, v ∈ 1, ..., k (10a)

¬xv,i ∨
v−1∨

u=i−1
xu,i−1 ∀v ∈ V \ {1, |V |}, i = 2, ..., k (10b)

similar symmetry breaking was also used in [11, 23].
The SAT encoding of the assignment model, strengthened with these symmetry-breaking

constraints, has the following form:

ASS-S: consists of clauses (8a), (8b), (9a)–(9d), (10a), and (10b).

Adaptation to the bandwidth coloring model

To extend the previous SAT formulation into a formulation for the bandwidth coloring
problem, one can modify the edge clauses (8b) analogous to the ILP model (ASS-I-B). The
new edge clauses are:

¬xu,i ∨ ¬xv,j ∀e = {u, v} ∈ E, ∀i, j = 1, ..., H with |i − j| < d(e) (11)

The SAT encoding of the assignment model for the BCP has the following form:

ASS-S-B: consists of clauses (8a), (9a)–(9d), and (11).

3 Formulations based on the partial-ordering approach

Here, we revisit the SAT encoding suggested by [21] and [1] for the GCP which also can
be seen as the SAT-counterpart to the partial-ordering based ILP model. We suggest a
modification of the symmetry-breaking constraints used in [19] for the partial-ordering based
model that can be encoded into SAT in polynomial size and without adding new variables.
Furthermore, we suggest a new hybrid version inspired by the (POPH-I) model.
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3.1 SAT encodings based on partial-ordering: (POP-S) and (POPH-S)

¬yv,k ∀v ∈ V (12a)
yv,i ∨ ¬yv,i+1 ∀v ∈ V, i = 1, ..., k − 1 (12b)
yu,1 ∨ yv,1 ∀{u, v} ∈ E (12c)
¬yu,i−1 ∨ yu,i ∨ ¬yv,i−1 ∨ yv,i ∀{u, v} ∈ E, i = 2, ..., k (12d)
yv,i ∈ {True, False} ∀v ∈ V, i = 1, ..., k

The clauses (12a) guarantee that every vertex is at most as large as color k in the partial
order. Clauses (12b) ensure the transitivity of the partial order, i.e., vertex v being larger
than color i implies that it is also larger than color i − 1. Finally, clauses (12c)-(12d)
enforce that adjacent vertices must get a different color. In total, the model contains k · |V |
variables and k · (|V | + |E|) constraints. However, one can preassign the variables according
to clauses (12a), reducing the number of variables to (k − 1) · |V | and the number of clauses
to k · (|V | + |E|) − |V |.

Note that the partial-ordering based model directly encodes that each vertex is assigned
to exactly one color (in contrast, the assignment based model needs additional cardinality
constraints to enforce this).

Adapting symmetry-breaking constraints for the POP-Model

The translation of the symmetry-breaking constraints (6a) into SAT is trivial:

¬yv,v ∀v ∈ 1, ..., k (13)

A drawback of inequality (6b) is that translating it into a SAT encoding is no longer
straightforward. However, we propose the following simplified inequality, that also eliminates
all symmetries arising due to relabeling of the colors:

yv,i ≤
v−1∑

u=i−1
yu,i−1 ∀v ∈ V \ {1, |V |}, i = 2, ..., k (14)

▶ Lemma 2. Inequalities (6a) and (14) guarantee that for all i = 2, ..., k, the smallest vertex
in color class i is larger than the smallest vertex in color class i − 1.

Proof. In case i = 2, the claim follows directly from (6a). Assume, for contradiction, i > 2 is
the greatest color such that for the smallest vertex v of i and the smallest vertex u of i − 1,
it holds that v < u. Since we have yv,i−1 = 1, according to (14) there must exist a vertex
w ∈ i − 1, ..., v − 1, such that yw,i−2 = 1. Let w be the smallest of such vertices. From u > v

and from the fact that u and v are smallest vertices of colors i − 1 and i follows that vertex
w cannot be colored with i − 1 or i. So w must be colored with a color i∗ ≥ i + 1. The
construction of w implies that w is the smallest one of the vertices with colors i, i+1, ..., i∗. It
follows that w of color i∗ is smaller than the smallest vertex of color i∗ − 1. This contradicts
our assumption that i is the greatest color such that the smallest vertex of i is smaller than
the smallest vertex of color i − 1. ◀

The advantage of (14) over the naive adaptation is that it can easily be encoded as a set of
logical clauses:

¬yv,i ∨
v−1∨

u=i−1
yu,i−1 ∀v ∈ V \ {1, |V |}, i = 2, ..., k (15)

The SAT encoding based on partial-ordering for the GCP has the following form:

POP-S: consists of clauses (12a)–(12d), (13) and (15).
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3.1.1 Hybrid partial-ordering based SAT encoding for the GCP
One can also encode the hybrid partial-ordering based model as SAT. The clauses corre-
sponding to (5a)-(5b) are:

xv,1 ∨ yv,1 ∀v ∈ V (16a)
¬xv,1 ∨ ¬yv,1 ∀v ∈ V (16b)
¬xv,i ∨ yv,i−1 ∀v ∈ V, i = 2, ..., k (16c)
¬xv,i ∨ ¬yv,i ∀v ∈ V, i = 2, ..., k (16d)

xv,i ∨ ¬yv,i−1 ∨ yv,i ∀v ∈ V, i = 2, ..., k (16e)

The SAT encoding of the hybrid partial-ordering based model for the GCP has the following
form:

POPH-S: consists of clauses (12a),(12b),(8b),(16a)-(16e), (13) and (10b).

3.2 Partial-ordering based ILP models (POP-I-B) and (POPH-I-B) for
the BCP

To adapt the partial-ordering based model to the bandwidth coloring problem, one could
follow the same approach that was used for the assignment model and use a constraint
for every edge e and every pair of colors i, j with |i − j| < d(e). However, we suggest an
alternative approach, which takes advantage of the fact that the partial-ordering based model
orders the vertices with respect to the colors to design a more efficient encoding. The idea
of our approach is that the constraint |c(u) − c(v)| ≥ d(e) can equivalently be encoded as
c(u) ≤ c(v) − d(e) ∨ c(u) ≥ c(v) + d(e), intuitively speaking, the color of v must be at least
d(e) greater or less than the color of u. This directly leads to the following implication:

c(u) = i ⇒ c(v) ≤ i − d(e) ∨ c(v) ≥ i + d(e)

By definition, it holds that:

c(u) = i ⇔ yu,i−1 − yu,i = 1
c(v) ≤ i ⇔ yv,i = 0
c(v) ≥ i ⇔ yv,i−1 = 1

For the sake of convenience, we define yv,i := 1 for i < 1 and yv,i := 0 for i > H . Substituting
the terms from the previous implication gives the following constraints:

yu,i−1 − yu,i + yv,i−d(e) − yv,i+d(e)−1 ≤ 1 ∀e = {u, v} ∈ E, i = 1, ..., H. (17)

Our new partial-ordering ILP model for the bandwidth coloring problem has the following
form:

POP-I-B : min
{

1 +
H∑

i=1
yq,i : y satisfy (4a), (4b), (17), (4e), (4f)

}
.

▶ Observation 3. By Lemma 1, the number of constraints in the assignment model (ASS-I-B)
is (H + 1) · |V | + H · |E|(2d̄ − 1) −

∑
e∈E

(
d(e)2 − d(e)

) H≫d̄= O
(
H · |E|(2d̄ − 1)

)
and thus

depends on both d̄ and H. In contrast, the number of constraints in the partial-ordering
based model (POP-I-B) is in the order of O(H · |E|) (by straightforward counting), and thus
depends only indirectly on the edge weights (via H). This gives a size reduction in the order
of O(d̄). This fact applies analogously to the corresponding SAT encodings.
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3.2.1 Hybrid partial-ordering ILP model for the BCP
Analogous to the ILP models for the GCP, one can also formulate a hybrid partial-ordering
based model for the BCP having less nonzero terms in the edge constraints than the regular
partial-ordering based model. The edge constraints for this model are:

xui + yv,i−d(e) − yv,i+d(e)−1 ≤ 1 ∀e = {u, v} ∈ E, i = 1, ..., H. (18)

The model then has the following form:

POPH-I-B : min
{

1 +
H∑

i=1
yq,i : x, y satisfy (1e), (4a), (4b), (4e)–(4f), (5a), (5b), (18)

}
.

3.3 SAT encodings (POP-S-B) and (POPH-S-B) based on partial-ordering
for the BCP

The ILP formulations introduced in the previous section can easily be translated into SAT
encodings. For the sake of convenience, we define yv,i := True for i < 1 and yv,i := False

for i > k. The clauses corresponding to constraints (17) are:

¬yu,i−1 ∨ yu,i ∨ ¬yv,i−d(e) ∨ yv,i+d(e)−1 ∀e = {u, v} ∈ E, i = 1, ..., k. (19)

which gives us the encoding POP-S-B as follows:

POP-S-B: consists of clauses (12a),(12b), and (19).

3.3.1 Hybrid partial-ordering SAT encoding for the BCP
The clauses corresponding to constraints (17) are:

¬xu,i ∨ ¬yv,i−d(e) ∨ yv,i+d(e)−1 ∀e = {u, v} ∈ E, i = 1, ..., k. (20)

which gives us the encoding POPH-S-B as follows:

POPH-S-B: consists of clauses (12a),(12b), (16a)–(16e) and (20).

4 Experimental evaluation

In our computational experiments, we evaluated the effectiveness of the partial-ordering
based SAT encodings and compared them with state-of-the art approaches. In particular, we
were interested in a comparison of the partial-ordering based encoding with the assignment
based SAT encoding (i.e., the basic SAT encoding) as well as the ILP formulations of the
assignment and the partial-ordering based models. Moreover, we compared the models to
state-of-the-art approaches. The implementation and the data is publically available on
https://github.com/s6dafabe/popsatgcpbcp.

4.1 Implementation details
We used the standard preprocessing techniques for graph coloring instances also used in
[23, 13]:

i. A vertex u is dominated by a vertex v, v ̸= u, if the neighborhood of u is a subset of
the neighborhood of v. In this case, the vertex u can be deleted from G, the remaining
graph can be colored, and at the end, u can get the same color as v.

https://github.com/s6dafabe/popsatgcpbcp
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ii. If a vertex v has a degree of less than L, where L is a lower bound on the chromatic
number, then v can be deleted from G for the calculations. At the end, after the
remaining graph has been colored, there is at least one used color left to color v that is
not assigned to any of the neighbors of v.

iii. Any clique Q represents a lower bound, so one can precolor the vertices in a clique with
colors 1, ..., |Q|, eliminating some of the variables. To fix as many variables as possible,
one tries to find a clique Q of maximum size.

To reduce the graph as much as possible, we use reductions (i) and (ii) alternatingly
until the graph cannot be reduced further. To compute the clique for (iii), we apply the
randomised function networkx.maximal_independent_set() on the complement graph of
G and choose the best clique out of 300 · |E|

|V | iterations. Another refinement we use is that
of all the largest cliques found, we use the one that has the largest cut. The motivation
behind this is that precoloring a vertex v with a color i also fixes some variables of their
neighbors, as it excludes coloring the neighbors of v with i. As the clique finding method is
time consuming for large graphs, we limit the time for finding a clique to 100s, after which
we use the best clique found so far.

Because SAT is a decision problem, we need to solve a series of k-colorability problems
to find the chromatic number of a graph. We found that using ascending linear search, i.e.
starting from a lower bound L(G) and testing satisfiability for k = L(G), L(G) + 1, ..., χ(G)
until the first satisfiable value for k is found, leads to the best results for the graph coloring
problem. For the lower bound L(G), we use the size of the clique found in preprocessing step
(3). For the bandwidth coloring problem, we found that descending linear search, i.e. testing
k = H(G), H(G) − 1, ..., χ(G) leads to the best result. To compute an upper bound H(G) for
the optimal value for the BCP, we use a simple greedy algorithm: In every iteration we select
the vertex that has not yet been assigned a color and has the highest degree. We then assign
the vertex to the smallest color that does not conflict with the colors of any neighbouring
vertices that have already been colored.

Note that we omitted the preprocessing steps (i)-(iii) for the BCP, as they are not
applicable for this problem: Because of the distance constraints, swapping the indices
between colors may invalidate a coloring, therefore these colorings are not equivalent anymore.
Similarly, fixing the colors of vertices in a clique may lead to the optimal solution being
excluded.

4.2 Test setup and benchmark set
To solve the SAT encodings, we used the solver kissat 3.1.11, which has been successful
in the 2022 SAT competition. The preprocessing and the generation of the SAT and ILP
formulations were implemented in Python 3.10 using the library networkx 2.8.52. For
solving the ILP models, we used Gurobi 10.0.2 single-threadedly. The machine used to
evaluate the SAT and ILP formulations features an Intel Xeon Gold 6130@2.1GHz running
CentOS Linux and 187 GB of memory (Benchmarks [2] user time: r500.5=4.87s). For
comparison, we compiled the implementation of Heule, Karahalios and Hoeve [11] and tested
it on the same machine. We also compiled the implementation of Held, Cook and Sewell [10]
with the same Gurobi version. Because their implementation3 uses features of Gurobi that are

1 https://github.com/arminbiere/kissat/releases/tag/rel-3.1.1
2 https://networkx.org/documentation/stable/release/release_2.8.5.html
3 https://github.com/heldstephan/exactcolors
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incompatible with the first machine, this method had to be evaluated on a different machine
having an AMD EPYC 7543P@2.8GHz and 257GB memory (Benchmarks [2] user time:
r500.5=3.24s). For the graph coloring problem, we performed our experiments on a set of 134
DIMACS graphs [22] and additionally a set of 9 randomly generated instances by Michael
Trick (the R-instances: Note that there exist 18 instances in total, however the instances
are duplicated and the duplicates only differ in the node weights, which are irrelevant for
standard graph coloring). Furthermore, we compare with the results reported in [11] of
the method presented in [8]. For similar reasons as reported in Heule, Karahalios and van
Hoeve [11], we did not compare to the work in [7], which claims strong results for graph
coloring with a method using a relaxed Zykov encoding that is incrementally strengthened.
The linked source code is currently incorrect, and the authors were unable to reproduce the
results. For the bandwidth coloring problem, we used the GEOM set consisting of 33 graphs
generated by Michael Trick [22]. We have set a time limit of 1 hour.

4.3 Experimental results for the graph coloring problem

Table 1 Number of solved DIMACS instances on the benchmark set for the GCP.

set ASS-S POP-S POPH-S ASS-I POP-I POPH-I EC[10] CLICOL [11] CDCL[8, 11] 4

DSJ 2 2 2 3 2 3 5 4 2
FullIns 14 14 14 12 11 12 5 14 14
Insertions 4 4 4 4 4 4 1 4 3
abb313GPI 1 1 1 0 0 0 0 0 0
anna 1 1 1 1 1 1 1 1 1
ash 3 3 3 3 3 3 0 3 3
david 1 1 1 1 1 1 1 1 1
flat 0 0 0 0 0 0 2 0 0
fpsol2 3 3 3 3 1 3 3 3 3
games120 1 1 1 1 1 1 1 1 1
homer 1 1 1 1 1 1 1 1 1
huck 1 1 1 1 1 1 1 1 1
inithx 3 3 3 3 1 3 3 3 3
jean 1 1 1 1 1 1 1 1 1
latin_square 0 0 0 0 0 0 0 0 0
le450 8 8 8 8 7 8 3 10 8
miles 5 5 5 5 5 5 5 5 5
mug 4 4 4 4 4 4 4 4 4
mulsol 5 5 5 5 4 5 5 5 5
myciel 4 4 4 3 3 3 2 4 4
r 8 7 7 7 5 7 7 7 7
qg 3 3 3 1 0 2 0 3 3
queen 6 8 8 6 5 6 7 5 6
school1 2 2 2 2 2 2 1 2 1
wap0 3 5 5 0 0 1 1 4 1
will199GPI 1 1 1 1 1 1 1 1 1
zeroin 3 3 3 3 3 3 3 3 3
total 88 91 91 79 67 81 64 90 83
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Table 2 Number of solved instances on the R-instances.

set ASS-S POP-S POPH-S ASS-I POP-I POPH-I EC[10] CLICOL [11]

R50 3 3 3 3 3 3 3 3
R75 2 2 2 2 1 2 3 3
R100 2 2 2 2 1 2 3 2
total 7 7 7 7 5 7 9 8

Table 1 shows the number of solved instances for the 134 evaluated DIMACS instances
for the SAT encodings of the assignment (ASS-S), the partial-ordering (POP-S), and the
hybrid partial-ordering (POPH-S) based models, the corresponding ILP formulations (ASS-I),
(POP-I), (POPH-I), the method by Held, Cook, and Sewel [10] (EC), the method of Heule,
Karahalios and van Hoeve [11] (CLICOL) and the results of the method of Hebrard and
Katsirelos [8] (CDCL) as reported in [11]. The first column of the table describes the class
type and the subsequent columns show the number of solved instances for each model, out of
the total number of tested instances. Table 2 shows the number of solved instances for the 9
R-instances. Unfortunatly, the code provided [8] did not compile on our machine, therefore
we used the results of the experiments performed in [11] for the algorithm CDCL. Note that
the authors in [11] did not evaluate on the R instances, which is why they are missing in
table 2. Note that for the ILP models, the large instances DSJC1000.9, latin_square_10
and qg.order100 resulted in out-of-memory exceptions. Also, the algorithm CLICOL does
not seem to be robust for large instances, as it produced runtime errors for the instances
r1000.5, latin_square_10 and wap04a. The bold items in the table highlight the instance
types for which the POP encodings solved more instances than the other methods.

We can see that (POP-S), (POPH-S) solved the most DIMACS instances (91/134), followed
closely by CLICOL (90/134). Furthermore, the POP based SAT encodings were able to solve
three more instances than (ASS-S), and there was only one instance that was solved by
(ASS-S) but not by the POP based SAT encodings. The POP encodings performed especially
well on the wap0-class, as they solved the instances wap01a, wap02a and wap08a, which were
only closed recently [11].

For the R-instances, we can see that all four SAT methods perform similarly, with CLICOL
slightly outperforming the three simple encodings. (ASS-I) and (POPH-I) also solve the same
amount of instances as the three evaluated SAT encodings. EC performs the best, solving
all instances, while (POP-I) performs the worst, which is to be expected, as the instance set
contains many instances with medium and high density, for which EC typically performs well
and (POP-I) typically performs poorly.

It can be observed that the SAT encodings generally outperform the ILP formulations: All
of the three evaluated SAT encodings solve more instances than all three ILP formulations,
even though the underlying models are very similiar. A reason for this observed behaviour is
that the LP-relaxations of the assignment and the partial-ordering based models are very
weak, which in turn causes the lower bounds derived from the LP-relaxations to be weak. ILP
solvers spend a lot of time calculating LP-relaxations during branching to bound the search
tree, however, as argued before this technique is not effective for these particular formulations.
On the other hand, the clause-learning methods employed by modern SAT-Solvers may work
better in this context because they do not rely on the strength of the LP-Relaxation.

4 The code provided in the repository produced compile errors on our system, so we used the results of
the experiments from [11] which did not contain the R-instances.
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Figure 1 Number of DIMACS instances solved within a given runtime for the GCP.

Figure 1 visualizes for each model the number of instances, which can be solved within
a time limit of 1, 2,..., 3600 seconds. We omitted the R instances in this figure for better
comparability. We can see that (POP-S) and (POPH-S) solve more instances than (ASS-S)
independent of the considered time limit. Generally, (POP-S), (POPH-S) and CLICOL are
the best approaches and perform similarly. An interesting observation is that for the ILP
formulations, the POP formulation performs far worse than the other two formulations
(ASS-I) and (POPH-I), while for the SAT encodings, (POP-S) and (POPH-S) show almost
identical performance (with (POP-S) even being slightly better). Jabrayilov and Mutzel [13]
argued that one weakness of the POP ILP formulaton lies in the denser constraint matrix,
which is caused by the POP model containing 4 variables in the constraints enforcing differing
colors for connected vertices. However, this does not seem to impact the performance of the
SAT encoding.

In total (for DIMACS and R-instances combined), (POP-S), (POPH-S) and CLICOL solved
the most instances (98/143). One interesting thing to note is that although (POP-S)/(POPH-S)
and CLICOL solved the same number of instances, they solved a different set of instances.
For example (POP-S)/(POPH-S) is particularly advantageous on the queen instances, while
CLICOL shows superior performance on the le450 instances. We want to remark that the
CLICOL approach uses the assignment-based SAT encoding as a sub-algorithm and combines
it with a more sophisticated method of finding an initial clique used for precoloring. An
interesting idea could be to use the partial-ordering based SAT encoding in the CLICOL
framework to try and combine the advantages of both methods.

4.4 Experimental results for the bandwidth coloring problem
Table 3 shows the number of solved instances for the 33 evaluated bandwidth coloring
instances for the SAT encodings of the assignment (ASS-S-B), the partial-ordering (POP-S-B),
the hybrid partial-ordering (POPH-S-B) based models, the corresponding ILP formulations
(ASS-I-B), (POP-I-B), (POPH-I-B), and the constraint programming results of the method
by Dias et al. [5] from the literature. Note that the ILP formulation of the assignment model
is equivalent to the model MinGEQ-CDGP-IP used in [5].

5 The authors did not provide the code, so we used the results as reported in [5]. We remark that the
used time limit in the paper was 24 hour compared to 1 hour in our experiments.
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Table 3 Number of solved GEOM instances for the BCP.

set #inst. ASS-S-B POP-S-B POPH-S-B ASS-I-B POP-I-B POPH-I-B DFMM[5] 5

GEOM[20-50] 4 4 4 4 4 4 4 4
GEOM[20a-50a] 4 4 4 4 4 4 3 4
GEOM[20b-50b] 4 4 4 4 4 4 4 4
GEOM[60-90] 4 4 4 4 4 4 4 4
GEOM[60a-90a] 4 4 4 4 1 1 0 4
GEOM[60b-90b] 4 3 4 4 0 0 1 3
GEOM[100-120] 3 3 3 3 3 0 0 1
GEOM[100a-120a] 3 0 3 3 0 0 0 1
GEOM[100b-120b] 3 0 2 2 0 0 0 1

#solved 33 26 32 32 20 17 16 26

We can see that (POP-S-B) and (POPH-S-B) solve the most instances, followed by (ASS-S-B)
and the constraint programming approach used in [5]. Note that the time limit used in [5]
is 24 hours compared to just 1 hour in our experiments. Interestingly, one can observe an
opposite trend for the ILP formulations, where the POP formulations are weaker than the
assignment formulations. This may be caused by the denser constraint matrices of the POP
formulations as argued before, which do not have an impact on the performance of the SAT
encodings.

Figure 2 Number of GEOM instances solved within a given runtime for the BCP.

Figure 2 shows the number of solved instances within a time limit of 1, 2,..., 3600 seconds.
One can see that the performance of (POP-S-B) and (POPH-S-B) is nearly identical and that
the two models dominate the other approaches. In particular, the second best approaches
(ASS-S-B and constraint programming) solved 26 instances in total, which (POP-S-B) and
(POPH-S-B) both solved in less than 10 seconds; after less than 700 seconds, the POP
encodings solved all but one of the 33 GEOM instances to optimality. To our knowledge,
this is the first time the instances GEOM90b, GEOM100a, GEOM100b, GEOM110a, GEOM110b and
GEOM120a were solved to optimality.
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5 Conclusion

In this paper, we have revisited the partial-ordering based ILP and SAT formulations for the
graph coloring problem and have suggested new models for the bandwidth coloring problem
based on partial-ordering models.

Our computational study on the graph coloring problem suggests that all three SAT
encodings perform similar, with (POP-S) and (POPH-S) solving slightly more instances (98/143)
than (ASS-S) (95/143). This holds true for every timelimit up to 1 hour. Moreover, the SAT
encodings solve more instances than the ILP formulations. Compared to state-of-the-art
approaches, the tested SAT based approaches solved more instances than the approach
based on the set cover ILP formulations and have shown to be particularly advantageous
for sparse graphs. Moreover, the tested SAT based encodings also solved more instances
than reported in [8] and the same amount of instances as [11]. Specifically, (POP-S) and
(POPH-S) have proven to be effective on the wap0- and queen-instances. We also remark that
the partial-ordering based encodings are as easy to use as the classical assignment-based
encodings. As (POP-S) and (POPH-S) have shown superior performance compared to (ASS-S),
an interesting line of research could therefore be to incorporate the encodings into other
SAT-based frameworks, such as the method presented in [11].

Concerning the bandwidth coloring problem, we have seen that the new POP-based SAT
formulations dominate the exact state-of-the-art methods. Compared to the ILP formulations
and the constraint programming approach, the SAT-encodings of the POP-based model
solve the most instances by far and have a significantly lower runtime on a large part of the
instances. This is consistent with the theoretical advantage of the partial-ordering based
model, which has an asymptotically smaller formulation size compared to the assignment
based model.
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A Detailed results of the nine models for the 143 DIMACS instances
for the GCP

Table 4 Results of the nine models for the 134 DIMACS instances and the 9 R-instances for the
GCP.

POP-S POPH-S ASS-S POP-I POPH-I ASS-I EC CLICOL CDCL 6

Instance V E lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] time[s] time[s] time[s]
1-FullIns_3 30 100 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.0 0.0 0.2 0
1-FullIns_4 93 593 5 5 0.1 5 5 0.1 5 5 0.1 5 5 0.1 5 5 0.2 5 5 0.1 3600.1 0.1 0
1-FullIns_5 282 3247 6 6 0.5 6 6 0.6 6 6 0.5 6 6 361.2 6 6 242.9 6 6 29.4 3600.5 0.3 0
1-Insertions_4 67 232 5 5 1.4 5 5 1.2 5 5 1.0 5 5 71.7 5 5 480.4 5 5 106.9 3600.1 1.9 3600.0
1-Insertions_5 202 1227 4 6 3600.0 4 6 3600.0 4 6 3600.0 4 6 3600.0 4 6 3600.0 4 6 3600.0 3602.6 3600.0 3600.0
1-Insertions_6 607 6337 4 7 3600.0 4 7 3600.0 4 7 3600.0 4 7 3600.1 4 7 3600.0 4 7 3600.0 3600.0 3600.0 3600.0
2-FullIns_3 52 201 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 0.0 0.5 0
2-FullIns_4 212 1621 6 6 0.0 6 6 0.0 6 6 0.1 6 6 1.8 6 6 0.4 6 6 0.2 3600.1 0.1 0
2-FullIns_5 852 12201 7 7 0.7 7 7 0.6 7 7 0.8 6 7 3600.0 7 7 1899.5 7 7 983.6 3602.5 3.2 20
2-Insertions_3 37 72 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.1 4 4 0.1 4 4 0.1 220.2 0.1 0
2-Insertions_4 149 541 3 5 3600.0 3 5 3600.0 3 5 3600.0 4 5 3600.0 4 5 3600.0 4 5 3600.0 3601.5 3600.0 3600.0
2-Insertions_5 597 3936 3 6 3600.0 3 6 3600.0 3 6 3600.0 3 6 3600.1 3 6 3600.0 3 6 3600.0 3600.0 3600.0 3600.0
3-FullIns_3 80 346 6 6 0.1 6 6 0.1 6 6 0.1 6 6 0.0 6 6 0.0 6 6 0.0 0.0 0.5 0
3-FullIns_4 405 3524 7 7 0.1 7 7 0.1 7 7 0.1 7 7 7.6 7 7 1.4 7 7 0.4 3600.2 0.4 0
3-FullIns_5 2030 33751 8 8 4.1 8 8 5.9 8 8 5.8 7 8 3600.0 7 8 3600.0 7 8 3600.0 3602.9 43.0 0
3-Insertions_3 56 110 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.8 4 4 1.1 4 4 1.4 3600.1 0.2 1
3-Insertions_4 281 1046 3 5 3600.0 3 5 3600.0 3 5 3600.0 3 5 3600.0 4 5 3600.0 4 5 3600.0 3613.8 3600.0 3600.0
3-Insertions_5 1406 9695 3 6 3600.0 3 6 3600.0 3 6 3600.0 3 6 3600.1 3 6 3600.0 3 6 3600.0 3600.0 3600.0 3600.0
4-FullIns_3 114 541 7 7 0.1 7 7 0.1 7 7 0.0 7 7 0.0 7 7 0.0 7 7 0.0 0.0 0.2 0
4-FullIns_4 690 6650 8 8 0.4 8 8 0.5 8 8 0.6 8 8 60.1 8 8 0.6 8 8 0.5 3600.7 1.2 0
4-FullIns_5 4146 77305 9 9 63.8 9 9 93.3 9 9 75.6 8 9 3600.0 8 9 3600.0 8 9 3600.0 3629.8 678.1 730
4-Insertions_3 79 156 4 4 0.1 4 4 0.1 4 4 0.2 4 4 17.5 4 4 15.7 4 4 48.3 3600.2 0.2 417
4-Insertions_4 475 1795 3 5 3600.0 3 5 3600.0 3 5 3600.0 3 5 3600.0 3 5 3600.0 3 5 3600.0 3600.0 3600.0 3600.0
5-FullIns_3 154 792 8 8 0.2 8 8 0.1 8 8 0.2 8 8 0.0 8 8 0.0 8 8 0.0 0.0 0.4 0
5-FullIns_4 1085 11395 9 9 1.1 9 9 1.4 9 9 3.1 9 9 31.8 9 9 0.9 9 9 0.9 3600.3 7.0 0
abb313GPIA 1555 53356 9 9 0.5 9 9 0.2 9 9 0.2 8 9 3600.1 8 10 3600.0 8 9 3600.0 3600.0 3600.0 3600.0
anna 138 493 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0 0.0 0.4 0
ash331GPIA 662 4181 4 4 0.1 4 4 0.1 4 4 0.1 4 4 6.3 4 4 16.0 4 4 28.6 3611.7 0.2 0
ash608GPIA 1216 7844 4 4 0.1 4 4 0.1 4 4 0.0 4 4 10.7 4 4 34.1 4 4 74.3 3600.0 0.5 4
ash958GPIA 1916 12506 4 4 0.1 4 4 0.1 4 4 0.1 4 4 57.5 4 4 217.9 4 4 872.6 3600.0 1.4 29
david 87 406 11 11 0.1 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0 0.0 0.0 0
DSJC1000.1 1000 49629 6 27 3600.0 6 27 3600.0 6 27 3600.0 6 0 3600.0 6 0 3600.0 6 0 3600.0 3600.0 3600.0 3600.0
DSJC1000.5 1000 249826 16 115 3600.0 16 115 3600.0 16 115 3600.0 14 0 3603.0 14 0 3600.1 14 0 3600.8 3600.0 3600.0 3600.0
DSJC1000.9 1000 449449 60 299 3600.0 59 299 3600.0 59 299 3600.0 - - - - - - - - - 3600.0 3600.0 3600.0
DSJC125.1 125 736 5 5 0.0 5 5 0.1 5 5 0.1 5 5 1.4 5 5 2.5 5 5 2.1 102.7 0.1 0
DSJC125.5 125 3891 13 22 3600.0 13 22 3600.0 13 22 3600.0 11 20 3600.0 13 0 3600.0 13 19 3600.0 3600.5 3600.0 3600.0
DSJC125.9 125 6961 38 51 3600.0 38 51 3600.0 38 51 3600.0 35 47 3600.0 41 44 3600.0 42 44 3600.0 6.2 3600.0 3600.0
DSJC250.1 250 3218 5 10 3600.0 6 10 3600.0 6 10 3600.0 5 10 3600.0 5 10 3600.0 5 10 3600.0 3600.0 3600.0 3600.0
DSJC250.5 250 15668 14 37 3600.0 14 37 3600.0 14 37 3600.0 12 0 3600.0 15 0 3600.0 14 0 3600.0 3606.8 3600.0 3600.0
DSJC250.9 250 27897 44 92 3600.0 44 92 3600.0 44 92 3600.0 41 0 3600.1 47 0 3600.0 43 0 3600.0 3604.0 3600.0 3600.0
DSJC500.1 500 12458 6 16 3600.0 6 16 3600.0 6 16 3600.0 6 0 3600.0 6 0 3600.0 6 0 3600.0 3600.0 3600.0 3600.0
DSJC500.5 500 62624 15 65 3600.0 15 65 3600.0 15 65 3600.0 13 0 3600.2 14 0 3600.0 13 0 3600.0 3600.0 3600.0 3600.0
DSJC500.9 500 112437 53 170 3600.0 53 170 3600.0 53 170 3600.0 48 0 3600.1 47 0 3600.0 47 0 3600.0 3637.7 3600.0 3600.0
DSJR500.1 500 3555 12 12 0.0 12 12 0.0 12 12 0.0 12 12 1.2 12 12 0.3 12 12 0.2 255.1 0.9 0
DSJR500.1c 500 121275 81 89 3600.0 80 89 3600.0 80 89 3600.0 74 0 3600.1 81 0 3600.0 75 89 3600.3 695.1 52.8 3600.0
DSJR500.5 500 58862 122 131 3600.0 122 131 3600.0 122 131 3600.0 115 0 3600.1 122 122 334.5 122 122 1373.1 2602.2 65.8 3600.0
flat1000_50_0 1000 245000 16 114 3600.0 16 114 3600.0 16 114 3600.0 14 0 3601.3 14 0 3600.0 14 0 3600.7 3600.0 3600.0 3600.0
flat1000_60_0 1000 245830 16 114 3600.0 16 114 3600.0 16 114 3600.0 13 0 3601.2 13 0 3600.0 13 0 3600.0 3600.0 3600.0 3600.0
flat1000_76_0 1000 246708 16 115 3600.0 16 115 3600.0 16 115 3600.0 13 0 3601.1 13 0 3600.3 13 0 3600.8 3600.0 3600.0 3600.0
flat300_20_0 300 21375 14 42 3600.0 14 42 3600.0 14 42 3600.0 11 0 3600.2 13 0 3600.0 13 0 3600.0 545.8 3600.0 3600.0
flat300_26_0 300 21633 14 41 3600.0 14 41 3600.0 14 41 3600.0 12 0 3600.1 13 0 3600.0 13 0 3600.0 901.4 3600.0 3600.0
flat300_28_0 300 21695 14 42 3600.0 14 42 3600.0 14 42 3600.0 12 0 3600.1 14 0 3600.0 14 0 3600.0 3613.3 3600.0 3600.0
fpsol2.i.1 269 11654 65 65 0.1 65 65 0.1 65 65 0.1 65 65 1.2 65 65 0.3 65 65 0.3 0.4 0.6 0
fpsol2.i.2 363 8691 30 30 0.1 30 30 0.2 30 30 0.0 28 30 3600.0 30 30 0.2 30 30 0.4 0.4 0.3 0
fpsol2.i.3 363 8688 30 30 0.0 30 30 0.0 30 30 0.0 29 30 3600.0 30 30 0.2 30 30 0.4 0.4 0.1 0
games120 120 638 9 9 0.0 9 9 0.0 9 9 0.0 9 9 0.0 9 9 0.0 9 9 0.0 0.0 0.1 0
homer 556 1629 13 13 0.0 13 13 0.0 13 13 0.0 13 13 61.2 13 13 0.1 13 13 0.1 0.1 0.30 0
huck 74 301 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.2 11 11 0.0 11 11 0.0 0.0 0.1 0
inithx.i.1 519 18707 54 54 0.1 54 54 0.0 54 54 0.1 54 54 0.8 54 54 0.3 54 54 0.3 1.3 0.3 0
inithx.i.2 558 13979 31 31 0.1 31 31 0.0 31 31 0.1 29 31 3600.0 31 31 0.2 31 31 0.4 0.2 0.4 0
inithx.i.3 559 13969 31 31 0.1 31 31 0.2 31 31 0.1 29 31 3600.0 31 31 0.2 31 31 0.3 0.3 0.2 0
jean 77 254 10 10 0.0 10 10 0.1 10 10 0.0 10 10 0.0 10 10 0.0 10 10 0.0 0.0 0.1 0
latin_square_10 900 307350 90 132 3600.0 90 132 3600.0 90 132 3600.0 - - - - - - - - - 3638.4 - 3600.0
le450_15a 450 8168 15 15 0.8 15 15 0.3 15 15 0.4 15 16 3600.1 15 15 328.1 15 15 307.6 3633.7 1.1 4
le450_15b 450 8169 15 15 0.7 15 15 0.2 15 15 0.2 15 15 1039.7 15 15 567.0 15 15 293.2 3600.0 0.3 1
le450_15c 450 16680 15 23 3600.0 15 23 3600.0 15 23 3600.0 15 23 3600.0 15 0 3600.0 15 0 3600.7 3600.0 63.6 3600.0
le450_15d 450 16750 15 24 3600.0 15 24 3600.0 15 24 3600.0 15 0 3600.0 15 0 3600.0 15 0 3600.4 3600.0 53.8 3600.0
le450_25a 450 8260 25 25 0.1 25 25 0.1 25 25 0.1 25 25 26.8 25 25 1.3 25 25 0.6 1.8 0.2 0
le450_25b 450 8263 25 25 0.0 25 25 0.0 25 25 0.0 25 25 10.9 25 25 0.8 25 25 0.6 1.9 0.2 0

6 The code provided in the repository produced compile errors on our system, so we used the results of
the experiments from [11] which did not contain the R-instances.
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Table 4 (continued)

POP-S POPH-S ASS-S POP-I POPH-I ASS-I EC CLICOL CDCL
Instance V E lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] time[s] time[s] time[s]
le450_25c 450 17343 25 29 3600.0 25 29 3600.0 25 29 3600.0 25 29 3600.0 25 28 3600.0 25 29 3600.1 3690.4 3600.0 3600.0
le450_25d 450 17425 25 29 3600.0 25 29 3600.0 25 29 3600.0 25 29 3600.1 25 28 3600.0 25 29 3600.0 3637.8 3600.0 3600.0
le450_5a 450 5714 5 5 0.1 5 5 0.0 5 5 0.0 5 5 108.5 5 5 23.2 5 5 62.9 3600.0 0.1 41
le450_5b 450 5734 5 5 0.0 5 5 0.0 5 5 0.0 5 5 328.8 5 5 41.2 5 5 47.6 3600.0 0.1 9
le450_5c 450 9803 5 5 0.0 5 5 0.1 5 5 0.0 5 5 92.4 5 5 47.5 5 5 19.3 3600.0 0.1 2
le450_5d 450 9757 5 5 0.1 5 5 0.1 5 5 0.0 5 5 19.8 5 5 49.8 5 5 46.8 3584.7 0.1 2
miles1000 128 3216 42 42 0.1 42 42 0.1 42 42 0.1 42 42 0.5 42 42 0.1 42 42 0.1 0.1 0.6 0
miles1500 128 5198 73 73 0.1 73 73 0.2 73 73 0.2 73 73 0.5 73 73 0.3 73 73 0.3 0.1 0.1 0
miles250 125 387 8 8 0.1 8 8 0.0 8 8 0.0 8 8 0.0 8 8 0.0 8 8 0.0 0.0 0.1 0
miles500 128 1170 20 20 0.1 20 20 0.0 20 20 0.1 20 20 0.0 20 20 0.0 20 20 0.0 0.0 0.1 0
miles750 128 2113 31 31 0.0 31 31 0.0 31 31 0.0 31 31 0.1 31 31 0.1 31 31 0.1 0.0 0.1 0
mug100_1 100 166 4 4 0.1 4 4 0.0 4 4 0.0 4 4 0.2 4 4 0.1 4 4 0.2 0.6 0.1 0
mug100_25 100 166 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.2 4 4 0.4 4 4 0.2 0.5 0.1 0
mug88_1 88 146 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.1 4 4 0.1 4 4 0.2 0.3 0.1 0
mug88_25 88 146 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.2 4 4 0.1 4 4 0.2 0.3 0.1 0
mulsol.i.1 138 3925 49 49 0.0 49 49 0.1 49 49 0.1 49 49 0.4 49 49 0.1 49 49 0.1 0.1 0.1 0
mulsol.i.2 173 3885 31 31 0.0 31 31 0.0 31 31 0.0 31 31 0.3 31 31 0.1 31 31 0.1 0.0 0.1 0
mulsol.i.3 174 3916 31 31 0.0 31 31 0.0 31 31 0.0 31 31 0.2 31 31 0.1 31 31 0.1 0.0 0.2 0
mulsol.i.4 175 3946 31 31 0.0 31 31 0.0 31 31 0.0 31 31 0.4 31 31 0.1 31 31 0.1 0.0 0.1 0
mulsol.i.5 176 3973 31 31 0.0 31 31 0.0 31 31 0.0 30 31 3600.0 31 31 0.1 31 31 0.1 0.0 0.1 0
myciel3 11 20 4 4 0.0 4 4 0.1 4 4 0.0 4 4 0.0 4 4 0.0 4 4 0.0 0.0 0.1 0
myciel4 23 71 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.1 5 5 0.1 5 5 0.1 4.8 0.1 0
myciel5 47 236 6 6 0.2 6 6 0.2 6 6 0.2 6 6 37.5 6 6 42.0 6 6 44.3 3600.0 0.5 0
myciel6 95 755 7 7 99.4 7 7 74.3 7 7 63.6 6 7 3600.0 6 7 3600.0 5 7 3600.0 3600.1 1045.3 0
myciel7 191 2360 6 8 3600.0 6 8 3600.0 6 8 3600.0 5 8 3600.0 5 8 3600.0 5 8 3600.0 3600.7 3600.0 0
qg.order100 10000 990000 100 116 3600.0 100 116 3600.0 100 116 3600.0 - - - - - - - - - 3600.0 3600.0 3600.0
qg.order30 900 26100 30 30 0.8 30 30 0.4 30 30 0.5 30 35 3600.2 30 30 77.6 30 30 186.5 3600.0 4.5 0
qg.order40 1600 62400 40 40 7.5 40 40 1.9 40 40 2.4 40 0 3600.0 40 40 1798.7 40 43 3600.2 3600.0 256.4 8
qg.order60 3600 212400 60 60 1813.9 60 60 835.9 60 60 28.8 60 0 3600.1 60 62 3601.5 60 0 3600.0 3600.0 315.9 347
queen10_10 100 1470 11 11 436.4 11 11 758.5 10 14 3600.0 10 12 3600.0 10 11 3600.0 10 12 3600.0 130.3 3600.0 3600.0
queen11_11 121 1980 11 11 404.3 11 11 2705.2 11 15 3600.0 11 13 3600.0 11 13 3600.0 11 13 3600.0 3602.3 3600.0 3600.0
queen12_12 144 2596 12 16 3600.0 12 16 3600.0 12 16 3600.0 12 15 3600.0 12 14 3600.0 12 14 3600.0 3604.7 3600.0 3600.0
queen13_13 169 3328 13 17 3600.0 13 17 3600.0 13 17 3600.0 13 16 3600.0 13 16 3600.0 13 15 3600.0 3602.3 3600.0 3600.0
queen14_14 196 4186 14 19 3600.0 14 19 3600.0 14 19 3600.0 14 17 3600.0 14 17 3600.0 14 17 3600.0 3602.4 3600.0 3600.0
queen15_15 225 5180 15 21 3600.0 15 21 3600.0 15 21 3600.0 15 19 3600.0 15 18 3600.0 15 18 3600.0 3605.0 3600.0 3600.0
queen16_16 256 6320 16 23 3600.0 16 23 3600.0 16 23 3600.0 16 21 3600.0 16 20 3600.0 16 19 3600.0 3621.9 3600.0 3600.0
queen5_5 25 160 5 5 0.0 5 5 0.0 5 5 0.1 5 5 0.0 5 5 0.0 5 5 0.0 0.0 0.4 0
queen6_6 36 290 7 7 0.1 7 7 0.1 7 7 0.0 7 7 0.4 7 7 0.2 7 7 0.1 0.2 0.1 0
queen7_7 49 476 7 7 0.0 7 7 0.0 7 7 0.0 7 7 0.3 7 7 0.2 7 7 0.3 0.5 0.1 0
queen8_12 96 1368 12 12 0.0 12 12 0.1 12 12 0.1 12 12 4.5 12 12 0.4 12 12 0.4 6.1 0.3 0
queen8_8 64 728 9 9 3.4 9 9 2.8 9 9 2.6 9 9 1199.1 9 9 132.8 9 9 31.6 4.4 13.9 1
queen9_9 81 1056 10 10 13.8 10 10 159.2 10 10 921.9 9 11 3600.0 10 10 251.2 10 10 789.0 7.1 3600.0 21
r1000.1 1000 14378 20 20 0.4 20 20 0.4 20 20 0.4 20 20 44.2 20 20 7.9 20 20 5.6 0.8 0.6 0
r1000.1c 1000 485090 84 105 3600.0 83 105 3600.0 83 105 3600.0 76 0 3601.0 77 0 3600.0 75 0 3601.0 3600.0 3600.0 3600.0
r1000.5 1000 238267 234 244 3600.0 234 244 3600.0 234 234 723.1 212 0 3600.1 212 0 3600.0 212 0 3600.0 3600.0 - 3600.0
R100_1g 98 503 5 5 0.2 5 5 0.2 5 5 0.3 5 5 0.3 5 5 1.8 5 5 0.7 384.3 0.1 -
R100_5g 100 2456 12 18 3600.0 12 18 3600.0 12 18 3600.0 10 17 3600.0 12 16 3600.0 12 16 3600.0 2093.7 3600.0 -
R100_9g 100 4438 35 35 511.0 35 35 64.2 35 35 63.6 32 36 3600.1 35 35 33.8 35 35 28.5 3.5 254.2 -
r125.1 122 209 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 0.0 0.0 0
r125.1c 125 7501 46 46 0.1 46 46 0.0 46 46 0.0 46 46 0.1 46 46 0.0 46 46 0.0 0.0 0.1 0
r125.5 125 3838 36 36 0.2 36 36 0.0 36 36 0.2 33 36 3600.0 36 36 0.6 36 36 1.8 11.6 0.1 0
r250.1 250 867 8 8 0.0 8 8 0.0 8 8 0.0 8 8 0.0 8 8 0.0 8 8 0.0 0.0 0.1 0
r250.1c 250 30227 64 64 0.5 64 64 0.5 64 64 0.5 64 64 0.4 64 64 0.2 64 64 0.2 36.3 0.5 3
r250.5 250 14849 65 65 0.5 65 65 0.4 65 65 0.6 65 67 3600.3 65 65 2.9 65 65 2.8 175.7 2.2 2
R50_1g 41 92 3 3 0.0 3 3 0.0 3 3 0.0 3 3 0.0 3 3 0.0 3 3 0.0 0.5 0.2 -
R50_5g 50 612 10 10 0.2 10 10 0.2 10 10 0.1 10 10 7.1 10 10 8.5 10 10 2.5 0.6 0.1 -
R50_9g 50 1092 21 21 0.1 21 21 0.0 21 21 0.1 21 21 0.1 21 21 0.0 21 21 0.0 0.2 0.1 -
R75_1g 69 249 4 4 0.1 4 4 0.0 4 4 0.2 4 4 0.0 4 4 0.0 4 4 0.0 1.8 0.1 -
R75_5g 75 1407 12 12 41.2 12 12 215.8 12 12 1122.1 10 13 3600.0 11 13 3600.0 11 13 3600.0 215.1 2029.3 -
R75_9g 75 2513 31 36 3600.0 31 36 3600.0 31 36 3600.0 30 33 3600.0 33 33 194.2 33 33 135.1 0.6 3070.7 -
school1 385 19095 14 14 0.2 14 14 0.1 14 14 0.2 14 14 8.4 14 14 6.5 14 14 7.3 3623.8 0.7 0
school1_nsh 352 14612 14 14 0.2 14 14 0.1 14 14 0.1 14 14 15.5 14 14 12.6 14 14 31.9 1911.7 0.3 0
wap01a 2368 110871 41 41 2013.0 41 41 2568.7 41 47 3600.0 40 0 3600.0 40 0 3600.0 40 0 3600.0 3600.0 589.8 3600.0
wap02a 2464 111742 40 40 1097.7 40 40 2879.0 40 47 3600.0 40 0 3600.1 40 0 3600.0 40 0 3600.0 3600.0 316.4 3600.0
wap03a 4730 286722 40 55 3600.0 40 55 3600.0 40 55 3600.0 40 0 3605.4 40 0 3600.2 40 0 3600.4 3600.0 3600.0 3600.0
wap04a 5231 294902 40 49 3600.0 40 49 3600.0 40 49 3600.0 40 0 3600.0 40 0 3600.0 40 0 3600.1 3600.0 - 3600.0
wap05a 905 43081 50 50 0.5 50 50 0.7 50 50 1.1 40 50 3600.2 50 50 570.9 41 0 3600.0 4.3 1.5 1
wap06a 947 43571 40 40 64.0 40 40 340.4 40 40 380.2 40 49 3600.9 40 0 3600.0 40 47 3600.1 3600.0 40.9 3600.0
wap07a 1809 103368 40 45 3600.0 40 45 3600.0 40 45 3600.0 40 0 3600.0 40 0 3600.0 40 0 3600.0 3600.0 3600.0 3600.0
wap08a 1870 104176 40 40 461.2 40 40 457.8 40 40 1202.0 39 0 3600.1 40 0 3600.0 40 0 3600.0 3600.0 3600.0 3600.0
will199GPIA 701 6772 7 7 0.1 7 7 0.1 7 7 0.1 7 7 0.5 7 7 0.3 7 7 0.3 2.2 0.8 0
zeroin.i.1 126 4100 49 49 0.0 49 49 0.0 49 49 0.0 49 49 0.1 49 49 0.1 49 49 0.1 0.1 0.1 0
zeroin.i.2 157 3541 30 30 0.1 30 30 0.0 30 30 0.1 30 30 0.8 30 30 0.1 30 30 0.1 0.0 0.1 0
zeroin.i.3 157 3540 30 30 0.1 30 30 0.1 30 30 0.0 30 30 0.8 30 30 0.1 30 30 0.1 0.0 0.1 0
#solved 98 98 95 72 88 86 73 98 84
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B Detailed results of the seven models for the 33 DIMACS instances
for the BCP

Table 5 Results of the seven models for the 33 DIMACS instances for the BCP.

POP-S-B POPH-S-B ASS-S-B POP-I-B POPH-I-B ASS-I-B DFMM
Instance V E lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s] lb ub time[s]
GEOM20 20 20 21 21 0.0 21 21 0.0 21 21 0.0 21 21 0.1 21 21 0.1 21 21 0.1 21 21 0.0
GEOM20a 20 37 20 20 0.0 20 20 0.0 20 20 0.0 20 20 0.5 20 20 0.5 20 20 0.6 20 20 0.0
GEOM20b 20 32 13 13 0.0 13 13 0.0 13 13 0.0 13 13 0.1 13 13 0.0 13 13 0.1 13 13 0.0
GEOM30 30 50 28 28 0.0 28 28 0.0 28 28 0.1 28 28 4.8 28 28 2.6 28 28 0.5 28 28 0.1
GEOM30a 30 81 27 27 0.0 27 27 0.0 27 27 0.1 27 27 3.1 27 27 3.2 27 27 2.8 27 27 0.1
GEOM30b 30 81 26 26 0.0 26 26 0.0 26 26 0.0 26 26 1.0 26 26 2.7 26 26 0.4 26 26 0.0
GEOM40 40 78 28 28 0.0 28 28 0.1 28 28 0.1 28 28 3.6 28 28 8.4 28 28 0.8 28 28 0.1
GEOM40a 40 146 37 37 0.2 37 37 0.3 37 37 2.1 37 37 133.1 37 37 17.1 37 37 12.8 37 37 1.4
GEOM40b 40 157 33 33 0.1 33 33 0.1 33 33 1.5 33 33 9.3 33 33 240.4 33 33 13.4 33 33 2.1
GEOM50 50 127 28 28 0.1 28 28 0.1 28 28 0.2 28 28 6.6 28 28 36.7 28 28 2.3 28 28 0.3
GEOM50a 50 238 50 50 0.8 50 50 1.0 50 50 87.1 50 50 280.4 38 50 3600.0 50 50 60.8 50 50 374.4
GEOM50b 50 249 35 35 0.5 35 35 0.5 35 35 4.9 35 35 2028.1 35 35 683.9 35 35 250.6 35 35 144.7
GEOM60 60 185 33 33 0.2 33 33 0.1 33 33 0.3 33 33 30.2 33 33 56.7 33 33 3.5 33 33 1.1
GEOM60a 60 339 50 50 1.0 50 50 0.8 50 50 112.4 50 50 1124.3 38 50 3600.0 50 50 170.4 50 50 684.6
GEOM60b 60 366 41 41 2.4 41 41 1.7 41 41 29.3 34 41 3600.0 33 41 3600.0 40 42 3600.0 41 41 22915.9
GEOM70 70 267 38 38 0.1 38 38 0.1 38 38 2.3 38 38 36.0 38 38 36.6 38 38 17.6 38 38 2.4
GEOM70a 70 459 61 61 6.3 61 61 6.8 61 61 561.0 44 61 3600.0 35 62 3600.0 60 61 3600.0 61 61 24798.0
GEOM70b 70 488 47 47 4.9 47 47 5.4 47 47 146.0 34 49 3600.0 47 47 3318.3 35 50 3600.1 47 47 534.6
GEOM80 80 349 41 41 0.3 41 41 0.3 41 41 4.0 41 41 132.9 41 41 1103.3 41 41 46.4 41 41 8.2
GEOM80a 80 612 63 63 11.4 63 63 10.3 63 63 964.2 40 63 3600.0 31 64 3600.0 49 65 3600.0 63 63 87770.8
GEOM80b 80 663 60 60 9.8 60 60 8.1 60 60 894.4 29 62 3600.0 26 62 3600.0 44 66 3600.0 60 60 54320.9
GEOM90 90 441 46 46 2.0 46 46 2.0 46 46 21.5 46 46 1679.2 46 46 1607.1 46 46 70.6 46 46 55.2
GEOM90a 90 789 63 63 11.0 63 63 12.6 63 63 1447.3 29 67 3600.0 32 65 3600.0 47 69 3600.1 63 63 130050.1
GEOM90b 90 860 69 69 58.0 69 69 56.2 67 109 3600.0 27 75 3600.1 31 73 3600.0 48 85 3600.1 −∞ 69 172800.0
GEOM100 100 547 50 50 1.1 50 50 1.5 50 50 87.8 33 50 3600.0 41 50 3600.0 50 50 238.1 50 50 545.8
GEOM100a 100 992 66 66 185.0 66 66 316.3 65 91 3600.0 27 75 3600.0 36 72 3600.0 35 81 3600.0 −∞ 70 172800.0
GEOM100b 100 1050 71 71 156.6 71 71 136.3 69 121 3600.0 24 78 3600.0 22 78 3600.0 42 86 3600.1 −∞ 71 172800.0
GEOM110 110 638 50 50 1.7 50 50 1.7 50 50 98.9 37 50 3600.0 40 51 3600.0 50 50 319.1 50 50 2982.2
GEOM110a 110 1207 69 69 287.1 69 69 160.5 68 109 3600.0 26 77 3600.0 25 79 3600.0 43 88 3600.1 −∞ 73 172800.0
GEOM110b 110 1256 77 77 620.8 77 77 608.1 76 121 3600.0 21 86 3600.0 22 84 3600.0 40 95 3600.1 −∞ 79 172800.0
GEOM120 120 773 59 59 4.2 59 59 4.5 59 59 516.6 24 61 3600.0 43 59 3600.0 59 59 609.2 59 59 10778.2
GEOM120a 120 1434 82 82 338.2 82 82 293.0 82 109 3600.0 19 90 3600.0 28 93 3600.0 46 92 3600.1 −∞ 84 172800.0
GEOM120b 120 1491 81 123 3600.0 81 123 3600.0 83 123 3600.0 19 102 3600.0 28 97 3600.0 39 100 3600.1 −∞ 85 172800.0
#solved 32 32 26 17 16 20 26
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1 Introduction

Enumerating the solutions of a given propositional formula is often a required task in
computer science [20, 11, 22, 49, 52]. In AllSAT-CT, the formula is provided in a form of a
combinational circuit Γ = ⟨I,G, o⟩ with inputs I, gates G and a single output o. Then, the
goal is to enumerate all the possible assignments to Γ’s inputs, for which Γ’s output is 1 (see
Fig. 1 for an example). AllSAT-CT’s applications include model checking [28, 17, 18] and
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Figure 1 The circuit Γ = ⟨I = {a, b, c} , G = {n ↔ a ∧ b, p ↔ ¬n ∧ c} , o ≡ ¬p⟩ is shown. An
AllSAT-CT solver could return the following two solutions: σ1 ≡ {c := 0} and σ2 ≡ {a := 1; b := 1}.

n

k
p
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a

o

(a) Γ = ⟨I = {a, b} , G =
{n ↔ a ∧ b, k ↔ a ∧ ¬b, p ↔ n ∨ k} , o ≡ p⟩.

C1 = (n ∨ ¬a ∨ ¬b),
C2 = (¬n ∨ a), C3 = (¬n ∨ b),

C4 = (k ∨ ¬a ∨ b),
C5 = (¬k ∨ a), C6 = (¬k ∨ ¬b),

C7 = (¬p ∨ k ∨ n),
C8 = (p ∨ ¬k), C9 = (p ∨ ¬n)

(b) Encoding G to CNF.

Figure 2 An example where UC generalization returns an e-hard solution (that is, an e-
generalization which cannot be subsumed by any s-generalization). Let σ ≡ {a := 1, b := 1}
be the solution to Γ, depicted in Fig. 2a, we are interested to generalize to τ ≡ {a := 1}. τ is an
e-generalization of σ, since with a = 1 the output must be 1 whether b is assigned 1 or 0, but not
an s-generalization, since ternary simulating τ would assign X to k, n and o. Clearly, τ is also not
subsumed by any other solution, so τ is e-hard. The translation of ¬Γ to CNF using Tseitin encoding
would contain the clauses in Fig. 2b and the unit clause (¬p) representing the negation of the output.
Propagating ¬p by the SAT solver would imply ¬n and ¬k in the clauses C8 and C9. One can now
see that assuming a = 1 is sufficient to get a conflict between C1 and C4, hence the unit cube Q = a

could potentially be returned by the solver as the UC, which induces τQ ≡ {a := 1} as required.

ATPG [9, 48]. Moreover, we apply AllSAT-CT solving in our industrial practice for Static
Timing Analysis (STA) [46, 14], which is a crucial step in circuit design that validates the
timing of a circuit by checking all possible paths for timing violations.

In a recent work of ours [14], we have introduced several anytime AllSAT-CT algorithms
that work by iteratively retrieving a solution, generalizing it, reporting it to the user, and
subsequently blocking it. These algorithms, implemented into an open-source tool called
HALL, exhibited state-of-the-art performance and quality (where quality corresponds to the
number of reported generalized solutions). Increasing the quality is vital in AllSAT-CT,
particularly in STA, where testing as few potential timing violations as possible is required.
In this work, we have substantially improved both performance and quality of HALL on a
wide range of benchmarks, mainly by upgrading HALL’s generalization component, leveraging
the insights outlined below.

We first discuss generalization. Given a circuit Γ and its total Boolean solution σ(I), it is
often required to generalize σ to a small ternary solution by replacing as many Boolean values
as possible by X’s (don’t cares), while making sure that the generalized σ is still a solution
to Γ. Generalization is a variant of (prime) implicant generation, the latter extensively
studied since the 1950th [39, 27, 44, 19, 7, 10, 38, 23], where in generalization there is a
starting solution that must be subsumed by the resulting implicant. Since the early 2010s,
generalization has been widely used as a core component in IC3 (aka PDR) model checking
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algorithm and its derivatives [6, 8, 12, 51, 21]. A careful look, however, reveals that the
definition of generalization is ambiguous. Indeed, since generalization generates ternary
assignments, to define it one must answer the following question: what does it mean for a
given ternary input assignment τ(I) : I 7→ {0, 1, X} to serve as a solution to the circuit? One
possibility would be as follows. Every τ(I) can be expanded to the assignment τS(I∪G∪{o})
by propagating τ(I) to every gate and the output by ternary simulation (see Sect. 2). We
then say that τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1. For example, in Fig. 1, we have
{c := 0}|≈Γ and {a := 1; b := 1}|≈Γ (assuming any omitted variables in ternary assignments
are assigned X). One could have defined that a ternary τ is a solution to Γ iff τ |≈Γ. Another
option, however, inequivalent to satisfaction, is to define a ternary τ to comprise a solution to
Γ iff τ entails the circuit, where τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which
substitutes every X in τ by any Boolean value. To understand why entailment is preferable
to satisfaction for solution definition, consider the circuit Γ in Fig. 2a (for now ignore Fig. 2’s
caption, discussed in Sect. 3) and the assignment ψ ≡ {a := 1}. ψ qualifies as a solution to
Γ through both intuitive understanding and our entailment-based solution definition, since
ternary simulation renders either k = 1 or n = 1 for either b = 0 or b = 1, respectively, so
o = 1 is implied no matter what. However, ψ does not satisfy Γ, since, given b = X, ternary
simulation would assign X to both the gates k and n and then the output too.

The core of our analysis is based on our previously unpublished work [42] and later
follow-ups [30, 31], which made the key distinction between entailment and satisfaction and
surmised that integrating duality [15, 29]-based generalization algorithms, expected to output
solutions which entail the formula without satisfying it, should boost enumeration. Our work,
however, is the first to exhibit how to capitalize on this observation to advance the state of
the art in enumeration empirically, thereby bridging the gap between theory and practice
(the duality-based model counter dualiza [29] can also solve AllSAT-CT, but Sect. 5 shows
that it is inefficient).

As such, we present in Sect. 3 three distinct generalization definitions, ordered in a
hierarchy, including the most powerful entailing (e-)generalization where the generalized
τ has to merely entail Γ, followed by satisfying (s-)generalization where τ must satisfy Γ,
itself followed by an even more restricted gate (g-)generalization (intended to argue that
generalizing after reducing the circuit to clauses is inefficient). The first two definitions
are based on our previously unpublished work [42], while the third one is novel. We then
classify commonly used generalization algorithms based on our hierarchy and observe that
duality-based Unsatisfiable Core-based (UC) generalization [8] can potentially actualize the
advantage of e-generalization.

Next, we leverage our analysis to boost HALL, so far based on (forward) ternary gener-
alization [41, 12], restricted to s-generalization. Substituting ternary by UC generalization
substantially improves HALL’s performance and quality, further improved by combining
ternary and UC generalization (as UC generalization does not guarantee the smallest cardin-
ality). Additionally, we study and compare the impact of the following newly implemented
components in HALL: the SAT solvers CaDiCaL [4], MergeSat [25] and CryptoMiniSAT [45]
(added alongside IntelSAT [35]), backward ternary generalization [41] (aka justification [43])
and UC generalization [8] with or without minimization [40, 32]. In what follows, Sect. 4
discusses AllSAT-CT. Sect. 5 is dedicated to experimental evaluation. In Sect. 6 we conclude.

2 Preliminaries

We briefly review the relevant syntax of Boolean logic. Let V be the set of Boolean variables.
A literal l is either a variable v ∈ V or its negation ¬v. A clause/cube is a disjunction/con-
junction of literals. A formula F (V ) is in Conjunctive/Disjunctive Normal Form (CNF/DNF)

SAT 2024
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if it is a conjunction/disjunction of clauses/cubes. A (combinational Boolean single-output)
circuit Γ = ⟨I = {v1, · · · vn}, G = {vn+1, · · · vn+m}, o ∈ {vn+m,¬vn+m}⟩ is a tuple, where
I are the inputs, G are the gates and o is the output. Every gate comprises the formula
vk ↔ (li ∧ lj), where i, j < k and li, lj are literals of variables vi and vj respectively (us-
ing only ∧ operator does not restrict the generality [5]). Tseitin encoding [50] converts a
given circuit Γ to a CNF formula by translating every gate v ↔ l1 ∧ l2 to three clauses
(v ∨ ¬l1 ∨ ¬l2) ∧ (¬v ∨ l1) ∧ (¬v ∨ l2) and adding the unit clause (o) to assert the output.

For brevity, we skip the standard Boolean logic semantics. Ternary logic [37] extends
Boolean logic with an additional value called don’t-care (X). Formally, a ternary assignment
τ : V 7→ {0, 1, X} assigns each variable to one of the ternary values {0, 1, X}. The cardinality
|τ | of a ternary assignment τ is the number of variables in τ assigned 0 or 1 (inducing an
order relation between assignments). A ternary assignment is also a total Boolean assignment
iff it has the maximal cardinality. To evaluate a formula in Boolean logic syntax under a
ternary assignment τ , one can use Boolean logic semantics extended by the rules (¬X ≡ X),
(X ∧ 1 ≡ X), (X ∧ 0 ≡ 0) and (X ∧X ≡ X).

Ternary simulation propagates a given ternary assignment to the inputs τ across the
gates all the way to the output:

▶ Definition 1 (Ternary Simulation [41, 16]). Given a circuit Γ = ⟨I,G, o⟩ and a ternary
assignment τ(I) : I 7→ {0, 1, X} to Γ’s inputs, ternary simulation transforms τ to the
assignment τS({v1 . . . vn+m}), where τS(v) := τ(v) for every input v ∈ I, and for every gate
vk ↔ (li ∧ lj), we have τS(vk) := τS(li) ∧ τS(lj).

For brevity, we omit variables assigned X when specifying ternary assignments. We say
that a ternary assignment ρ(I) subsumes the ternary assignment τ(I), denoted by ρ ⊆ τ ,
if τ(v) = ρ(v) for every v : ρ(v) ∈ {0, 1}. We say that ρ(I) strictly subsumes τ(I), denoted
by ρ ⊂ τ , if ρ ⊆ τ and |ρ| < |τ |. For example, {x1 := 1} ⊂ {x1 := 1, x2 := 0}. A ternary
assignment τ(I) naturally induces the cube Dτ containing v wherever τ(v) = 1 and ¬v
wherever τ(v) = 0 (variables assigned X’s are skipped). Similarly, a cube D(I) induces a
ternary assignment, denoted by τD, in which τ(v) = 1 for v ∈ D, τ(v) = 0 for ¬v ∈ D and
τ(v) = X if v,¬v ̸∈ D. For example, given I = {a, b, c}, τ(I) ≡ {a := 1, b := 0} induces the
cube Dτ = a ∧ ¬b, while the cube D(I) = a ∧ ¬b induces τD ≡ {a := 1, b := 0}.

Given a CNF formula F , a SAT solver decides whether F is satisfiable. Many SAT solvers
are incremental [13, 36]: they can be invoked multiple times, where, for every new query
SAT(F,A), the SAT solver also receives a cube of assumption literals (assumptions) A, which
hold only for the current query. The solver then decides whether F ∧A is satisfiable (where
F contains all the clauses provided so far). If F ∧A is unsatisfiable, SAT(F,A) returns an
Unsatisfiable Core (UC), that is, a cube A′ ⊆ A, such that F ∧A′ is still unsatisfiable [13].

3 The Generalization Hierarchy

Recall from Sect. 1 the following definitions of a ternary assignment τ(I) : I 7→ {0, 1, X}
satisfying (|≈) and entailing (|=) a given circuit Γ = ⟨I,G, o⟩:
1. τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1,
2. τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which substitutes every X in τ by

any Boolean value.

We define a solution to the least restrictive option sufficient for real-world applications
(e.g., AllSAT-CT or PDR): τ(I) is a solution to Γ iff τ |=Γ.
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In addition, we say that τ satisfies the gate v ∈ G, if τS(v) ̸= X, and that τ gate-satisfies
Γ if τ satisfies Γ and every gate in Γ. Def. 2 offers three alternatives for defining generalization,
where any generalization τ must subsume the given total Boolean solution σ.

▶ Definition 2 (G-,s-,e-generalization). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean
solution σ(I)|≈Γ, a ternary solution τ(I)|=Γ : τ(I) ⊆ σ(I) is a:

gate (g-) generalization of σ if τ gate-satisfies Γ (that is, τ |≈Γ and ∀v ∈ G : τS(v) ̸= X)
satisfying (s-) generalization of σ if τ |≈Γ
entailing (e-) generalization of σ if τ |=Γ

E-generalization is the least restrictive one, merely requiring τ to be Γ’s solution. S-
generalization requires τ to satisfy the circuit, while g-generalization additionally has τ
satisfying every single gate. We denote the sets of all the g-, s- and e- generalizations for a
given circuit Γ and a total Boolean solution σ|≈Γ by G(Γ, σ), S(Γ, σ) and E(Γ, σ), respectively.
Towards separating between g- and s-generalization as well as between s- and e-generalization,
Def. 3 introduces the notions of s-hard and e-hard solutions.

▶ Definition 3 (S-hard, e-hard). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean solution
σ(I)|≈Γ, a ternary solution τ(I)|=Γ is

s-hard if τ ∈ S(Γ, σ), but for every ρ ⊆ τ : ρ /∈ G(Γ, σ)
e-hard if τ ∈ E(Γ, σ), but for every ρ ⊆ τ : ρ /∈ S(Γ, σ)

Lemma 4 below presents the generalization hierarchy. It shows that e-generalization
is more powerful (denoted by ≫) than s-generalization in the following sense: every s-
generalization is an e-generalization, but there exists an e-hard solution τ which separates
between e- and s-generalization (that is, τ is an e-generalization, but no ρ ⊆ τ is an s-
generalization). Similarly, s-generalization ≫ g-generalization. The generalization hierarchy
is illustrated in Fig. 3.

▶ Lemma 4 (e-generalization ≫ s-generalization ≫ g-generalization). The lemma is threefold:
I. For every Γ = ⟨I,G, o⟩ and total Boolean σ(I)|≈Γ: G(Γ, σ) ⊆ S(Γ, σ) ⊆ E(Γ, σ).

II. There exists an s-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.
III. There exists an e-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.

Proof. I is straightforward. For II, consider Fig. 1, where {c := 0} is s-hard, given
σ = {a := 1; b := 1; c := 0} (since the output is satisfied by ternary simulating τ , but gate n
is not). For III, consider Fig. 2a, where {a := 1} is e-hard, given σ = {a := 1, b := 1}. ◀

Next, we classify popular generalization algorithms, based on the hierarchy in Lemma 4.
Consider any Tseitin generalization algorithm which translates the circuit to a CNF using
Tseitin encoding and generalizes at CNF level by any algorithm (see, e.g. [7, 10, 49]) that
turns as many variables as possible to don’t cares, while still guaranteeing that every clause
is satisfied. Such algorithms can only generate g-generalizations. Indeed, in Tseitin encoding,
every gate v ↔ l1 ∧ l2 is translated to (v∨¬l1 ∨¬l2)∧ (¬v∨ l1)∧ (¬v∨ l2). Hence, the variable
v representing the gate must be assigned a Boolean value, since, otherwise, one or two of the
three clauses (depending on the values of l1 and l2) would have been left unsatisfied.

Let (forward) ternary generalization [41, 12] be the algorithm that generalizes a given
solution by iteratively assigning every input v to X iff propagating v := X by ternary
simulation still sets the output to 1. While, in principle, the inputs can be visited in any
order, our implementation visits the inputs in their order from 1 to n.

Note that ternary generalization can also be carried out backwards [41], where backward
ternary generalization is also known as justification [43]. Briefly speaking, backward ternary
generalization traverses the circuit’s gates in a reversed order (starting from the output).

SAT 2024
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Figure 3 Illustrating the generalization hierarchy-related concepts on the circuit Γ = ⟨I =
{a, b, c, d} , G = {m ↔ a ∨ b, n ↔ c ∧ d, k ↔ c ∧ ¬d, p ↔ n ∨ k, t ↔ p ∨ m} , o ≡ t⟩. All of the follow-
ing assignments are solutions to Γ: σ ≡ {a := 1, b := 1 c := 1, d := 1}, ρ ≡ {b := 1, c := 1, d := 1},
τ ≡ {b := 1, c := 1} and µ ≡ {c := 1}, where σ is the only Boolean solution, and we have
µ ⊂ τ ⊂ ρ ⊂ σ by construction. Observe that µ is an e-hard e-generalization of σ, τ is an s-hard
s-generalization of σ, whereas ρ is a g-generalization of σ (but ρ is not an s- nor an e-generalization).

Whenever a gate whose output is not X is encountered, the algorithm tries to convert one of
its inputs to X, whenever possible (e.g., for an ∧-gate, whose output and inputs are all 0,
one of the inputs can be converted to X).

Ternary generalization (both forward and backward) can generate s-hard solutions (e.g.,
it could generalize {a := 1; b := 1; c := 0} to {c := 0} in Fig. 1), but not e-hard solutions,
since it uses ternary simulation for establishing satisfiability. Same holds for dual-rail
generalization [14, 43], which applies generalization at CNF level but using ternary-logic-
simulating dual-rail encoding. Specifically, in dual-rail encoding, every variable v in the
original circuit is mapped to two Boolean dual-rail variables (v+, v−) in the resulting CNF,
where assigning both v+ and v− to 0 corresponds to assigning the original v to a don’t-care.
Then, one can guide the SAT solver to return a generalized solution by applying anytime
MaxSAT-inspired heuristics [33, 34] to increase the number of don’t-cares assigned to the
circuit inputs (that is, the number of 0’s assigned to their respective dual-rail variables). In
line with our analysis, state-of-the-art AllSAT-CT algorithms are substantially faster with
ternary or dual-rail generalization than with Tseitin generalization [14].

Finally, recall UC generalization [8] (its predecessors being implication graph-based
approaches [47, 28, 40]). Given a circuit Γ = ⟨I,G, o⟩, let the dual circuit ¬Γ be ⟨I,G,¬o⟩.
Let σ(I) : I 7→ {0, 1} be Γ’s total Boolean solution. Note that σ does not satisfy ¬Γ. Let
¬F be a conversion of ¬Γ to CNF using Tseitin encoding. Unsatisfiable Core-based (UC)
generalization [8] generalizes σ(I) to τQ, where Q is the unsatisfiable core (cube), returned by
the query SAT(¬F ,Dσ). For example, σ ≡ {a := 1, b := 1} is a solution to Γ in Fig. 2a, hence
SAT(¬F , a∧ b) must return UNSAT, and the example UC a would translate to τ ≡ {a := 1},
which generalizes σ. UC generalization guarantees e-generalization as substituting X’s in τQ

by any Boolean values and ternary simulating must render o = 1, otherwise Q ∧ ¬F would
have been satisfiable. Crucially, unlike the other algorithms, UC generalization can generate
e-hard solutions: see Fig. 2 for a detailed example. One can also minimize the UC [40, 32].

4 Generalization-based Enumeration Algorithms

Given a circuit Γ = ⟨I,G, o⟩, an AllSAT-CT solver returns a DNF formula Q(I), where
for every solution cube D(I) ∈ Q(I), we have τD|=Γ, while G ∧ o and Q(I) are logically
equivalent. We next review the AllSAT-CT algorithms from [14] and introduce our new UC
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generalization-based algorithms CORE, ROC and CARMA. All the algorithms are implemented
within the well-known blocking framework, which repeatedly enumerates, generalizes and
blocks the solutions [28] (a correctness proof can be found in [28]). This work focuses on
non-disjoint solving (i.e., a total Boolean solution can be subsumed by multiple solutions),
since disjoint solving [52], although supported by HALL, would be impractical for AllSAT-CT
applications in model checking [28, 17, 18], ATPG [9, 48] and STA [46, 14]. As a side note,
AllSAT-CT is simpler than finding all the prime implicants [44, 38, 23], since we only need a
subset of the (not-necessarily-prime) implicants which subsume every total Boolean solution.

Consider Alg. 1 that presents TALE from [14] and our novel CORE and ROC algorithms. To
recall TALE let us follow Alg. 1 in TALE mode (A = TALE). First, the algorithm converts the
given circuit to CNF by applying the Tseitin encoding and provides the CNF as an input
to an incremental SAT solver instance plain (line 1). Line 3 initializes the DNF Q that
will contain all the solutions. Then, the algorithm starts to iteratively produce cubes in the
following way. It queries plain to get a total Boolean solution σ|≈Γ (line 5), applies ternary
generalization (the forward version by default) to generalize σ (line 6), updates DNF Q with
the cube U induced by σ (lines 8 and 12) and blocks U in plain (line 13).

Algorithm 1 Three AllSAT-CT algorithms: TALE, CORE and ROC
Input: Circuit Γ = ⟨I, G, o⟩ Input: A ∈ {TALE, CORE, ROC}
Output: DNF Q(I)

1: plain := CNFTseitin(Γ) ▷ Initialize plain SAT instance
2: if A ̸= TALE then dual := CNFTseitin(¬Γ) ▷ Initialize dual SAT instance, if required
3: Q := {} ▷ Initializing the DNF Q, which will contain all the solutions, to be empty
4: while not UNSAT(plain) do
5: σ := SAT(plain)
6: if A ̸= CORE then σ := TernaryGeneralize(σ, Γ) ▷ Ternary generalization
7: if A = TALE then
8: U := Dσ

9: else
10: U := SAT(dual, Dσ) ▷ Fetch the UC
11: forall a ∈ U : if SAT(dual, U \ {a}) is UNSAT then U := U \ {a} ▷ Minimize the UC
12: Q := Q ∨ U ▷ Q is updated by the cube U
13: plain := plain ∧ ¬U ▷ Blocking U in plain
14: return Q ▷ Q is not guaranteed to be disjoint

We now introduce our first new algorithm CORE which aims at generating e-hard solutions
by switching from ternary to UC generalization. To that end, CORE uses a second incremental
SAT instance dual, initialized by converting the dual circuit ¬Γ to CNF (line 2). Then,
instead of applying ternary generalization at line 6, CORE queries dual under the assumptions
Dσ (line 10), that is, the cube induced by σ, to get an unsatisfiable core (cube) U , followed by
iteratively minimizing it (line 11). Then, similarly to TALE, Q is updated and U is blocked.

Alg. 1 also shows another novel algorithm ROC, which applies ternary generalization
(line 6), followed by UC generalization with minimization (lines 10 and 11). Despite the
overhead, ROC often succeeds in generating smaller solutions than CORE, which ultimately
leads to a reduction in the number of returned solutions. Generalizing further might still be
possible, since our UC extraction algorithm might return a local minimum. However, finding
the smallest UC would have been extremely costly [24].

Note that the initial dual invocation in CORE (line 10) is not expected to encounter any
conflicts during SAT solving. This is because the assumptions represent a total Boolean input
assignment, whose propagation by Boolean Constraint Propagation (BCP) must trigger a
conflict with the clause ¬o prior to any decision. This is not the case during the minimization
loop in CORE (line 11) and any (even the initial) dual invocation in ROC, where the assumptions
might represent a partial assignment to the inputs. This, however, is transparent to both the
user and the high-level algorithm developer.
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Finally, [14] introduced two additional algorithms: MARS based on dual-rail generalization,
and DUTY, which combines between TALE and MARS. To test the impact of combining dual-
rail and UC generalization, our third new algorithm CARMA upgrades MARS by switching to
UC generalization as follows. CARMA is similar to CORE, but it uses dual-rail encoding and
on-the-fly minimization [14] for plain, while still using Tseitin encoding for dual.

5 Experimental Results

We implemented our new algorithms CORE, ROC and CARMA in HALL [14] and compared them
to the already implemented TALE, MARS and DUTY, where the default HALL uses IntelSAT [35]
SAT solver for plain and CaDiCaL [4] for dual across all the algorithms (we provide an
empirical justification for the default solver selection later in this section). We also ran the
duality-based model counter dualiza [29] in its two enumeration modes: sat and bdd.

We used benchmarks from [14] and [26] with some further extensions. All in all, as
reported below, we had started with 14 benchmark families, 10 benchmarks in each, and
then removed benchmarks solved by none of the solvers in four hours, which left us with
97 benchmarks overall. We transformed each circuit family with multiple outputs to three
one-output families (which AllSAT-CT solvers can handle) as follows: we applied either or
(_or suffix below) or xor (_xor suffix below) operator over all the outputs similarly to [14]
to create the first two one-output families, and took only the last output to create the last
one-output family (_only_last_out suffix below). Below, we list all the benchmark families;
the number of instances from each family solved by at least one solver appears in parenthesis:

random_control_or (9), random_control_xor (6) and
random_control_only_last_out (9) from EPFL benchmark suite [1], used in [14].
arithmetic_or (10), arithmetic_xor (1) and arithmetic_only_last_out (5)
from EPFL benchmark suite [1], also used in [14].
random_circuits_or (9), random_circuits_xor (1) and
random_circuits_only_last_out (7), generated by using aigfuzz [5] as in [14].
iscas85_or (10), iscas85_xor (2) and iscas85_only_last_out (8), used in [26];
this set contains publicly available circuits, including sequential circuits. Since we consider
only combinational circuits, we ignored the buffer commands while parsing the files.
sta_gen (10) [14] – Static Timing Analysis (STA) industrial set: a parametrized
benchmark family, which encapsulates a variety of real-world STA instances [14]. We
removed the two smallest benchmarks resulting in a family of 10 benchmarks.
sta_gen_chunks (10) – another family of STA benchmarks created by parameterizing
the size of each cube, rather than the number of inputs (N). Given the chunk size K
and the constant number N = 12289, the formula F (N,K) consists of a disjunction
of subformulas F1(N,K) and F2(N,K), each comprising a DNF, conjuncted with the
selector vN or ¬vN , respectively. In every DNF, the cubes have K variables and are
mutually disjoint. The resulting formula looks as follows, where j = (N − 1)/2: F (N) :=
F1(N) ∨ F2(N), where F1(N) := ((v1 ∧ v2 . . . ∧ vk) ∨ . . . ∨ (vj−k+1 ∧ . . . vj−1 ∧ vj)) ∧ vN

and F2(N) := ((vj+1 ∧ vj+2 . . . ∧ vj+k) ∨ . . . ∨ (vN−K ∧ . . . v(N−2 ∧ vN−1)) ∧ ¬vN .
We used Intel® Xeon® machines with 32Gb memory and 3Ghz CPU frequency. We set the
timeout to 1 hour and evaluated three criteria. First, Solved stands for the number of solved
instances. The second one is PAR-2 score (similarly to SAT competitions [2]), where every
solved benchmark contributes its run-time and every unsolved benchmark contributes twice
the timeout. The lower the PAR-2 score, the better. The third criterion is Quality: the
size (number of cubes) of the DNF, where we compared solvers by their normalized average
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quality, the quality per instance being best-known-DNF-size / current-DNF-size and 0 for
unsolved instances (similarly to anytime categories at MaxSAT Evaluations [3]). The quality
must be within the interval [0, 1], where the higher the quality, the better.

Table 1 Our results (sorted by PAR-2 scores). The best results in each column are highlighted.

Algorithm Origin PAR-2 Solved Quality
ROC new 24926.845 94 0.966614
CORE new 25938.178 94 0.888548
CARMA new 27073.553 94 0.886870
TALE [14] 92676.526 85 0.568704
DUTY [14] 99447.688 84 0.560391
MARS [14] 198771.013 70 0.412807
dualiza_sat [29] 263810.947 61 0.459656
dualiza_bdd [29] 332953.818 51 0.397921
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Figure 4 Comparing PAR2 score and quality: TALE to CORE (top) and TALE to ROC (bottom)

Table 1 summarizes the main results. ROC is the best algorithm by every criterion. It
substantially outperforms the previous state-of-the-art (TALE), where the gap in quality is
especially significant. For an instance-by-instance analysis, consider Fig. 4 starting with its

SAT 2024



13:10 Entailing Generalization Boosts Enumeration

Table 2 Comparing TALE configurations (left) and CORE configurations (right).

TALE Config. Solved Quality
Default TALE 85 0.568704
plain := CaDiCaL 83 0.560356
plain := CryptoMS 82 0.555761
plain := MergeSat 80 0.561304
Backward-TerSim 72 0.501580

CORE Config. Solved Quality
Default CORE 94 0.888548
dual := CryptoMS 93 0.846291
dual := IntelSAT 92 0.872976
dual := MergeSat 91 0.824571
No-UC-Minimization 91 0.707390

upper part, which compares TALE to CORE. CORE is almost always on-par or better in terms
of PAR-2 score, but not so in terms of quality. Consider now the lower part of Fig. 4, which
compares TALE to ROC. Unlike CORE, ROC is either better or on-par with TALE in terms of
quality on every single instance, whereas ROC often yields a substantially better quality. ROC
is also always on-par or better than TALE in terms of PAR-2 score.

Finally, Table. 2 explains our choice of four of HALL’s default components. The comparison
of TALE configurations on the left shows why we set the plain SAT solver default to IntelSAT,
as IntelSAT outperforms CaDiCaL [4], MergeSat [25], and CryptoMiniSAT [45] (CryptoMS
in Table. 2). This result is not surprising as IntelSAT was specifically optimized for rapid
incremental mostly satisfiable queries [35]. The comparison on the left also explains why we
decided against migrating from the default forward ternary generalization to the backward
one (recall Sect. 3). The right-side table compares CORE configurations, supporting the choice
of CaDiCaL as the default SAT solver for dual (notably, in dual, unlike in plain, the SAT
queries are unsatisfiable) and the default inclusion of minimization in UC extraction.

6 Conclusion and Future Work

In this work we substantially improved the state of the art in AllSAT-CT solving in terms
of both performance and quality by taking advantage of UC generalization, which can
potentially yield solutions that entail the circuit without satisfying it.

Our best-performing algorithm, ROC, combines ternary and UC generalization as follows:
it iteratively searches for solutions in an IntelSAT-based SAT instance plain. Then, every
solution is generalized using forward ternary generalization, followed by further generalization
to its (locally) minimal unsatisfiable core in a CaDiCaL-based SAT instance dual representing
the dual circuit. The generalized solution is then reported to the user and blocked in plain.
All the algorithms have been implemented in our open-source AllSAT-CT tool HALL.

Our results can be relevant for advancing disjoint AllSAT-CT solving and prime implicant
enumeration [23]. Furthermore, porting our findings to model checking algorithms such as
PDR [6], AVY [51], and CAR [21] could be promising. Notably, while [43] thoroughly compares
different generalization approaches within PDR, it surprisingly does not conclude that UC
generalization enhances PDR’s performance, leaving room for potential improvement.
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1 Introduction

String constraint solving (string solving for short), has garnered significant attention in recent
years, particularly due to its important role in verifying web programs. These programs are
often written in string-intensive programming languages, such as PHP or JavaScript. Careless
handling of strings can inadvertently expose systems to severe security vulnerabilities, such
as SQL injection or cross-site scripting (XSS), both of which remain prevalent security
risks [29, 28]. Since string constraints establish a general formal framework for working with
strings, new applications of string solving still emerge. Notable examples include analyzing
user policies within Amazon Web Services [25] and analyzing smart contracts [7].

String solvers are typically integrated into general SMT solvers as theory solvers, enabling
the combination of string constraints with other SMT theories. The most mature SMT
solvers supporting string constraints are cvc4/5 [8, 31] and Z3 [22]. Furthermore, the
original string theory solver can be replaced, leading to string solvers such as Z3str3RE [13],
Z3str4 [27], Z3-Trau [3, 2], OSTRICH [16] (based on the Princess SMT solver [32]),
and, most recently, Z3-Noodler [18, 17]. Except these general SMT solvers, there are some
string-only solvers, such as Norn [5], Kepler22 [24], Woorpje [21], or Retro [19, 20].

In order to handle constraints occurring in real-world applications, string solvers need to
support not only basic constraints, such as string equations, regular membership queries, and
length constraints, but also extended constraints such as various kinds of string functions and
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predicates (e.g., replace, indexof, substr, or prefix) or string-integer conversions allowing
to identify strings with their numeric values. These string manipulating functions are widely
used in particular in the context of verification of web programs, as they correspond to the
string operations in programming languages such as PHP or JavaScript.

Complex combinations of various types of basic and extended constraints, which is how
they typically appear, is challenging for today’s solvers. In this paper, we combine the
recently introduced stabilization-based procedure for solving basic string constrains [14, 18]
with a novel technique for handling string-integer conversions. The fundamental principle
of the stabilization-based procedure is an iterative refinement of regular constraints of
string variables, which represent all solutions of the string constraint, until a stable form
is reached. In order to handle the string-integer conversion, namely to_int, from_int,
to_code, and from_code predicates, our procedure performs reasoning over the stabilized
regular constraints of string variables used in the conversions. The proposed procedure
generates a linear integer arithmetic (LIA) formula concisely encoding possible numerical
values from strings of a stabilized regular constraint and relate them with their particular
lengths. If this LIA formula is satisfiable, so is the original constraint with conversions. To
avoid exponential blow-up during the formula generation, we express languages as finite
sets of intervals encoding all valid numerical values. Since different conversions may be
applied on the same variable/sequence of variables, the generated formula must also relate
the values of these conversions. In order to be precise, our procedure requires finiteness of
stabilized languages of variables occurring in conversions. For infinite languages, we propose
an underapproximation restricting the languages to strings of a particular length.

We implemented the proposed technique into Z3-Noodler [18, 17, 34], a string solver
based on Z3 implementing the stabilization-based procedure, and compared our technique
with other string solvers on all benchmarks from SMT-LIB containing string-integer conver-
sions. Our experimental evaluation shows that our proposed technique is competitive and on
many instances even several orders of magnitude faster than the state of the art.

2 Related work

The decidability of various fragments of string constraints have been studied for a long time.
If a string constraint contains only string equations, the satisfiability problem is decidable [26].
Moreover, it is decidable even if we add regular constraints [33]. A question whether the
combination of string equations and length constraints is decidable is still open. Adding
string-integer conversions to string equations with regular and length constraints leads to
undecidability [23]. The undecidability still holds even if we keep only the concatenation
instead of full string equations [12].

The tools supporting string-integer conversions therefore implement incomplete proced-
ures. The string solver cvc4/5 implements a derivation-based decision procedure for solving
code-point conversions (conversions between characters and their numeric values), which are
then used to define a universally quantified formula for handling string-integer conversions [30].
Z3-Trau implements string-integer conversions as a part of the flattening-based procedure [1].
The main differences between the approach to string-integer conversions in Z3-Trau and
our proposed technique are twofold: (i) The approach of Z3-Trau is integrated to a string
procedure underapproximating the variable languages by flat languages. We combine our
approach with the fundamentally different stabilization-based procedure working with arbit-
rary precise regular languages. (ii) Z3-Trau underapproximates string-integer conversions
restricting arguments having at most m digits (m is a parameter). To the contrary, our
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conversion approach works with precise regular languages describing all solutions and is
complete for finite languages. We only underapproximate if the languages for conversion
are infinite. Moreover, we underapproximate the precise languages and not the already
underapproximated flat languages as is the case of Z3-Trau. More tools providing a (limited)
support for string-integer conversions are Z3 [22], Z3str4 [11], and OSTRICH [16].

3 Preliminaries

Functions, strings and languages. We use Z to denote the set of integers and [k1, k2],
k1, k2 ∈ Z, for the set of all integers between k1 and k2, including k1 and k2. For a set X
we use idX to denote the identity function over X. We fix a finite alphabet Σ (we denote
symbols as a, b, c, . . . ) and for the rest of the paper, we assume that it contains symbols '0',
'1', . . . , '9'. A string over Σ is a finite sequence u = a1 . . . an of symbols from Σ. We use ϵ
to denote the empty string. To avoid confusion with integers, we sometimes use quotes to
denote strings with digits, e.g., '42' (we skip it if it is clear from the context). We further
use |u| to denote the length of u with |ϵ| = 0. The set of all strings is denoted by Σ∗. The
concatenation of strings u and v is denoted u · v, or uv for short (ϵ is the neutral element).
A language is a subset of Σ∗. The concatenation of two languages L1 and L2 is defined as
L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2}. Bounded iteration of a string/language x for i ≥ 0 is
defined recursively as (i) x0 = {ϵ} for the case of languages and x0 = ϵ for the case of strings,
and (ii) xi+1 = xi · x. Iteration is then defined as x∗ =

⋃
i≥0 x

i and positive iteration is
defined as x+ =

⋃
i≥1 x

i. We denote regular languages using regular expressions RE with the
following standard notation:

RE ::= ∅ | a | ϵ | (RE) | RE∗ | RE RE | RE + RE | REn

where a ∈ Σ and n ∈ N. We further use RE+ as a syntactic sugar for RE RE∗ and S to denote
the regex v1 + · · · + vn, where S = {v1, . . . , vn} is a finite subset of Σ∗.

String constraints. In this paper, we consider string constraints over alphabet Σ, string
variables X, and integer variables I. The string variables range over Σ∗ and integer variables
over Z. The syntax of a string contraint φ is given by the following grammar:

φ ::= ti ≤ ti | ts = ts | ts ∈ RE | φ ∧ φ | ¬φ
ts ::= v ∈ X | ts · ts | from_code(ti) | from_int(ti)
ti ::= v ∈ I | k ∈ Z | ti + ti | |ts| | to_code(ts) | to_int(ts)

where ts is a string term consisting of a concatenation of string variables1 and string-integer
conversions, and ti is a linear integer arithmetic (LIA) term containing among usual arithmetic
terms also a string-length term and integer conversions of string terms.

Semantic of the conversion functions is then given as follows2. The conversions
from_int(k) and to_int(s) convert between strings and integers: if k ≥ 0, from_int(k)
is the string representation (without leading zeroes) of the number k and ϵ otherwise,
while to_int(s) returns the non-negative number represented by the string s, or −1 if
s does not represent a non-negative integer (with leading zeros allowed). For example,
from_int(5) = '5', from_int(−6) = ϵ, and to_int('a') = −1. On the other hand,

1 Note that an explicit string u ∈ Σ∗ can be encoded by a fresh variable x and a regular constraint x ∈ u.
2 following the definition of the string theory of the SMT-LIB standard [10]
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from_code(k) and to_code(s) convert between a Unicode symbol and its code point. More
specifically, if s is a single symbol, then to_code(s) returns its code point, otherwise it
returns −1; from_code(k) returns the symbol s whose code point is k (and ϵ if k is out of
the range of Unicode symbols). For example, to_code('0') = 48 and from_code(48) = '0'.

An assignment ν is a mapping ν : (X → Σ∗)∪ (I → Z). The value of a term in ν is defined
as usual. An assignment ν is a model of an atomic constraint t = s iff ν(t) = ν(s), of t ∈ RE
iff ν(t) ∈ RE, and of t ≤ s iff ν(t) ≤ ν(s). The definition of model is extended to Boolean
combinations of constraints as usual.

We will often work with a pair (Lang, σ), where Lang : X → 2Σ∗ is a language assignment
assigning a language to each string variable and σ : X → X+ is a substitution. We use σ(Φ) to
denote the string constraint where every occurrence of every x ∈ X is replaced by σ(x). We
define the composition of two substitutions σ1 and σ2 as σ1 ◦ σ2 = {x 7→ σ1(σ2(x))}. We say
that a substitution σ is flat if for each string variable x appearing in its image, σ(x) = x

(hence σ ◦ σ = σ).

Normalization of string constraints. We assume that our decision procedure is used within
a DPLL(T )-based SMT solver, which has the property that theory solvers are always given
conjunctions of (possibly negated) atomic constraints (in the given theory). In the rest of the
paper, we therefore assume that string constraints have this normal form, more specifically,
that they are of the form E ∧ R ∧ L ∧ C where

E is a conjunction of (dis)equations of concatenated string variables, i.e., they do not
contain conversions from_int(ti) and from_code(ti). We can remove each such conversion
by replacing it with a fresh string variable x and adding a new equation x = from_int(ti)
(or x = from_code(ti)) to C.
R is a conjunction of regular constraints of the form x ∈ RE for x ∈ X. We can convert
any predicate ts ∈ RE into this form by replacing it in R with x ∈ RE and adding x = ts
to E , where x is a fresh variable. Negated regular constraints x /∈ RE can be rewritten
into the positive form by complementing the corresponding regular language.
L is a LIA constraint without conversions (length constraints are allowed). Again, conver-
sions to_int and to_code are replaced with a fresh integer variable and a corresponding
equation in C.
C is a conjunction of equations of the form x = from_code(y), x = from_int(y), y =
to_code(x), and y = from_code(x) for x ∈ X and y ∈ I (if needed, the generic terms in
arguments of conversions are replaced with a fresh variable and a corresponding equation).

Note that in the rest of the paper, we sometimes treat a conjunction of literals (i.e., atomic
constraints or their negations) as a set of these literals.

4 Stabilization-based Procedure for String Constraints

We briefly describe the stabilization-based procedure from [14, 18] for solving a conversions-
free string constraint E ∧ R ∧ L where E contains only equations (no disequations). From
a high-level point of view, the stabilization-based procedure iteratively splits equations
(where the equation splits are represented by substitution maps) and refines the language
assignments until a stable solution is found, which is then used to generate a LIA formula
describing lengths of all solutions that this language assignment represents.

Stable solution. We say that (Lang, σ), a pair of a language assignment and a substitution,
is a stable solution of E ∧ R if each language in Lang is nonempty, σ is flat, and every
assignment ν : X → Σ∗, such that ν(x) ∈ Lang(x) and ν(x) = ν(σ(x)) holds for all x ∈ X,
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is a model of E ∧ R. Loosely speaking, the stability means that we can choose arbitrary
assignments of the substituted variables from Lang and, using σ, construct a model of the
original constraint.

▶ Example 1. Consider a string constraint xy = z∧w = xx∧w ∈ a+ over the alphabet {a, b}.
Let v1, v2 be fresh variables, Lang a language assignment where Lang(v1) = Lang(w) = a+

and all other variables are mapped to (a + b)∗, and let σ = {x 7→ v1, w 7→ v1v1, z 7→ v1v2,
y 7→ v2, v1 7→ v1, v2 7→ v2} a substitution. Note that σ is flat and by selecting words for v1
and v2, we can get words for the other variables using σ. Furthermore, for an arbitrary
selection of words from the languages of v1 and v2, the corresponding string assignment
is a model of the string constraint. For instance, ν = {x 7→ a,w 7→ aa, y 7→ b, z 7→ ab,
v1 7→ a, v2 7→ b} is a model for a selection of words v1 7→ a ∈ Lang(v1) and v2 7→ b ∈ Lang(v2).
Therefore, (Lang, σ) is a stable solution. ⌟

Noodlification. A key notion of the stabilization-based procedure introduced in [14] and
later extended to string constraints with lengths [18] is noodlification. Noodlification allows
to steer the generation of possible equation splits (or alignments) only to feasible ones.
An equation split is a splitting of variables to a concatenation of new fresh variables so
that boundaries between variables on both sides of an equation match. A variable split
is performed together with splitting the variable’s language in Lang. A feasible split has
a property that the fresh variables have nonempty languages. For instance, for the equation
xyu = wz with Lang = {x 7→ a∗, p 7→ (a+ b)∗ | p ∈ {y, u, w, z}}, one possible feasible split
is {x = v1v2, y = v3, u = v4, w = v1, z = v2v3v4} together with the language assignment
Lang′ = Lang ∪ {v1 7→ a∗, v2 7→ a∗, v3 7→ (a+ b)∗, v4 7→ (a+ b)∗}.

The length-aware noodlification, denoted as noodlify(t = s, Lang), generates a set of all
feasible splits of the equation t = s. A split is a pair (E, Lang′) where E is a set of new
equations and Lang′ is a language assignment of fresh variables. An efficient implementation
of noodlification uses nondeterministic finite automata (NFAs) to represent the language
assignment3. The noodlification then constructs ϵ-preserving products P of ϵ-concatenated
automata of t and s. Each side has a different ϵ-symbol serving as a delimiter between
variables of each equation side. The resulting feasible splits are then generated by inspecting
parts of the product automaton P.

Simplified stabilization-based procedure. In this paragraph we describe a simplified length-
aware stabilization-based procedure. We briefly discuss particular optimizations of the
procedure introduced in [14, 18] at the end of the paragraph. The stabilization-based
procedure starts from the tuple (E , LangR, idX) where E are string equations and LangR is
the language assignment obtained from the initial regular constraint R. It then proceeds by
applying inference rules given below, trying to reach a tuple (∅, Lang, σ) such that (Lang, σ)
is a stable solution (which denotes satisfiability of the original constraint) or a tuple where
Lang(x) = ∅ for some x ∈ X (which denotes unsatisfiability).

The first rule is Align&Split, which performs noodlification on an equation s = t and
adds equations representing generated feasible alignments, removing s = t from the set of
equations (the formula on the right-hand side of a rule denotes a condition when the rule
can be applied):

3 We start with NFAs obtained from initial regular constraints and in each step perform only regularity-
preserving operations.
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xx = w, z = xy w 7→ a+

x = v1, w = v1v1, z = xy w 7→ a+, v1 7→ a+

w = v1v1, z = v1y w 7→ a+, v1 7→ a+, x 7→ a+ x 7→ v1

z = v1y w 7→ aa+, v1 7→ a+, x 7→ a+ x 7→ v1, w 7→ v1v1

w 7→ aa+, v1 7→ a+, x 7→ a+, z 7→ a(a+ b)∗ x 7→ v1, w 7→ v1v1,z 7→ v1y

Align&Split (xx = w)

Subst (x = v1)

Subst (w = v1v1)

Subst (z = v1y)

Figure 1 Part of a proof graph generated by rules of simplified stabilization-based procedure for
the string constraint xy = z ∧ w = xx ∧ w ∈ a+ over the alphabet {a, b}. Tuples (E , Lang, σ) are
visualized by nodes E Lang σ (we omit there implicit language assignments of variables to (a + b)∗ as
well as identity substitutions x 7→ x). Edges are labelled by the used rule together with the selected
equation. The language assignment and substitution in the bottom node form a stable solution.

Align&Split :
( E ⊎ {s = t}, Lang, σ ){
( E ∪ Aligni, Langi, σ )

}n

i=1

noodlify(s = t, Lang) = {(Aligni, Langi)}
n
i=1

The second rule, Subst, removes a simple equation x = t where x ∈ X from the set of
equations and transforms it into a substitution, which is then applied to the set of equations.

Subst :
( E ⊎ {x = t}, Lang, σ, ){
( σ′

i(E ∪ Align), Langi, σ′
i ◦ σ )

}n

i=1

φSubst

where φSubst
def⇔ noodlify(x = t, Lang) = {(Align ⊎ {x = t′

i}, Langi)}
n
i=1 ∧

∧n

i=1 σ′
i = {x 7→ t′

i}.

In [14, 18] these basic rules were extended by organizing equations in inclusion graphs,
which then determine the order of selecting equations in Align&Split. Moreover, the
notion of equations is replaced by inclusions allowing to distinguish sides of equations, which
is important for the completeness on the chain-free fragment of string constraints [18, 6].
The extended rules also take into account information about length variables, which are
propagated through alignments. During the concatenation of automata corresponding to
non-length variables, ϵ symbols may be removed, leading to a significant reduction of the
number of splits. Additional reduction of the number of generated splits during noodlification
is achieved by eager simulation-based reduction applied on NFAs in the language assignment.

Generating length formulae. In order to check that a stable solution (Lang, σ) is satisfiable
w.r.t. the initial length constraint L, we first generate for each x ∈ X a LIA formula
len(|x|, Lang(x)) describing all possible lengths of words of Lang(x). This can be achieved,
e.g., by using the lasso-automata construction [4]. Consequently, we extend the formula∧

x∈X len(|x|, Lang(x)) with the equality |x| = |x1| + · · · + |xn| for each (x 7→ x1 · · ·xn) ∈ σ

and |x1| + · · · + |xn| = |y1| + · · · + |ym| for each equation x1 · · ·xn = y1 · · · ym from E in
order to obtain the resulting LIA formula φlen. The LIA formula combines length constraints
induced by initial and substituted equations and lengths of the substituted variables. Finally,
we check if the LIA formula L ∧ φlen is satisfiable. Since we work with a stable solution,
a LIA model of this formula can be used to construct a string model satisfying the obtained
LIA model and, hence, satisfying the formula E ∧ R ∧ L.
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▶ Example 2. An example of obtaining a stable solution using rules of simplified stabilization-
based procedure applied on the string constraint xy = z ∧ w = xx ∧ w ∈ a+ is shown in
Figure 1. The relevant part of the LIA formula φlen corresponding to this stable solution is
then given as

φlen
def⇔ |y| ≥ 0 ∧ |x| ≥ 1 ∧ |z| ≥ 1 ∧ |w| ≥ 2 ∧ |v1| ≥ 1 ∧

|x| + |x| = |w| ∧ |z| = |x| + |y| ∧ |x| = |v1| ∧ |w| = |v1| + |v1| ∧ |z| = |v1| + |y|. ⌟

5 String-Integer Conversions

We propose an extension of the stabilization-based procedure from Section 4 so that it can
handle string constraints of the form E ∧ R ∧ L ∧ C. We know that E ∧ R ∧ L is satisfiable if
there is a stable solution (Lang, σ) such that the LIA formula L ∧ φlen is satisfiable. From
a high-level point of view, given a stable solution, our procedure creates a LIA formula
φconv

def⇔
∧

c∈C φc encoding conversions from C so that the string constraint E ∧ R ∧ L ∧ C is
satisfiable iff the LIA formula L ∧ φlen ∧ φconv is satisfiable.

Additional constraint generation. In order to simplify the resulting LIA formula for
conversions φconv, we add additional membership constraints to the set of initial regular
constraints R. The stabilization-based procedure then works with this modified set of
constraints. These additional constraints make the resulting formula smaller and since the
stabilization-based procedure is particularly optimized for working with regular constraints,
the constraints may significantly speed up the whole procedure. More specifically, we enrich
regular constraints with formulae restricting the results of from_int and from_code; i.e., for
each constraint x = from_int(k) from C we add the constraint x ∈ (('1' + · · · + '9')('0' +
· · · + '9')∗) + ϵ, restricting x to a valid representation of a number without leading zeros
or ϵ, and for each x = from_code(k) from C we add the constraint x ∈ Σ + ϵ restricting x to
be either the symbol whose code point we are computing or ϵ for invalid inputs.

5.1 Handling to_int

Let (Lang, σ) be a stable solution of a string constraint without conversions and k =
to_int(x) ∈ C be a conversion that we want to encode into a LIA formula φk=to_int(x).
Generally speaking, generating a LIA formula from a regular language Lang(x) that represents
all encoded numbers is not possible, because some non-linear function such as exponentiation
is necessary [15]. For example, given the language {'5'}{'0'}∗, the corresponding formula
in nonlinear arithmetic would be ℓ = 5 · z ∧ ∃n : n ≥ 0 ∧ z = 10n. For this reason, we assume
that the language Lang(x) is finite. This restriction is relatively strong, but in combination
with our underapproximations from Section 6, it appears to be permissive enough.

As Lang(x) is finite, we could easily enumerate all words of Lang(x) and encode into
φk=to_int(x) that to_int(x) must be equal to one of these values. This would result in the
formula

∨
w∈Lang(x) to_int(x) = to_int(w), with to_int(w) being the integer value that

the string w represents (or −1 if w is a string that does not encode a number) as defined in
Section 3. However, the number of possible words could easily blow up and the resulting
formula would be too large. For example, for the language {'0', . . . , '9'}9, we would need
109 disjuncts. We need a more succinct encoding. Moreover, the encoding must allow efficient
handling the following two issues:

SAT 2024



14:8 Cooking String-Integer Conversions with Noodles

(i) We need to keep the correspondence between the length of x and the value of to_int(x).
The string constraint may, for instance, look like |x| ≤ 3 ∧ z ≥ 1000 ∧ z = to_int(x),
which is unsatisfiable due to the relation between the length of the string and the value
the string represents.

(ii) There can be other variables whose conversion result depend on x. As an example,
assume that σ(x) = z1z2 and we also have to handle the conversion m = to_int(y)
with σ(y) = z2z3. This means that x must end with the same string that y starts
with. The two formulae φk=to_int(x) and φm=to_int(y) obtained from the naive approach,
however, do not encode this relation.

Succinct and efficient encoding. To achieve succinctness, we reduce the number of disjuncts
by working with sets of strings that represent continuous intervals of numbers. For example,
if Lang(x) = {'0', . . . , '3', '5'}{'0', . . . , '9'}{'0', . . . , '9'}, then we get two intervals of
numbers [0 − 399] and [500 − 599], and we can create a significantly smaller LIA formula
φk=to_int(x)

def⇔ k = to_int(x) ∧ (0 ≤ to_int(x) ≤ 399 ∨ 500 ≤ to_int(x) ≤ 599). The two
issues discussed above are then handled as follows:

(i) We relate each interval with the corresponding length.
(ii) We work on the level of substituted variables (according to σ) instead of the original

ones. Because σ is flat, we can directly give a formula to define to_int values of the
substituted variables and then use these to define the original ones. Regarding the
problematic example above, because we know that σ is flat, it holds that σ(z1) = z1,
σ(z2) = z2, and σ(z3) = z3, so we construct formulae for to_int(z1), to_int(z2), and
to_int(z3), and then combine them to get the value of the original to_int(x) and
to_int(y).

Encoding to_int(xi). To encode to_int(x), assuming that σ(x) = x1 · · ·xn, we need to
first encode to_int(xi) for each xi. We split this encoding into two formulae: φdigit

to_int(xi),
which encodes all words from Langdigit

xi
= Lang(xi)∩{'0', . . . , '9'}∗, i.e., words containing only

digits; and φnondigit
to_int(xi), which encodes all words from Langnondigit

xi
= Lang(xi)\{'0', . . . , '9'}∗,

i.e., words containing at least one non-digit symbol.
To define φdigit

to_int(xi), we introduce the following notation. Let Lxi
= {|w| | w ∈ Langdigit

xi
}

denote the set of all possible lengths of words containing only digits in Lang(xi). Because
we assume that Lang(xi) is finite, then also Lxi

will be finite. Furthermore, let Ixi
(m), for

m ∈ Lxi , be the set of pairs (low, high) of words of the length m from Langdigit
xi

that encode
the largest possible continuous intervals of numbers of the form (to_int(low), to_int(high)).
For example, for Lang(xi) = {ϵ, '0', '1'}{'0', '1', '2'}{'0', . . . , '9'} we have Lxi = {2, 3},
Ixi

(2) = {('00', '29')}, and Ixi
(3) = {('000', '029'), ('100', '129')}. Formally, given an

interval encoding (low, high) ∈ Ixi
(m), we have that |low| = |high| = m and to_int(low) ≤

to_int(high). Further, the words with length m that encode numbers to_int(low) − 1 and
to_int(high) + 1 are not in Langdigit

xi
and all words w whose length is m and to_int(low) ≤

to_int(w) ≤ to_int(high) must belong to Lang(xi). The formula is then defined as

φdigit
to_int(xi)

def⇔
∨

ℓ∈Lxi

|xi| = ℓ ∧
∨

(low,high)∈Ixi
(ℓ)

to_int(low) ≤ to_int(xi) ≤ to_int(high)


where to_int(low) and to_int(high) denote the integers represented by the string literals
low and high respectively. The formula says that for each length ℓ, to_int(xi) must be
a number encoded by one of the words from the language Langdigit

xi
whose length is ℓ. Let us

note that for ℓ = 0 there is only one possible interval (ϵ, ϵ) and for this case it holds that
to_int(xi) = −1 (because of the fact that to_int(ϵ) = −1).
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On the other hand, defining formula for words from Langnondigit
xi

is simple because for each
such word w, we know that to_int(w) = −1. Therefore, we can define it as

φnondigit
to_int(xi)

def⇔ len(|xi|, Langnondigit
xi

) ∧ to_int(xi) = −1

where len(|xi|, Langnondigit
xi

), defined in Section 4, is a LIA formula encoding that |xi| must
be the length of some word from the language Langnondigit

xi
. Note that because this formula

can be created even for an infinite language, we can relax the condition on finiteness of the
language Lang(xi) to only finiteness of the Langdigit

xi
part.

Encoding to_int(x). Having defined the encodings of to_int(xi) for all xi in σ(x) =
x1 · · ·xn, we can now use them to define φk=to_int(x). Again, we split the definition into
two formulae, but instead of splitting it based on whether the given word contains a digit,
we split it into two cases, based on whether x represents a valid number or not, into formulae
φvalid

to_int(x) and φinvalid
to_int(x) respectively.

We start with the definition of a LIA formula φvalid
to_int(x) expressing possible valuations

of inputs that represent valid numbers. Notice that for a given combination (ℓ1, . . . , ℓn) ∈
Lx1 × · · · × Lxn of lengths, we can easily compute the value to_int(x) by summing the
values of to_int(xi) multiplied by the correct power of ten. Therefore, we define φvalid

to_int(x)
as the following formula:

φvalid
to_int(x)

def⇔
∨

ℓ1∈Lx1...
ℓn∈Lxn

ℓ1+···+ℓn ̸=0

(
to_int(x) =

∑
1≤i≤n

(
to_int(xi) · 10ℓi+1+···+ℓn · sgn ℓi

)
∧ ψ[l1 . . . ln]

)

where sgn is the sign function (that sends ℓi to 1 if it is positive and to 0 if it is itself 0),
the corresponding summand to_int(xi) · 10ℓi+1+···+ℓn has to be equal to 0, and

ψ[l1 . . . ln] def⇔
∧

1≤i≤n

(
|xi| = ℓi ∧ (to_int(xi) = −1 ⇒ ℓi = 0)

)
connects the length |xi| with the value of ℓi and discards values of xi that do not represent
numbers (except for the empty word ϵ). Note that if some (but not all) variable xi is an empty
word, then x1 · · ·xn still represents a valid number. Furthermore, because |x| = |x1|+· · ·+|xn|
is a part of φlen, the connection between |x| and the value of to_int(x) can be kept by
putting restrictions only on the values |x1|, . . . , |xn|.

We now define formula φinvalid
to_int(x) encoding the situation when x does not represent

a number and to_int(x) should be equal to −1:

φinvalid
to_int(x)

def⇔ to_int(x) = −1 ∧
(

|x| = 0 ∨
∨

1≤i≤n

(
to_int(xi) = −1 ∧ |xi| ̸= 0

))
The variable x does not represent a number if it is ϵ or if some xi does not represent a number.
However, xi might not represent a number even in the case that xi = ϵ, but as already
mentioned, x can still be a valid representation of a number, so we discard these cases.

Finally, the resulting formula φk=to_int(x) is given as

φk=to_int(x)
def⇔ k = to_int(x)∧

(
φvalid

to_int(x) ∨ φinvalid
to_int(x)

)
∧

∧
1≤i≤n

(
φdigit

to_int(xi) ∨ φnondigit
to_int(xi)

)
.

We note that in the case φvalid
to_int(x) is true, its conjunct ψ[l1 . . . ln] forces φnondigit

to_int(xi) to be
false for all xi.

SAT 2024
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x = yz
x 7→ (Σ + ϵ)3, z 7→ D∗

y 7→ {'0', '1', '2', '3', '6', 'a'}

y = v1,
z = v2

y 7→ {'0', '1', '2', '3', '6', 'a'}, z 7→ D∗,
v1 7→ {'0', '1', '2', '3', '6', 'a'}, v2 7→ (D + ϵ)2 x 7→ v1v2

v1 7→ {'0', '1', '2', '3', '6', 'a'},
v2 7→ (D + ϵ)2

x 7→ v1v2,
y 7→ v1, z 7→ v2

Subst(x = yz)

Subst(y = v1)
Subst(z = v2)

Figure 2 A part of the proof graph generated by the rules of the simplified stabilization procedure
for the string constraint x = yz ∧ x ∈ (Σ + ϵ)3 ∧ y ∈ {'0', '1', '2', '3', '6', 'a'} ∧ z ∈ D∗, where
D = {'0', . . . , '9'}.

▶ Example 3. Let D = {'0', . . . , '9'} be the set of digits and

ψ
def⇔ x = yz ∧ x ∈ (Σ + ϵ)3 ∧ y ∈ {'0', '1', '2', '3', '6', 'a'} ∧ z ∈ D∗ ∧ i = to_int(x)

a string constraint that we want to solve. Figure 2 shows a run of the stabilization procedure
on this string constraint (without the to_int conversion) that results in the stable solution
(Lang, σ), where Lang(v1) = {'0', '1', '2', '3', '6', 'a'}, Lang(v2) = (D+ ϵ)2, σ(x) = v1v2,
σ(y) = v1, and σ(z) = v2 (mappings of other variables in Lang and σ are not relevant). The
relevant part of the LIA formula φlen corresponding to this stable solution is then given as

φlen
def⇔ (|v1| = 1 ∨ |v1| = 2) ∧ 0 ≤ |v2| ≤ 2 ∧ |x| = |v1| + |v2| ∧ |y| = |v1| ∧ |z| = |v2|.

We need to create the formula φi=to_int(x) and because σ(x) = v1v2, we need to first
create the formulae φdigit

to_int(v1), φ
nondigit
to_int(v1), φ

digit
to_int(v2), and φnondigit

to_int(v2). Starting with v1, we
have Langdigit

v1
= {'0', '1', '2', '3', '6'}, Langnondigit

v1
= {'a'}, and Lv1 = {1}. Therefore,

we get

φdigit
to_int(v1)

def⇔ |v1| = 1 ∧ (0 ≤ to_int(v1) ≤ 3 ∨ to_int(v1) = 6) and

φnondigit
to_int(v1)

def⇔ |v1| = 1 ∧ to_int(v1) = −1.

For v2, we have Langdigit
v2

= (D + ϵ)2, Langnondigit
v2

= ∅, and Lv2 = {0, 1, 2}. We obtain

φdigit
to_int(v2)

def⇔ (|v2| = 0 ∧ to_int(v2) = −1) ∨ (|v2| = 1 ∧ 0 ≤ to_int(v2) ≤ 9)

∨ (|v2| = 2 ∧ 0 ≤ to_int(v2) ≤ 99)

and, since Langnondigit
v2

is empty, φnondigit
to_int(v2) is false. The formula φvalid

to_int(x) is then given as

φvalid
to_int(x)

def⇔
(
to_int(x) = to_int(v1) ∧ |v1| = 1 ∧ |v2| = 0 ∧ to_int(v1) ̸= −1

)
∨

(
to_int(x) = to_int(v1) · 10 + to_int(v2) ∧ |v1| = 1

∧ |v2| = 1 ∧ to_int(v1) ̸= −1 ∧ to_int(v2) ̸= −1
)

∨
(
to_int(x) = to_int(v1) · 100 + to_int(v2) ∧ |v1| = 1

∧ |v2| = 2 ∧ to_int(v1) ̸= −1 ∧ to_int(v2) ̸= −1
)
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and φinvalid
to_int(x) as

φinvalid
to_int(x)

def⇔ to_int(x) = −1 ∧(
|x| = 0 ∨ (to_int(v1) = −1 ∧ |v1| ̸= 0) ∨ (to_int(v2) = −1 ∧ |v2| ̸= 0)

)
.

The final formula φi=to_int(x) is then

φi=to_int(x)
def⇔ i = to_int(x) ∧

(
φvalid

to_int(x) ∨ φinvalid
to_int(x)

)
∧

(
φdigit

to_int(v1) ∨ φnondigit
to_int(v1)

)
∧ φdigit

to_int(v2)

which is the only conjunct of φconv. ⌟

5.2 Handling from_int

We briefly describe the handling of from_int. Assume that x = from_int(k) is the conversion
from C that we want to encode and σ(x) = x1 · · ·xn. We proceed similarly to the to_int
case, but instead of encoding the possible values of the result x, we will instead restrict
the argument k to values that yield the given possible values of the result x. The formula
φvalid

x=from_int(k) expressing valid conversions is the same as φvalid
to_int(x) after replacing to_int(x)

with k:

φvalid
x=from_int(k)

def⇔
∨

ℓ1∈Lx1...
ℓn∈Lxn

ℓ1+···+ℓn ̸=0

(
k =

∑
1≤i≤n

(
to_int(xi) · 10ℓi+1+···+ℓn · sgn ℓi

)
∧ ψ[l1 . . . ln]

)
.

Furthermore, from_int(k) always returns the string encoding a non-negative number k,
except for the case when k < 0. In this case, it returns ϵ, therefore, the formula φinvalid

x=from_int(k)
is defined as

φinvalid
x=from_int(k)

def⇔ k < 0 ∧ |x| = 0.

The resulting formula φx=from_int(k) is then given as

φx=from_int(k)
def⇔

(
φvalid

x=from_int(k) ∨ φinvalid
x=from_int(k)

)
∧

∧
1≤i≤n

(
φdigit

to_int(xi) ∨ φnondigit
to_int(xi)

)
.

▶ Example 4. Let us take the string constraint from Example 3 extended with i ≤ j ∧ z =
from_int(j). As we added only LIA and conversion constraints, the stable solution (Lang, σ)
from Example 3 stays the same. We know that σ(z) = v2, Lang(v2) = (D + ϵ)2, and
Lv2 = {0, 1, 2}. We also already have φdigit

to_int(v2) from Example 3 (φnondigit
to_int(v2) is unsatisfiable),

therefore, in order to encode φz=from_int(j), we only need

φvalid
z=from_int(j)

def⇔ (j = to_int(v2) ∧ |v2| = 1 ∧ to_int(v2) ̸= −1) ∨

(j = to_int(v2) ∧ |v2| = 2 ∧ to_int(v2) ̸= −1) and

φinvalid
z=from_int(j)

def⇔ j < 0 ∧ |z| = 0.

We can then add

φz=from_int(j)
def⇔

(
φvalid

z=from_int(i) ∨ φinvalid
z=from_int(i)

)
∧ φdigit

to_int(v2)

to φconv. ⌟
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5.3 Handling to_code

The semantic of to_code(x) is simple (see Section 3): if |x| = 1, then to_code(x) represents
the code point of the symbol x, otherwise the result is −1. We want to encode this behavior
in the formula φk=to_code(x). Assuming that σ(x) = x1 · · ·xn, we will first, for each xi, encode
the value to_code(xi) in a formula φto_code(xi), so that we relate the substituted variables
between multiple to_code conversions (similarly as in to_int case). We could take a naive
approach and enumerate all possible symbols of xi (there is only a finite number of possible
symbols, so this method is complete). However, such a naive approach could easily blow-up.

In order to overcome this blow-up problem, we can notice that, despite the high number
of possible symbols, the input string formula usually uses only a small subset of them (usually
a subset of ASCII symbols). We therefore restrict the alphabet Σ only to these symbols, all
digit symbols, and one special symbol δ that represents all unused4 non-digit symbols (if there
are any). Using only δ for all unused symbols has no impact on the stabilization-based
procedure from Section 4, as it handles only a conjunction of positive equations with regular
and length constraints, where unused symbols “behave in the same way”. However, digit
symbols are important for to_int/from_int conversions. We therefore keep all of them in Σ
and δ then represents all unused symbols that are not digits.

We then encode the fact that either to_code(xi) is a code point of the symbol xi, or,
if xi is not a single symbol, to_code(xi) = −1:

φto_code(xi)
def⇔

((
|xi| = 1 ∧

∨
a∈Lang(xi)∩Σ

ψ(a)
)

∨
(

|xi| ̸= 1 ∧ to_code(xi) = −1
))

where ψ(a) encodes that to_code(xi) is equal to the code-point of the symbol a as follows:
For a normal symbol a ̸= δ, we have ψ(a) def⇔ to_code(xi) = to_code(a) (recall that
to_code(a) for a ∈ Σ \ {δ} denotes the numeric value of the code point of the symbol a).
For δ, we have to encode the fact that to_code(δ) can acquire any possible code point of
unused symbols. Therefore, given that maxchar denotes the largest possible code point5,

ψ(δ) def⇔ 0 ≤ to_code(xi) ≤ maxchar ∧
∧

b∈Lang(xi)∩(Σ\{δ})

to_code(xi) ̸= to_code(b)

We can then define φto_code(x) as

φto_code(x)
def⇔

((
|x| = 1 ∧ to_code(x) ̸= −1 ∧

∨
1≤i≤n

to_code(x) = to_code(xi)
)

∨

(
|x| ̸= 1 ∧ to_code(x) = −1

))
relating the value x with the substituted variables xi. The second part of the formula handles
the case when x is not a symbol. For the case that x is a symbol, there must be exactly
one xi that is also the (same) symbol, and all other xj , for i ≠ j, must be empty strings.
For each such xj , we have to_code(xj) = −1, so by requiring to_code(x) ̸= −1, we force
the equality to_code(x) = to_code(xi). The resulting formula is then

φk=to_code(x)
def⇔ k = to_code(x) ∧ φto_code(x) ∧

∧
1≤i≤n

φto_code(xi).

4 Unused here means that they are not explicitly used, so for example in the formula x ∈ Σ ∧ y ∈ {a, b},
the explicitly used symbols are only a and b, and δ will represent all other symbols. We then get
a formula with three symbols: x ∈ {a, b, δ} ∧ y ∈ {a, b}.

5 According to the SMT standard [10], it is the number 196,607.
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Connecting string and code conversions. Finally, we need to address the problem of relating
to_code and to_int. For example, we could have both conversions to_int(x) and to_code(y)
with σ(x) = z1z2 and σ(y) = z2z3. Right now, to_int(z2) and to_code(z2) can have some
valid values, which are, however, not related. For example, if Lang(z2) = {'4', '5'}, then
we could end up with the situation where to_int(z2) = 5 but to_code(z2) = 52, which is
the code point of '4'.

Therefore, for each variable x for which both φto_int(x) and φto_code(x) are defined,
we create the following formula

|x| ̸= −1 ∨ (to_int(x) = −1∧¬(48 ≤ to_code(x) ≤ 57)) ∨ (to_code(x) = to_int(x)+48),

which we add to the conversion formula φconv. This formula represents three (non-necessarily
disjoint) cases: (i) the string x is not a symbol, which means that to_code(x) = −1 and
to_int(x) does not depend on the value of to_code(x); (ii) x is not a digit, therefore
to_code(x) cannot lie in the interval [48, 57], which corresponds to digits '0' through '9';
and (iii) x is a digit, so to_code(x) must be its code point.

▶ Example 5. We further extend the string constraint from Example 4 by the constraint
|x| = to_code(y). Again, we only added a conversion to the formula, therefore the stable
solution (Lang, σ) from Example 3 stays the same, and we only need to encode the formula
φ|x|=to_code(y) with σ(y) = v1 and Lang(v1) = {'0', '1', '2', '3', '6', 'a'}. We therefore
get the following formulae:

φto_code(v1)
def⇔

(
|v1| = 1 ∧ (to_code(v1) = 48 ∨

to_code(v1) = 49 ∨
to_code(v1) = 50 ∨
to_code(v1) = 51 ∨
to_code(v1) = 54 ∨
to_code(v1) = 97)

)
∨(

|v1| ̸= 1 ∧ to_code(v1) = −1
)

φto_code(y)
def⇔

(
|y| = 1 ∧ to_code(y) ̸= −1 ∧ to_code(y) = to_code(v1)

)
∨(

|y| ̸= 1 ∧ to_code(y) = −1
)

φ|x|=to_code(y)
def⇔ |x| = to_code(y) ∧ φto_code(y) ∧ φto_code(xi)

Note that in Example 3 we defined to_int(v1) and we have also now defined to_code(v1),
therefore we also need to add the formula connecting these two values together as explained
in the previous paragraph. All in all, the final conversion formula φconv is then defined as

φconv
def⇔

(
|v1| ̸= −1 ∨ (to_int(v1) = −1 ∧ ¬(48 ≤ to_code(v1) ≤ 57)) ∨

(to_code(v1) = to_int(v1) + 48)
)

∧
φi=to_int(x) ∧ φz=from_int(j) ∧ φ|x|=to_code(y). ⌟

5.4 Handling from_code

Similarly to from_int, which is handled using to_int, from_code is handled using to_code.
Given x = from_code(k) and σ(x) = x1 · · ·xn, the formula φx=from_code(k) is defined as

φx=from_code(k)
def⇔

((
|x| = 1 ∧ k ̸= −1 ∧

∨
1≤i≤n

k = to_code(xi)
)

∨

(
|x| = 0 ∧ ¬(0 ≤ k ≤ maxchar)

))
∧

∧
1≤i≤n

φto_code(xi)
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The only two differences from to_code are the following:
1. we are restricting the values of the argument k (instead of computing to_code(x)) and
2. for the case that x is not a symbol (which must mean that x = ϵ, as from_code(k) returns

either a symbol for a valid code point or an empty string, hence the condition |x| = 0),
the argument can be any integer that is an invalid code point.

5.5 Handling word disequations through to_code

The stabilization-based procedure from Section 4 assumes that E does not contain disequations.
As shown in [18], every disequation s ̸= t can be encoded into a combination of equations
and length constraints as

φs̸=t
def⇔ |s| ̸= |t| ∨

(
s = x1a1y1 ∧ t = x2a2y2 ∧ |x1| = |x2| ∧ a1 ∈ Σ ∧ a2 ∈ Σ ∧

dist(a1,a2)︷ ︸︸ ︷
a1 ̸= a2

)
where x1, x2, y1, y2, a1, and a2 are fresh variables and the disequation a1 ̸= a2 between
symbols can be encoded into a LIA formula dist(a1, a2) after the procedure returns a stable
solution. Furthermore, if the original string constraint without disequations is chain-free, then
it stays chain-free even if we add φs̸=t to it. However, the transformation of a1 ̸= a2 to LIA
formula dist(a1, a2) from [18] is incompatible with the way we construct φconv. We can easily
solve this by replacing a1 ≠ a2 in φs̸=t with to_code(a1) ̸= to_code(a2). Since our procedure
can handle any to_code conversion, this extends one of the richest decidable fragments of
string constraints, chain-free constraints with lengths and arbitrary disequations [18], by
code-point conversions.

6 Implementation and Optimizations

We implemented the proposed technique into the string solver Z3-Noodler [34], which
implements an optimized version of the stabilization-based procedure from Section 4 within
the DPLL(T )-based SMT solver Z3. The LIA formula φconv for string-integer conversions is
constructed after the procedure finds a stable solution. The formula φconv is appended to
the length formula φlen and the result is checked for satisfiability. On top of the proposed
technique, we further introduced several optimizations, described below.

Underapproximation of to_int. We mentioned in Section 5 that the conversion to_int(x)
expects the language Langdigit

x , the subset of words from Lang(x) containing only digits, to
be finite. Although this restriction usually holds in the benchmarks, we implemented an
underapproximation to at least partially handle the case of infinite languages. In particular,
if a variable occurring in a conversion has an infinite language after stabilization, we restrict
the language to strings up to some fixed length. To be more concrete, if Langdigit

x of a variable x
is an infinite language, we restrict it to Langdigit

x ∩(Σ+ϵ)m where m is the underapproximation
parameter (we use m = 5 in the experiments). This approach is sound for the SAT case.

Supporting constraints. In order to keep the variable languages as precise as possible, we
generate additional constraints (axioms) that are used to enrich the initial string constraint.
One such kind of constraints is generated for conversions of the type x = from_int(k), which
always result in x being assigned an infinite language (unless it is restricted by some other
regular constraint). Therefore, we generate an additional constraint k < 10m =⇒ x ∈
(Σ + ϵ)m where m is the same underapproximation parameter as in the previous paragraph,
which is then added to the initial constraint. Furthermore, we infer regular constraints
from LIA formulae. For example, if we have to_int(x) = k, with k ∈ Z, we generate
x ∈ '0'∗ · from_int(k). Moreover, if we have |x| ≤ k, we can set x ∈ (Σ + ϵ)k.
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Table 1 Results of experiments on all benchmark sets. For each benchmark set we give the
number of solved instances, the number of unknowns, and the number of instances where the
particular solver runs out of resources (timeout or out of memory). Moreover, we measure each value
w.r.t. all instances in the benchmark set (all) as well as only to instances containing at least one
conversion function (conv). The number of particular instances is given in the benchmark header.

FullStrInt (16,968 | 16,130) StringFuzz (11,618 | 1,608) StrSmallRw (1,880 | 80) Σ

solved unknown OOR solved unknown OOR solved unknown OOR solved

all conv all conv all conv all conv all conv all conv all conv all conv all conv all conv

Z3-Noodler 16,704 15,872 126 126 138 132 11,616 1,606 2 2 0 0 1,743 73 100 1 37 6 30,063 17,551
cvc5 16,963 16,125 0 0 5 5 10,915 1,579 0 0 703 29 1,861 78 2 2 17 0 29,739 17,782
Z3 16,729 15,896 0 0 239 234 11,081 1,565 0 0 537 43 1,821 78 0 0 59 2 29,631 17,539
OSTRICH 15,909 15,109 0 0 1,059 1,021 11,400 1,558 0 0 217 50 1,709 69 0 0 171 11 29,018 16,736
Z3-Noodlerpr 11,665 10,857 5,299 5,273 4 0 10,050 41 1,568 1,567 0 0 1,615 62 210 18 55 0 23,330 10,960

Interval computation. The solver Z3-Noodler internally represents each Lang(x) using
NFAs. In order to efficiently create the set of intervals Ixi

(n) for encoding to_int(xi) (cf.
Section 5.1), we minimize the automaton for Lang(xi), getting deterministic automaton with
a finite language, i.e., from each state there is at most one transition per symbol and there
are no loops. It is therefore easy to create intervals of digits going from each state, and then
connect these short intervals into longer ones.

7 Experiments

Used tools and environment. We compared Z3-Noodler extended with the support
of string-integer conversions (version 1.1.0) with the other state-of-the-art tools: cvc5
(version 1.1.2), Z3 (version 4.13.0), and OSTRICH (the latest commit 5dd2e10). We also
add comparison with the previous version 1.0.0 of Z3-Noodler (denoted as Z3-Noodlerpr).
We do not include comparison with Z3-Trau and Z3str4 as they give incorrect results on
some instances. The experiments were executed on a workstation with an AMD Ryzen 5
5600G CPU @ 3.8 GHz with 100 GiB of RAM running Ubuntu 22.04.4. The timeout was set
to 120 s, memory limit was set to 8 GiB.

Benchmarks. For the experimental evaluation we selected all benchmark sets from SMT-
LIB [9] (category QF_SLIA) containing string-integer conversions. Concretely, we took the
FullStrInt (16,968 formulae), StringFuzz (11,618 formulae), and StrSmallRw (1,880 formulae)
benchmark sets, which were also used in SMT-COMP’23. Except string-integer conversions,
these benchmarks make heavy use of string (dis)equations and other string predicates and
functions (e.g., substr, indexof, at, . . . ) combined with length and regular constraints.

Results. The results summarizing the number of solved instances are given in Table 1 and
the average running times are shown in Table 2. The scatter plots comparing the running
times of Z3-Noodler and the other tools are given in Figure 3.

Regarding the FullStrInt benchmark set, Z3-Noodler has 138 timeouts (out of which 132
were on formulae with conversions) and 126 unknowns. The number of solved instances
is comparable to Z3, but smaller compared to cvc5 (cvc5 solves all instances except 5).
On the other hand, Z3-Noodler solved 795 instances more than OSTRICH. Concerning
the running time, Z3-Noodler has the lowest average time followed by cvc5 (not counting
Z3-Noodlerpr as it has almost 5,300 unknowns on FullStrInt). The inspection of timeouts of
Z3-Noodler on FullStrInt revealed that the bottleneck on these examples is not the handling
of string-integer conversions but handling of a complex combination of string predicates and
functions (substr, indexof, . . . ) in the stabilization-based procedure. We believe that these
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Table 2 Average running times and standard deviation (in seconds) of solved instances.

FullStrInt StringFuzz StrSmallRw
avg std avg std avg std

Z3-Noodler 0.19 1.26 0.03 0.22 0.14 2.41
cvc5 0.30 1.42 2.81 12.55 0.02 0.56
Z3 1.21 6.90 4.14 15.39 0.12 2.86
OSTRICH 11.86 14.85 4.79 10.00 4.47 6.61
Z3-Noodlerpr 0.02 0.05 0.03 0.08 0.75 6.56

instances could be solved by a tailored preprocessing of input formulae and strengthening
axioms for special cases of string functions and predicates. The unknowns of Z3-Noodler
are caused by the inconclusive result in the case of underapproximation. It is evident from
the table that Z3-Noodler can solve significantly more instances than Z3-Noodlerpr .
Note that although Z3-Noodlerpr has no support for string-integer conversions, it can
solve some instances, for example those containing unsatisfiable LIA parts or those whose
satisfiability can be established without considering the string-integer conversions.

In the StringFuzz benchmark set, Z3-Noodler solved more instances than any other
tool. In particular, Z3-Noodler has only 2 unknowns (caused by the underapproximation),
which is significantly better than the runner-up OSTRICH. Concerning the running time
on this benchmark set, Z3-Noodler has also the lowest average time.

The last considered benchmark set StrSmallRw is not very interesting. It contains only 80
formulae with conversions and from these, already 62 are solved by Z3-Noodlerpr , i.e., they
can be solved without looking at conversions. If we take into account the whole benchmark,
Z3-Noodler has a large amount of unknowns, which are caused by a limited support of the
¬contains predicate. The average running time of Z3-Noodler is comparable to Z3, but
higher than the average time of cvc5, which is the fastest tool on this benchmark.

From the summary statistics in Table 1 it is evident that the proposed procedure and
its integration with the stabilization-based procedure has a significant effect on the number
of solved instances. The previous version Z3-Noodlerpr solved 6,734 instances less than
Z3-Noodler. If we look at the number of solved cases from the perspective of all instances,
Z3-Noodler solved the most formulae compared to any other tool. If we restrict our
attention only to formulae with conversions, Z3-Noodler solves 231 instances less than
cvc5, but more instances than Z3 and OSTRICH. From Figure 3 and the average running
times in Table 2, it is obvious that Z3-Noodler can be (sometimes significantly) faster than
other state-of-the-art tools pointing out to the efficiency of the proposed combined approach.

Discussion. The experimental evaluation shows that our proposed approach combining
the stabilization-based procedure and the translation of the conversions into a LIA formula
can (sometimes significantly) improve the scalability of solving complex string constraints
containing string-integer conversions. Although the generated LIA formula might be large in
the worst-case, based on our experiments, this worst case is avoided in real-world benchmarks
(based on inspecting a couple of instances, the generated LIA formulae contained up to
hundreds of simple atoms). The experiments also revealed that the highest impact on the
LIA formula size was the interval separation (Section 5.1); without this feature the LIA
formula often exploded. Furthermore, based on our experience, the generated LIA formula is
easily solvable by Z3’s LIA solver. The current bottleneck of the solver is not handling the
string-integer conversions but handling the complex combination of string predicates and
functions (as discussed at the results of FullStrInt).
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Figure 3 Scatter plots comparing Z3-Noodler with cvc5, Z3, and OSTRICH. Times are in
seconds, axes are logarithmic. The dashed lines represent unknowns and timeouts/out-of-memory.
Colours distinguish benchmark sets: • FullStrInt, • StringFuzz, and • StrSmallRw.

8 Conclusion

We have proposed an extension of the stabilization-based procedure with the handling of
string-integer conversions. Based on a stable solution, the technique encodes the conversions
into LIA formulae. We have proposed a series of optimizations in order to avoid a blow-
up of the LIA formulae and implemented the approach in the tool Z3-Noodler. Our
experimental evaluation on established benchmarks shows that our technique outperforms
other state-of-the-art tools on many instances.

In the future, we plan to extend the precise handling of conversions from finite languages
to languages with limited forms of iteration. Another direction could be a dynamic analysis
of the underapproximation parameter and adjusting the parameter according to the input
formula characteristics.
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Abstract
We introduce a SAT-enabled version of an antichain algorithm for checking language emptiness of
alternating finite automata (AFA) with complex transition relations encoded as compact logical
formulae. The SAT solver is used to compute predecessors of AFA configurations, and at the same
time, to evaluate the subsumption of newly found configurations in the antichain of the previously
found ones. The algorithm could be naively implemented by an incremental SAT solver where the
growing antichain is represented by adding new clauses. To make it efficient, we 1) force the SAT
solver to prioritize largest/subsumption-strongest predecessors (so that weaker configurations are
not even generated), and 2) store the antichain clauses in a special variant of a trie that allows fast
subsumption testing. The experimental results suggest that the resulting emptiness checker is very
efficient compared to the state of the art and that our techniques improve the performance of the
SAT solver.
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1 Introduction

This paper presents a modification of a known antichain algorithm for deciding language
emptiness of alternating finite automata (AFA and AFA emptiness for short) that utilizes
SAT solving to handle complex transition relations over large structured alphabets.

AFA add conjunctive branching to nondeterminism. That is, a transition may require
the rest of the word is accepted not by one successor state, but by each state in a set
of successor states. This makes them exponentially more succinct than non-deterministic
automata [12, 36]. The succinctness of AFA is paid for by the PSPACE-completeness of
the language emptiness test. The test is based on a de-alternation that converts the AFA
to a nondeterministic finite automaton (NFA), of at most exponential size, and checks the
reachability of a final state from an initial one in the NFA. The de-alternation constructs the
NFA by making explicit reachable configurations of the AFA and transitions between them,
where a configuration is a set of all conjunctive branches possibly reached after reading some
word. Efficient AFA emptiness testing algorithms mitigate the worst-case complexity by
focusing on the reachability question while avoiding generating the entire NFA. They exploit
the structure of the configurations to define effective state space pruning and abstraction
techniques. The search is done on-the-fly, while constructing the NFA, the NFA transitions
stay implicit.
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AFA can be practical in applications where automata are combined with Boolean and
similar operations, as demonstrated in works on string solving [1, 51], LTL model checking
such as [48, 19, 26], analyzing regular expressions [15, 14], and deciding logics as WS1S
[47, 25] and have a strong potential to improve efficiency in regular model checking [7, 2, 53]
or deciding linear arithmetics [6, 52]. These applications indeed generate AFA with complex
transition relations over large alphabets (often in the form of bit-vectors). To keep them
manageable, it is necessary to work with transition relations represented symbolically.

We present a variation on the antichain AFA emptiness test of [22] that targets this
scenario. The original antichain algorithm fights the NFA state-space explosion by pruning
the reached configurations that are smaller than others (we say they are subsumed). This is
guaranteed to preserve the answer to the reachability query. We use the variant with the
backward exploration, found superior in [15, 24]. We assume that complex transition relations
are represented symbolically as boolean formulae over states and symbol bits. In this case,
the main bottlenecks are the computation of predecessors of already reached configurations
and the pruning of predecessors that are subsumed by other already reached configurations.

Our main contribution is a way to address both these bottlenecks simultaneously and
efficiently using a SAT solver. We use the SAT solver as a white box, giving us a direct
access to its internal data structures and routines and to leverage their efficiency optimally.
Specifically, (1) we use SAT solving with preferences [11, 21] and force the SAT solver to give
priority to solutions that correspond to subsumption stronger configurations. We also encode
the subsumption testing against reached configurations into the SAT query, and we boost
its performance by equipping the SAT solver with a specialised data structure, based on a
trie, for storing the antichain of reached configurations. We introduce novel techniques that
optimize the trie. Mainly, we allow elements of every branch of the trie to be sorted in its
unique way that maximizes prefix sharing (the standard trie uses a global fixed order), and
we integrate into it a technique of double clause watches to facilitate fast unit propagation.

We compared an implementation of our AFA emptiness check against the best AFA
emptiness checkers on a comprehensive benchmark from [24] (which compares accessible AFA
checkers). The results confirm a positive impact of our new techniques and show that our
AFA checker outperforms the state of the art on a significant portion of the benchmark, such
as examples coming from boolean combinations of regular properties, and has a strongly
orthogonal performance to the other checkers.

2 Related Work

Existing approaches to AFA emptiness and related problems [15, 34, 51, 28] adapt model-
checking algorithms such as IC3/PDR [8, 33, 9] or Impact [39], or use purely automata
approaches, antichain algorithms [54, 22], on which we build here, possibly enhanced with the
abstraction [29] or the up-to congruence techniques [16]. Available existing implementations
were recently compared in [24], showing complementary results of different tools and al-
gorithms. We note that despite being presented as a modification of the antichain algorithm,
our techniques could be applied to most of the above algorithms, and to any algorithm that
generates subset-maximal predecessors/successors under a transition relation formula and
prunes away those subsumed by existing configurations (also e.g. antichain algorithms for
inclusion checking of NFA, tree automata, context-free grammars).

Many approaches and tools use symbolic representations of transitions, BDDs, logical
formulae, or intervals of numbers [41, 35, 32, 37]. The concept of symbolic automata
encapsulates a class of symbolic representations generically [17, 16]. The works [15, 34, 51]
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end up translating the transition relations to and-inverter graphs [40] and delegating the
decision problem to a model checker. Our representation of AFA, with the transition relation
described by boolean formulae over states and symbol bits, is one of the most permissive
and hence compact and flexible (the other approaches require for instance that the formula
is a conjunction of a part talking only about symbols and a part talking only about states,
which by itself may lead to verbosity).

Among many existing SAT solvers, MiniSAT [23], on which we build, is relatively old,
but still performing well on a number of real-world problems. It is a textbook example of a
modern SAT solver based on the CDCL algorithm (conflict-driven clause learning) which is
simple and well-documented. All modern SAT solvers are based on CDCL (except few based
on deep learning [43, 3]) and share many similarities with MiniSAT, some of them [4, 44] are
even founded on its source code. They differ mostly in heuristics, preprocessing, inprocessing
(i.e. simplification of the problem during solving), and specialized features (like XOR support
in Cryptominisat [44]). The SAT Competition 2023 was dominated by CaDiCaL and Kissat
[5], which are focused on advanced heuristics and inprocessing, fine-tuned for typical SAT
benchmark classes.

SATO solver [55] is the only SAT solver that used a trie-based data structure and
achieved moderate speed-ups in general SAT solving. Unlike us, they did not specialise in
AFA emptiness, trie in SATO were not combined with clauses and CDCL was hence harder
to implement efficiently (SATO has dropped its use of tries before implementing CDCL),
they also did not consider the mixed-order trie. Our implementation of watched literals also
allows more utilization of the prefix sharing in the trie. The trie was also used in the CNF
preprocessor of Alembic [31], to achieve reusing the preprocessor state on shared prefixes of
clauses.

We use the trie primarily for the subset query: testing whether a given set has a superset
among sets stored in a data structure. There are alternative data structures for that. We have
made a preliminary comparison of the applicable data structures: LVBDDs [30], covering
sharing trees [20], set tries [27], and SAT, which has indicated that the trie has the best
performance and is simpler than the covering sharing trees that performed similarly.

3 Preliminaries

Boolean formulas and SAT. A Boolean formula 𝜓 over a set of variables 𝑋 is generated by
the grammar 𝜓 ::= 0 | 1 | 𝑥 | 𝜓 ∧ 𝜓 | 𝜓 ∨ 𝜓 | ¬𝜓 where 𝑥 ∈ 𝑋. We use B(𝑋) to denote the set
of all Boolean formulae over 𝑋. A positive Boolean formula is a Boolean formula without
negation and 0. The set of all positive Boolean formulae over 𝑋 is denoted B+ (𝑋). A literal is
a variable or a negated variable. 𝑚 |= 𝜑 denotes that the (boolean) assignment 𝑚 : 𝑋 → {0, 1}
satisfies 𝜑 (it is a model/solution). We will often abuse the notation and treat a boolean
assignment as the set of variables assigned 1 in it (we write 𝑥 ∈ 𝑚 to denote 𝑚(𝑥) = 1 and
relate assignments using ⊆). 𝜑 is satisfiable iff it has a model. A formula in CNF (conjunctive
normal form) is a conjunction of clauses, each being a disjunction of literals.

An instance of the satisfiability problem (SAT) is a CNF, and its solution is a model or the
answer UNSAT if no model exists. For simplicity, we will present our algorithms in the context
of the well-known Davis–Putnam–Logemann–Loveland (DPLL) method [18], even though
most of the modern solvers (including ours) are based on its successor, conflict-driven clause
learning (CDCL) [38, 42]. Our novel techniques are not affected by the CDCL extension.
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Algorithm 1 DPLL augmented for computing preferred models [11].

Input: 𝑚: a partial model, 𝑃: preferred literals, 𝜑: immutable CNF, 𝜑mut: mutable
CNF

Output: a set 𝑀 of preferred models (w.r.t. 𝑃) of 𝜑 ∧ 𝜑mut
1 Function SAT-PREF-REC(𝑚, 𝑃, 𝜑, var 𝜑mut):

// 𝑚′ is an updated (partial) model or CONFLICT, resp. UNSAT
2 𝑚′ ← unit-propagate(𝑚, 𝜑 ∧ 𝜑mut);
3 if 𝑚′ ≠ CONFLICT then
4 if 𝑚′ has an unassigned preferred literal 𝑝 ∈ 𝑃 then
5 return SAT-PREF-REC(𝑚′ ∪ {𝑝}, 𝑃, 𝜑, var 𝜑mut) ∪
6 SAT-PREF-REC(𝑚′ ∪ {¬𝑝}, 𝑃, 𝜑, var 𝜑mut);
7 else
8 𝑚′ ← SAT(𝑚′, 𝜑 ∧ 𝜑mut);
9 if 𝑚′ ≠ UNSAT then

10 𝜑mut ← 𝜑mut ∧
∨

𝜆∈𝑃 ∧ 𝑚′ |=¬𝜆 𝜆;
11 return {𝑚′};
12 return ∅;

SAT with preferences. We consider an extension of DPLL introduced in [11] that adds a
set of preferred literals 𝑃 as an additional input to the problem. SAT with preferences is a
procedure SAT-PREF(P,𝜑, 𝜑mut) that, given a set of preferred literals 𝑃, the immutable part 𝜑

of the input formula, and the mutable part 𝜑mut, returns the set of preferred models 𝑀 of the
conjunction 𝜑 ∧ 𝜑mut. The set of the preferred models consists of exactly one representative
per every class of models of 𝜑 ∧ 𝜑mut satisfying some maximal subset of 𝑃 (maximal wrt. ⊆).
The input formula is split into two parts because they are internally processed differently.
The mutable part is iteratively updated and a specialised data structure for it is a major
part of our contribution. Since it is relevant to the technicalities of our work, we recall in
more detail its implementation through a recursive procedure SAT-PREF-REC in Algorithm 1
(it is initially called with the empty partial model 𝑚). It is a basic DPLL scheme with two
differences:
1. On lines 4-6, the splitting heuristic chooses from the unassigned preferred literals first or

continues with the normal SAT procedure if all preferred literals are assigned.
2. If a model is found (at line 8), it is not returned immediately. Instead, the model is added

to the set of results and a clause is added (line 10) that prunes models with a subset of
positive preferred literals from the further search.

Alternating automata. Let 𝑉 = {𝑣1, 𝑣2, . . .} be a set of symbol-variables. An assignment
𝑎 : 𝑉 → {0, 1} is a symbol and Σ is an alphabet, the set of all symbols. A word is a sequence
of symbols and Σ∗ is the set of all (finite) words.

We consider alternating automata in a form used in [49]. Symbols are encoded as bit-
vectors and the transition relation for each state is given as a Boolean formula over states and
symbol-bits. The solutions of the transition formula encode both the symbol as well as the
set of states into which the state can transition. The formula allows to mix symbol-variables
and states almost arbitrarily, the only restriction is that states do not appear under negation.
This is more permissive and succinct than in other works, which typically require a separation
of a formula talking about symbols from the one talking about states, and sometimes even
the state formula in DNF.



L. Holík and P. Vargovčík 15:5

𝑄 = {𝑞1 · · · 𝑞5}, 𝑉 = {𝑣1, 𝑣2}, 𝜄 = 𝑞1, 𝐹 = ∅
𝛿(𝑞1) = ¬(𝑣1 ∨ 𝑣2) ∨ (𝑞1 ∧ ((𝑣1 ∧ 𝑞2) ∨ (𝑣2 ∧ 𝑞5)))
𝛿(𝑞2) = 𝑞3

𝛿(𝑞3) = 𝑞4

𝛿(𝑞4) = 𝑣1

𝛿(𝑞5) = 𝑣2 ∨ 𝑣1

Figure 1 AFA generated from an LTL formula ((𝑣1𝑋𝑋𝑋𝑣1) ∨ (𝑣2𝑋 (𝑣2 ∨ 𝑣1)))𝑈¬(𝑣1 ∨ 𝑣2). Even
though its set of final states F is empty, its language is not empty. A short accepting run exists, namely
{𝑞1}[𝑣1=0, 𝑣2=0]∅, as the transition to the empty configuration is enabled, as the model 𝑎∪𝑐2 = ∅∪∅ =
[𝑣1=0, 𝑣2=0, 𝑞1=0, · · · , 𝑞5=0] satisfies the first operand of the top-level disjunction in 𝛿(𝑞1). An example
of a longer accepting run would be {𝑞1}[𝑣1= 𝑣2= 1]{𝑞1, 𝑞2}[𝑣1= 𝑣2= 0]{𝑞3}[𝑣1= 𝑣2= 0]{𝑞4}[𝑣1= 𝑣2= 1]∅.

Formally, an alternating finite automaton (AFA) is a quintuple M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹) where
1) 𝑄 is a finite set of states; 2) 𝑉 is a finite set of symbol-variables; 3) 𝛿 : 𝑄 → B+ (𝑄 ∪ B(𝑉))
is a transition function; 4) 𝜄 ∈ 𝑄 is the initial state; and 5) 𝐹 ⊆ 𝑄 is the set of final states.
A configuration of M is a boolean assignment to states 𝑐 : 𝑄 → {0, 1}. The automaton
has the single initial configuration {𝜄} and the subsets of 𝐹 are final configurations. A
configuration 𝑘 transitions into a configuration ℓ via a symbol 𝑎, denoted as 𝑘

𝑎−−→ ℓ,
whenever 𝑎 ∪ ℓ |= ∧

𝑞∈𝑘 𝛿(𝑞). We write 𝑘 −→ ℓ if there exists a symbol 𝑎 such that 𝑘
𝑎−−→ ℓ

and say that ℓ is a successor of 𝑘 and that 𝑘 is a predecessor of ℓ. We will usually use 𝑐, 𝑑 for
configurations in a general context and 𝑘, ℓ when speaking about a pair of a predecessor and
a successor. We write Pre(𝑎, ℓ) and Pre(ℓ) to denote the sets {𝑘 | 𝑘 𝑎−−→ ℓ} and {𝑘 | 𝑘 −→ ℓ}
of predecessors of ℓ via the symbol 𝑎 or via any symbol, respectively. A run of M over a
word 𝑎1 · · · 𝑎𝑛 ∈ Σ∗ is a sequence 𝑐0, 𝑎1, 𝑐1, 𝑎2, . . . , 𝑎𝑛, 𝑐𝑛 of configurations interleaved with
symbols such that for all 𝑖 : 0 ≤ 𝑖 < 𝑛, 𝑐𝑖 𝑎𝑖+1−−−−−→ 𝑐𝑖+1. The run is accepting if 𝑐0 = {𝜄} and
𝑐𝑛 ⊆ 𝐹. The language of M is the set L(M) of all words with an accepting run. The AFA
emptiness problem, that we are concerned with in this paper, is to decide whether L(𝑀) = ∅.
Figure 1 has an example of an automaton with a non-empty language and its accepting run.
In the rest of the paper, we will consider a fixed AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹).

Antichain algorithm for AFA emptiness. In this paragraph, we will recall the backward
antichain algorithm for AFA emptiness which we optimize in this paper. AFA emptiness
is well known to be a PSPACE-complete problem. It requires deciding the reachability of
a final configuration from the initial one in the graph of the relation −→. A naive forward
algorithm explores the graph from the initial configuration in a search for a final one, the
naive backward algorithm starts from the final configurations and searches for the initial
configuration following −→ backwards. An obvious problem is the possible exponential
explosion of the search space of configurations. The antichain algorithms, first proposed
in [22], introduce a search space pruning strategy based on subsumption of configurations.
Antichain algorithms exist in several variants, from which we use the backward antichain.
It is based on the backward naive algorithm and was found empirically superior over the
forward variant in [15, 24].

Let us first outline the essence of the backward antichain informally. The subsumption
relation used to prune the space of configuration is, in its basic variant which we use here,
simply the set containement: a configuration 𝑐′ subsumes a configuration 𝑐 iff 𝑐 ⊆ 𝑐′. The
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Algorithm 2 Basic antichain algorithm.

Input: AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹)
Output: Is the language of M empty?

1 if 𝜄 ∈ 𝐹 then return NOT EMPTY ;
2 Visited ← {𝐹};
3 𝑊 ← {𝐹};
4 while 𝑊 ≠ ∅ do
5 ℓ ← pop(𝑊);
6 for 𝑎 ∈ Σ do
7 for 𝑘 ∈ Pre(𝑎, ℓ) do
8 if not 𝑘 ⊆∈ Visited then
9 if 𝜄 ∈ 𝑘 then return NOT EMPTY ;

10 Visited ← ⌈Visited ∪ {𝑘}⌉;
11 push(𝑊, 𝑘);
12 return EMPTY

key property that allows to discard the configurations subsumed by other already reached
configurations in antichain algorithms is that the subsumption is a simulation relation on
the (reversed) relation −→. The property that holds with our definition of AFA is actually
even stronger: If 𝑘 −→ ℓ, 𝑘 ′ ⊆ 𝑘, and ℓ ⊆ ℓ′, then 𝑘 ′ −→ ℓ′. This can be shown to justify the
correctness of an optimized AFA emptiness test that: (1) starts the backward exploration
of configuration space from only the maximal accepting configuration 𝐹, (2) keeps only
the antichain (a set of incomparable elements) of the subsumption-maximal configurations
through the search, and (3) concludes reaching the target on finding any configuration that
includes 𝜄.

Let us now recall the backward antichain algorithm for testing AFA emptiness more
formally. For a set/configuration 𝑐 and a set of configurations/sets 𝐴, the subset query of
𝑐 towards 𝐴, denoted 𝑐 ⊆∈ 𝐴, stands for ∃𝑑 ∈ 𝐴.𝑐 ⊆ 𝑑. An antichain is a set of elements
incomparable wrt some preorder, here a set of configurations ordered by ⊆. For any set of
configurations 𝐴, ⌈𝐴⌉ = {𝑐 ∈ 𝐴 | ¬∃𝑑 ∈ 𝐴. 𝑐 ⊂ 𝑑} is the set of its inclusion-maximal elements.

The pseudocode of the backward antichain algorithm is in Algorithm 2. In addition to
the antichain of the inclusion-maximal set of visited configurations Visited, it maintains a
worklist 𝑊 of configurations to be explored, where exploring a configuration means finding
all its predecessors on lines 6-7, filtering out the subsumed ones on line 8, checking for the
initialness on line 9, and updating the antichain and worklist on lines 10-11. In the paper, we
focus on scenarios where the transition relation is large as a consequence of a large alphabet
Σ. In such cases, Algorithm 2 has two bottlenecks.

First, the algorithm spends most of its time on line 8 with the subset query, where, for
every predecessor of a visited configuration ℓ, it checks that it is not subsumed by other
visited configurations stored in the antichain Visited. The efficiency of this subset query is
obviously the primary concern since the antichain may grow exponentially large. A similar
and also expensive operation is line 10, pruning the antichain from configurations subsumed
by 𝑘. Line 10 is however called only a fraction of times line 8 is called (only when the test
on line 8 passes), so it is much cheaper overall.

The second bottleneck is the iteration through all predecessors, Pre(ℓ), on lines 6 and 7.
We call it predecessor iteration. When the alphabet is large, it is often the case that Pre(𝑎, ℓ)
and Pre(𝑏, ℓ) have a non-empty intersection, and the inner for-loop body is thus called many
times to generate the same predecessor 𝑘.
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(a)
𝛿(𝑞1) = 𝑞1 ∨ (𝑣1 ∧ 𝑞2)
𝛿(𝑞2) = (𝑞2 ∧ 𝑣1) ∨ ¬𝑣1

(d)

(b)

(c)

Figure 2 Representation of 𝛿 and its transformation to CNF. The transition formulae in (a)
correspond to the trees in (b) where isomorphic sub-trees can be shared as in (c) and the CNF
obtained by Tseyitin transformation is in (d). The links connecting states to their transition formula
in (b) and (c) are shown in blue. In (d), the green literals are the names assigned by the Tseyitin
transformation to the original sub-formulae (shown in grey), Δ is shown in blue, and original
sub-formulae are also annotated with their equivalents produced by Tseyitin transformation. The
Tseytin variables are indexed by the top-most operator of the sub-formulae they represent plus a
number to distinguish between sub-formulae with the same top-most operator. Δ is depicted in blue.

This paper addresses the two bottlenecks, the subset query and the predecessor iteration,
via the use of a succinct symbolic representation of the transition function and SAT solvers.

4 Symbolic Transition Function as Formula DAG

Various tools use a symbolic representation of large transition relations with large alphabets,
using BDDs, intervals, formulae, effective boolean algebras, and implement the predecessor
iteration efficiently in a manner that does not unfold the succinct representation. We use an
alternative that is general and often very succinct. The transitions from a state are represented
as a state-positive boolean formula in a compact DAG form (each single sub-formula is
represented only once). The transition function 𝛿 particularly maps states to boolean formulae.
The forest of abstract syntax trees of all formulae in the image of 𝛿 is a directed acyclic graph
(DAG). Nodes are labelled by the function symbols 0, 1, 𝑞 ∈ 𝑄, 𝑣 ∈ 𝑉,∧,∨,¬ and represent
subformulae, and each state 𝑞 in the domain of 𝛿 is linked to the node representing 𝛿(𝑞). See
Figure 2b, where links from the domain are blue. Structurally equivalent nodes are merged,
see Figure 2c.

Since we are going to process the formulae in a SAT solver, we transform the forest of
transition formulae into CNF using the Tseytin transformation. It is almost the standard
Tseytin transformation, up to that it does not generate a Tseytin variable for the entire
formula. We briefly detail it below. It generates the CNF formula CNF(𝛿). First, the name
of a formula 𝜑, 𝑛(𝜑), is defined as 𝜑 itself if 𝜑 is a variable, as ¬(𝑛(𝜓)) if 𝜑 is ¬𝜓, and as
the Tseytin variable 𝑣𝜑 if 𝜑 = 𝜓 ⊕ 𝜓′, ⊕ ∈ {∧,∨}. In the last case, we also define a naming
formula of 𝜑 as the CNF version of the equivalence 𝑣𝜑 ↔ 𝑛(𝜓) ⊕ 𝑛(𝜓′). Finally, CNF(𝛿) is
the conjunction of all naming formulae of (con/dis)junctions that are sub-formulae in the
image of 𝛿.

The representation of 𝛿 that we will use then consists of 1) the formula CNF(𝛿), 2) the
mapping Δ : 𝑄 → 𝑉𝑇 ∪𝑉 ∪𝑄 ∪ {¬𝑣 | 𝑣 ∈ 𝑉𝑇 ∪𝑉} that maps each 𝑞 ∈ 𝑄 to the name of 𝛿(𝑞),
the literal 𝑛(𝛿(𝑞)). An example is in Figure 2d.
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5 Predecessor-subset Query with SAT Solvers

We will now show how SAT solving with preferences can be used in AFA emptiness check
in a way that makes good use of the fast internal data structures of the solver, and how to
further improve this by specialised data structures.

We combine the subset query and the predecessor iteration into a predecessor-subset
query. Given a successor ℓ and an antichain of configurations Visited, the predecessor-subset
query returns the antichain of maximal predecessors of ℓ that are not subsumed by Visited,
that is, the set

newpre(ℓ,Visited) = ⌈Pre(ℓ) ∪Visited⌉ \Visited

This is done by calling the procedure SAT-PREF(𝑃 := Δ(𝑄), 𝜑, 𝜑Visited) from Algorithm 1
on the formula that consists of the immutable part 𝜑 that represents the AFA transition
relation and ℓ, and the mutable part 𝜑Visited that represents the antichain Visited. The set
of preferred literals is specified as 𝑃 := Δ(𝑄), the variables that correspond to the predecessor
states in the CNF formula CNF(𝛿) from Section 4 representing the transition relation.

The immutable part 𝜑 is

𝜑 := CNF(𝛿) ∧ 𝜑ℓ where 𝜑ℓ =
∧

𝑞∈𝑄\ℓ
¬𝑞

After the transition relation in the first conjunct, the second conjunct 𝜑ℓ expresses that we
want a predecessor of particularly ℓ. It asserts that after taking the transition from the
predecessor, no state outside ℓ should be touched.

The mutable formula 𝜑Visited , used to prune the solutions subsumed by the antichain
Visited, is

𝜑Visited :=
∧

𝑐∈Visited

∨
𝑞∈𝑄\𝑐

Δ(𝑞)

Here, a clause for 𝑐 ∈ Visited says that some state not in 𝑐 must appear in a new predecessor
clause, a solution to the SAT problem. The new predecessor cannot be a subset of 𝑐. The
antichain Visited is initialised with Visited := {𝐹}.

The predecessor will be read from each model m𝑘 from the returned set of preferred
models as

𝑘 (m𝑘) := {𝑞 ∈ 𝑄 | m𝑘 |= Δ(𝑞)}

Note that, by the construction of the input formulae, m𝑘 encodes precisely one transition
𝑘

𝑎−−→ ℓ. We extract the states of 𝑘 by taking the Δ-variables, representing the pre-image,
that are set to 1. The procedure SAT-PREF guarantees that it will be a maximal predecessor
of ℓ not subsumed by Visited.

The emptiness test needs to add the newly generated predecessor to the antichain. In
SAT-PREF, this is done automatically because of the choice of 𝜑Visited as the mutable part
and of Δ(𝑄) as the preferred literals. Indeed, adding a configuration 𝑐 to the antichain
Visited represented by 𝜑Visited means adding a clause with the literal Δ(𝑞) for every 𝑞 not
contained in 𝑐. Let 𝑐 = 𝑘 (m𝑘). Since the states 𝑞 that are not contained in 𝑐 are just the
ones for which Δ(𝑞) is not satisfied by m𝑘 , adding the predecessor 𝑘 (m𝑘) to the antichain
can be described by the following assignment:

𝜑Visited ← 𝜑Visited ∧
∨

𝑞∈𝑄 ∧m𝑘 |=¬Δ(𝑞)
Δ(𝑞)
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Algorithm 3 Clausal antichain, antichain algorithm with combined subset-predecessor
query.

Input: AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹)
Output: Is the language of M empty?

1 if 𝜄 ∈ 𝐹 then return NOT EMPTY ;
2 𝜑Visited ←

∨
𝑞∈𝑄\𝐹 Δ(𝑞);

3 𝑊 ← {𝐹};
4 while 𝑊 ≠ ∅ do
5 ℓ ← popMaxSize1 (𝑊) ;
6 for m𝑘 ∈ SAT-PREF(Δ(𝑄), CNF(𝛿) ∧ 𝜑ℓ , var 𝜑Visited) do
7 if 𝜄 ∈ 𝑘 (m𝑘) then return NOT EMPTY ;
8 push(𝑊, 𝑘 (m𝑘));
9 return EMPTY

Since we call SAT-PREF with 𝜑mut := 𝜑Visited and 𝑃 := Δ(𝑄), this assignment corresponds to
the update of 𝜑mut at line 10 of Algorithm 1, namely 𝜑mut ← 𝜑mut ∧

∨
𝜆∈𝑃 ∧m𝑘 |=¬𝜆 𝜆.

The full SAT-enhanced antichain algorithm is summarized in Algorithm 3, where the
predecessor-subset query covers the entire loop on line 6 of Algorithm 2, except worklist
update and the initialness check. Note that SAT-PREF here indeed simultaneously finds
newpre(ℓ,Visited), i.e., solves the subset query and the maximal predecessor iteration, and
updates the antichain represented by 𝜑Visited .

We call Algorithm 3 the clausal antichain. A brief experiment has shown that its
maximisation of predecessors via preferences is fundamental for the performance of the
antichain algorithm, hence we use the feature by default in all our experiments. The lack of
support for preferences in incremental SAT solvers is a major reason why one cannot just
seamlessly exchange out-of-the-shelf solvers in the clausal antichain algorithm. The ease of
implementing modifications such as this is one of the reasons why we are using MiniSAT.

6 Trie for Storing the Antichain

The antichain is the largest data structure that can grow exponentially in |𝑄 | and the
subsumption queries over it are the most costly operations of the emptiness check. We
have therefore introduced a specialised data structure based on trie for it. It replaces the
internal SAT solver structures for the mutable formula, that represents the antichain. The
clausal antichain equipped with a trie will be called trie antichain. Our trie data structure is
designed to fit the following requirements:
1. a compact representation of the antichain Visited,
2. a fast insertion of the newly found predecessors into Visited, and
3. a fast subset query that integrates well with the routines and data structures of the SAT

solver.

Our choice to use the trie was based on a small experiment that we did with known data
structures for storing sets of sets, specialized for fast subset queries. The experiment was
running unoptimized implementations of lattice-valued BDD (LVBDD) [30], set tries [27],

1 popMaxSize is a simple heuristic, implemented previously e.g. in VATA [37], that takes a configuration
with the greatest cardinality first, in a belief that its predecessors could prune a large part of the search
space (our short experiment has indeed shown a performance improvement over FIFO/LIFO).
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(a)
(𝑣1 ∨ 𝑣4)∧
(𝑣2 ∨ 𝑣4)∧

(𝑣3 ∨ ¬𝑣5 ∨ 𝑣6)∧
(𝑣3 ∨ ¬𝑣5 ∨ 𝑣7)

(b)

Figure 3 Clauses (a) and the corresponding trie (b) with the fixed ordering 𝑣1 < · · · < 𝑣7.

Figure 4 Trie that is smaller with a nonfixed ordering than with any fixed one.

covering sharing trees [20], and SAT unit propagation for positive boolean formulae (AND-
OR graphs) with various approaches to formula simplification and sharing detection. The
algorithms were solving a number of subset queries 𝑥 ⊆∈ 𝑌 with random sets. We were
counting the numbers of reads and writes to the internal data structures, to get a picture
of how could the optimized counterparts perform. LVBDDs solved the subset query very
efficiently but their construction was unbearably prone to explosion. Set tries performed the
best, closely followed by covering sharing trees (which are harder to implement). AND-OR
graphs performed much worse than set tries and covering-sharing trees.

Standard trie. Trie is a data structure that was originally introduced in [27] for a compact
representation of sets of strings. It is an ordered tree with a single root on top, denoted
Y, and edges pointing downwards. The other nodes are labelled with alphabet symbols.
Immediate successors of a parent node are its children and nodes without children are leaves.
A branch of a trie node 𝑛 is a path from 𝑛 to a leaf, excluding 𝑛. A trie represents a set
of strings, which are obtained by concatenating node labels of branches of Y, denoted root
branches. Trie has been used to represent sets of sets of totally ordered elements, where a
single set corresponds to a sorted string of its elements. It can thus be used to represent
a CNF, viewed as a set of sets of literals. We use it to represent the antichain clauses of
𝜑Visited . An example of a trie representing the clauses from Figure 3a is shown in Figure 3b.

Mixed order trie. Sorting each branch using the same (fixed) order does not give optimal
sharing of subsets as prefixes, as illustrated in Figure 4, where no fixed order would create
as small trie as the one shown in the figure. Even if a good fixed order existed, it would
be hard to guess it in advance. We therefore introduce a mixed-order trie where we do not
fix the ordering. Allowing every branch to be sorted differently does indeed make our trie
more compact. A new set 𝑥 is added to the trie by finding a root branch 𝑦 with a longest
prefix that is a subset of 𝑥, and appending a new branch with the elements 𝑥 \ 𝑦 after its
prefix with the elements 𝑥 ∩ 𝑦 (with elements sorted arbitrarily). This would normally make
the addition more expensive, as it would involve a search for a root branch with the largest
prefix included in 𝑥. However, as we will explain in Section 6.2.2, in the context of AFA
emptiness and generation of newpre(ℓ,Visited), the search can be completely avoided.
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6.1 Clausal Watches

We adapt the well known double-watch literals scheme to our trie data structure. The
scheme has been introduced in [55] and is consistently used in modern SAT solvers where it is
essential for the efficiency of unit propagation and detection of conflicts. Let us recapitulate
it briefly. The solver constantly watches two unassigned literals at each clause that is not
yet known to be satisfied.2 When one of the watched literals is assigned 0 and all the other
unwatched literals are 0 as well, then unit propagation is triggered and assigns 1 to the other
watched literal because it is the only way to satisfy the clause. When 0 gets assigned to both
watched literals and all other literals in the clause are assigned 0, then a conflict is detected.
Otherwise, if other literals are unassigned or 1 on assigning 0 to a watched literal, the watch
is simply moved to one of them. No action is required during backtracking where some of
the watched variables may change values from 1 to X, keeping the only invariant that two
distinct non-0 literals are watched.

6.1.1 Double-Watch Scheme in Trie

We will detail our adaptation of the double-watch literals scheme to the clauses stored in the
trie. It concerns clause prefix sharing, avoidance of repeated scanning of clauses on triggering
a watch, and handling of backtracking. We will also show in Section 6.2 how our technique
can work in synergy with the SAT search for preferred models, especially when it is used to
generate newpre(𝑐,Visited).

The double-watch technique is implemented on tries using two sets of guards, the Front
and the Rear guards, that are essentially watches that can be assigned to nodes (and store
some additional data, e.g., a pointer from Front to Rear). The SAT solver will start with
one Front and one Rear at the root of the tree, and they will descend down the tree, Rear
following Front. The following invariant will hold after the initialisation (described below)
and after every unit propagation phase. For every root branch of the trie (clause):
1. If the root branch is not yet satisfied (does not have a 1 valued node), then it contains a

single Front and a single Rear . In satisfied root branches, Front may be missing.
2. The Rear is never below the Front.
3. The Rear is at the first node valued X or 1 (X means no value assigned yet).
4. If the Rear is valued X, then the Front is on the second highest node that is X or 1.

Initially, we have a single Front and a single Rear at the root of the trie. Note that
the root is a special node without a literal. We work with it as it had the constant value
0. The invariant (points 1-4 above) is established by initialisation, by calling functions
move-front-down and then move-rear-down on the root. The functions implement a
recursive descent of the guard watches through the tree and spreading of the guard watches
to the branches, and are used to reestablish the invariant after a decision or unit propagation.
The descend functions and the handlers of assigning 0 to literals are given in pseudocode in
Algorithm 4.

The move-front-down procedure searches for a new place for Front in the branches of
the node on which it was called. In every branch, it either

2 The MiniSAT solver provides a watch interface where handlers can be registered to a literal. When the
SAT solver valuates the watched literal with 0, its registered handlers get triggered.
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Figure 5 Initial movement of front (blue) and rear (tan) guards; unit propagation is violet.

1. places a watched copy of the Front at the highest node valued X (unassigned value) (lines
7-9), or,

2. on arrival at the leaf without seeing X on the way, it calls unit propagation (line 12) that
assigns 1 to the literal guarded by the Rear above or triggers a conflict if the Rear ’s
literal is already 0.

The move-rear-down procedure called on a node with a Rear guard works analogously, but
1. The Front is also sent downwards, in order to stay below the Rear (lines 19-22).
2. Rear never triggers unit propagation at leaves, as that is done when handling Front.

It is important to note that both move-front-down and move-rear-down are always
called from a node where the respective guard is no longer present/watched. Either they are
called from the watch handler, that calls line 1 or 13 and removes the watch automatically,
or from line 22, which is preceded by the removal of the watch on line 21.

There are also two interesting implementation details important for efficiency. First,
nodes keep a flag allowing to detect that the guard Front is watched on the node (on line
19), and the flag is kept up to date on lines 8 and 4. Second, a fast unit propagation on line
12 uses instant access from the Front to its Rear . The instant access is used also at line 2,
to check if the root branch is not already satisfied, in which case move-front-down would
be useless. This is facilitated by the pointer front .rear , which is up-to-date initially and is
updated on line 20, where the Rear catches up with the front. Updating only at this point is
indeed enough. Notice that when Rear moves, the connection from the Front guards to its
copies created on line 8 will not be correctly established. It will however be reestablished
in time on line 20. Indeed, the Front must be below the new Rear , hence all the literals
on the way to it are valued 0, since Front moves down only via 0 valued nodes. Therefore,
the descend of Rear , which also continues uninterrupted on 0 valued nodes, will reach the
Front, where the connection is reestablished by line 20. When Front is moving down, it and
its copies are keeping the connection to the right Rear (the function new-front copies the
pointer).

We note that in our implementation of Algorithm 4, every active Rear guard has a list of
locations of the Front guards below and every Front guard has a pointer to its Rear above.
This is used when Rear is assigned 0, to immediately “jump” to the Front guards.

▶ Example 1. Guard movement from their initial position at Y, is shown in Figure 5. At
first, Front guards perform a series of move-front-down from all nodes that have value 0
(including Y). Then, Rear guards are similarly transported from the root node to the nodes
guarded by Front guards, triggering their move-front-down again. The node 𝑣7, on which a
front guard lands, is valuated to zero but as it is a leaf node, instead of a downward move, a
unit propagation of the literal under its rear guard (¬𝑣5) is triggered.
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Algorithm 4 Implementation of Assignment Watches in a Trie.

1 Function front-watch-handler(front):
2 if value (front.rear.literal) ≠ 1 then move-front-down(front) ;
3 Function move-front-down(front):
4 front.node.front ← NULL;
5 if front.node is not a leaf then
6 foreach child of front.node do
7 if value (child.literal) = X then
8 child.front ← new-front(front, child);
9 watch(¬child.literal, front-watch-handler, child.front);

10 else if value (child.literal) = 0 then
11 move-front-down(new-front(front, child));
12 else unit-propagate(front.rear.literal, front.node); // front may cause

conflict
13 Function rear-watch-handler(rear):
14 move-rear-down(rear);
15 Function move-rear-down(rear):
16 foreach child of rear.node do
17 childRear ← new-rear(rear, child);
18 if value (child.literal) ≠ 1 then
19 if child.front then
20 child.front.rear ← childRear;
21 unwatch(child.front);
22 move-front-down(child.front);
23 if value (child.literal) = X then
24 watch(¬child.literal, rear-watch-handler, childRear);
25 else move-rear-down(childRear) ;

6.1.2 Backtracking in Trie with Double Watches

In the case without the trie, there is no need for backtracking a clause state because clauses
have no state. A clause is just scanned from left to right whenever its watched literal is
valuated. The case with the trie is different: the watched guards must satisfy their invariant,
mainly, that on root branches that are not satisfied, Rear and Front watch the highest and the
second highest unassigned node and every other node above them is valued 0. Backtracking
must thus return the positions of the guards to the previous state.

This is achieved by using guard snapshots that are created when decisions happen. A
snapshot at the decision level 𝐿 consists of two vectors: 1) one capturing the state of new
guards, those that exist after the unit propagation triggered by the decision terminates but
did not exist before the decision, 2) and one capturing the state of old guards, those that
existed before but not after 𝐿. When the decision 𝐿 is undone by backtracking, the new
guards get removed and the old guards get reestablished.

As depicted in Figure 6, both lists of guards are empty when a new decision level is
enetered and get updated when guards move downwards within the decision level. Namely,
the functions move-front-down and move-rear-down would additionally call a procedure
that updates the snapshot. The first move of a guard within the decision level adds its
position to the list of old guards, and every further move replaces the guard in the list of
new guards by its descendants received by the children of the current node.
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Figure 6 Backtracking. On the left, the position of Rear 𝑅0 and Front 𝐹0 at the end of level
0 (L0 ) is shown. Then, at the start of L1, the assignment 𝑣6 := 1 is decided, from which an
external clause unit propagates 𝑣1 := 0. This triggers the movement of 𝑅0, which further triggers the
movement of 𝐹0. As 𝑅0 and 𝐹0 were not created in the current level L1, they are added to the list of
old guards. The list of new guards is updated with 𝑅1, 𝐹1, 𝐹2. The unit propagation continues and
another external clause unit propagates 𝑣2 := 0, which triggers further guard movement. The moved
guards have been created in L1, therefore, old𝐿1 is untouched. The moved guards are replaced
in new𝐿1 with their descendants. As 𝐹1 was moved down from the leaf node, it caused a unit
propagation 𝑣3 := 1 at its rear 𝑅2. The consequent unit propagation raises a conflict. If we were in
the context of CDCL, a conflict analysis follows, during which the node of the former 𝐹1 is queried
for the reason of the propagation. The reason contains negations of 0-valued literals of the root
branch that ends in the queried leaf node, namely ¬𝑣1 ∧ ¬𝑣2. Backtracking from L1 recreates the
guards from old𝐿1 and deletes the guards listed in new𝐿1, which reverts the trie to the state at the
end of L0.

This mechanism can be implemented fairly efficiently by equipping every guard with a
pointer to its place in the snapshot. The pointer allows a constant-time quick removal/re-
placement of the guard from the snapshot and an addition of a guard to the snapshot is
constant time.

6.2 Constructing a Trie
A SAT solver can use the trie in two ways. A generic mode that can be used in general SAT
solving can be optimized and fine-tuned to fit the generation of newpre(𝑐,Visited) in the
AFA emptiness check. We will first comment on the generic mode and then contrast the
AFA specialised mode against it.

6.2.1 Constructing a Trie For General SAT Solving
The set of clauses in the input of a SAT solver is added to the trie in a standard way. For
the input clauses to be added to the trie, we first need to pick an ordering of literals and sort
the clauses (a good option is for instance ordering by the frequency of literals in the input
clauses).

A clause is then added by traversing the trie from the root (Y) down, simultaneously with
the added clause. The child into which the traversal descends is chosen as the one with the
𝑖th literal of the clause. If the child with the 𝑖th literal is not present, the descend ends and
the remaining literals of the clause are added as a new branch of the current node.
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▶ Example 2. Let us add the clause 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 into the trie from Figure 3 b). The first
literal 𝑣1 of the clause is found among the children of the root. The second one is not found
among the children of the node 𝑣1, so the new branch 𝑣3,¬𝑣5 is added under the node 𝑣1.

In case that all literals of the added clause are exhausted (𝑖 is larger than the length of
the clause), the descend also ends and the entire subtree beyond the (𝑖 − 1)th visited node is
removed (rather all the sub-trees rooted by the children of the (𝑖 − 1)th node). Indeed, the
removed root branches represented clauses strictly larger than the added clause, hence they
were redundant (by boolean absorption).

▶ Example 3. Adding the clause 𝑣3 into the trie from Figure 3b would remove the nodes
¬𝑣5, 𝑣6, 𝑣7. Note that not all boolean absorption is detected this way – it is highly dependent
on the order of clauses. E.g., the clause 𝑣4 would be created as a new branch of Y and the
absorbed branches 𝑣1, 𝑣4 and 𝑣2, 𝑣4 would remain in the trie.

6.2.2 Constructing a Trie for AFA
In the AFA emptiness check, we optimize handling of the trie for the particular case of
generating newpre(𝑐,Visited). We use the mixed-order trie, with root branches representing
clauses ordered arbitrarily. The flexible ordering of root branches allows to maximize sharing
of prefixes and hence to reduce the size of the trie. Normally, the cost of allowing the mixed
order would be heavy. Whenever adding a clause, we would have to perform an expensive
depth-first search for a branch with a longest prefix included in the clause. However, as we will
explain below, due to the particular way we are using the trie in generating newpre(𝑐,Visited)
and the particular way of how guards are implemented (Section 6.1.1), an addition of a
clause is cheap and requires no search at all.

Let us now describe the mechanism in detail. Recall that root branches are clauses of the
formula 𝜑Visited . The search for a new predecessor starts in a state in which the previous
SAT call finished with a model m𝑘 that encodes the newly found predecessor 𝑘 such that for
each 𝑞 ∈ 𝑄, (m𝑘 |= Δ(𝑞)) ↔ 𝑞 ∈ 𝑘.

Adding a predecessor to the antichain. To find the next predecessor, we need to add 𝑘 to
Visited and restart the SAT solver, preferably in a way that reuses as much of the previous
computation as possible. Recall that adding 𝑘 to Visited means adding to the trie the clause

𝜓𝑘 =
∨

𝑞∈𝑄\𝑘
Δ(𝑞) =

∨
𝑞∈𝑄 ∧m𝑘 |=¬Δ(𝑞)

Δ(𝑞)

As discussed in Section 6.1.1, the SAT solver finished in a state where on every branch 𝜋,
the Rear guard is on the first non-0-valued literal, and everything in the prefix 𝜋 above it is
valued 0.

▶ Lemma 4. On every branch 𝜋, the prefix 𝜋 ending at the parent of the rear guard is the
largest prefix valued only by zeroes.

Hence, on every branch 𝜋, the path 𝜋 from the root (excluded) to the parent of the rear
guard is the longest prefix included in 𝜓𝑘 We can therefore add 𝜓𝑘 efficiently to the trie as
follows. We chose a root branch 𝜋 with a deepest rear guard. Thus, 𝜋 is a root branch with
a largest prefix, 𝜋, included in 𝜓𝑘 . We append elements of 𝜓𝑘 \ 𝜋 as a new branch after 𝜋.
We call it newly added branch.
(We abuse the notation and implicitly convert between sequences of nodes and sets of literals.
For example, 𝜓𝑘 \ 𝜋 above stands for the branch that arises from the branch 𝜓𝑘 by removing
the nodes with literals of the path 𝜋.)
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Figure 7 Adding a new clause 𝜓𝑘 = 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 to a trie. Rear/Front guards are tan/blue, the
largest prefix included in 𝜓𝑘 is yellow, the added branch is green.

▶ Example 5. In Figure 7, we are adding a clause 𝜓𝑘 = 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 to the trie. The
deepest rear guards are 𝑣6, 𝑣7, we select one of them arbitrarily, 𝑣6. The path from Y to the
parent of 𝑣6 is 𝜋 = 𝑣3,¬𝑣5. It is a longest prefix of the root branches that is included in the
set 𝜓𝑘 . The branch 𝜓𝑘 \ 𝜋 = 𝑣1 is added to the end node of 𝜋. Note that 1) the new root
branch 𝑣3,¬𝑣5, 𝑣1 is fully valuated with 0, hence conflicting; and 2) if we used the fixed order
𝑣1 < · · · < 𝑣7 instead, we would add a longer branch 𝑣3,¬𝑣5 under the node 𝑣1.

Restarting the SAT solver. With a clause 𝑘 added to the antichain, the next call of the
SAT solver that finds the next maximal predecessor can reuse much of the previous state.
First, note that after finding m𝑘 , addition of the branch 𝜓𝑘 will cause a conflict exactly in 𝜓𝑘

(since all its literals are 0 in m𝑘). We may reuse much of the solver’s state by just starting
backtracking from the conflict in 𝜓𝑘 . We need to ensure that after the backtracking, the
guard invariant from Section 6.1.1 will be satisfied. These invariants would hold in common
backtracking during SAT solving, but as we have added a new branch 𝜓𝑘 \ 𝜋, we have to
enrich the snapshots of the guard history with guards in the newly added branch, as if it
always existed. The snapshots of the guards are reconstructed using a simulation of the
decisions that led to constructing m𝑘 .

The simulation uses decision levels of literals in the new root branch to determine positions
of Rear and Front in each decision level. It is based on the property that whenever a guard
movement is triggered in a level 𝐿, the guard moves down through all nodes valuated with a
lesser or equal level to 𝐿, because they already have the value 0, and it stops at the first node
with a higher level than 𝐿, which is still unassigned, or raises a conflict if such node does not
exist. The guard may also temporarily stop at nodes with the same decision level 𝐿, as they
might not be valuated yet, but it will continue from them later in 𝐿 (we are interested only
in the position of the guard at the end of the decision level 𝐿).

For efficient backtracking in the newly added branch, we sort it by the decision levels of
the literals. This way, during the backtracking, the guards in the branch will simply climb up.

▶ Example 6. Before describing the general algorithm, this example shows an intuitive
reconstruction of the guard history in a newly added branch. Figure 8 shows a new root
branch 𝜓𝑘 , with the newly added branch 𝜓𝑘 \ 𝜋 starting at its fifth node 𝑣5. Literals at
nodes are not used in the reconstruction (we only know that they all have values 0, and,
consequently, the deduction always ends with a conflict). The reconstruction is based solely
on decision levels when literals were valuated in the previous SAT solving. The decision
levels are shown on the left side of the nodes. At the right side, we can see the results of the
reconstruction – deduced positions of Rear and Front guards at the end of levels when they
moved.

We start the example at the end of level 1, when Rear is at 𝑣1 and Front is at 𝑣3 (we
skip explanation of why the guards are at those positions, anyway, before level 3, the guard
positions are irrelevant for enriching snapshots, as no guards are present in the newly added
branch).
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Figure 8 Reconstructing the history of guards in a new branch from decision levels of variable
assignments.

During level 3, node 𝑣2 is assigned 0 and the Rear triggers the downward move of the
Front, which stops as far as at node 𝑣6, as it is the first node that is assigned after level
3. The Front is then moved two steps down during level 4, because of 0-assignment to the
literals of the two nodes. In level 5, 0 is assigned to the literal under Rear , and Rear therefore
moves down to Front, triggering the move of Front to the next node. In level 7, another 0
assignment moves Rear one step down, which again moves Front one step down. In level 9,
both guards move from their positions but raise a conflict.

Let us generalize the deduction of guard positions from the previous example in a deduction
algorithm.
The input to the deduction is the new root branch 𝜓𝑘 , partitioned to the shared prefix 𝜋 and
the newly added branch 𝜓𝑘 \ 𝜋. The root branch 𝜓𝑘 is ordered as it is present in the trie –
the new suffix 𝜓𝑘 \ 𝜋 is ordered by the decision levels of its literals, but it may not be the
case for the shared prefix 𝜋.
The output of the deduction are two movement sequences, one for Rear the other for Front.
A movement sequence is either an empty sequence (if the guard does not visit the newly
added branch before the conflict level) or it is an alternation 𝐿1, 𝑁1, 𝐿2, 𝑁2, . . . , 𝑁𝑛−1, 𝐿𝑛 of
levels 𝐿𝑖 and such nodes 𝑁𝑖, onto which the guard moved in 𝐿𝑖. The level 𝐿1 is when the
guard enters the newly added branch and 𝐿𝑛 is the level of the conflict.

1. First, we find the level 𝐿𝑅0, when the Rear enters the newly added branch. It is the
greatest level of the shared prefix 𝜋, or 0 if 𝜋 is empty.

2. Then, we find the node 𝑁𝑅0, where Rear resides at the time when Front enters the newly
added branch (Rear stays at that node as long as until 𝐿𝑅0). It is the topmost node with
𝐿𝑅0, possibly Y.

3. Next, we find the level 𝐿𝐹0 when Front enters the newly added branch. It is the highest
level of 𝜋 \ {𝑁𝑅0}, or 0 if |𝜋 | ≤ 1.
This can be explained as follows. Rear visits 𝑁𝑅0 in the highest level above 𝑁𝑅0 (or in
level 0 if 𝑁𝑅0 is the first in 𝜋), let us call that level 𝐿push. It immediately triggers the
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downward move of Front. The Front then continues its movement in the suffix of 𝜋 below
𝑁𝑅0 without being pushed down by Rear and exits 𝜋 in the highest level of the suffix (or
immediately if the suffix is empty or 𝐿push is higher).

4. Next, we record Front movements in the levels 𝐿 such that 𝐿𝐹0 ≤ 𝐿 < 𝐿𝑅0 using the
following loop. The loop starts with 𝐿 ← 𝐿𝐹0 and ends when 𝐿𝑅0 ≤ 𝐿 (which may hold
initially). The following is the loop body. To the movement sequence of Front, we append
a movement 𝐿, 𝑁 where 𝑁 is the topmost node of 𝜓𝑘 \ 𝜋 that has a greater level than 𝐿. If
there is no such node, conflict is reached and the whole deduction is finished. Otherwise,
we set 𝐿 to the level of that node and repeat.

5. In the levels 𝐿 such that 𝐿𝑅0 ≤ 𝐿, both Rear and Front move in the newly added branch.
Rear moves in the same way as Front moved in the previous point. Front is always just
one node below Rear , which follows from the ascending order of decision levels in the
newly added branch. If Rear gets to the leaf, Front cannot be lower, conflict is reached
and the deduction is done.

After the movements of the two guards in the relevant levels are deduced, snapshots are
enriched in an obvious way. Namely, for all levels where a guard moves down (or causes a
conflict), 1) the guard is added to the list of old guards if the move started in the newly
added branch, 2) the moved copy of the guard is added to the list of new guards if it lands
in the newly added branch.

▶ Example 7. In Figure 8, the Front movement sequence is 𝐿3, 𝑣6, 𝐿4, 𝑣8, 𝐿5, 𝑣9, 𝐿7, 𝑣10, 𝐿9
and the Rear movement sequence is 𝐿5, 𝑣8, 𝐿7, 𝑣9, 𝐿9. In level 3, Front has moved into the
newly added branch from outside and landed at node 𝑣6. Therefore, only the list of new
guards of L3 is enriched with Front at that node. In level 4, the old (𝑣6) and new (𝑣8)
position of Front is added to the old and new list respectively. In level 5, Rear is coming
from outside, so its position at 𝑣8 is added only to the new guards, while both old (𝑣8)
and new (𝑣9) positions of Front are added to the respective lists. In level 7, both lists are
enriched with old/new positions of both guards. In level 9, both Rear at 𝑣9 and Front at 𝑣10
are added only to the list of old guards, as they started to move but a conflict was raised.

Initialization of the trie. The trie is initialized with the starting configuration 𝑄 \ 𝐹 of the
backward search represented as the clause

∨
𝑞∈𝑄\𝐹 Δ(𝑞) with an arbitrary ordering of the

literals, and both guards are placed at the root.

7 Experiments

Implementation. We have implemented the clausal and the trie antichain in the tool
AntiSAT, in C++, as a modification of MiniSAT [46], which we have chosen as a competent
and modern solver, yet still simple and well documented enough to be modified with
a reasonable effort. To implement the trie, we needed the version 1.12b, which is the
last version that supports other constraints than clauses. We have however ported back
major enhancements of the newer versions (except improvements of preprocessing), namely
StrengthenCC [45]. We have implemented the trie data structure with memory locality
and cost of allocations in mind: siblings are stored in a contiguous vector; added branch
is allocated in a single array; guard data are present just next to the data of the guarded
node. For SAT problems, the trie does not change during the solving, so we allocate a single
memory region where the whole trie is moved after the construction.
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Evaluation of AFA emptiness checking. The main focus of our experiment is to evaluate
our AFA emptiness checker against other checkers, and evaluate the impact of using trie
on the performance. We do not present a detailed evaluation of predecessor maximisation.
Without it, our solver was not competitive at all, hence we include it to the baseline.

We have used the benchmark set from [24] with the following modifications. We have
regenerated AFA from LTL because there was an unnecessary removal of final states applied
previously. Additionally, to mitigate the effect of obvious redundancies in automata structure,
we have applied simple preprocessing consisting of basic structural subformula sharing
detection, merging of states with the same subformula and the same finalness, removing
structurally unreachable states and their transitions, removing variables that occur only
positively or only negatively, and applying few boolean laws: double negation, idempotence,
annulment, absorption and complement law.3

We have compared the two variants of AntiSAT (with and without a trie) with the two
most successful tools from [24]: ABC [10] (using IC3/PDR) and Mata [13] (Mata does not
check AFA but boolean combinations of NFA, so it is not applicable to all benchmarks). All
solvers and preprocessing tools are run with a time limit of 60 seconds and a memory limit of
10GiB. The 60s seem sufficient and extending the time limit does not seem to influence the
overall comparison of tools significantly. Memory errors (which are very rare) are displayed
together with timeouts. The experiments were run on a machine with 12th Gen Intel(R)
Core(TM) i7-1260P CPU, running Linux. The results can be seen in Table 1 and Figure 9.
The following can be concluded:
1. The trie in AntiSAT improves solving times (by a factor of 2 to 11 on average), except on

“automata inclusion”, where it is slightly slower (but Mata is here much faster anyway).
2. ABC and Mata are both complementary to AntiSAT. AntiSAT shines in “bool comb”

benchmarks, Mata is very good at solving “automata inclusion”, while ABC wins at
“stranger afa”, “ltl afa”, and “noodler” benchmarks. There are several exceptions though.

3. The “email filter” benchmarks are easy for all solvers and most of the “noodler” benchmarks
too.

The main positive takeout is that AntiSAT solves the entire “bool comb” and many
examples from “ltl afa” and “noodler” much faster than the others, and it is strongly
orthogonal to the other tools.

Regarding the impact of the trie data structure, Table 2 compares numbers of literals
in the clausal and the trie representation of Visited (i.e. the number of trie nodes for
AntiSAT[trie], or the total number of literals in all clauses of 𝜑mut) at the end of solving an
AFA instance. In fact, for the “bool comb” benchmark, where the trie had the greatest effect
in terms of solving time, less prefix sharing is shown than for other benchmarks (but still
saving 500 thousand of literals on average).

Figure 10 shows the solving of three chosen nontrivial benchmark instances: the time
that was spent on each predecessor query, the overall number of predecessor queries, and
the results of the queries. Trie and clausal AntiSAT are compared. In the “bool comb”
benchmark, clausal SAT spends a lot of time on finding predecessors (the SAT queries
that find a model), while final proofs that there are no more predecessors (when the query
results in UNSAT) are very fast. Trie is fast in both cases. The other two benchmarks are
different: SAT queries with the UNSAT result are usually slower than queries that found
predecessors. In the last benchmark, from “automata inclusion”, the trie is slower than
clausal AntiSAT. The performance of the trie does not seem to correlate with the number of
states or symbol-variables.

3 The instances are available at https://github.com/p4l1ly/antisat-afa-benchmarks at tag sat2024.
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Table 1 Statistics from the solver run-times. |𝐵| is the number of instances in the benchmark,
𝑆1 is the number of benchmarks solved only by the first solver of the two in the column, 𝑆2 only
by the second one, 𝑆12 by both. 𝑇𝑖 is the average time the first/second solver has taken to solve
interesting instances. An instance is interesting if both solvers solved it within 60 seconds and at
least one solver took more than 1 second (to have a comparison of run-times not cluttered by trivial
instances).

benchmark |𝐵|
AntiSAT[clause] x AntiSAT[trie] ABC x AntiSAT[trie] Mata x AntiSAT[trie]
𝑆1 𝑆2 𝑆12 𝑇1 𝑇2 𝑆1 𝑆2 𝑆12 𝑇1 𝑇2 𝑆1 𝑆2 𝑆12 𝑇1 𝑇2

automata inclusion 136 0 0 123 6.3 9.0 4 9 114 10.3 7.4 12 0 123 1.0 8.7
bool comb 653 0 6 540 11.6 1.0 0 78 468 14.3 1.6 6 97 449 4.1 2.2
email filter 500 0 0 500 NaN NaN 0 0 500 7.3 0.2 0 0 500 1.2 0.1

ltl afa 7087 0 19 5724 14.9 7.9 1161 58 5685 0.3 14.2 Mata not applicable
noodler 13840 0 6 13790 9.0 5.6 42 14 13782 0.4 9.9 Mata not applicable

stranger afa 4058 0 291 3131 31.9 18.1 597 0 3422 0.7 34.0 Mata not applicable

automata inclusion
bool comb

email filter
ltl afa

noodler
stranger afa not empty

empty unknown

Figure 9 Detailed comparison of pairs of AFA emptiness checkers. Exact times are marked with
black dots but to give an idea about the number of overlapping points, there are semitransparent
associated points with small random shifts. The colour of the associated points indicates the
benchmark set, while the shape indicates the answer (empty or not).

Table 2 Statistics of sizes of the clausal and trie representation of Visited taken from the
interesting instances of the comparison AntiSAT[clause] x AntiSAT[trie]. |𝐵𝐼 | is the number of
the interesting instances in the benchmark. The abbreviations SzC/SzT mean size (i.e., the total
number of literals) of clausal/trie representation of Visited.

benchmark |𝐵𝐼 |
SzC / 1000 SzT / 1000

min max avg min max avg

automata inclusion 86 108 5792 2509 51 1019 456
bool comb 60 182 19360 1510 65 18727 1065

ltl afa 62 244 60569 4145 8 15910 540
noodler 62 88 4605 1169 19 1470 245

stranger afa 87 270 32892 10110 5 622 312

total 357 88 60569 4245 5 18727 501
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trie UNSAT
clausal UNSAT
trie SAT
clausal SAT
trie UNSAT accumulative
clausal UNSAT accumulative
trie SAT accumulative
clausal SAT accumulative

Figure 10 A detailed insight into solving three emptiness tests. Each graph shows SAT solving
times throughout the solving of AntiSAT[clausal] and AntiSAT[trie] – the individual solving times
and their accumulation.

8 Conclusion and Future Directions

We have proposed an AFA emptiness check that uses a SAT solver to generate a maximal
predecessor not subsumed by the set of visited configurations. Our techniques performed
significantly better than the state-of-the-art on a large portion of benchmarks. The same
techniques can most probably be used also in the IC3-based AFA emptiness check (which
can be seen as an augmentation of the backward antichain with a form of an abstraction
refinement). Application of our techniques in IC3 may potentially be even more interesting
than the presented adaptation to the backward antichain. A question is whether tries could
be implemented in some top-performing SAT solver as CaDiCaL and have an impact in
general SAT solving or whether a faster base solver would improve the performance of the
AFA emptiness check.
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Abstract
Boolean satisfiability (SAT) solvers are a family of highly efficient reasoning engines, which are

frequently used for solving a large and diverse variety of practical challenges. This applies to
multidisciplinary problems belonging to the class NP but also those arising at higher levels of
the polynomial hierarchy. Unfortunately, encoding a problem of user’s interest to a (series of)
propositional formula(s) in conjunctive normal form (CNF), let alone dealing with a SAT solver,
is rarely a simple task even for an experienced SAT practitioner. This situation gets aggravated
further when the user has little to no knowledge on the operation of the modern SAT solving
technology. In 2018, the PySAT framework was proposed to address the issue of fast and “painless”
prototyping with SAT solvers in Python allowing researchers to get SAT-based solutions to their
problems without investing substantial time in the development process and yet sacrificing only
a little in terms of performance. Since then, PySAT has proved a useful instrument for solving a
wide range of practical problems and is now a critical package for the PyPI infrastructure. In the
meantime, there have been advances in SAT solving and enhancements to PySAT functionality to
extend its modelling and solving capabilities in order to make modern SAT technology accessible and
deployable on a massive scale. This paper provides a high-level overview of the current architecture
of PySAT and some of its capabilities including arbitrary Boolean formula manipulation, CNF
preprocessing, and support for external user-defined propagators.

2012 ACM Subject Classification Software and its engineering → Software libraries and repositories;
Hardware → Theorem proving and SAT solving; Theory of computation → Constraint and logic
programming
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Digital Object Identifier 10.4230/LIPIcs.SAT.2024.16
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1 Introduction

Conflict-driven clause learning (CDCL) SAT solving serves as an illustrious example of a
success story in Computer Science [32, 35, 36, 39, 58, 18, 19, 17, 42, 5, 4, 28, 9], providing a
family of highly efficient decision oracles usable for solving myriads of practical problems. On
the other hand, implementing solutions to practical problems based on the state-of-the-art
SAT technology often requires one to be a SAT expert, which hampers the widespread use of
SAT and its generalizations. Addressing the above issue was one of the motivations behind the
proposal of the PySAT framework [24] designed specifically to ease incremental SAT-based
prototyping. Since its inception, PySAT has become a valuable everyday instrument widely
used in practice for tackling various AI problems. In 2021, based on the daily downloads
statistics, PySAT has been included in the list of top-1% PyPI (Python Package Index)
packages [48, 49] being named one of the critical projects for PyPI infrastructure.
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PySAT Architecture

solversformula engines examples alliescard

process

pb

PySAT API

Figure 1 PySAT framework. Modules solvers, formula, and card shipped with the original
version [24] appear in blue. Modules providing access to third-party tools appear in italics.

Since the release of PySAT, there have been numerous enhancements made both in the
framework and in the state of the art of SAT solving in general. Hence, the original paper [24]
no longer serves as an up-to-date account of PySAT’s capabilities. To fill in this gap, this
paper reviews the current functionality of PySAT, focusing on its architecture and a few novel
components, namely, arbitrary Boolean formula manipulation, CNF formula (pre-)processing
and the capacity to accommodate external reasoning engines following the recent IPASIR-UP
interface [20]. The paper also experiments with the latter demonstrating that it may be
feasible and favorable to implement external propagators in Python as it appears to be a
good trade-off between the development challenges and the overall solver performance.

2 Framework Architecture

Originally, PySAT comprised three core modules: solvers, formula, and card – providing
access to state-of-the-art CDCL SAT solvers [34], CNF formula manipulation, and cardinality
constraint encodings [50], respectively. Since then the list of modules expanded and now
additionally includes modules process for formula processing (see Subsection 3.2), examples
offering a variety of problem solving scripts serving to exemplify the use of PySAT, engines
allowing a user to implement external propagators (see Subsection 3.3) as well as optional pb
and allies modules interfacing with third-party libraries. While pb provides access to a list
of pseudo-Boolean constraint encodings [50] by means of using the PyPBLib library [47, 41],
allies is meant to offer direct access to external tools developed by the SAT community.
Currently, a user can access the ApproxMCv4 approximate model counter [55, 54] and Unigen
almost-uniform sampler [12, 11, 54] through the allies module. A simplified view on the
current architecture of PySAT and its modules interconnection is shown in Figure 1.

3 Selected Novel Functionality

There have been numerous changes made in PySAT since its creation [24]. These in-
clude the support for additional SAT solvers, e.g., CaDiCaL 1.0.3, 1.5.3, and 1.9.5 [9] and
MiniSat-based [18] solvers Glucose 4.2.1 [4, 22], MapleSAT [28, 31], MapleCM [29], MapleL-
CMDistChronoBT [40], MergeSat 3.0 [30, 37], CryptoMiniSat [56], additional problem-solving
tools like an award-winning MaxSAT solver RC2 [25], smallest minimal unsatisfiable subset
(SMUS) extractor OptUx [27], and minimal hitting set enumerator Hitman [13]. As a single
paper cannot encompass all the novel changes made, this section briefly overviews three
selected components of the framework. (For a complete account of PySAT’s capabilities,
please refer to the online documentation.)
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3.1 Arbitrary Boolean Formulas
In addition to the standard (W)CNF(+) functionality1 of the original release of PySAT,
the current version of the framework offers to users the ability to create arbitrary Boolean
formulas and, importantly, to clausify them on demand through Tseitin transformation [57].
This may be of special importance to non-SAT researchers who are willing to use SAT for
modeling and solving the problems from the scientific domains of their interests. To this end,
PySAT exposes atomic expressions and various kinds of logic connectives (all inheriting from
a base class Formula) as building blocks for creating complex Boolean formulas. For instance,
variables can be created as atomic formulas, i.e., objects of the type Atom; they can be
connected to one another using And, Or, Neg, and Implies, among a few other connectives.

▶ Example 1. A user may apply the bottom-up formula construction starting from variables,
along these lines: x, y, z = [Atom(c) for c in ’xyz’]; f = ~(~x >> y) | (x & z),
which will create a formula f ≜ ¬(¬x → y) ∨ (x ∧ z).2

Furthermore, a user may employ CNF objects as components of larger formulas connected
to the rest with any of the existing logic operators. To facilitate the use of arbitrary formulas,
their on-the-fly clausification, integration of the CNF objects, as well as cardinality and
pseudo-Boolean constraints handling, the framework offers a simple yet powerful manager of
integer variable identifiers referred to as IDPool.

▶ Example 2. Given formula f in Example 1, calling f.clausify() will produce
a list of clauses [[1, 2, -3], [3, -1], [3, -2], [1, -5], [4, -5], [5, -1, -4],
[-3, 5]], which invokes IDPool to automatically assign integer identifiers 1, 2, and 4
to variables x, y, and z as well as identifiers -3 and 5 for the two terms of the disjunction
¬(¬x → y) and x ∧ z, respectively.

3.2 CNF Processing
CNF formulas can be (pre-)processed producing equisatisfiable CNF formulas using the
facilities of PySAT’s module process. This includes running some of the well-known
preprocessing techniques such as bounded variable elimination, blocked clause elimination,
failed literal probing, among many others [10]. A user may specify how many rounds of CNF
processing should be applied as well as select the techniques to apply. In practice, applying
such techniques may lead to formulas that are simpler to deal with than the original formulas.
Furthermore, the power of formula processing may often suffice for proving unsatisfiability,
without the need for a subsequent SAT call. Otherwise, assignments satisfying a processed
formula can be mapped back to the original formula. Note that this module is implemented
by exposing the preprocessing functionality offered by the CaDiCaL SAT solver [9].

▶ Example 3. The status of the result formula produced by the processor can be used to
indicate whether or not the processor determined the initial formula to be unsatisfiable. As an
example, consider an unsatisfiable input CNF formula (¬x1∨x2)∧(¬x2∨x3)∧(¬x1∨¬x3)∧(x1).
If fed with this formula, the processor returns a new (processed) formula object containing
an empty clause and whose status is set to false, signifying unsatisfiability of the original
formula, as follows:

1 CNF and WCNF formulas in PySAT [24] are represented as lists of clauses, each being a list of literals
such that a positive integer i acts as a literal xi while the negation ¬xi is represented by -i. CNF+
and WCNF+ formulas can also contain native cardinality constraints understandable by solvers like
MiniCard [38].

2 Observe how operators ~, &, |, and >> are overloaded to act as Neg, And, Or, and Implies, respectively.
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>>> from pysat. process import Processor
>>> proc = Processor ( bootstrap_with =[[-1, 2], [-2, 3], [-1, -3], [1]])
>>> processed = proc. process ()
>>> print (’{0} , {1} ’. format ( processed .clauses , processed . status ))
[[]] , False # result contains an empty clause and is unsatisfiable

▶ Example 4. Recall that the process module ensures equisatisfiability of an input formula
and result formula. Furthermore, a satisfying assignment for the original formula can be
restored given a satisfying assignment for the processed one. Consider a CNF formula
(¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (x1), which has a single model satisfying literals x1 and ¬x2. The
processor constructs an empty (processed) formula and declares that the original formula
is not determined to be unsatisfiable. Observe how one can get the unique assignment
mentioned above restored from an assignment obtained for the processed formula:

>>> from pysat. process import Processor
>>> from pysat. solvers import Solver
>>> proc = Processor ( bootstrap_with =[[-1, -2], [1, 2], [1]])
>>> processed = proc. process ()
>>> print (’{0} , {1} ’. format ( processed .clauses , processed . status ))
[], True # result has no clauses and is not found to be unsatisfiable
>>> with Solver ( bootstrap_with = processed ) as solver :
... st , mod = solver . solve (), solver . get_model ()
... print (’status : {0}, model : {1} ’. format (st , proc. restore (mod )))
status : True , model : [1, -2] # result is confirmed to be satisfiable

# and the correct model is restored

3.3 External Engines
Recent work [20] proposed an extension to the IPASIR interface [6] referred to as IPASIR-UP
and added support for the new interface in CaDiCaL [9]. IPASIR-UP allows a user to specify
an external propagator and attach it to a SAT solver supporting the interface. It has shown
to be helpful in various practical scenarios when non-clausal reasoning is useful, e.g., in
satisfiability modulo theories (SMT) solving [7, 8]. As a result, the interface is deemed highly
valuable for extending applicability of SAT, especially if supported by additional solvers.

As handling low-level interaction between a SAT solver and an external propagation engine
is a challenging and tedious task, PySAT takes on the mission to provide similar functionality
directly in Python. Although using a reasoning engine written in a high-level programming
language should arguably be slower than doing the same in a low-level language, this possibility
aligns with the aims of PySAT to make the advanced SAT technology easy to use in practice.

The PySAT API for implementing external propagators offered by module engines is
shown in Listing 1. (User-defined propagators should be defined as inheriting from the class
Propagator.) Initially, the idea was to expose exactly the same interface as dictated by
IPASIR-UP [20]. However, some of the methods in IPASIR-UP inherit the literal-by-literal
interface of IPASIR, e.g., clauses are transferred through multiple calls to the same method,
each passing a single literal. This overhead becomes noticeable if implemented in Python.
Therefore, the interface is slightly modified in PySAT aiming to reduce the overhead of making
repeated Python calls from C++ code. First, a clause is handed by the propagator to the
solver as a single list of literals, which applies to methods propagate(), provide_reason(),
and add_clause(). Internally, the C++ wrapper still follows the original interface by putting
the literals into a queue. Second, PySAT gets rid of the original has_external_clause()
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Listing 1 Interface for implementing external propagators in PySAT provided by module engines.

class Propagator ( object ):
def on_assignment (self , lit: int , fixed : bool = False ) -> None:

pass # receive a new literal assigned by the solver

def on_new_level (self) -> None:
pass # get notified about a new decision level

def on_backtrack (self , to: int) -> None:
pass # process backtracking to a given level

def check_model (self , model : list[int ]) -> bool:
pass # check if a given assignment is indeed a model

def decide (self) -> int:
return 0 # make a decision and (if any) inform the solver

def propagate (self) -> list[int ]:
return [] # propagate and return inferred literals (if any)

def provide_reason (self , lit: int) -> list[int ]:
pass # explain why a given literal was propagated

def add_clause (self) -> list[int ]:
return [] # add an(y) external clause to the solver

check assuming that no clause is available if add_clause() returns []. Finally, to avoid
situations when a propagator does not communicate any useful information to the solver
and runs for nothing, PySAT allows the propagator to disable itself on the fly (it is up to
the author of a propagator to decide when it should happen) such that it will be invoked
only when a SAT solver comes up with an assignment to be checked by check_model().
On-the-fly re-enabling of the propagator whenever it is favorable is also possible.

4 Distribution

The framework is distributed as an open-source project3 with detailed installation instructions
allowing a user to compile all the necessary and/or optional C++ components of the framework
and get PySAT ready for use on their local machine. The easiest way to get PySAT is to
install a pre-compiled binary wheel, i.e., Python package, from the PyPI repository [48] as
follows:

$ pip install python-sat
Besides the source code distribution, the list of released binary wheels is quite extensive

and contains 119 pre-built distributions targeting various versions of Linux, macOS, and
Windows operating systems. Finally, PySAT is a part of the Pyodide project [46] whose aim
is to supply a version of Python compiled to WebAssembly and deliver a large collection
of scientific computing packages available for execution entirely in a web browser. A nice

3 https://pysathq.github.io
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side effect of this is that a user can implement their SAT-based solutions in Python and/or
Javascript, to be operated in a browser, thus potentially expanding practical applicability of
the SAT technology without the need to ever install PySAT.

5 Experimenting with External Engines

This section aims at showcasing the use of external propagator functionality offered in PySAT
given two practical scenarios. We are essentially interested in testing how costly it is to
run an external engine alongside CaDiCaL in practice and whether it defeats the purpose
of implementing propagators in Python. With this in mind, we implemented an example
propagator referred to as BooleanEngine, which should be general enough to attach various
kinds of constraints on Boolean variables, including unweighted and weighted linear (i.e.,
cardinality and pseudo-Boolean, respectively) constraints or XOR-propagators, among other
kinds of constraints. We implemented both weighted and unweighted linear constraints for
the purpose of the experiment. Hereinafter, BooleanEngine reasoning on linear constraints
is referred to as the linear engine. Here, we would like to remind the reader that the point
is not to show that implementing a propagator in Python will necessarily outperform a
low-level solution but rather to show that it may pay off in terms of the time invested in the
development process, sacrificing little of the overall performance. Both experiments were run
on a MacBook Pro running macOS Sonoma 14.3.1 with a 10-core Apple M1 Pro CPU and
32GByte RAM.
▶ Remark 5. The experimental results are presented in the form of cactus and scatter plots,
e.g., see Figure 2a and Figure 2b, respectively. A cactus plot depicts multiple lines, each
representing a particular competitor in terms of the statistic information on how many
instances (on the X-axis) are successfully solved by this competitor within a given time limit
(on the Y -axis). A scatter plot depicts in instance-by-instance comparison of two approaches
by means of a set of points with coordinates (x, y), each representing a particular problem
instance such that coordinate x signifies the time spent by one of the approaches (shown on
the X-axis) dealing with this particular instance while coordinate y denotes the time spent
on this instance by its competitor (shown on the Y -axis). Note that the green band in the
scatter plots denotes the area where no approach outperforms the other by more than an
order of magnitude.

5.1 Model Enumeration for Cardinality Constraints
Hereinafter, the first experiment is devoted to running the engine with cardinality constraints.
In this case, we randomly generate 1000 systems of (unweighted) linear inequalities over 20
variables, i.e., each such inequality is of the form

∑20
i=1 wi · li ≤ v, where li ∈ {xi, ¬xi} such

that xi ∈ {0, 1} and wi ∈ {0, 1}, v ∈ {0, 1, . . . , 20}. Inconsistent systems are filtered out,
which results in 911 remaining problem instances. These remaining instances are either given
to CaDiCaL augmented with the linear engine or given to pure CaDiCaL dealing with CNF
formulas encoding the linear systems using cardinality networks [3].

Given that a solver may be lucky in finding a single satisfying assignment, the experiment
is set to enumerate all models of the corresponding formulas. Depending on the formula, the
number of models to enumerate varies from 1 to 1,044,905. Model enumeration is done by
adding clauses blocking previously found models. For a fair comparison, the performance of
a tool is measured as the overall time spent during the enumeration process, thus, ignoring
the encoding time. The timeout value set for enumerating the models of a single formula is
10 minutes.



A. Ignatiev, Z. L. Tan, and C. Karamanos 16:7

0 200 400 600 800 1000
instances

0

100

200

300

400

500

600
C

PU
 ti

m
e 

(s
)

CaDiCaL 1.9.5 with linear engine
CaDiCaL 1.9.5 with cardinality networks

(a) Overall performance.

10 5 10 4 10 3 10 2 10 1 100 101 102 103

CaDiCaL 1.9.5 with linear engine

10 5

10 4

10 3

10 2

10 1

100

101

102

103

C
aD

iC
aL

 1
.9

.5
 w

ith
 c

ar
di

na
lit

y 
ne

tw
or

ks

600 sec. timeout

60
0 

se
c.

 ti
m

eo
ut

(b) Instance-by-instance comparison.

Figure 2 Linear engine vs cardinality networks.

The performance of both competitors, i.e., CaDiCaL with and without the external linear
propagator, is depicted in Figure 2. As can be observed, the configuration running the linear
engine outperforms the competitor operating on CNF encodings of the inequality systems.
In particular, the winner manages to solve all the instances spending at most 20.27 seconds
per instance while the competitor on average spends much more time per instance and times
out on 28 out of 911 instances.

5.2 Computing Formal Explanations for Tree Ensembles
The second experiment considers a more practical setting where we use CaDiCaL augmented
with the external linear engine for computing and enumerating formal abductive explan-
ations [52, 26, 33] for tree ensembles trained with the XGBoost algorithm [14]. Without
diving into details, the task here is given a machine learning (ML) classification function
κ : F → K mapping points in feature space F defined over n = |F| features j ∈ F to a class
in K and a particular prediction κ(v) = c, v ∈ F, and c ∈ K, to compute a subset-minimal
subset of features X ⊆ F such that

∀(x ∈ F).
[∧

j∈X
(xj = vj)

]
→(κ(x) = c)

Computing such a subset X requires one to make multiple calls to a reasoning oracle dealing
with a logical representation of classifier κ. We reuse the propositional encoding of tree
ensemble models proposed in [23] where feature domains and tree paths are CNF-encoded
and each node in a tree is represented by a Boolean variable while a class weight w ∈ R
assigned by a tree’s terminal node t is modeled as a weighted soft clause (t, w). However, the
use of the linear engine alongside CaDiCaL enables us to model the class selection process of
boosted trees directly using pseudo-Boolean constraints, which compare the sums of weights
for various classes, rather than by means of a MaxSAT objective function as in [23].

This experiment is twofold. First, it compares the performance of CaDiCaL augmented
with the linear engine against the MaxSAT and SMT approaches [23] to computing a single
explanation for the XGBoost models trained on a variety of publicly available datasets. (The
SMT approach makes use of Z3 solver [16, 21] while the MaxSAT approach employs an
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Figure 3 CaDiCaL with linear engine vs MaxSAT and SMT on the task of explanation extraction.

optimized version of RC2 [25, 23].) The models trained comprise 50 trees per class, each
of depth 1–5; the training (test, resp.) accuracy of these models is above 97% (85%, resp.).
The experiment targets explaining 200 randomly selected instances from the corresponding
datasets,4 which resulted in 3755 individual problem instances. Second, it checks scalability
of explanation enumeration with the MaxSAT vs CaDiCaL with external linear engine,5 both
set to enumerate 100 explanations for each of the models and instances considered above.

The results of single explanation computation is detailed in Figure 3. Observe that the
slowest among the considered approaches is SMT while the fastest overall is MaxSAT. We
should also mention that CaDiCaL with the linear engine is significantly less robust than
MaxSAT as the time spent to extract an explanation with CaDiCaL varies much more.
Finally, the use of the linear engine starts having performance drops if we increase models
sizes; no such performance drops occur for MaxSAT or SMT.

The performance in explanation enumeration is detailed in Figure 4. Interestingly, this is
where CaDiCaL with the external engine thrives and tends to outperform MaxSAT despite
the fact that the engine is called hundreds of thousands of times per problem instance, which
may be seen as surprising.

6 Related Work

While PySAT was originally inspired by PySMT’s [21] capability of interfacing with various
SMT solvers, there are Python APIs targeting individual SAT solvers, e.g., PyMiniSolvers [45]
providing an API to MiniSat and MiniCard, pycosat [43] with the Python interface to PicoSAT,
satispy [51] offering an API for MiniSat and lingeling, pylgl [44] for working with lingeling,
and pycryptosat providing access to CryptoMiniSat [56, 53, 15]. Another framework called
OptiLog [2, 1] offers a unified interface to multiple SAT solvers as well as access to cardinality

4 If a dataset has fewer than 200 instances, we explain each of the n < 200 available instances.
5 The implementation of [23] does not support explanation enumeration with SMT, which is why we do

not compare against SMT in the explanation enumeration mode.
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Figure 4 MaxSAT vs CaDiCaL with linear engine on the task of explanation enumeration.

and pseudo-Boolean constraint encodings. However, while OptiLog provides a user with a
unified interface iSAT (through C++ and Python) to attach a SAT solver of their interest
as well as with a way to configure, fine-tune, and benchmark it, PySAT’s goal is different.
Namely, PySAT is a fully open-source Python framework aiming to simplify prototyping
with SAT oracles, even for researchers with little experience with SAT solving. It delivers a
large range of solvers pre-installed accessible through the same API as well as a wealth of
facilities to manipulate Boolean formulas and implement user-defined constraint reasoners.

7 Conclusions

It has been a number of years since the original release of the PySAT framework [24].
This paper provides a brief overview of its current capabilities. Besides a larger number
of SAT solvers and problem-solving scripts integrated into the toolkit, these capabilities
include facilities to manipulate arbitrary Boolean formulas and linear constraints as well as
external reasoning engines by exploiting IPASIR-UP [20], and formula (pre-)processing and
clausification [57]. PySAT is an easy-to-deploy and fully open-source Python package, whose
mission is to make the advances of SAT universally accessible for solving problems arising in
a wide range of scientific domains. Hopefully, the broader SAT community will assist this by
contributing to PySAT with additional features and with proposals for further improvements.
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Abstract
Parallelization of SAT solvers is an important technique for improving solver performance. The
selection of the learnt clauses to share among parallel workers is crucial for its efficiency. Literal block
distance (LBD) is often used to evaluate the quality of clauses to select. We propose a new method,
Parallel Clause sharing based on graph Structure (PaCS), to select good clauses for sharing. First,
we conducted three preliminary experiments to assess the performance of LBD in parallel clause
sharing: a performance comparison between the LBD and clause size, an analysis of the utilization
of shared clauses, and a comparison of the LBD values of shared clauses at originating and receiving
workers. These experiments indicate that the LBD may not be optimal for learnt clause sharing.
We attribute the results to the LBD’s inherent dependency on decision trees. Each parallel worker
has a unique decision tree; thus, a sharing clause that is good for its originating worker may not be
good for others. Therefore, we propose PaCS, a search-independent method that uses the graph
structure derived from the input CNF of SAT problems. PaCS evaluates clauses using their edges’
weight in the variable incidence graph. Using the input CNF’s graph is effective for parallel clause
sharing because it is the common input for all parallel workers. Furthermore, using edge weight
can select clauses whose variables’ Boolean values are more likely to be determined. Performance
evaluation experiments demonstrate that our strategy outperforms LBD by 4% in the number of
solved instances and by 12% in PAR-2. This study opens avenues for further improvements in
parallel-solving strategies using the structure of SAT problems and reinterpretations of the quality
of learnt clauses.
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1 Introduction

Satisfiability (SAT) solvers are tools that determine whether the input Boolean formula is
satisfiable or not. Conflict-driven clause learning (CDCL) SAT solvers [28, 29] are widely
used because of their high efficacy in many industrial SAT problems. Clause learning [8] is an
important component of CDCL solvers. Clause learning generates new clauses (learnt clauses)
to prevent the solver from repeating the wrong assignments. Learnt clauses significantly
improve search efficiency by pruning the search space. Parallelization of SAT solvers is also
an important technique for improving solver performance. The information can be shared
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between parallel workers to enhance the overall parallel efficiency. In parallel SAT solvers,
workers exchange their acquired learnt clauses. However, because the solver often learns over
millions of clauses during its search, it is impractical to share all of them. Therefore, literal
block distance (LBD) [4] is often used for clause selection. LBD was originally proposed as
an evaluation metric of clause quality. LBD has been used by many successful solvers in SAT
competitions 1, in both sequential and parallel solvers.

First, in this study, to assess the performance of the LBD in parallel clause sharing, we
conducted three preliminary experiments: (1) a comparison of solver performance using LBD
and clause size, (2) an analysis of the utilization ratio of shared clauses, (3) a comparison of
LBD values of shared clauses between originating and receiving workers. The results of the
experiments indicate that LBD may not be the optimal metric for learnt clause sharing; the
size of the clause performs competitively with (actually slightly better than) LBD, and the
utilization ratio of the shared clause is low. We attribute the results to the LBD’s inherent
dependency on the search state. The LBD value indicates the number of variable decision
levels in the clause. The decision level corresponds to the depth of the branching decision tree.
Several factors influence the tree, including the decision strategy, learned clauses, heuristics
status, and solver configurations. We call these varying conditions “search states” and say
LBD has an inherent dependency on the search state. However, each parallel worker has
a unique search state; particularly in portfolio-type parallel SAT solvers, they should be
different. Therefore, a sharing clause good for its originating worker, as measured by the
LBD, may not be good for others. According to Audemard and Simon, “LBD is relative
to the current search of each solver, and a good clause for one thread may not be good for
another one.” [5].

Therefore, we propose Parallel Clause sharing based on graph Structure (PaCS), a
search-independent method that uses the graph structure derived from the input CNF of
SAT problems. It evaluates clauses using a metric [21], that measures the strength of the
connection between variables in the clause and their neighboring variables. The weight of the
edge in the variable incidence graph (VIG) quantifies the strength of variables connection.
This metric was originally proposed for the deletion of learnt clauses and demonstrated
comparable performance to LBD. We assume that using the graph of input CNF is effective
for parallel clause sharing because it is a common input for all parallel workers, enabling it
to identify good clauses for all workers. Furthermore, using edge weight can select clauses
whose variables’ Boolean values are more likely to be determined. A heavy edge implies that
the pair of variables is contained in a short clause or many clauses. Thus, variables with
heavier edges have a better chance of undergoing propagation. Moreover, various studies
have shown a relationship between the quality of clauses and their graph structures [20, 35].

We implemented a parallel solver that uses our proposal clause sharing selection method
and conducted performance evaluation experiments to compare it with LBD. The contribu-
tions of our research are as follows:
1. Through three preliminary experiments, we have demonstrated that LBD may not be the

optimal solution for selecting learnt clauses to share among parallel workers.
2. We propose PaCS, which uses a metric that represents the strength of the connection in

the graph structure for parallel clause sharing.
3. We compared the performance of a parallel solver using PaCS with LBD and found that

it outperforms solvers using LBD by 4% in the number of solved instances and by 12% in
PAR-2.

1 SAT competition http://www.satcompetition.org/

http://www.satcompetition.org/
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The remainder of this paper is organized as follows: Section 2 introduces SAT solvers
and their techniques, including learnt clauses and the concept of the graph structure of SAT
problems. Section 3 discusses related work. Section 4 presents our empirical observations of
LBD for clause sharing. Section 5 defines the proposed method for parallel clause sharing
using PaCS. Section 6 presents the results of the PaCS performance evaluation. Finally,
Section 7 summarizes the study and suggests future research directions.

2 Preliminaries

2.1 Satisfiability problem and SAT solver
The SAT problem determines whether at least one Boolean variable assignment can satisfy
a given logical formula. If an assignment can satisfy all clauses, the formula is satisfiable;
otherwise, it is unsatisfiable (UNSAT). The formula is generally provided in conjunctive
normal form (CNF), wherein variables are combined into clauses with disjunctions, and
the clauses are combined with conjunctions. A formula is in CNF if it possesses the form
(C1 ∧ C2 ∧ · · · ∧ Cm), where Ci represents a clause. Each clause is a disjunction of literals
(Li,1 ∨ Li,2 ∨ · · · ∨ Li,n), where Li,j represents a literal in clause Ci. A literal is a variable
or its negation. An example of a CNF formula is (x ∨ y) ∧ (¬y ∨ z). Here, (x ∨ y) and
(¬y ∨ z) are clauses, and x, y, ¬y, and z are literals where y and ¬y represent the positive
and negative forms of variable y, respectively.

The SAT solvers are programs for solving SAT problems. It is used to solve real-world
problems encoded in SAT, such as computer-aided proof [18] and binary neural network
verification [11]. Davis–Putnam–Logemann–Loveland (DPLL) algorithm [13] is the basis of
most SAT solvers. The DPLL algorithm contains decisions – providing an assumption of
Boolean (True or False) value to a variable – and incorporates propagation – determining
other variables’ Boolean values as the logical consequences of the decision. A conflict occurs
when a clause becomes false due to a wrong decision. Then, the previous decisions are
canceled (called backtrack), and the solver makes another decision. Modern SAT solvers are
conflict-driven clause-learning (CDCL) solvers [28, 29] that are based on the DPLL algorithm.
The CDCL solvers incorporate various techniques and heuristics [15, 27, 29], making it
possible to solve large and complex SAT problems efficiently. Probabilistic algorithms [34]
are another approach that randomly changes the Boolean values of variables until a solution
is found. In this paper, we focus on the improvement of CDCL SAT solvers.

2.2 Clause Learning
Clause learning [8] is an essential technique for CDCL solvers, aiming at improving efficiency
by pruning the search space. When a solver finds a conflict, it analyzes the root cause
and derives the counter-example as a new clause (learnt clause) to avoid revisiting similar
unsatisfiable assignments in future searches. Modern solvers often learn over millions of
clauses during searches. However, it is difficult to maintain all of the clauses due to the cost of
checking these clauses during propagation. Clause evaluation is necessary to selectively retain
more valuable clauses for future searches. The clause size, literal block distance (LBD) [4],
and activity (or clause version of a variable state independent decaying sum, cVSIDS) 2 are
widely adopted metrics. The size of a clause represents the number of literals contained in

2 MiniSat http://minisat.se/
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the clause. Shorter clauses are more effective in reducing the search space. Given a clause c

and literals l, size(c) := |{l ∈ c}|. The LBD [4] is a popular clause evaluation metric and is
widely adopted by many state-of-the-art SAT solvers. The LBD value of a clause is defined as
the number of different decision levels to which the literals in the clause belong. The decision
level indicates the depth of the branching decision tree. The LBD value of a clause c can be
calculated as LBD(c) := |{d(l) : l ∈ c}| where d(l) represents the decision level of literal l.
A clause with a lower LBD is considered more valuable. In addition to clause evaluation,
the LBD is used in other heuristics such as restart strategy [9] and decision branching [12].
Activity (or cVSIDS) measures how frequently a clause is used in the conflict analysis. The
more used clauses are more valuable, and a higher score is provided for recently used ones.
Among these three, the results of evaluation by LBD and Activity are based on the current
search state, such as the decision tree and maintained learnt clauses. Therefore, these values
are different at different search states, while size shows constant values.

2.3 Parallel SAT solver

Parallelization of SAT solvers is an important technique for improving solver performance,
leveraging plentiful computing resources such as affordable multi-core processors and cloud
computing services. A parallel SAT solver simultaneously utilizes multiple cores to solve
SAT problems. It shares valuable learnt clauses among workers to enhance parallel efficiency.
This may potentially help to solve larger or more complex problems more efficiently. Two
main approaches are adopted in parallel solvers: divide and conquer [10] and portfolio [19].
The divide and conquer approach splits the problem into smaller sub-problems, solves them
independently, and then combines the solutions. This approach possesses excellent scalability
because assigning Boolean values to some variables can easily split the search space. However,
load balancing and UNSAT proof are the challenges of the approach. The portfolio approach,
on the other hand, does not split the problem; it uses multiple different strategies (i.e., search)
simultaneously for the same problem, and it subsequently selects the best solution among
these strategies. Although this may help resolve the issue of divide and conquer by design,
scalability is a challenge due to the difficulty of ensuring various search strategies. In the
recent SAT competition, most successful parallel solvers adopted the portfolio approach.

Sharing information between parallel workers is crucial to enhancing overall efficiency.
This is usually done by sharing learnt clauses among parallel workers. As each worker explores
different search spaces, they generate different learnt clauses. Sharing these clauses may
help other workers leverage collective knowledge and avoid redundant searches. However,
sharing many clauses increases communication overhead and propagation costs. Therefore, it
is essential to appropriately manage the volume and frequency of sharing. With regard to
these factors, the size and LBD values of clauses are often used as the selection criteria; the
clauses expected to be valuable for other workers are shared based on the evaluation of these
metrics. For example, ParKissat-RS 3 and PRS 4, which are the winner in the parallel track
of SAT competition 2022 and 2023, respectively, share the clauses with LBD values of one or
two by default. Section 3.1 gives a detailed explanation of the method.

3 ParKissat-RS https://github.com/shaowei-cai-group/ParKissat-RS
4 PRS https://github.com/shaowei-cai-group/PRS-sc23

https://github.com/shaowei-cai-group/ParKissat-RS
https://github.com/shaowei-cai-group/PRS-sc23
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2.4 Structure of SAT
Industrial SAT problems encoded from real-world problems exhibit unique structures and
patterns, which can differentiate them from randomly generated problems. For example,
the treewidth of the graph representation of the industrial SAT problem is notably small
[14]. The centrality of SAT refers to how central or critical a variable or clause is within the
problem’s structure [24]. Industrial problems exhibit a clear community structure [1, 31],
and some correlation between the degree of the community (modularity) and runtime of the
solver is known [30]. Additionally, many structural properties, such as mergeability [37] and
the role of backdoor variables [36], have been studied to understand the efficiency of SAT
solvers.

The graph of the SAT problem is often represented using a variable incidence graph
(VIG). In this graph, nodes represent variables, and edges indicate the existence of clauses
containing these variables. Each edge has a weight, and it is determined based on the
strength of the variable connection. Heavier weight is given to edges whose variables coexist
in more or shorter clauses. The definition of weight w(evi,vj ) of the edge between vi and vj

is
∑

c∈C,vi,vj∈c 1/
(|c|

2
)

following the existing research [1]. A clause variable incidence graph
(CVIG) is a bipartite graph where variables and clauses are represented as nodes on each
side, respectively, and an edge exists between a clause and a variable if the variable exists in
the clause. In this study, we use VIG as the graph representation of the SAT problem.

3 Related work

3.1 Clause sharing between parallel workers
ManySAT [17], a portfolio-type parallel SAT solver, uses size as a metric for sharing learnt
clauses, where all clauses of size eight or less are shared. Then, they suggested dynamically
varying the criterion of the shared clauses [16]. Painless [26] is a parallelization framework
that has been recently used by many solvers. This involves running a process called Sharer
for clause sharing. The winners of the parallel track SAT competition 2022 and 2023,
ParKissat-RS and PRS, adopted the painless framework. They used LBD as the criteria to
determine the clauses to be shared. P-KISSAT [6], also based on the painless framework,
dynamically varies the criterion for sharing learnt clauses depending on the number of clauses
generated by the producer of clauses. Hordesat [7], and its derivative Mallob [33] are popular
in large-scale parallel environments (such as high-performance computing) In particular,
Mallob achieved excellent results in both the parallel track of the SAT competition 2023
and the cloud track. Hordesat is a large-scale parallel search solver designed for distributed
memory and compute node environments. In Hordesat’s learnt clause sharing, size is used as
a metric for all-worker-to-all clause sharing. Workers add their learnt clauses to a shared
buffer. The added clauses are sorted in ascending order of size, and the smaller ones are
shared with other parallel workers up to a certain number of clauses. Mallob merged buffers
according to the job tree of parallel workers to address problems related to this buffer-sharing
system in Hordesat, such as duplicate clauses and the sharing of blank spaces within the
buffer.

Several studies focused on the mechanism of sharing learnt clauses rather than just
the criterion to share. The ppfolio 5 used an extreme strategy in which no learnt clauses
were shared and achieved excellent results in the 2011 SAT competition. Lazaar et al. [25]

5 ppfolio https://www.cril.univ-artois.fr/~roussel/ppfolio/

SAT 2024

https://www.cril.univ-artois.fr/~roussel/ppfolio/


17:6 Parallel Clause Sharing Strategy Based on Graph Structure of SAT Problem

proposed a sharing strategy that focuses on determining the workers to receive them rather
than on the selection of clauses. Audemard et al. [3] proposed psm, which measures the
usefulness of a clause in the current search context using variable assignments. Audemard et
al. [2] also proposed the psm-based “freeze and activate” strategy, which shares clauses but
freezes some that are deemed unnecessary in the current search. While most SAT solvers
operate on CPU, there have been efforts to use GPU for rapid and parallel evaluation of
clauses [32].

3.2 Clause quality evaluation using graph structure of SAT
Although LBD is more popular than size, size is also used as a secondary metric when
two clauses have identical LBD values. Size is a structural property of the SAT graph,
which is static in any search state; however, it is considered a poorer metric than LBD.
However, Jabbour et al. [22] refocused on the effectiveness of the size metric against LBD.
They showed that size-based evaluation with some randomness can improve the solver’s
performance. Vallade et al. [35] demonstrated the relationship in a clause between the LBD
value and the number of communities in the graph representation of SAT. They proposed a
novel clause evaluation method that combines the number of communities and the clause’s
LBD value. Jamali et al. [23] proposed using the structural properties of the SAT problem for
heuristics, such as decision and clause evaluation. They selected the betweenness centrality
of the variables in a learnt clause as an evaluation metric and demonstrated that the method
could improve the solver’s performance. We proposed a clause evaluation method using the
graph structure derived from the input CNF of the SAT problem, called WANCE [21]. It
favorably evaluated clauses with variables that had strong (heavy) edges to their neighboring
variables in VIG. Details of the definition are presented in Section 5.

4 Observations

This chapter shows the results of preliminary experiments to assess the performance of the
popular method, LBD, in parallel clause sharing. Remember that the LBD value indicates
the number of literal blocks in the clause; thus, it depends on the search states. This allows
evaluation of the clause’s quality optimized according to the current search state. However,
in the parallel clause-sharing situation, this can be a disadvantage because the search state
of each parallel worker could be different; particularly in the portfolio approach, it should
be different in terms of efficiency. To test this hypothesis, we conducted the following
experiments.

4.1 Performance comparison of criteria for sharing clause selection
First, we compared the performance difference due to the clause-sharing criteria in a parallel
SAT solver. We selected ParKissat-RS, the state-of-the-art and champion parallel solver, in
the SAT competition 2022 parallel track. ParKissat-RS decides the clauses to share among
parallel workers, as follows. It adopts worker-sharer architecture. Worker generates learnt
clauses through search. Only learnt clauses with LBD values of either 1 or 2 are submitted to
the buffer. Next, the sharer broadcasts these clauses in the buffer to the other workers up to
1500 literal lengths per sharing cycle. In this experiment, we modified the submission criteria.
Size-based criteria submit all clauses with their size of or less than x, where we set x as
1, 2, 3, 5, 8, 10. Also, no sharing policy (x = 0) is compared with LBD. The experimental setup
is as follows: We configured the number of parallel workers at 16, set the time limit to 5000
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s, and established a memory limit of 128 GB, all by specifying the options in ParKissat-RS.
For other settings, we adhered to the default configurations and implementations, including
the constraint of sharing literal lengths up to 1500. The benchmark is 400 instances from
the SAT Competition 2023. The experiments were conducted on a computer equipped with
an AMD Threadripper Pro 3995WX processor with 64 cores and 512 GB RAM (four 128
GB DDR4-3200 MHz slots).

Table 1 Performance comparison among clause sharing criteria using LBD, no sharing, and size.
Numbers in the table represent the count of instances in each satisfiability, where SAT denotes
instances identified as satisfiable and UNSAT as unsatisfiable within the time limit, respectively.

Criterion SAT UNSAT SAT+UNSAT PAR-2
LBD (≤ 2) 124 141 265 3715
No sharing 126 131 257 3973
Size (≤ 1) 126 147 273 3631
Size (≤ 2) 126 141 267 3650
Size (≤ 3) 125 143 268 3619
Size (≤ 5) 125 144 269 3601
Size (≤ 8) 129 141 270 3528
Size (≤ 10) 121 124 245 4300

The experimental results are shown in Table 1. The first column shows the solvers
with each sharing criteria. The numbers in the table represent the number of instances
in each satisfiability, where SAT denotes instances identified as satisfiable and UNSAT as
unsatisfiable. This experiment showed no significant difference in the performance between
LBD and Size-based criterion from 1 to 8 (actually, the performance of size is better than
that of LBD). The largest number of solved problems is by the size ≤ 1 criterion, and the
lowest PAR-2 score is by the size ≤ 8 criterion. LBD is generally an efficient metric for
evaluating learnt clauses compared to their size. However, the results of this experiment
suggest that in the task of sharing learnt clauses among parallel workers, LBD performs
similarly to size.

4.2 Analysis of utilization differences between imported and learned
clauses with same LBD value

Next, we compared the usefulness of shared clauses between “learned” and “imported.” A
clause is termed “learned” when a worker derives it during their search. When this clause is
shared with other workers (i.e., exported), it becomes “imported” for those other workers.
Therefore, the same clause will have a different term depending on the worker by which it
was acquired. Additionally, the worker that originally learned the clause is referred to as the
“learned” worker, while the worker that received the shared clause is called the “imported”
worker. In general, each worker shares the learnt clauses that are expected to be useful to
other workers. However, the LBD value can be different in each parallel worker because each
worker has a unique search state. In the ParKissat-RS implementation, the LBD value is
converted to the clause’s size when sharing. Then, it is updated (re-evaluated) according to
the search state of the imported worker when necessary. This subsection’s experiments aim
to analyze the difference in the degree of usefulness between learned and imported clauses.
This experiment used the notion of used% as below.

SAT 2024
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4.2.1 Definition of used%
The utilization of the clause means that they were used in conflict analysis. We defined used

as a Boolean value of the clause utilization, which is 1 if the clause is used at least once in
conflict analysis and 0 otherwise.

used(c) :=
{

1 if c is referred in conflict analysis
0 otherwise

In the context of this study, the following terms are defined:

C: the set of all learnt clauses in all parallel workers.
i: a worker i ∈W where W represents all parallel workers.
iC: the set of learned clauses acquired at worker i, ∀iC ⊂ C.
iC

learn: the set of clauses learned by the worker i.
iC

import: the set of clauses imported from another worker to i.
iCx: the set of learned clauses for which LBD value is x at worker i.
iC(x,y): the set of learned clauses for which LBD value is x and the clause size is y.

For example, iC
learn
2 refers to the set of all clauses with LBD of 2 in worker i that are

learned at worker i. The LBD value of imported clauses C import refers to the value at the
learned worker before sharing, not the re-evaluated value at the imported worker after sharing.
Furthermore, the percentage of used clauses within a set C is defined as:

used%(C) :=
∑

i∈W,c∈iC used(c)
|
⋃N

i=1 iC|

where |C| represents the number of clauses in C.
We used ParKissat-RS as the base solver, with two parallel workers, a time limit of 1000

s, and a benchmark of 400 instances on the SAT competition 2023 benchmark. All learnt
clauses and their information were written to an external file, then used% was calculated
later. The clause was written when the clause was learned, used, deleted, its LBD value
was updated, and the search ended. We exclude clauses with a size equal to or less than 2
because they are always watched for propagation and don’t have the concept of being used
in ParKissat-RS. In its default setting, only the clauses of LBD value of less than or equal
to two are shared up to 1500 literal lengths. To analyze the utilization trends of imported
clauses using broader sets of clauses, we increased the LBD value criterion for clause sharing
from the default of 2 to 5, and we expanded the maximum shared literal size from the
default of 1,500 to 30,000. We performed experiments on the same computer as the previous
experiment.

4.2.2 Analysis of used% according to LBD values
We analyzed the differences of used% between imported and learned clauses for the same
LBD value. We specifically compared the used%(C import

x ) and used%(C learn
x ), respectively,

for LBD values x ranging from 1 to 10. Remember that the LBD value of the imported
clause represents the LBD value being evaluated by the learned worker, not by imported
worker that was reevaluated after sharing. This setup is to observe the gap of use of the
same evaluation clauses – given a clause, is there any difference of use % at learned worker
and imported worker? There is no difference if the evaluation shows a common usefulness for
all parallel workers. Figure 1 shows the result of randomly selected four instances from all
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benchmark instances for further analysis. The horizontal and vertical axes present the value
of the clause’s LBD and the used% of these clauses, respectively. The yellow and blue lines
represent learned and imported clauses, respectively. The numbers in the line chart are the
number of clauses for each LBD value.

Figure 1 Differences of used% at each LBD value between learned and imported clauses.

The yellow line consistently showed that the used% decreased as the LBD value increased
(i.e., worse clauses). In contrast, for the blue lines, the variation in used% with LBD value
was less. Furthermore, used% were much lower than those of learned clauses for the same
LBD value. This result indicates that a clause considered useful at an learned worker is not
necessarily useful for imported worker.

4.2.3 Analysis of used% according to LBD values and size
We plotted the data into a heatmap to better understand the relationship between LBD, size,
and used%. The used%(Cimported

(x,y) ) and used%(Clearned
(x,y) ) of LBD of x and size of y clauses

are shown in Figure 2. Two instances out of the previous four are shown as examples owing
to the space limitation. The vertical and horizontal axes indicate the LBD value and size,
respectively. The cell color indicates the used%, where the closer the color is to dark blue, the
higher the used%, whereas the lighter the color, the lower the used%. Same to the previous
experiment, the LBD value of the imported clause is that at the learned worker, not after
sharing and at imported worker. In the learned heatmap, higher used% was observed for
lower LBD values, and vice versa. The result indicates that the LBD value determines how
high or low the used% is, regardless of the size of the clause. In contrast, in the imported
heatmap, the used% seems to depend on the size rather than the LBD value. This suggests

SAT 2024
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that the LBD value does not primarily indicate the usefulness of imported clauses, as deduced
from the used% metric. Instead, clause size seems to be associated with used%. This result
is consistent with that of the previous experiment. The dark blue cells whose LBD and size
are equal in the imported figure showed considerably high used%. However, the number of
these clauses was limited.

Figure 2 Used% heatmap of LBD and size, comparison of clauses learned and imported.

4.2.4 Distribution of used% on LBD among all instances
Figure 3 shows the statistical summary of all the benchmark instances as the box plot. The
box plot illustrates the distribution of used% among instances. The mean used% for each
LBD value was used as the value for an instance. The center line of the box represents
the median instance, and the ends of the box represent the first and third quartile points,
respectively. The edge lines represent the maximum and minimum values, respectively. We
excluded outliers from the figure for readability; instances that are 1.5 times smaller or larger
than the first and third quartile values. In addition, instances that generate no imported
clauses (e.g., the solver finds a solution before no sharing is conducted) are excluded from the
result. This figure substantiates that the trend observed in the example instances represents
the general trend across many instances.

4.3 Comparison of LBD values of shared clauses at learned and
imported workers

In the previous experiments, we compared the used% in learned worker and imported worker,
using the LBD value that is calculated at learned worker. Next, we quantify the changes
in LBD values after sharing; between the values at originating (learned) worker and at
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Figure 3 Distribution of used% for 400 benchmark instances at each LBD value.

receiving (imported) workers after reevaluation. We refer to the LBD value at learned worker
as learned LBD, and that at imported worker as imported LBD, respectively. The learned
LBD and imported LBD can be different because each worker uses a different decision tree.
We compared the change from learned LBD to imported LBD. This experiment aims at
investigating the extent to which the originally highly evaluated (and thus shared) clause
is evaluated in the imported worker after sharing. This experiment used the same setup as
those in the previous experiment. Table 2 shows the result. Each row represents the LBD at
the learned worker, and each column represents the imported LBD. The number in each cell
refers to the percentage of clauses defined by

|Clearned=x,imported=y|
|Clearned=x|

where x is the learned LBD, and y is the imported LBD. This indicates the ratio of clauses
Cx (LBD = x) at learned worker that are re-evaluated to y at the imported worker. The
value is averaged for all instances. Remember that we excluded clauses with a size of one or
two following the previous experimental conditions.

Table 2 Comparison of LBD values of shared clauses at originating and receiving workers. 10+
denotes the sum of the percentages for clauses whose size is greater than or equal to 10. The sum of
the horizontal axis (rows) adds up to 100%.

imported LBD
1 2 3 4 5 6 7 8 9 10+

1 5% 8% 33% 16% 11% 7% 5% 3% 3% 2%
2 3% 6% 36% 14% 9% 6% 5% 4% 3% 3%

learned LBD 3 3% 5% 5% 25% 13% 9% 8% 6% 5% 4%
4 2% 2% 2% 3% 18% 10% 10% 8% 7% 5%
5 2% 2% 2% 2% 2% 13% 10% 9% 9% 8%

If LBD can measure the common quality for all parallel workers, imported LBD is expected
to be similar to learned LBD; A valuable clause for a learned worker is also valuable for
imported workers. However, the result reveals that more than 90% of learned clauses are
re-evaluated worse at imported worker. This means a significant change in the LBD values
after sharing. This observation can be explained with the previous used% analysis; The
possibility of the clause being updated is low because the utilization of imported clauses is
limited.
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Through these experiments, we conclude that LBD is not enough for the clause quality
evaluation in the parallel environment. We suggest that it is attributed to LBD’s search
state dependence. Under such conditions, we suggest using another clause evaluation metric
that is independent of the search state.

5 Proposal method and implementation

Our proposed method, PaCS, evaluates clauses using a metric originally proposed for the
clause deletion task [21]. The metric, namely average external edge weight (AEEW), measures
the weight of the edges in the VIG of the input SAT problem. The sequential solver that used
AEEW as its primary criterion for clause evaluation demonstrated competitive performance
with LBD. The value of AEEW for a clause c is expressed as follows:

AEEW (c) := avg({w(e)/|c| : e = (vi, vj) ∈ E, vi ∈ c, vj /∈ c})

This concept denotes the strength (presented as the weight of edge) of the connection between
the nodes vi and vj , where vi belongs to the learnt clause c (vi ∈ c) and vj is the neighboring
variable of vi that does not belong to c (vj /∈ c). E denotes all edges in G, ∀e ∈ E, and
e = (vi, vj) indicates that edge e connects to variables vi and vj . Function w(e) returns
the weight of edge e in G, which is defined in Section 2.4. |c| denotes the size of c, and the
function avg(X) calculates the arithmetic mean of set X, defined as avg(X) = 1

n

∑n
i=1 xi,

where n denotes the count of elements in X (|X|). A higher AEEW value (heavier edge on
average or smaller size) indicates a higher quality.

We suggest that AEEW can measure a clause’s quality from a new perspective: “the
possibility of determining the Boolean values of variables in the evaluating clause”. A higher
AEEW value indicates either a heavier average edge weight or fewer variables in the clause.
A heavy edge implies that the pair of variables belonging to the edge is contained in a short
clause and/or many clauses as defined by the weight. When the Boolean value of one variable
is determined, the Boolean value of the other variable is more likely to be determined through
propagation. Also, the fewer variable clauses (shorter clauses) have a higher possibility of
determining all variables in the clause. Thus, higher AEEW clauses have a better chance
of determining their variables’ Boolean values easily. Consequently, this allows AEEW to
positively evaluate clauses that are more likely to be satisfied, initiate unit propagation, or
induce conflicts.

We focused on AEEW’s search-independent property, which is attributed to its definition
using the graph structure of INPUT CNF. Thus, we propose PaCS using AEEW as a metric
for selecting sharing clauses in parallel SAT solvers. This has the potential to address
the challenges LBD faces in parallel environments. Algorithms 1 and 2 show how PaCS
determines which clauses to share. For implementation, we used ParKissat-RS as the base
solver. ParKissat-RS adopts a worker-sharer parallel architecture. Workers add acquired
learnt clauses that meet the criteria to a buffer for sharing. In the default configuration, the
criterion has an LBD value of two or less. The sharer broadcasts all clauses in the buffer
to the workers at regular intervals. We modified both procedures in the worker and sharer
and adopted a two-step selection in PaCS. Algorithm 1 describes the procedure in a worker,
the first-step selection. A clause is stored in buffer and forwarded to sharer if its size is
less than or equal to a predefined value limit_size or its LBD values less than or equal to
two. The limit_size and LBD ≤ 2 serve as the initial screening criteria to decrease the
computational cost of calculating and sorting the AEEW values in the sharer procedure. In
the case of LBD and size, screening is not necessary by setting a constant threshold (e.g.
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size ≤ 8) among instances. However, it is difficult to set a constant threshold by AEEW
since its value varies largely from instance to instance. Therefore, we set initial screening
to shortlist millions of obtained clauses by size to a manageable amount and then sort the
remaining clauses according to the value of AEEW. Furthermore, we added the LBD ≤ 2
criterion for the following cnt implementation. Then, the procedure in sharer serves as the
second screening, as described in Algorithm 2. One worker constructed the instance graph
in a parallel environment on shared memory, and then, upon completion, other workers or
sharers used it. The AEEW values are calculated for all clauses in the buffer and then sorted.
The sorting is in descending order of AEEW, ascending order of LBD if the AEEW values
are equivalent, and ascending order of size if the LBD values are equivalent. Higher AEEW
clauses are shared more preferentially. The solver counts cnt as the number of clauses in
the buffer with an LBD value less than or equal to two. This cnt constrains the number of
clauses to be shared at line 6; this helps to exclude the effect of the total number of sharing
clauses and observe only the effect of the change in selection criteria.

This implementation allows us to isolate and compare the effects of changing the criteria
for selecting shared clauses. Subsequently, the sharer executes learnt clause sharing at
predetermined intervals every 0.5 s. The selected clauses are broadcast to parallel workers
from the top of the sorted clauses.

Algorithm 1 Clause sharing procedure of PaCS in worker.

Require: obtained learnt clause c, LBD criteria limit_size

1: if c.size ≤ limit_size or c.lbd ≤ 2 then
2: buffer ← c

3: end if
4: submit c to buffer

Algorithm 2 Clause sharing procedure of PaCS in sharer.

Require: all buffered learnt clauses C, counter cnt, instance graph G

1: for clause c in C do
2: calculate AEEW value for clause c using G

3: if c.lbd ≤ 2 then cnt++
4: end for
5: sort(buffer)
6: broadcast the top cnt clauses in the buffer according to the sorted order.

6 Performance Evaluation

6.1 Experiment setup
We evaluated the performance of the solver using the PaCS method and compared its
performance with that of the base solver, ParKissat-RS, using LBD. We compared four types
of solvers in 16 parallel environments (16 workers): Base – the default ParKissat-RS. Size
(size ≤ 1 or 8) – share clauses whose size is less than or equal to eight (same as presented in
Section 4.1). Random – randomly select clauses from those whose sizes are less than 100,
up to the quantity corresponding to the number of clauses with LBD values of one or two;
PaCS (size ≤ x) – select clauses using PaCS from those whose size is less than or equal to x

(limit_size), up to the quantity corresponding to the number of clauses with LBD values of
one or two.
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The benchmark comprised 1200 instances from the main tracks of SAT competitions
held between 2021 and 2023 (400 instances per year). We conducted the experiments on a
computer with an AMD Threadripper Pro 3995WX processor (64 core) and 512 GB (128
GB 4 slots, DDR4-3200 MHz) RAM. We used the default ParKissat-RS implementation,
adding the necessary functions for PaCS, and only changed the timeout option. No other
options for the running solvers. We evaluated the solver’s performance based on the number
of instances solved within a time limit of 5000 s on the CPU clock and the PAR-2 score,
which represents the mean time required to solve an instance with an additional penalty of
5000 s for each unsolved instance.

6.2 Evaluation result
Table 3 summarizes the results of our experiments, in which we compared base, random,
size ≤ 1, 8, and PaCS, whose initial screening size is between 5 to 9. SC21, SC22, and
SC23 present the benchmark instance set from the SAT competition 2021-2023, respectively.
SAT and UNSAT indicate the number of instances identified as satisfiable and unsatisfiable,
respectively. Therefore, a higher number indicates a better result. The cactus plot in Figure
4 demonstrates the same results; however, the PaCS results are limited to size ≤ 5, 7 for
readability.

Table 3 Performance evaluation results corresponding to each solver.

SC21 SC22 SC23 Total PAR-2
Criterion SAT UNSAT SAT UNSAT SAT UNSAT

Base 153 162 158 153 124 141 891 2934
Random 154 156 159 148 125 137 879 3170

Size (size ≤ 1) 155 160 160 151 126 147 899 2931
Size (size ≤ 8) 154 167 159 160 129 141 910 2754

PaCS (size ≤ 5) 155 170 162 164 128 148 927 2612
PaCS (size ≤ 6) 155 169 163 164 124 150 925 2634
PaCS (size ≤ 7) 157 169 160 166 127 150 929 2595
PaCS (size ≤ 8) 154 168 161 164 127 148 922 2659
PaCS (size ≤ 9) 156 168 163 164 124 150 925 2642

The size-based selection solver performed marginally better than the LBD, which is
consistent with the results of Section 4.1. However, the random one worsened the performance.
The solver’s performance using PaCS is overall better than that of the base solver using
LBD, particularly with the initial size seven screenings. It solved 38 more instances (+4.2%)
and achieved an average PAR-2 score improvement of 339 (−11.6%). More improvement
was observed in the UNSAT instances. At a high level, UNSAT instances require good
learning for their proof, and we assume that PaCS contributed to the identification of these
valuable clauses for all workers. This improvement can be attributed to two properties of
PaCS. PaCS can share valuable clauses for all parallel workers irrespective of their search
states because it depends only on the graph structure converted from the CNF of the input
problem. This implies that PaCS can assess the general usefulness of clauses across parallel
workers, whereas LBD indicates the value of a worker’s search state. Furthermore, PaCS can
favorably select clauses whose variables are more likely to be propagated because it highly
values heavier edges in VIG. After determining the Boolean values of variables in the clauses,
it can identify the clauses that cause conflict more frequently.
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Figure 4 Performance evaluation results in cactus-plot. PaCS results are limited to size ≤ 5, 7
for readability.

7 Conclusion

This study focuses on the clause-sharing strategy for parallel SAT solvers to improve them.
First, we investigated the performance of LBD, the current popular metric, in parallel clause
sharing. Preliminary experiments showed that LBD is not optimal for clause evaluation in a
parallel environment. Therefore, we propose a novel clause-sharing method, Parallel Clause
sharing based on graph Structure, PaCS. It can evaluate the common quality for all parallel
workers using the graph structure derived from the input CNF of the SAT problems. The
performance evaluation experiments demonstrated that PaCS outperforms the state-of-the-art
parallel solver using LBD. These results showed the potential for enhancing the clause-sharing
strategy of parallel solvers by leveraging the graph structure inherent in SAT problems.
Furthermore, we believe that this study opens avenues to reinterpret and understand the
quality of learnt clauses more deeply. The quality of clauses has often been evaluated by their
size (including substantial size measured by LBD). We argue that AEEW is the extended
concept of size, which encompasses what size implies. Short clauses have a higher possibility
of determining Boolean values, which are more likely to induce unit propagation and conflict,
contributing to the search. The AEEW can assess the possibility directly using the weight of
edges in the VIG.

The following items are for future work. First, there is potential for improving performance
by refining the implementation. The construction of graphs entails a certain duration, which
may span up to several hundred seconds in one worker, depending on the problem. Further
enhancements to the data structures can contribute to performance improvements. The
current algorithm includes pre-defined parameters, such as initial screening before submission
to a buffer, which can be optimized. The second entails exploring adaptive strategies,
such as altering selection criteria or the number of clauses to be shared. Third, large-scale
parallel experiments may be studied further. Conducting these experiments may validate the
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scalability and practical applicability of our proposal method. The fourth is to replace LBD
with PaCS for all use in parallel solvers, for example, clause deletion strategy in each parallel
worker and optimization of the number of sharing clauses without LBD. Fifth, we would like
to explore the theoretical justification and investigation of the implications of AEEW values,
the possibility of propagation. Finally, in-depth investigations of the relationship between
clause quality and graph structure from a broad perspective can contribute to understanding
the behavior of SAT solvers and the quality of learnt clauses. These future works aim to
optimize and expand the application of PaCS and explore new frontiers of clause evaluation.
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Abstract
This paper presents Global Benchmark Database (GBD), a comprehensive suite of tools for provi-
sioning and sustainably maintaining benchmark instances and their metadata. The availability of
benchmark metadata is essential for many tasks in empirical research, e.g., for the data-driven com-
pilation of benchmarks, the domain-specific analysis of runtime experiments, or the instance-specific
selection of solvers. In this paper, we introduce the data model of GBD as well as its interfaces and
provide examples of how to interact with them. We also demonstrate the integration of custom data
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1 Introduction

The idea to create Global Benchmark Database (GBD) arose from the need to make available
and sustainably maintain benchmark instances and their metadata for the problem of
propositional satisfiability (SAT). To this end, we specified a simple hash function for
instance identification to serve as the primary key for SAT instance data sets. A proof
of concept was presented and discussed at the 2018 Pragmatics of SAT (POS) workshop,
demonstrating the specification of a SAT instance identifier and methods for labeling and
querying for instances [19]. From there, GBD has matured into a comprehensive suite of
tools for provisioning and sustainably maintaining benchmark instances of various problem
domains and their metadata. Supported problem domains include propositional satisfiability
(SAT), maximum satisfiability (MaxSAT), and pseudo-Boolean optimization (PBO).

In essence, the purpose of GBD is to act as a conduit between data science and empirical
research on NP-hard problem classes by facilitating the seamless integration of benchmark
data into existing workflows. GBD provides tools for distributing benchmark instances and
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feature databases, as well as tools for transforming instances and extracting instance features.
It also provides a set of prebuilt feature databases for identifying instance equivalence classes,
categories, or labels, as well as analytical instance features. Examples of successful applications
of GBD include the sanitization and selection of benchmarks for SAT competitions [13],
domain-specific solver evaluations [8], and the analysis of solver portfolios and solver prediction
models [2]. Moreover, the authors of the latest award-winning state-of-the-art SAT solvers
use GBD in their empirical evaluations. [11, 25]. GBD is open source and available under
the MIT license [18].

In this paper, we describe the conceptual design of the GBD data model and present the
interfaces for interacting with GBD, as well as the extension capabilities provided by the
data model, including concrete examples of their use. We start with a brief description of the
GBD data model and query language in Section 2. Section 3 presents the GBD interfaces
and gives concrete examples of how to use GBD in practice. Finally, Section 4 explains how
to extend GBD with additional problem domains, instance formats, and feature extractors.
We conclude with a summary and an outlook on future work in Section 5.

2 Data Model and Queries

Conceptually, GBD consists of an extensible set of contexts C = {C0, C1, . . . }. Each
context represents a problem domain, or more specifically, a particular instance format
of a problem domain. A context is defined as a tuple C = (X , id), where X is the set of
benchmark instances and id : X → PK is a context-specific instance identification function
that maps each benchmark instance to an instance identifier unique within the context.
Contexts are instantiated with data sources D = {F1, F2, . . . } which provide instance features
Fi ⊆ PK × 2Σ∗ assigning values to benchmark instances, where values are represented by
strings over an alphabet Σ.1

Feature Types

In practice, GBD distinguishes between one-to-one and one-to-many features. One-to-one
features are defined as those that provide a single value per instance, with a default value
associated with them. In contrast, one-to-many features can have zero to any number of values
per instance. One-to-one features facilitate the initial setup and subsequent maintenance,
as they are initialized to the default value automatically and subsequent calls to gbd set
overwrite any previous settings. In contrast, the values of one-to-many features accumulate
over time and must be explicitly cleared. Example 1 illustrates the practical use of the
different feature types in the context of cnf instances.

▶ Example 1. Let cnf := (X , id) be the context where X is the set of SAT benchmark
instances in DIMACS CNF format, and let a data source meta.db := {track, result, . . . } be
given, which provides the cnf instance features track and result. In the example, the feature
track indicates the competition tracks in which the instance was used and is modeled as a
one-to-many feature, while result indicates the satisfiability of the instance and is defined as
a one-to-one feature with the default value “unknown”.

1 The data sources used in the examples of this section are available at https://benchmark-database.de.
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Context Mappings

For any two contexts Ci = (Xi, idi), Cj = (Xj , idj) with instance identifiers PKi, PKj , a data
source can provide a special feature F ⊆ PKi × PKj that establishes a relationship between
instances in Xi and Xj . In GBD, such features are referred to as context mappings. Context
mappings can be used to map instances from different problem domains to each other if
there is a reduction procedure that transforms instances from one domain to instances in the
other domain. Example 2 illustrates the practical use of context mappings to relate instances
of the propositional satisfiability problem to instances of the k-independent set problem.

▶ Example 2. Given the context of cnf instances of the SAT problem and the context kis of
graph-instances of the k-Independent Set problem. Any SAT instance can be transformed to
a graph and a number k in such a way that the satisfiability of the SAT instance is equivalent
to the existence of an independent set of size k in the graph [23]. A context mapping feature
can be used to map instances in cnf to their corresponding instances in kis.

Context mappings are useful not only for relating instances from different problem domains,
but also for relating instances from different contexts within the same problem domain.
Application scenarios include relating different instance formats, analyzing different encodings
of application instances, or distinguishing sanitized or otherwise preprocessed instances from
their original counterparts (cf. Use case 9 below).

Queries

GBD provides a query language designed to filter instances of a given context by specifying
constraints over the instance features. A GBD query is a simple constraint c, or a compound
constraint c1 and c2, or c1 or c2 for sub-constraints c1, c2, and parentheses can be used to
indicate precedence. A simple constraint is of the form f ◦ e with a feature name f , a value
e, and an operator ◦ ∈ {=, !=, <, >, <=, >=, like, unlike} with the usual semantics.
For SQL-inspired operators ◦ ∈ {like, unlike}, a constraint can also be of the form f ◦ %e,
f ◦ e%, or f ◦ %e% to indicate postfix, prefix, or infix constraints, respectively. Value e can also
be a term, where a term is either a constant number, or a feature name in parentheses (f ′)2,
or a compound term (t1 ◦ t2) from arithmetic operators ◦ ∈ {+,-,*,/} and terms t1, t2.

▶ Example 3. Given the cnf context and the data source meta.db providing the instance
feature track, a query can be of the form track = main_2023 to filter for instances from the
Main track of the 2023 SAT competition.

▶ Example 4. Given the cnf context and the data source meta.db providing the instance fea-
tures track and filename, a query can be of the form track = anni_2022 and filename like rphp%
to filter for instances from the Anniversary track of the 2022 SAT competition whose filenames
begin with the string rphp.

▶ Example 5. Given the cnf context and the data source base.db providing the instance
features variables and clauses, a query can be of the form variables > (clauses) to filter for
instances with more variables than clauses.

2 Parentheses are used here to disambiguate terms and character strings.
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3 Applications

This section introduces the gbd-tools package, which is available in the Python Package
Index (PyPI) and can be installed using the command pip install gbd-tools. The package
provides the command line tool gbd, a web service, and the Python interface class GBD. We
start with instructions on how to configure gbd-tools in Section 3.1, and then present use
cases of the command line tool gbd in Section 3.2. The web service and Python interface are
presented in Sections 3.3 and 3.4, respectively.

3.1 Data Source Configuration
Data sources for instantiating GBD are specified as a list of files, where each file can be either
a sqlite3 database created by GBD, or a csv file for importing data from other sources. The
requirements for the csv files are that they have a header line containing the feature names,
and they must provide the hash column containing the instance identifiers. Example 6 shows
a typical example of integrating two data sources before analyzing runtime experiments.

▶ Example 6. Let GBD be instantiated with the two data sources meta.db and runtimes.csv.
The file meta.db provides the feature family, indicating the domain of each instance. The file
runtimes.csv provides the solver runtimes baseline and incumbent. The instance identifier in
the hash column facilitates the integration of the two data sources and thus the domain-wise
analysis of experimental results.

Data sources can be registered by setting the environment variable GBD_DB to a colon-
separated list of paths. It is also possible to specify or override the data sources with
the option -d/--db on each call of the gbd command-line tool. If a data source does not
exist, GBD offers to create it. Ready-made feature databases are available for download
from https://benchmark-database.de. The gbd info command can be used to display the
registered data sources, their names, and the features provided. The name of a data source is
automatically generated from its filename by removing the extension, and is needed in some
parameters and queries to explicitly refer to a specific data source (cf. Use cases 3 and 7).

Each data source is associated with a context, so a data source can only provide features
for exactly one context. Each context is identified by a name, e.g., opb for the context of
pseudo-Boolean optimization instances. The set of available contexts, including their names
and descriptions, can be displayed with the command gbd info -c. To bind a data source to a
context, its filename is prefixed with the context name to which the data belongs (cf. Use
cases 9 and 10). Otherwise, the data source is treated as belonging to the default context cnf.

When features from different contexts are queried simultaneously, a context mapping
feature is used to create a relational join between the instance identifiers of the different
contexts. The naming convention for context mapping features is to_{cxt}, where cxt is a
context name. The to_{cxt} feature maps the identifiers of the context of the data source
in which it resides to the identifiers of the context named by cxt. GBD recognizes context
mapping features according to this naming convention and generates the appropriate foreign
key relationships to automatically join features from different contexts.

3.2 Command-Line Tool gbd
In this section, we present the command line tool gbd and its subcommands for initializing
GBD with benchmark instances, querying for instances and features, extracting features
from instances, and transforming instances. The full set of subcommands can be viewed with

https://benchmark-database.de


M. Iser and C. Jabs 18:5

gbd --help. In the use cases presented in this section, we assume that the cnf data sources
meta.db3 and mylocal.db (to be initialized in the following) are configured as data sources
by the environment variable GBD_DB, and that /path/to/instances contains the benchmark
instances from SAT Competition 2023.4

3.2.1 Database Initialization
In order to use GBD to organize your own experiments, it is necessary for GBD to know
where the locally available benchmark instances are located. Integrating a set of paths to
benchmark instances into GBD requires computing the instance identifiers and storing the
instance paths in a GBD data source. In this process, GBD creates the reserved features local
and filename to associate the local paths and filenames with the respective identifiers. Note
that projecting to an instance identifier automatically eliminates duplicates. The initialization
process may require a considerable amount of time, even for a moderate number of instances,
as is the case with SAT competition benchmark sets. However, it is only required once for
the registration of benchmarks.

Use case 1 illustrates initializing GBD with a number of benchmark instances present
on the local volume using the gbd init local command. The -j/--jobs option is used to set
the number of parallel jobs, the --target option is used to specify the name of the database
in which to create the features, and the parameter after the local subcommand is used to
specify the path to the benchmark instances. The gbd init local command recursively searches
the specified directory for benchmark instances using the file extensions associated with the
context of the target database.

Use case 1 Local database initialization.

gbd init -j16 --target mylocal local /path/to/ instances

3.2.2 Queries for Instances and Features
The gbd get command is used to filter for specific instances and retrieve their features. A
comprehensive set of options can be displayed with gbd get --help. Filtering is typically done
with GBD queries, and a list of features to be returned is given by the -r/--resolve option.
Use case 2 illustrates how to filter for cryptographic instances in the SAT Competition 2023
benchmark set and return their local paths.

Use case 2 Filtering and feature resolution.

gbd get "track= main_2023 and family like crypto %" -r local

Feature names from different databases may overlap in some configurations. In this case,
GBD picks the feature values from the first database in the list that provides the feature. To
override this behavior, feature names can be prefixed with the database name, separated
by a colon. Use case 3 shows how to filter by the feature track from the database meta and
select the feature local from the database mylocal.

Use case 3 Explicit feature database.

gbd get "meta:track = main_2023 " -r mylocal :local

3 https://benchmark-database.de/getdatabase/meta
4 https://benchmark-database.de/?track=main_2023
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To control the handling of multiple values per hash, the -c/--collapse option can be used, as
shown in Use case 4. The command collapses the values of the feature local to a single value
by using the minimum value.

Use case 4 Collapse.

gbd get "track= main_2023 " -r mylocal :local -c min

For grouping instances by a feature other than the instance identifier, the option -g/--group
can be used as illustrated in Use case 5. The command groups the instances by the feature
isohash and selects a local path for each group using the minimum function.

Use case 5 Grouping.

gbd get "track= main_2023 " -r local -c min -g isohash

3.2.3 Manual Data Acquisition
In addition to subcommands for creating, deleting, renaming, and copying features, the
gbd command line tool provides a subcommand for manually setting feature values. Use
case 6 demonstrates the use of the gbd set command to set the value of the family feature to
hardware-verification for all instances whose filename starts with the string manol.

Use case 6 Setting feature values.

gbd set family =hardware - verification " filename like manol%"

3.2.4 Instance Feature Extraction
Feature extractors are accessible through subcommands of gbd init, which can be listed
with gbd init --help. Each feature extractor is bound to a set of contexts and can only be
executed on instances from those contexts. Multiple feature extractors are provided by the
gbdc extension module which are documented at https://udopia.github.io/gbdc. Note
that ready-made feature databases are available for download from our instance of the GBD
web interface (cf. Section 3.3).

Use case 7 illustrates the use of the subcommand gbd init base to extract default features
denoted as base from a set of cnf benchmark instances. In the example, the option -j/--jobs
is used to specify the number of parallel jobs to use for the feature extraction. The option
--target is used to specify the name of the database in which to create the features. This
requires that a database with the name mybase is registered as a data source. The parameter
after the subcommand base is used to specify the query for the instances to extract features
from.

Use case 7 Base feature extraction.

gbd init -j16 --target mybase base "track = main_2023 "

It is often necessary to determine which instances are isomorphic to each other. The isohash
feature is a hash value that over-approximates the class of isomorphic instances and can
be used to identify and group isomorphic instances and to subsequently eliminate them
from benchmark sets (cf. Use case 5). Use case 8 illustrates how to use the gbd init isohash
command to compute isohash for a set of cnf benchmark instances.

Use case 8 Isohash calculation.

gbd init -j16 --target meta isohash "track = main_2023 "

https://udopia.github.io/gbdc
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3.2.5 Instance Transformation
GBD also provides instance transformers accessible via subcommands of gbd transform. A
complete list of available instance transformers can be displayed with gbd transform --help.
Instance transformers are functions that transform an instance of one context into another
instance of a different context. Additionally, an instance transformer automatically creates a
context mapping that relates the instances in both contexts, and can store additional features
in the database. Instance transformers are implemented as a special type of feature extractor
that, in addition to creating instance features, also creates a new benchmark instance in the
target context. Several instance transformers are provided by the gbdc extension module
and are documented in the gbdc documentation.

Use case 9 illustrates the use of the sanitize transformer for cnf instances. The command
transforms the instances in the source context cnf to instances in the target context sancnf
and stores their mapping and local path in the database sancnf_local.db.

Use case 9 Instance sanitizer.

gbd transform --source cnf --target sancnf_local sanitize

Note that sancnf is an example of a context that exists only to distinguish between sanitized
and unsanitized instances and to use the context mapping feature to check if identifiers have
changed. In most practical use cases, the sanitized instances will be used to replace the
unsanitized instances in the original cnf context.

An example of a real transformation between different problem domains is the transform-
ation of cnf instances into k-Independent Set (kis) instances, as described in Example 2. Use
case 10 illustrates the use of the cnf2kis transformer to transform the instances in the source
context cnf into instances in the target context kis. The mapping of the instances in both
contexts is stored in the database kis_local.db.

Use case 10 Transforming CNF to KIS.

gbd transform --source cnf --target kis_local cnf2kis

3.3 Web Interface
The GBD web interface is implemented as a RESTful web service [7] that provides access to the
benchmarks and databases of the environment it runs in, and can be started with the command
gbd serve. While the GBD command-line tool operates independently of the web service, the
web service uses the same GBD API and database configuration as the command-line tool.
Our instance of the GBD web interface, accessible via https://benchmark-database.de, is
configured to run behind an Nginx reverse proxy [24] and is hosted in a Docker container [21].
At the time of writing, we provide access to more than 100 000 benchmark instances from
the cnf, wcnf, and opb contexts, with prebuilt feature databases for them.

3.4 Python Interface
The GBD Python API is wrapped in the class gbd_core.api.GBD and its documentation can
be found at https://udopia.github.io/gbd. With the Python API, GBD data sources
can be directly integrated into Python scripts and Jupyter notebooks to be used in evaluation
and analysis. Use case 11 illustrates the use of the Python API to query for instances and
features. Line 2 creates a GBD object that connects to the GBD data sources base and meta,
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which are passed to the constructor as a list of paths. Line 3 creates a list of feature names
from the base data source and adds the feature family from the meta data source. Line 4
queries for the given features of cnf instances from the Main track of SAT Competition 2023.
The result is returned as a Pandas [20] DataFrame for further analysis.5

Use case 11 GBD Python interface.

1 from gbd_core .api import GBD
2 with GBD ([’gbd/meta.db’, ’gbd/base.db’]) as gbd:
3 feat = gbd. get_features (’base ’) + [’family ’]
4 df = gbd.query("track = main_2023 ", resolve =feat)

4 Writing Extensions

The architectural design of GBD allows the integration of new contexts, feature extractors,
and instance transformers. The extensibility of the system is achieved through the use
of dictionaries, which serve as registries for contexts, feature extractors, and instance
transformers. The following section describes the elements required to create such a registry
entry. It is important to note that at the time of writing, these registries are hard-coded,
which is a limitation in that it requires modification of these dictionaries within the source
code of GBD. This issue will be addressed in future versions of GBD, where the registry will
be moved to configuration files.

GBD contexts are managed in a dictionary data structure that is initialized in the
gbd_core.contexts module. The dictionary is indexed with the respective context name and
contains a pointer to the instance identification function and a list of valid instance filename
extensions. The instance identification function is the function that assigns a unique instance
identifier to each benchmark instance, which serves as the primary key in the context-specific
feature databases. The list of valid instance filename extensions is used to locate benchmark
instances in the local file system during the database initialization process. Once a context
is created in the dictionary, context-specific databases can be populated using the context
name.

A new feature extractor can be integrated into GBD by registering a feature extractor
function in a dictionary data structure that is initialized in the gbd_init.feature_extractors
module. The dictionary is indexed by the name of the feature extractor and contains a list of
the provided features, which are tuples of feature names and default values. It also contains
a pointer to the feature extractor function and a list of contexts in which it can be used.
Registered feature extractors are automatically accessible by their names as subcommands
of gbd init.

Instance transformers are managed in a dictionary data structure that is initialized in the
gbd_init.instance_transformers module. An instance transformer function takes an instance in
a source context and transforms it to a new instance in the target context. The dictionary is
indexed by the name of the instance transformer and, similarly to feature extractors, contains
a list of the provided features. Additionally, the dictionary contains a pointer to the instance
transformer function itself, as well as a pointer to a function that generates the name of
the benchmark instance to be created. Registered instance transformers are automatically
accessible by their names as subcommands of gbd transform.

5 We provide illustrative examples of benchmark data analyses, including portfolio analysis, category
prediction, and category-specific ranking, accessible via https://udopia.github.io/gbdeval/.
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5 Related and Future Work

SatLib was the first public collection of benchmark instances in the SAT problem domain [12],
and similar collections have been created for other problem domains such as MaxSAT [1],
Quantified Boolean Formulas (QBF) [9], SAT Modulo Theories (SMT) [4], and Mixed Integer
Programming (MIP) [10]. SatEx is the first web-based framework for reproducible execution
and evaluation of SAT solver experiments [26], followed by the EDACC framework [3]. Instance
features were used to predict the fastest solver for an instance [27] and to reduce redundancy
in experiments [22]. Aslib is a library of data sets for training and evaluating solver prediction
models [5]. Meta-features such as the instance domain have been used to study specialized
heuristic configurations [6].

GBD’s data model, which is centered around instance identification functions, enables the
data-driven study of NP-hard problem domains in an unprecedentedly sustainable manner.
Future work includes the integration of more problem domains, more feature extractors, and
more instance transformers. We also plan to improve the configuration capabilities of the data
sources, including the ability to easily switch between different configurations, and to improve
the extensibility of GBD by making it a matter of changing a configuration file whenever new
problem domains, instance formats, feature extractors, and instance transformers are added.
We also plan to improve the web interface to make it easier to use and more informative,
and to provide a benchmark submission system. Finally, we plan to automate the feature
extraction process to instantly provide feature databases for new benchmark instances, and
add support for instance generators.

The purpose of coupling and providing instance data is to enable more complex data-
driven analyses of the instance spaces of hard algorithmic problems, thus accelerating the
growing use of explainable artificial intelligence methods. Future work in this area includes
the application of machine-assisted hypothesis generation and testing, and the development
of new methods for exploring, analyzing, and explaining algorithmic datasets.
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Abstract
We study the symbolic approach to the propositional satisfiability problem proposed by Aguirre
and Vardi in 2001 based on OBDDs and symbolic quantifier elimination. We study the theoretical
limitations of the most general version of this approach where it is allowed to dynamically change
variable order in OBDD. We refer to algorithms based on this approach as OBDD(∧, ∃, reordering)
algorithms.

We prove the first exponential lower bound of OBDD(∧, ∃, reordering) algorithms on unsatis-
fiable formulas, and give an example of formulas having short tree-like resolution proofs that are
exponentially hard for OBDD(∧, ∃, reordering) algorithms. We also present the first exponential
lower bound for natural formulas with clear combinatorial meaning: every OBDD(∧, ∃, reordering)
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1 Introduction

The Boolean satisfiability problem (SAT) is the decision problem, where given a CNF formula
we are to decide whether it is satisfiable or not. The symbolic approach to SAT is to gradually
transform the input formula into a special representation model in which the satisfiability
problem can be easily solved. In our case, the representation model is an ordered binary
decision diagram (OBDD) due to Bryant [4]. An ordered binary decision diagram (OBDD)
represents a Boolean function as a branching program with two sinks such that on every
path from the source to a sink, variables appear in the same order. This restriction on the
order of variables allows handling of the diagrams very efficiently.

Assume that the input formula is φ =
∧m

i=1 Ci. The naive symbolic approach is to
choose some permutation σ of the set [m] and iteratively compute OBDD representing∧k

i=1 Cσ(i) for k = 1, 2, . . . ,m. Algorithms implementing this approach vary in the way of
choosing a permutation σ (for example, it can be chosen dynamically and not straightaway)
and in the way of choosing the order of variables in OBDD. Algorithms that choose the
one order of variables in OBDD and do not change it during the execution we denote by
OBDD(∧) algorithms. Algorithms that dynamically change the order in OBDD we denote
by OBDD(∧, reordering) algorithms.

Aguirre and Vardi suggested a smarter symbolic approach called symbolic quantifier
elimination [1, 19]. The key idea is that we have to obtain OBDD representation not of
the formula φ(x1, x2, . . . , xn) itself but rather ∃x1∃x2 . . . ∃xnφ. On one hand, the exterior
quantifiers are not necessary to be applied since the satisfiability testing is easy for OBDD.
But in some cases, one can move the quantifier in the middle of the formula. Namely, if all
occurrences of a variable xj are among clauses Cσ(i) for i ∈ [k], then the quantifier for xj
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can be put in front of
∧k

i=1 Cσ(i) and we can apply projection over xj to the current OBDD.
In other words, now the current OBDD represents not a conjunction of clauses

∧k
i=1 Cσ(i)

but rather ∃xi1 . . . ∃xiℓ

∧k
i=1 Cσ(i), where the variables xi1 , . . . , xiℓ

do not appear in Cσ(i) for
i ∈ {k + 1, . . . , n}. Algorithms implementing this approach vary on how they can choose the
permutation σ (possibly in a dynamic way), variables orders in OBDDs, and also on the way
of moving existential quantifiers inside the formula if it is permitted. Similarly, we call such
algorithms by OBDD(∧, ∃) and OBDD(∧, ∃, reordering) algorithms depending on whether it
is allowed to change variable orders in OBDDs.

In this paper, we study theoretical lower bounds on the running time of
OBDD(∧, ∃, reordering) algorithms. The running time of every such algorithm can be
bounded below by the maximal size of constructed OBDDs. Our goal is to construct hard
formulas for which any algorithm must construct an OBDD of exponential size not depend-
ently on choosing a permutation σ, variable orders in OBDDs, and moving of existential
quantifiers.

Previous results. The study of OBDD algorithms is highly connected with the study of
OBDD-based proof systems initiated by Atserias, Kolaitis, and Vardi [3] and then continued
by other researchers [14, 6, 5]. Lower bounds for OBDD algorithms follow from the derivation
size lower bounds in corresponding proof systems (if such lower bounds are known). In
contrast with DPLL and CDCL algorithms [2, 17] proving lower bounds on satisfiable
instances for OBDD algorithms is not harder than proving lower bound of unsatisfiable
instances. Indeed, if we know that φ is a hard unsatisfiable formula for OBDD(∧, . . . )
algorithms then the formula x ∨ φ that is obtained from φ by addition of the new variable x
to all clauses of φ is a hard satisfiable formula for the same class of OBDD(∧, . . . ) algorithms.
However, we do not know such a reduction in the other direction.

Lower bounds for OBDD(∧, reordering) algorithms on satisfiable formulas are rather easy
to prove. Indeed, since at the end, the algorithm necessarily represents the initial formula, it
is enough to construct a family of Boolean functions that have small CNF representations but
require OBDD of exponential size for every order of variables. For example, satisfiable Tseitin
formulas have such property [10]. Proving a lower bound for OBDD(∧, reordering) algorithms
on unsatisfiable formulas is harder since at the end of the execution the OBDD represents
the constant false and hence it has a constant size. However, exponential lower bounds for
OBDD(∧, reordering) algorithms on unsatisfiable formulas are implied from the lower bound
for corresponding OBDD based proof system; for example, unsatisfiable Tseitin formulas on
expanders and the pigeonhole principle are hard for OBDD(∧, reordering) algorithms [14].

At the same time unsatisfiable and satisfiable Tseitin formulas [14] and the pigeonhole
principle [7, 18] are easy for OBDD(∧, ∃) algorithms.

Lower bounds for running time of OBDD(∧, ∃) algorithms on unsatisfiable formulas follow
from the lower bounds of the derivation complexity in dag-like and tree-like OBDD based
proof systems [15, 20]. Unfortunately, the mentioned lower bounds’ proofs rely significantly
on the fact that all OBDDs use the same variable order. One more disadvantage of these
results is that the hard formulas are very artificial and they were constructed especially for
the proof of lower bounds.

Buss, Itsykson, Knop, and Sokolov showed that the ability to change order in OBDDs
makes OBDD proof systems stronger [6]. One can use the same technique to show that the
same is true for OBDD algorithms.

The paper [14] gives an exponential lower bound on the running time of
OBDD(∧, ∃, reordering) algorithms on satisfiable formulas encoding that x is a codeword
of the specific linear code. The question about lower bounds for OBDD(∧, ∃, reordering)
algorithms on unsatisfiable formulas was open before this paper.
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Some restricted lower bounds follow from the result of the paper [5] for corres-
ponding restricted proof systems. Namely, unsatisfiable Tseitin formulas are hard for
OBDD(∧, ∃, reordering) algorithms if we bound the number of quantifiers that can be moved
inside the formula; recall that such formulas are easy without this restriction. Also, the
paper [5] gives an example of unsatisfiable formulas that are hard for OBDD(∧, ∃, reordering)
algorithms if it is allowed to use only a small number (at most c log n, where c is a small
constant and n is the number of variables) of orders.

Our results. In this paper, we give two families of unsatisfiable formulas and we prove for
them that they require exponential running time of OBDD(∧, ∃, reordering) algorithms.

The first family is based on a combination of hard satisfiable formulas for
OBDD(∧, ∃, reordering) algorithms and hard unsatisfiable formulas for OBDD(∧, reordering)
algorithms. The proof strategy is the following. The algorithm either does not apply
projections and, thus, it simulates an OBDD(∧, reordering) algorithm on the hard unsat-
isfiable formula, or it applies projection and then it has to simulate the running of an
OBDD(∧, ∃, reordering) algorithm on the hard satisfiable formula.

Using this approach we can get a stronger result. Namely, we construct hard formulas for
1−NBP(∧, ∃) algorithms that use non-deterministic read-once branching programs (1−NBP)
instead of OBDDs as the base representation model. 1−NBP extends OBDD and is strictly
more efficient. We should stress that 1−NBP(∧, ∃) algorithms have no practical sense since
for 1−NBP we cannot efficiently compute the result of the conjunction with a clause. But
a lower bound on the size of 1−NBP trivially implies the same lower bound on the size of
OBDD. We apply this extension in Theorem 20 to get that 1−NBP(∧, ∃) algorithms and,
thus, OBDD(∧, ∃, reordering) algorithms do not polynomially simulate tree-like resolution.
This result extends the result of Segerlind that OBDD(∧, ∃) algorithms do not simulate
dag-like resolution [20]. The separation formula can be obtained from the hard formula for
1−NBP(∧, ∃) algorithms by adding several extension axioms. In Lemma 18 we show that
adding extension axioms can not make the input formula simpler for 1−NBP(∧, ∃) algorithm;
the proof essentially exploits non-determinism in 1−NBPs. On the other hand, it is known
that tree-like resolution with extension axioms is equivalent to the exceptionally strong proof
system Extended Frege.

The disadvantage of the first family of hard formulas is that they are very artificial. So
we prove the second lower bound for the formulas with a clear combinatorial meaning. The
second family of hard formulas is the binary pigeonhole principle BPHP2ℓ+1

2ℓ that encodes
that there are 2ℓ + 1 distinct binary strings of length ℓ. In Theorem 21 we show that every
OBDD(∧, ∃, reordering) algorithm runs exponential time on BPHP2ℓ+1

2ℓ . The proof of the
lower bound is rather technically involved.

2 Preliminaries

2.1 Branching programs

Let X = {x1, . . . , xn} be a set of Boolean variables.
A branching program is a directed acyclic graph with one node with in-degree 0 and

out-degree 2 (source), several inner nodes with out-degree 2, and two nodes with out-degree
0 (sinks). Every node except sinks is labeled with some variable from X, one of its outgoing
edges is labeled with 0 and the other one is labeled with 1. One sink is labeled with 0 and
the other with 1.

SAT 2024
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Each node v in a branching program computes a Boolean function fv. The function fv is
defined recursively for v from sinks to the source. If v is a sink labeled with k ∈ {0, 1} then
fv ≡ k. Otherwise, suppose that v is labeled with a variable xi its outgoing edge labeled
with 0 goes to a node v0 and its outgoing edge labeled with 1 goes to a node v1. Then
we define fv(x1, . . . , xn) = fv0(x1, . . . , xn) if xi = 0 and fv(x1, . . . , xn) = fv1(x1, . . . , xn) if
xi = 1. Since the corresponding graph is acyclic the definition is correct for each node v. We
say that a branching program computes the function that corresponds to its only source.

A branching program is called read-once (denoted 1-BP) if each its path contains at most
one occurrence of each variable.

A branching program is called an ordered binary decision diagram (OBDD) if variables
on every path from the source to sinks appear according to some fixed order of variables.

Sometimes we write π-OBDD instead of OBDD to emphasize that variables appear
according to the order of variables π.

A nondeterministic branching program (NBP) is a directed acyclic graph with one node
with in-degree 0 and out-degree 2 (source) several inner nodes with out-degree 2 and two
nodes with out-degree 0 (sinks). Each node except sinks is either common and is labeled
with some variable from X as in the definition of branching programs or guessing and is not
labeled. Each common node has two outgoing edges. One of them is labeled with 0 and the
other one is labeled with 1. Each guessing node has two non-labeled outgoing edges. One
sink is labeled with 0 and the other with 1.

As in the definition of a branching program, each node v of NBP computes a Boolean
function fv. If v is a common node or a sink node then fv is defined as in the case of
deterministic branching programs. If v is a guessing node then it has two outgoing edges.
Denote heads of the edges as {v0, v1}. Then we define fv = fv0 ∨ fv1 .

A NBP is called read-once (1-NBP) if each of its path contains at most one occurrence of
each variable.

Let B be a deterministic or nondeterministic branching program. Then the size of B
denoted by |B| is the number of nodes in the corresponding graph.

Let f(x1, . . . , xn) be a Boolean function and let B be a deterministic or nondeterministic
branching program that computes f . Let ρ be a partial substitution into X. Then f |ρ =
f(ρ(x1), . . . , ρ(xn)) is a Boolean function that depends only on variables that are not in the
ρ’s domain. We denote by B|ρ the result of the following (syntactic) transformations of
B: we perform the transformation from bottom to top. Suppose node v is labeled with a
variable xi such that ρ(xi) = a ∈ {0, 1} and its outgoing edge labeled with 0 is going to a
node v0 and its other outgoing edge is going to v1. Then we delete v from the graph and
redirect edges that are going into v to the node va.

It is easy to see that B|ρ computes f |ρ.
Also, note that the size of B|ρ is at most the size of the B.

▶ Lemma 1 ([4], [22]).
1. Let A and B be two π-OBDDs for some order of variables π. And let ⊙ be a binary

operation e.g ∧, ∨, ⊕, etc. There exists an algorithm that takes A and B as inputs and
returns a π-OBDD that computes A⊙B. Moreover, the algorithm runs in time O(|A||B|).
Therefore its output has size O(|A||B|) (see Section 4 from [4]).

2. Let A be a π-OBDD and let x be its arbitrary variable. Then there exists an algorithm
that takes A as an input and returns a π-OBDD that computes ∃xA in time O(|A|2).
Therefore the size of the output is also bounded by O(|A|2). (see Section 4 from [4])

3. Let A be a π1-OBDD for some variables order π1 and let π2 be an another arbitrary
variables order. There exists an algorithm that takes A as an input and returns a minimal
size π2-OBDD B such that A ≡ B i.e. it computes the same Boolean function. Moreover,
this algorithm runs at most poly(|A| + |B|) steps (see Section 5 from [22]).
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▶ Lemma 2 (Lemma 4.2 from [11]). Let D be a 1-NBP computing a Boolean function
f : {0, 1}n → {0, 1} and let 1 ≤ i ≤ n. If we change every node in D labeled with the variable
xi by a guessing node and remove all labels of all its outgoing edges, then we obtain a valid
1-NBP that computes ∃xif(x1, x2, . . . , xn).

2.2 Proof systems
A resolution refutation of an unsatisfiable CNF formula φ is a sequence of clauses
C1, C2, . . . , Cs such that (1) Cs is the empty clause (identically false), (2) for all i ∈ [s], the
clause Ci is either a clause of φ, or can be obtained by the resolution rule from two clauses
with lesser numbers, where the resolution rule allows to derive A∨B from A∨ x and B ∨ ¬x.
A resolution refutation is tree-like if every derived clause can be used as a premise of the
resolution rule at most once.

Let φ =
∧
i

Ci be an unsatisfiable CNF formula. An OBDD refutation [3, 14] of φ is a

sequence of OBDDs D1, D2, . . . , Dt such that Dt is the constant false OBDD and for all
1 ≤ i ≤ t the diagram Di either represents a clause of φ or is obtained from the previous
Dj ’s by one of the following derivation rules.

Conjunction (or join) rule allows deriving a π-OBDD for D1 ∧D2 from π-OBDDs D1
and D2. We emphasize here that the conjunction rule can be only applied to OBDDs
with the same order of variables.
Projection (∃) rule allows deriving a π-OBDD represented ∃xA from a π-OBDD
represented A, where x a Boolean variable.
Weakening rule allows deriving a π-OBDD represented B from a π-OBDD represented
A if A semantically implies B, i.e. if every satisfying assignment of A also satisfies B.
Reordering rule allows deriving an OBDD represented B from an OBDD represented A
if A and B semantically equivalent (note that A and B may use different variable orders).

We consider several OBDD-based proof systems that use the rules defined above. We
specify the allowed rules in the brackets e.g. the proof system OBDD(∧) uses only the
conjunction rule meanwhile the proof system OBDD(∧,weakening) uses both the conjunction
and the weakening rules, etc. All proof systems use the conjunction rule.

Note that the projection rule is a special case of the weakening rule, thus, both of them
are usually not included in the brackets simultaneously.

The size of a refutation is the sum of the sizes of the OBDDs from it.
We also need to define 1-NBP semantical proof systems [5] that extends OBDD proof

systems.
Let φ =

∧
i

Ci be an unsatisfiable CNF formula. A 1-NBP refutation of φ is a sequence of

1-NBPs D1, D2, . . . , Dt such that Dt is the constant false 1-NBP and for all 1 ≤ i ≤ t the
diagram Di either represents a clause of φ or obtained from the previous Dj ’s by one of the
following derivation rules.

Conjunction (or join) rule allows deriving a 1-NBP for D1 ∧D2 from 1-NBPs D1 and
D2.
Projection (∃) rule allows deriving a 1-NBP represented ∃xA from a 1-NBP represented
A where x is one of φ’s boolean variables.
Weakening rule allow deriving a 1-NBP represented B from a 1-NBP represented A if
A semantically implies B.

SAT 2024
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As in the definition of OBDD proofs, 1-NBP proof systems can be defined with different
sets of inference rules. For example NBP(∧, ∃) uses only the conjunction and the projection
rules.

We emphasize that 1-NBP proof systems are not proof systems in the sense of Cook-
Reckhow [8] unless P = NP since it is NP-hard to verify the correctness of a given proof.

Let G(V,E) be a graph. Let c : V → {0, 1} be a charge function. A Tseitin formula
T(G, c) depends on the propositional variables xe for e ∈ E. For each vertex v ∈ V we
define the parity condition of v as Pv :=

(∑
e∋v xe ≡ c(v) mod 2

)
, where e ∋ v means that

an edge e is incident to the vertex v. The Tseitin formula T(G, c) is the conjunction of parity
conditions of all the vertices:

∧
v∈V Pv. Tseitin formulas are represented in CNF as follows:

we represent Pv in CNF in the canonical way for all v ∈ V .

▶ Theorem 3 (Theorem 3.11 from [5]). There exists a family of constant degree graphs
Gn with n vertices such that any 1-NBP(∧) refutation of an unsatisfiable Tseitin formula
T(Gn, f) contains a 1-NBP of size at least 2Ω(n).

2.3 OBDD algorithms for SAT
The algorithm gets as an input a CNF formula ϕ, it chooses some order π on the variables
and creates both a π-ordered OBDD D (which initially is equal to the constant true function)
and a set of clauses S (which initially consists of all clauses of the formula ϕ). While S is
not empty the algorithm applies one of the following three operations:

Conjunction (or join) delete some clause C from S and replace D by a π-OBDD that
represents the conjunction D ∧ C;
Projection (∃) choose a variable x that has no occurrences in the clauses from S and
replace D by a π-OBDD for the function ∃xD;
Reordering choose a new order on variables π′ and replace D by the equivalent π′-OBDD.
Assign π := π′.

After every step of the algorithm, the following invariant is maintained: ϕ is satisfiable if and
only if

∧
C∈S

C ∧D is satisfiable. After the termination of the algorithm, the set S is empty; if

the diagram D has a path from the source to a sink labeled by 1, then the algorithm returns
“Satisfiable”, otherwise it returns “Unsatisfiable”.

We refer to the algorithms of this type as OBDD(∧, ∃, reordering) algorithms. Besides,
we use a similar notation for algorithms that use some of the operations: we just enumerate
the used operations in the brackets. For example, the OBDD(∧) algorithms use only
the conjunction operation, and the OBDD(∧, ∃) algorithms use only the conjunction and
projection operations.

Since join and projection for OBDDs may be performed in polynomial time and reordering
may be performed in time polynomial in the sizes of the input and the output, the running
time of an OBDD(∧, ∃, reordering) algorithm is polynomially related to the sum of the sizes
of all states of the diagram D (here we ignore the time spent on choosing the next step of
the algorithm).

We also define a purely theoretical notion of 1-NBP algorithms for SAT that naturally
extends OBDD algorithms.

The algorithm gets as an input a CNF formula ϕ. It creates both a 1-NBP D (which
initially is equal to the constant true function) and a set of clauses S (which initially consists
of all clauses of the formula ϕ). While S is not empty the algorithm applies one of the
following two operations:
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Conjunction (or join) delete some clause C from S and replace D by a 1-NBP that
represents the conjunction D ∧ C;
Projection (∃) choose a variable x that has no occurrences in the clauses from S and
replace D by a 1-NBP for the function ∃xD.

An execution track of a 1-NBP (OBDD) algorithm is the sequence of all 1-NBPs (OBDDs)
constructed by the algorithm during its runtime. A total size of an execution track is the
total size of 1-NBP (OBDDs) in it. By the running time of 1-NBP algorithms, we mean
the sum of the sizes of all branching programs from its execution track. We will mainly
use the lower bound of the running time of 1-NBP algorithms as a lower bound for OBDD
algorithms.

▶ Lemma 4. From every execution track of an OBDD(∧, ∃, reordering) algorithm one can
remove several diagrams to get an execution track of a correct 1−NBP(∧, ∃) algorithm.

Proof. Since OBDD is a special case of 1−NBP, applications of conjunction and join opera-
tions of OBDD(∧, ∃, reordering) algorithm are legal operations for 1-NBP(∧, ∃) algorithms.
Notice that the reordering rule does not change the Boolean function, so we can just remove
the larger of two OBDDs representing the same Boolean function. ◀

2.4 Quantified Boolean formulas
An ∃-CNF formula is a formula of type ∃xi1∃xi2 , . . . ∃xik

ϕ(x1, x2, . . . , xn), where
ϕ(x1, x2, . . . , xn) is a CNF formula, {i1, i2, . . . , ik} ⊆ [n] and k is non-negative integer.
The formula ϕ is called the matrix of the ∃-CNF formula.

▶ Lemma 5. Let φ be an ∃-CNF formula. Assume that a partial assignment ρ satisfies φ.
Then for every variable x, ρ satisfies ∃xφ.

Proof. If x does not have occurrences in φ, then ∃xφ is equivalent to φ and, therefore, it is
satisfied by ρ. Otherwise ∃xφ is semantically equivalent to φ|x:=ρ(x) ∨φ|x:=1−ρ(x). By trivial
reasons ρ satisfies φ|x:=ρ(x), hence it satisfies ∃xφ. ◀

2.5 Error-correcting codes
We will use error-correcting codes to construct hard formulas and analyze the running time
of the OBDD algorithms.

By a code we mean a subset of binary strings with a fixed length. A code C has a distance
d if for any two codewords c1, c2 ∈ C the Hamming distance between c1 and c2 is at least d.
A code C ⊆ {0, 1}n has a relative distance δ if it has the distance δn.

A linear code is a set of all n-bits vectors x = (x1 . . . xn) from some linear subspace in Fn
2 .

A linear code can be specified by a system of linear equations. For a code of dimension
k this system should consist of m ≥ n − k linear equations involving n variables. The set
of all solutions of the system should give exactly our code, so the rank of the system must
be equal to n − k. If we require in addition that the equations in the system are linearly
independent, then the number of equations is equal to m = n− k. The matrix of this linear
system is called a checksum matrix of the code.

▶ Lemma 6 (Hamming code [13]). There is a linear code C ⊆ {0, 1}n of size 2Ω(n/ log n) with
distance 3.

For 0 < p < 1 the binary entropy is H(p) = p log 1
p + (1 − p) log 1

1−p . We will use the
binary entropy to estimate the size of a linear code with the given relative distance.
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▶ Lemma 7 (Gilbert-Varshamov Bound [9], [21]). Let 0 < ε < 1
2 . Then there exists a linear

code C ⊆ {0, 1}n of size at least 2(1−H(ε))n with relative distance ε.

2.6 Communication complexity
Communication complexity is one of the ways to estimate the size of OBDD representation
of Boolean functions.

Let f : A× B → C be a function. Two players Alice and Bob want to compute f(a, b)
for some a ∈ A and b ∈ B. However, Alice knows only a and Bob knows only b. In order to
compute the value they can use a two-sided communication channel. They agreed in advance
on a protocol; at each step of the protocol, one of them sends a bit string to the other, at
the end of the protocol both Alice and Bob should know f(x). The cost of the protocol is
the maximal number of bits they sent to each other. The communication complexity of f is
equal to the minimal cost of the protocols for f (for the formal definition see [16]).

Let f : A × B → C be a function. A set S ⊆ A × B is called a fooling set if exists
z ∈ C such that for all (a, b) ∈ S, f(a, b) = z. But for all a1 ̸= a2 ∈ A and b1 ̸= b2 ∈ B if
(a1, b1) ∈ S and (a2, b2) ∈ S, then f(a1, b2) ̸= z or f(a2, b1) ̸= z.

▶ Lemma 8 (Lemma 1.20 from [16]). If S is a fooling set of size k for a function f : A×B → C.
Then the communication complexity of f with respect to partition (A,B) is at least log k.

▶ Lemma 9 (Lemma 12.12 from [16]). Let f : A×B → {0, 1} be a Boolean function. Assume
that t is the deterministic communication complexity of f with respect to partition A and
B. Then for every variable order π that respects this partition (i.e. all variables from A are
π-less then all variables from B or vice versa), the size of any π− OBDD computing f is at
least 2t.

3 Lower bounds for 1−NBP algorithms

In this section, we give a construction of a hard unsatisfiable formula for 1−NBP(∧, ∃)
algorithms. In Subsection 3.1 we show how to get it from a hard satisfiable formula for
1−NBP(∧, ∃) algorithms and a hard formula for 1−NBP(∧) proofs. In Subsection 3.2 we
show that satisfiable formulas from [14] that are hard for OBDD(∧, ∃, reordering) algorithms
are also hard for 1−NBP(∧, ∃) algorithms. In Subsection 3.3 we show that 1−NBP(∧, ∃)
algorithms do not polynomially simulate tree-like resolution.

3.1 Hard unsatisfiable formula
Let Φ be a CNF formula and let x be a Boolean variable that does not appear in Φ. We
denote by x ∨ Φ the CNF formula that is obtained from Φ by adding x to each of its clauses.

Let Φ and Ψ be CNF formulas in m and n Boolean variables respectively. We define a
formula F(Φ,Ψ) in n+ 2mn variables X = {xi, y

(i)
j , z

(i)
j | i ∈ [n], j ∈ [m]} as follows:

F(Φ,Ψ) := Ψ(x1, . . . , xn) ∧ T (X),

where

T (X) :=
n∧

i=1

(
xi ∨ Φ

(
y

(i)
1 , y

(i)
2 , . . . , y(i)

m

))
∧

n∧
i=1

(
¬xi ∨ Φ

(
z

(i)
1 , z

(i)
2 , . . . , z(i)

m

))
.

Note that if Ψ is unsatisfiable then so is F(Φ,Ψ).
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▶ Theorem 10. Let Φ be a satisfiable CNF formula in n variables and let Ψ be an unsatisfiable
CNF formula in m variables. Suppose that the execution track of every 1−NBP(∧, ∃) algorithm
on the input Φ(y1, . . . , ym) contains a 1−NBP of size at least S1 and every 1-NBP(∧)
refutations of Ψ(x1, . . . , xn) contains a 1−NBP of size at least S2 and S2 > n+ 1. Then any
execution track of a 1-NBP(∧, ∃) algorithm on the input F(Φ,Ψ) contains a 1−NBP of size
at least min(S1, S2).

Proof. Consider an 1-NBP(∧, ∃) algorithm. Let B1, B2, . . . , Bℓ be its execution track on
the input F(Φ,Ψ). For all i ∈ [ℓ], Bi represents a ∃-CNF formula whose matrix is the
conjunction of a subset of clauses of the input formula; we denote this ∃-CNF formula by Fi.

We consider two cases of what happened earlier: the matrix of Fj contains an unsatisfiable
set of clauses from Ψ(x1, . . . , xn), or Fj is quantified over some variable xi for i ∈ [n].

Case 1. There exists k ∈ [ℓ] such that the matrix of Fk contains an unsatisfiable set of
clauses from Ψ(x1, . . . , xn) and Fk itself is not quantified over xi for all i ∈ [n].

Since the formula Φ is satisfiable, there exist an assignment ρ of the variables y(j)
i , z

(j)
i

for 1 ≤ i ≤ n, 1 ≤ j ≤ m such that all copies of Φ in F(Φ,Ψ) are satisfied by ρ.
Consider the sequence B1|ρ, . . . , Bk|ρ. For every i ∈ [k − 1]:
if Bi+1 ≡ Bi ∧ C, where C is a clause of Ψ, then Bi+1|ρ ≡ Bi|ρ ∧ C; here and after ≡
means the semantical equivalence of Boolean functions;
if Bi+1 ≡ Bi ∧ C, where C is a clause of T (X), then Bi+1|ρ ≡ Bi|ρ;
if Bi+1 ≡ ∃zBi, where z ∈ X \ {x1, x2, . . . , xn}, then Bi+1|ρ = Bi|ρ;

Let C̃1, C̃2, . . . , C̃s be 1−NBP representations of all clauses of Ψ. It is easy to see that
|C̃i| ≤ n + 1 for all i ∈ [s]. Then C̃1, C̃2, . . . , C̃s, B1|ρ, . . . , Bk|ρ is the correct 1-NBP(∧)
refutation of Ψ. By the properties of the formula Ψ, any refutation should contain a 1−NBP
of size at least S2. Since S2 > n+ 1, there is j ∈ [k] such that |Bj |ρ| is at least S2, hence,
|Bj | ≥ S2.

Case 2. Let p be the minimal number such that Fp is quantified with some variable xi for
i ∈ [n] (we denote this variable by xi0). In the considered case, the matrix of Fp does not
contain an unsatisfiable set of clauses from Ψ. Notice that Fp = ∃xi0Fp−1.

For j ∈ [p], Fj is equivalent to Ψ′
j ∧ Θj , where Ψ′

j is the satisfiable conjunction of several
clauses of Ψ and Θj is the ∃-CNF formula whose matrix is the conjunction of several clauses
from T (X). Let α : {x1, x2, . . . , xn} → {0, 1} be a satisfying assignment of Ψ′

p−1. Notice that
α satisfies all Ψ′

j for j ∈ [p− 1]. Let β : {t1, t2, . . . , tm} → {0, 1} be a satisfying assignment
of Φ(t1, t2, . . . , tm).

Let us define a partial assignment ρ to the variables X.
ρ(xi) = α(xi), for i ∈ [n];
ρ(z(j)

i ) = β(ti), for i ∈ [m], j ∈ [n] \ {i0};
ρ(y(j)

i ) = β(ti), for i ∈ [m], j ∈ [n] \ {i0}.

▷ Claim 11. It is possible to delete several 1−NBPs from the sequence B1|ρ, . . . , Bp−1|ρ
to get a correct execution track of 1-NBP(∧, ∃) algorithm executed on Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
if

α(xi0) = 0 and on Φ
(
z

(i0)
1 , . . . , z

(i0)
m

)
, otherwise.

Claim 11 and the property of the formula Φ imply that there exists i ∈ [p − 1] such that
|Bi|ρ| ≥ S1, therefore, |Bi| ≥ S1.

Proof of Claim 11. W.l.o.g. assume that α(xi0) = 0. Since α satisfies Ψ′
p−1, α satisfies Ψ′

j

for all j ∈ [p− 1]. Hence ρ satisfies Ψ′
j for all j ∈ [p− 1].
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Let us represent Θj =
∧n

i=1 U
(i)
j ∧H(i)

j , where U (i)
j is ∃-CNF formula whose matrix is the

conjunction of several clauses from
(
xi ∨ Φ

(
y

(i)
1 , . . . , y

(i)
m

))
and H(i)

j ∃-CNF formula whose

matrix is the conjunction of several clauses from (¬xi ∨ Φ(z(i)
1 , . . . , z

(i)
m )). For all i ̸= i0, the

matrices of U (i)
j and H

(i)
j are satisfied by ρ, hence by Lemma 5, U (i)

j and H
(i)
j themselves

are satisfied by ρ.
Since α(xi0) = 0, ρ satisfies H(i0)

j . Hence, Fj |ρ = U
(i0)
j and the matrix of U (i0)

j is the
conjunction of several clauses of Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
. Since Fp is quantified over xi0 , all

clauses from F(Φ,Ψ) containing xi0 should be in the matrix of Fp−1, hence the matrix of
Fp−1|ρ is exactly Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
.

For every j ∈ [p− 2],
if Bj+1 ≡ Bj ∧ C and C = xi0 ∨ C ′, where C ′ is a clause of Φ

(
y

(i0)
1 , . . . , y

(i0)
m

)
, then

Bj+1|ρ ≡ Bj ∧ C ′;
if Bj+1 ≡ ∃y(i0)

k Bj and k ∈ [m], then Bj+1|ρ ≡ ∃y(i0)
k Bj |ρ.

In all other cases Bj+1|ρ ≡ Bj |ρ. For such j, Bj+1 will be deleted from the sequence as
required by the claim. ◁

◀

The following lemma is proved in Subsection 3.2.

▶ Lemma 12 (cf. Corollary 5.4 from [14]). For all large enough n there exists a satisfiable
CNF formula with n Boolean variables, of size O(n) such that the execution track of every
1−NBP(∧, ∃) algorithm running on this formula contains a 1−NBP of size at least 2Ω(n).
Moreover, for a given n such a formula can be constructed by a deterministic algorithm in
time poly(n).

▶ Corollary 13. In poly(n) time one can construct an unsatisfiable formula Fn in poly(n)
variables such that the execution track of every 1−NBP(∧, ∃) algorithm running on the
formula Fn contains 1−NBP of size at least 2Ω(n).

Proof. Let Ψn be a Tseitin formula T (Gn, f) based on the graph Gn from Theorem 3. By
Theorem 3, any 1−NBP(∧) refutation of Ψn contains a 1−NBP of size at least 2Ω(n). Let
Φn be a satisfiable formula from Lemma 12. Then we can take Fn = F(Ψ,Φ) and it has the
required property by Theorem 10. ◀

3.2 Hard satisfiable formulas for 1−NBP(∧, ∃) algorithms
In this section, we prove Lemma 12. The proof is mainly repeating the proof from [14] for
the case of OBDD(∧, ∃, reordering) algorithms.

We say that a code C ⊆ {0, 1}n recovers a ρ fraction of erasures by a list of size L (or
C is (ρ, L)-erasure list-decodable) if for any w ∈ {0, 1, ?}n such that the number of ? in w

does not exceed ρn, there exist at most L elements in C that are consistent with w. A string
s ∈ {0, 1}n is consistent with w if for all i, wi ∈ {0, 1} implies si = wi.

▶ Theorem 14 ([12, Lemma 2]). If C is a code with relative distance δ, then for every ϵ > 0
the code C is ((2 − ϵ)δ, 2

ϵ )-erasure list-decodable.

The following theorem states that every 1−NBP for a characteristic function of a good
enough code has at least exponential size. It extends Theorem 5.2 from [14] which claims
the same lower bound on the size of OBDDs.
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▶ Theorem 15 (cf. Theorem 5.2 from [14]). Let C ⊆ {0, 1}n be a ( 1
2 + ϵ, L)-erasure list-

decodable code with relative distance more than 2ϵ. Any 1−NBP representation of the
characteristic function of C (i.e. function χC : {0, 1}n → {0, 1} : ∀x ∈ {0, 1}n χC(x) = 1 ⇔
x ∈ C) has size at least |C|

L2 .
Moreover, for every tuple of k different indices i1, . . . , ik ∈ [n] (0 ≤ k ≤ 2ϵn) size of any

1−NBP representation of the Boolean function ∃xi1 . . . ∃xik
χC(x1, . . . , xn) is at least |C|

L2 .

Proof. It is enough to prove the “moreover” part of the statement since the first part is its
special case (with k = 0).

Notice that since any string of size ⌈( 1
2 − ϵ)n⌉ has at most L prolongation to an element

of C, |C| ≤ 2⌈( 1
2 −ϵ)n⌉L. We may assume that L < 2⌊( 1

2 −ϵ)n⌋, since otherwise |C|
L2 ≤ 2 and the

theorem is trivial.
Let D be a 1−NBP computing ∃xi1 . . . ∃xik

χC(x1, . . . , xn).
Consider |C| codewords, for each of them there is a path in D from the source to 1-sink

that is consistence with the codeword. For each such path, we mark a node v such that
between the source and v there are queried exactly ⌈ n−k

2 ⌉ variables (the query in v is
not included). We claim that such vertex always exists. Indeed, assume for the sake of
contradiction that there is an accepting path p corresponding to a codeword c ∈ C that
queries t variables and t < ⌈ n−k

2 ⌉ variables. There are at least 2⌊ n−k
2 ⌋ partial assignments

from {xi | i ∈ [n] \ {i1, i2, . . . , ik}} → {0, 1} such that each of them is consistent with c

in the values of at least ⌈ n−k
2 ⌉ positions including all variables from the path p. Since all

these assignments are consistent with p, they are accepted by D, hence each of them may be
continued to a codeword. Hence there are at least 2⌊ n−k

2 ⌋ codewords that agree with c in at
least ⌈ n−k

2 ⌉ positions. Hence, 2⌊( 1
2 −ϵ)n⌋ ≤ 2⌊ n−k

2 ⌋ ≤ L. This contradicts our assumptions on
the size of L.

Let us estimate from the above the number of times that the same node can be marked.
We claim that every marked node v can be marked at most L2 times. Assume for the sake
of contradiction that there is a node v that is marked at least L2 + 1 times. Let S ⊆ C be
a set of codewords such that the node v was marked on the paths corresponding to them.
Consider a codeword s ∈ S and the path which is consistence with s, let between the source
and v (not including the query in v) the set of queried variables be equal to {xi | i ∈ I}.
Let J = ([n] \ {i1, i2, . . . , ik}) \ I. Since the relative distance of C is more than 2ϵ, no two
codewords coincide on ([n] \ {i1, i2, . . . , ik}). Hence, by the pigeonhole principle, the set S
contains at least L + 1 elements with different projections on the set I, or at least L + 1
elements with different projections on J . Consider these cases separately.

Assume that S contains L + 1 elements with different projections on I: s, s1, . . . , sL.
Consider partial assignments τ1, τ2, . . . , τL : {xi | i ∈ I ∪ J} → {0, 1}, where for all j ∈ [L]
and for all i ∈ I, τj(xi) equals the ith bit of sj and for all i ∈ J and τj(xi) equals the ith
bit of s. Since s is a codeword, it is accepted by D; for all i ∈ [L], τi is also accepted by D
by the following accepting path: from the source to v we follow the path corresponding si

and from v to 1-sink we follow the path corresponding s. Hence for every j ∈ [ℓ], τj can be
extended to a codeword tj . By the construction s, τ1, . . . , τL coincide in the set of positions
J , i.e., in n−k

2 ≥ ( 1
2 − ϵ)n bits, hence there exists L+ 1 different codewords that coincide in

( 1
2 − ϵ)n positions, this contradicts the property of the code.

In the second case, S contains L+ 1 elements with different projections on J : s, s1, . . . , sℓ.
This case can be handled analogously to the previous one. The only difference is the definition
of τj for j ∈ [ℓ]. For i ∈ I, τ(xi) equals the ith bit of s and for j ∈ I, τ(xi) equals the ith bit
of sj .

So we get that there are at least |C|
L2 distinct marked nodes in D. ◀
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Using Theorem 15 we extend Theorem 5.3 from [14] from OBDD(∧, ∃, reordering) al-
gorithms to 1−NBP(∧, ∃) algorithms.

▶ Theorem 16 (cf. Theorem 5.3 from [14]). Let C ⊆ {0, 1}n be a linear code with the relative
distance 1

3 such that the checksum matrix H of the code C has the following properties:
H is a binary matrix of size αn× n, where α ∈ (0, 1) is a constant;
every row of H contains at most t(n) ones, where t is some function;
in every 1

6n columns of H we can find ones in at least (α − δ)n different rows of the
matrix, where δ ∈

(
0,min{α, 1−α

2
}

) is a constant.
Denote by Fn the canonical CNF representation of the system of linear equations H(x) = 0;
Fn is in t(n)-CNF, hence the size of Fn is at most αn2t(n)−1t(n). Then the execution track
of every 1−NBP(∧, ∃) algorithm running on Fn contains a 1−NBP of size at least 2Ω(n).

Proof. The proof resembles the proof of Theorem 5.3 from [14]. The only source of OBDD
size lower bound in that proof is the usage of Theorem 5.2 from [14]; we will use Theorem 15
instead to get a lower bound on the size of 1−NBP. ◀

Lemma 12 follows from Theorem 16 applied to the codes constructed in [14].

3.3 Comparison with tree-like Resolution
▶ Definition 17. Let P be a proof system used to derive refutations of CNF formulas. A
set E of extension axioms for a set of propositional variables x⃗ is a set of clauses expressing
zi := ψi(x⃗, z1, . . . , zi−1), where each ψi is a conjunction of literals and z1, . . . , zℓ are new
variables. Let φ(x⃗) be a CNF formula. Then, an extension-P refutation of φ(x⃗) is by
definition a refutation of φ ∧ E where E is a set of extension axioms for x⃗.

For example, a definition by extension of the form z := (y1 ∧ y2) is represented by the
three clauses ¬z ∨ y1, ¬z ∨ y2, and ¬y1 ∨ ¬y2 ∨ z.

▶ Lemma 18. Let φ be a CNF formula and let E be a set of extension rules represented in
CNF. Then for any execution track of 1−NBP(∧, ∃) algorithm on the input φ ∧ E exists a
correct execution track of 1−NBP(∧, ∃) algorithm on the input φ of not greater total size.

Proof. It is sufficient to show it for the case when E contains just one extension rule. We
assume that E contains the only rule z := ψ(y1, . . . , yk), where yi are variables of φ. Let
D1, D2, . . . , Ds be an execution track of an 1−NBP(∧, ∃) algorithm on the formula φ ∧ E.

Every Di represent a ∃-CNF formula with a matrix (Φ ∧ Ψ), where Φ is a conjunction of
clauses of φ, and Ψ is a conjunction of several clauses from E.

Notice that since E is a CNF representation of z := ψ(y1, . . . , yk), then ∃zΨ is identically
true. Since z has no occurrences in φ, ∃zDi is equivalent to ∃xi1 . . . ∃xiℓ

Φ.
By Lemma 2 there exists a 1−NBP representing ∃Di of size at most the size of Di.

It is easy to see that ∃zD1, ∃zD2, . . . , ∃zDs may be considered (possibly after deletion of
several extra 1−NBPs) as a correct execution track of a 1−NBP(∧, ∃) algorithm on the
formula φ. ◀

▶ Lemma 19 (Lemma 4.6 from [5]). Let Gn be an undirected graph with n vertices, with
all vertices of degree at most d. Let fn be a labeling function for Gn such that the Tseitin
formula T(Gn, fn) is unsatisfiable. Then there is a set E of extension axioms for T(Gn, fn)
of size poly(n) such that there is a tree-like resolution refutation of T(Gn, fn) ∧ E of size
poly(n).
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▶ Theorem 20. There is a family of CNF formulas φn of size poly(n) such that φn has
poly(n) tree-like resolution refutation but any execution track of 1−NBP(∧, ∃) algorithm on
φn contains a 1−NBP of size 2Ω(n).

Proof. Consider a hard formula Fn from Corollary 13. Fn has a form T(Gn, fn)∧ψ, where ψ
is a satisfiable formula. By Lemma 19, there exists a set E of extension axioms for T(Gn, fn)
of size poly(n) such that there is a tree-like resolution refutation of T(Gn, fn) ∧ E of size
poly(n). Notice that T(Gn, fn) ∧ E ∧ ψ also has a tree-like resolution refutation of size
poly(n). By Corollary 13 and Lemma 18, the execution track of any 1−NBP(∧, ∃) algorithm
on the formula T(Gn, fn) ∧ E ∧ ψ contains a 1−NBP of size 2Ω(n). ◀

4 Binary pigeonhole principle is hard for OBDD(∧, ∃, reordering)
algorithms

The Binary Pigeonhole Principle represents in CNF that it is impossible to have 2l +1 distinct
binary strings of length l. Let X = {Xi,j | i ∈ [2l + 1], j ∈ [l]} be a set of propositional
variables. For every i ∈ [2l + 1] we denote the vector of variables (Xi,1, . . . , Xi,l) as Xi.
For all distinct i and j from [2l + 1] and for all binary strings a ∈ {0, 1}l we define a
clause Ca

i,j that encodes that at least one of the strings Xi or Xj differs from a as follows

Ca
i,j =

l∨
m=1

(Xi,m ̸= am ∨Xj,m ̸= am), where for a propositional variable x, x ̸= 0 denotes

x and x ̸= 1 denotes ¬x. Let us denote [Xi ̸= Xj ] :=
∧

a∈{0,1}l

Ca
i,j the CNF formula that

encodes that Xi ̸= Xj . We finally define BPHP2l+1
2l :=

∧
i,j∈[2l+1]:i̸=j

[Xi ̸= Xj ].

It is convenient to consider X as a (2l + 1) × l matrix of propositional variables. In this
paper, we refer to X as the variables matrix or simply the matrix and to Xi for i ∈ [2l + 1]
as the ith row of the matrix.

The main result of this section is the following.

▶ Theorem 21. Let n = 2l and 0 < ε < 1 be a solution of the equation ε = 1 − H(ε)
(ε ≈ 0.227092). Then the execution track of any OBDD(∧, ∃, reordering) algorithm on the
input BPHPn+1

n contains an OBDD of size at least 2Ω(nε/ log n).

Proof. Consider an OBDD(∧, ∃, reordering) algorithm A and its execution on the input
BPHPn+1

n .
We consider several cases:

Case 1. Suppose that during its running the algorithm A applied projections to variables
that all lie in at most n/2 different rows of the variables matrix X. Consider the state of
the diagram D before the last application of the conjunction operation. In this moment
D represents an ∃-CNF formula whose matrix is the conjunction of all but one clauses of
BPHPn+1

n . The following lemma implies that in this case |D| ≥ 2Ω(n/ log n).

▶ Lemma 22. Let C be the strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Assume that there is a set Y ⊆ [n+ 1] such

that
1. for all i ∈ Y , Xi does not contain variables from Z;
2. |Y | ≥ n/ log n;
3. for all i, j ∈ Y , C contains all clauses representing [Xi ̸= Xj ].

Then any OBDD representing φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2Ω(n/ log n).

We prove Lemma 22 in Subsection 4.1.
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Case 2. The algorithm A applied projection operation over variables from more than n/2
rows of the variables matrix X. Since A applies projection operations one by one, one of the
following events happens before the other:
1. There is a row of the variable’s matrix X such that there are ⌊εl⌋ − 3 variables in this

row for which A applied projection operations.
2. A applies projections over variables from ⌊nε/100 logn⌋ rows of the variables matrix X.

Case 2.1. Assume that the first event happened before the second. Consider the state of
the diagram D right after A first time has applied projection over ⌊εl⌋ − 3 variables from
some row. Since ε < 1/4, the next lemma implies that |D| ≥ 2Ω(nε/ log n).

▶ Lemma 23. Let C be a proper subset of clauses from BPHPn+1
n . Let Z = {z1, . . . , zb} ⊆ X

be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all occurrences of variables of Z

in BPHPn+1
n are in clauses from C. Suppose also that:

1. There exists a row of X containing exactly k variables from Z.
2. Variables from Z occur in at most n/2 rows of X.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least

min
{

2Ω(2k/k), 2Ω(2l−3k/l2)
}

.

We prove Lemma 23 in Subsection 4.2.

Case 2.2. Now assume that the second event happened before the first. Consider the
state of the diagram D right after A first time has applied projection over variables from
⌊nε/100 logn⌋ different rows.

▶ Lemma 24. Let C be a strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all clauses

BPHPn+1
n having variables from Z are in C. Let d ∈ [l − 1] and T ∈ [2l] be such that

1. variables from Z occur in exactly T rows of the variables matrix X;
2. each row of X contains at most d variables from Z;
3. there exists a code ECC ⊆ {0, 1}l with distance d+ 3 and size |ECC| = T + 1;
4. 1 + (l + 1) · T · 2d+1 < n/2.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2T .

The proof of Lemma 24 is given in Subsection 4.3.
By Lemma 7, there exists a code ECC ⊆ {0, 1}l with distance εℓ and size 2(1−H(ε))ℓ =

n1−H(ε) = nε, hence there exists code with the same distance of size T := ⌊nε/(100 log n)⌋+1.
It is straightforward that 1 + (l + 1) · T · 2d+1 < n/2. Hence, Lemma 24 implies that
|D| ≥ 2Ω(nε/ log n). ◀

4.1 Proof of Lemma 22
▶ Lemma 25. Let C be a subset of clauses from BPHPn+1

n , where n = 2l. Assume that
i0, j0 ∈ [n + 1] and a0 ∈ {0, 1}ℓ are such that the clause (Xi0 ̸= a0 ∨ Xj0 ̸= a0) does not
belong to C. Let Z = {z1, . . . , zb} ⊆ X be a set of variables of BPHPn+1

n . Let the set of
variables X be partitioned into two parts X(1) and X(2). There are 2t rows of the variables
matrix: s1

1, s
2
1, s

1
2, s

2
2 . . . , s

1
t , s

2
t ∈ [n+ 1] \ {i0, j0} such that

1. for all i ∈ [t], the rows s1
i and s2

i does not contain variables from Z.
2. for all i ∈ [t], the row s1

i contains at least one variable from the first part X(1) and the
row s2

i contains only variables from the second part X(2);
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3. There are t binary strings a1, a2, . . . , at ∈ {0, 1}ℓ \ {a0} such that the Hamming distance
between ai and aj is at least 3 and for all i ∈ {0, 1, . . . , t} the clause (Xs1

i
̸= ai ∨Xs2

i
̸= ai)

belongs C.

Then the communication complexity of computing φ := ∃z1, . . . , zb

∧
C∈C C with respect

to the partition (X(1) \ Z,X(2) \ Z) is at least t.

Proof. Let us construct a fooling set of size 2t. The elements of our fooling set are indexed
by a binary string r ∈ {0, 1}t. Let us construct an assignment σr : X → {0, 1} corresponding
to r.

Let for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ− 1 zeros and the only one on the
kth place.

Let for i ∈ [t], k(i) := min{j : Xs1
i
,j} ∈ X(1).

σr(Xs1
i
) := ai + (ek(i) · ri) (here we add vectors in Fl

2);
σr(Xs2

i
) := ai + (ek(i) · (1 + ri));

σr(Xi0) := a0 and σr(Xj0) := a0.
There are n− 2t− 1 other rows of the variables matrix X, let us choose some bijection
between them and {0, 1}ℓ \ {a1, a1 + ek(1), a2, a2 + ek(1), . . . , at, at + ek(1), a0} (the two
sets have the same size since {a0, a1, . . . , at} is a code with distance at least 3 and hence
all binary strings in {a1, a1 + ek(1), a2, a2 + ek(1), . . . , at, at + ek(1), a0} are distinct) and
σr substitutes values of the variables from these rows according to this bijection.

We claim that {σr restricted to X \ Z | r ∈ {0, 1}t} is a fooling set for φ. Indeed, since
{a0, a1, . . . , at} is a code with distance at least 3, for all r ∈ {0, 1}t, σr satisfies all clauses of
BPHPn+1

n but (Xi0 ̸= a0 ∨ Xj0 ̸= a0). Hence, σr satisfies
∧

C∈C C and, then by Lemma 5,
σr satisfies φ.

Let p and q be different strings from {0, 1}t. W.l.o.g. assume that there exists m ∈ [t]
such that pm = 0 and qm = 1. Let σ′ be an assignment that coincides with σp on X(1)

and coincides with σq on X(2). Notice that σp(Xs1
m

) and σq(Xs1
m

) differs only on k(m)th
bit corresponding to the variable from X(1), hence σ′(Xs1

m
) = σp(Xs1

m
) = am. Analogously,

σ′(Xs2
m

) = σq(Xs1
m

) = am. Hence σ′ falsifies clause (Xs1
m

̸= am ∨Xs2
m

̸= am). This clause is
in C and all the variables of this clause are not in Z. Hence σ′ falsifies φ.

So we have verified that {σr restricted to X \ Z | r ∈ {0, 1}t} is a fooling set of size 2t.
Hence, by Lemma 8, the communication complexity of φ is at least t. ◀

▶ Lemma 22. Let C be the strict subset of the set of clauses of BPHPn+1
n . Let Z =

{z1, . . . , zb} ⊆ X be a set of BPHPn+1
n variables. Assume that there is a set Y ⊆ [n+ 1] such

that
1. for all i ∈ Y , Xi does not contain variables from Z;
2. |Y | ≥ n/ log n;
3. for all i, j ∈ Y , C contains all clauses representing [Xi ̸= Xj ].

Then any OBDD representing φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2Ω(n/ log n).

Proof of Lemma 22. Let D be an OBDD computing φ. Let π be an extension of the
variables order of D to X. Consider a partition of X on two parts with respect to π such
that there are exactly ⌈|Y |/2⌉ rows from Y that have at least one variable from the first part.
Let i0, j0 ∈ [n+ 1] and a0 ∈ {0, 1}ℓ be such that the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0) does not
belong to C. Let H ⊆ {0, 1}l be a Hamming code (see Lemma 6), |H| ≥ Ω(n/ log n). H + a0
is also a code of distance at least 3 and a0 ∈ H + a0. So we can choose distinct strings
a1, a2, . . . , at ∈ H + a0 \ {a0} such that t = Ω(n/ log n). There are at least ⌈|Y |/2⌉ − 2 rows
in Y \ {i0, j0} that have at least one variable from the first part. And also there are at least
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⌈|Y |/2⌉ − 2 rows in Y \ {i0, j0} with all variables lying in the second part. Since C contains
all clauses representing [Xi ̸= Xj ] for i ̸= j ∈ Y , we can apply Lemma 25 and get that the
communication complexity of φ with respect to the partition is at least t. Since the partition
respects the variable order of D, by Lemma 9, |D| ≥ 2t = 2Ω(n/ log n). ◀

▶ Corollary 26. Any OBDD representing
∧

1<i<j≤n+1[Xi ̸= Xj ] has size at least 2Ω(n/ log n).

4.2 Proof of Lemma 23
▶ Lemma 27. Let F (X2, . . . , Xn+1) = ∃X1

∧n+1
i=2 [X1 ̸= Xi]. Then the size of any OBDD

for F is at least 2Ω(n/ log n).

Proof. For all s2, . . . , sn+1 ∈ {0, 1}l the equality F (s2, . . . , sn+1) = 1 holds if and only if
there exists a binary string s1 ∈ {0, 1}l that differs from s2, . . . , sn+1 ∈ {0, 1}l. Such string
exists if and only if there exist two equal strings among s2, . . . , sn+1. Hence F (X2, . . . , Xn+1)
is semantically equivalent to ¬

∧
1<i<j≤n+1[Xi ̸= Xj ]. Hence, by Corollary 26, size of any

OBDD representing F is at least 2Ω(n/ log n). ◀

▶ Lemma 23. Let C be a proper subset of clauses from BPHPn+1
n . Let Z = {z1, . . . , zb} ⊆ X

be a set of BPHPn+1
n variables. Suppose that for all z ∈ Z all occurrences of variables of Z

in BPHPn+1
n are in clauses from C. Suppose also that:

1. There exists a row of X containing exactly k variables from Z.
2. Variables from Z occur in at most n/2 rows of X.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least

min
{

2Ω(2k/k), 2Ω(2l−3k/l2)
}

.

Proof of Lemma 23. Let Y be the set of rows of X that do not contain variables from Z.
By the condition of the lemma, |Y | ≥ n/2 + 1. We consider two cases.

Case 1. Assume that there is T ⊆ Y such that |T | = 2k and the set AT := {a ∈ {0, 1}l |
∃i, j ∈ T such that the clause (Xi ̸= a) ∨ (Xj ̸= a) belongs to C} has size less than 2l−k.

In this case, we show that there exists a partial substitution ρ such that φ|ρ is exactly
the formula from Lemma 27 applied to variables of BPHP2k+1

2k . Hence, size of any OBDD
computing φ|ρ is at least 2Ω(2k/k) and, thus, any OBDD computing φ has size at least
2Ω(2k/k).

Without loss of generality, assume that the row containing exactly k variables from Z is
the first row of the variables matrix and X1,1, . . . , X1,k ∈ Z.

Since |AT | < 2l−k, there exists b ∈ {0, 1}l−k such that there are no elements in AT with
the suffix b. Let us define ρ as follows:

For all i ∈ T ∪ {1}, ρ assigns b to (Xi,k+1, Xi,k+2, . . . , Xi,l).
For i ∈ [n + 1] \ (T ∪ {1}), ρ assigns to Xi different elements of {a ∈ {0, 1}l |
b is not the suffix of a}.

We split C into three parts C1, C2 and C3, where
C1 consists of all clauses of C with all variables from the set of rows T ;
C2 consists of all clauses of C containing variables from the first row and from some row
from T ;
C3 consists of all clauses of C containing variables from the set of rows [n+ 1] \ (T ∪ {1}).
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By the properties of φ, φ is equivalent to∧
C∈C1

C ∧ ∃X1,1 . . . ∃X1,k

( ∧
C∈C2

C ∧ ∃
z∈Z\{X1,1,...,X1,k}

z
∧

C∈C3

C

)
.

Since the support of ρ does not contain variables from {X1,1, . . . , X1,k}, φ|ρ is equivalent
to ∧

C∈C1

C|ρ ∧ ∃X1,1 . . . ∃X1,k

 ∧
C∈C2

C|ρ ∧

(
∃

z∈Z\{X1,1,...,X1,k}
z
∧

C∈C3

C

)∣∣∣∣∣
ρ

 .

Since all a ∈ AT do not have suffix b, for all C ∈ C1, C|ρ = 1.
Consider a clause C := (Xi ̸= a) ∨ (Xj ̸= a) ∈ C3. If i, j ∈ [n + 1] \ (T ∪ {1}),

then ρ substitute to Xi and Xj different values, hence C|ρ = 1. If i ∈ (T ∪ {1}) and
j ∈ [n+1]\ (T ∪{1}), then ρ substitutes b to (Xi,k+1, . . . Xi,l) and something different from b

to (Xj,k+1, . . . Xj,l), hence C|ρ = 1. Thus, ρ satisfies
∧

C∈C3
C, hence by Lemma 5, ρ satisfies

∃
z∈Z\{X1,1,...,X1,k}

z
∧

C∈C3
C.

So we get that φ|ρ is equivalent to ∃X1,1 . . . ∃X1,k

∧
C∈C2

C|ρ.
Since C contains all clauses of BPHPn+1

n with variables from Z, C2 =
∧

i∈T,a∈{0,1}l(X1 ̸=
a∨Xi ̸= a). If b is not a suffix of a, then ρ satisfies (X1 ̸= a∨Xi ̸= a). Hence,

∧
C∈C2

C|ρ is
equivalent to

∧
i∈T,a∈{0,1}k ((X1,1, . . . , X1,k) ̸= a ∨ (Xi,1, . . . , Xi,k) ̸= a). So φ|ρ satisfies the

conditions of Lemma 27.
Case 2. Assume that for all T ⊆ Y such that |T | = 2k, the set AT := {a ∈ {0, 1}l | ∃i, j ∈
T such that the clause ((Xi ̸= a) ∨ (Xj ̸= a)) belongs to C} has size at least 2l−k. Hence,
for every T ⊆ Y such that |T | = 2k there are i, j ∈ T such that the set Ai,j := {a ∈ {0, 1}l |
the clause ((Xi ̸= a) ∨ (Xj ̸= a)) belongs to C} has size at least 2l−3k.

In this case, we will obtain a lower bound by Lemma 25.
Let i0, j0 ∈ [n+ 1] and a0 ∈ {0, 1}ℓ be such that the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0) does

not belong to C.
Let D be an OBDD computing φ. Let π be an extension of the variables order of D to X.

Let W = Y \ {i0, j0}; |W | ≥ n/2 − 1. Consider the following order on the set of rows [n+ 1]:
we say that ith row is less than jth row if the π-minimal variable of Xi is π-less than the
π-minimal variable of Xj . Let us order W according to this order: W = {w1, w2, . . . , w|W |}.
Let d :=

⌊
|W |
2k

⌋
. For every i ∈ [d], consider the set Li = {wi, wi+d, wi+2d, . . . , wi+(2k−1)d}.

Since for all i ∈ [d], |Li| = 2k and Li ⊆ Y , hence there are ei, fi ∈ [2k] such that ei < fi

and |Awi+(ei−1)d,wi+(fi−1)d
| ≥ 2l−3k. By the pigeonhole principle, there is f ∈ [2k] such that

|{i ∈ [d] | fi = f}| ≥ d
2k . Let us denote I := {i ∈ [d] | fi = f}; |I| ≥ d

2k ≥ 2l−2k−1 − 1.
Let us split the set X into two parts according to π: the first part consists of all variables

that are π-less than the π-minimal variable of the row w1+(f−1)d and the second part consists
of all other elements. By the construction for all i ∈ I, the row s1

i := wi+(ei−1)d contains at
least one variable from the first part (π-minimal variable of this row) and all variables from
the row s2

i := wi+(f−1)d are in the second part.
To apply Lemma 25, we need to show that there exist ai ∈ As1

i
,s2

i
such that a0 and ai

for i ∈ I are on the pairwise Hamming distance at least 3. We will choose them one by one;
assume that we have already chosen a0, a1 ∈ As1

i1
,s2

i1
, . . . , aq ∈ As1

iq
,s2

iq
such that Hamming

distance between each pair is at least 3. If (1 + l + l(l − 1)/2)q < 2l−3k, then we can choose
aq+1 ∈ As1

iq+1
,s2

iq+1
. So we can choose t elements if t =

⌊
2l−3k

1+l+l(l−1)/2

⌋
− 1.

Hence, by Lemma 25, the communication complexity of φ with respect to the descried
partition of X is at least Ω

(
2l−3k/l2

)
. Then by Lemma 9, the size of D is at least 2Ω(2l−3k/l2).

◀
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4.3 Proof of Lemma 24
▶ Lemma 24. Let C be a strict subset of the set of clauses of BPHPn+1

n . Let Z =
{z1, . . . , zb} ⊆ X be a set of BPHPn+1

n variables. Suppose that for all z ∈ Z all clauses
BPHPn+1

n having variables from Z are in C. Let d ∈ [l − 1] and T ∈ [2l] be such that
1. variables from Z occur in exactly T rows of the variables matrix X;
2. each row of X contains at most d variables from Z;
3. there exists a code ECC ⊆ {0, 1}l with distance d+ 3 and size |ECC| = T + 1;
4. 1 + (l + 1) · T · 2d+1 < n/2.

Then every OBDD that computes φ := ∃z1, . . . , zb

∧
C∈C C has size at least 2T .

Proof of lemma 24. There exist i0, j0 ∈ [n+ 1] and a binary string a0 ∈ {0, 1}l such that C
does not contain the clause (Xi0 ̸= a0 ∨Xj0 ̸= a0).

Let ECC ⊆ {0, 1}l be a code with distance at least d + 3 such that |ECC| = T + 1.
W.l.o.g. assume that a0 ∈ ECC. Let us denote A = ECC \ {a0} and A = {a1, . . . , aT }.

Consider an ordered binary decision diagram D computing φ. Let π be the variables
order using in D extended to all variables X. We say that a variable x ∈ X is π-first if x /∈ Z

and it has the minimal π-number among all such variables in its row.
As in Lemma 23 we define an order on the set of rows of the variables matrix X (or

equivalently on the set [n+ 1]): ith row is less than the jth if the π-first variable of Xi is
π-less the π-first variable of Xj . Let us order the elements of [n+ 1] \ {i0, j0} according to
this order: {s1, . . . , sn−1}.

Now we split the variables of X into two parts such that all variables in the first part
precede all variables in the second part according to the order π. The first part consists of
all variables that are π-less-or-equal to the π-first variable of the row number s⌊(n−1)/2⌋. The
second part consists of the other variables.

To prove the lower bound we will define 2T partial substitutions ρα defined on the variables
from the first part such that for α ̸= β, φ|ρα

and φ|ρβ
are different Boolean functions. Hence

the paths in D corresponding to different ρα should end in different nodes. Hence, the size
of D is at least 2T .

We call a row of X as special if it contains at least one variable from Z. There are
exactly T special rows in X. Notice that the rows i0 and j0 are not special, since all clauses
containing variables of special rows should be in C.

We consider two cases depending on whether all special rows lie in {s1, . . . , s⌊(n−1)/2⌋} or
there exists at least one special row in {s⌊(n−1)/2⌋+1, . . . , sn}.

For convenience we denote Si...j = {si, . . . , sj}.

Case 1. All special rows are in S1...⌊(n−1)/2⌋. We denote the set of special rows by
{w1, . . . , wT } ⊂ S1...⌊(n−1)/2⌋.

For every α ∈ {0, 1}T we define a substitution ρα into the variables of the first part.
Let k(i) denote the index of π-first variable of the with row. ρα substitutes to the variables
of Xwi

from the first part corresponding values of the binary string ai + ek(i) · αi; recall
that for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ− 1 zeros and the only one on the
kth place. We notice that the variable Xwi,k(i) is necessarily in the first path.
If i ∈ {i0, j0} ∩ S1...⌊(n−1)/2⌋, then ρα substitutes to the variables from Xi in the first
path corresponding values from the binary string a0.
Let Ji := {j ∈ [ℓ] | Xwi,j ∈ Z}. For every non-special row j from S1...(n−1)/2 we choose a
unique string bj such that bj ̸= a0 and for all i ∈ [k] there exists r ∈ [ℓ]\ (Ji ∪{k(i)}) such
that the rth bit of bj differs from the rth bit of ai. Since |Ji| ≤ d and T2d+1 + 1 < n/2,
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such strings indeed exist. We assume that the choice of bj does not depend on α. For all
j ∈ S1...(n−1)/2, ρα substitutes to the variables from Xj in the first path corresponding
values from bj .
Notice that rows from S⌊(n−1)/2⌋+1...n−1 do not contain variables from the first part.

Now we show that for every α ̸= β ∈ {0, 1}T functions φ|ρα and φ|ρβ
are different. To do

it we construct a substitution ρ to the variables of the second part such that ρ sets one of
the functions to zero and the other to one. Since ρα ̸= ρβ then, without loss of generality,
we assume that there exists row m ∈ [T ] such that αm = 0 and βm = 1.

We define ρ as follows:
For each non-special row j ∈ S1...⌊(n−1)/2⌋, ρ substitutes to the second part variables
from Xj values from bj .
For each special row wi for i ∈ [T ], ρ substitutes to the second part variables from Xwi

values from ai.
For each row from S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+2|Jm| , ρ substitutes to the variable of the
second part corresponding values of an element from V (am, Jm) := {s ∈ {0, 1}l |
s agrees with am on [l] \ Jm}. Since both the sets S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+2|Jm| and
V (am, Jm) have 2|Jm| elements, we can assume that for different rows ρ uses differ-
ent elements of V (am, Jm).
The definition of ρ is not finished yet but we already can show the following.

▷ Claim 28. φ|ρα∪ρ = 0

Proof. Let τ be the restriction of ρα ∪ ρ to X \ Z. If we apply τ to Xwm
and then

substitute any values into the variables of Xwm
from Z, we obtain a string from V (bm, Jm).

But all such strings are substituted by ρα ∪ ρ into other rows of the variables matrix.
Since C contains all the clauses of BPHPn+1

n that forbid the row Xwm
to be equal to any

other row, there do not exist values for variables from {Xwm,j | j ∈ Jm} such that all
clauses of C are satisfied and hence φ|ρi∪ρ = φ|τ = ∃z1, . . . , zb

∧
C∈C C|τ = 0. Note that

we heavily rely on the fact that all clauses containing variables from special rows are in C.
◁

Now we have to define ρ on other variables i.e. variables from the rows
S⌊(n−1)/2⌋+2|Jm|+1...n−1 such that φ|ρβ∪ρ = 1. Note that:

All strings substituted by ρβ ∪ ρ to rows from S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+1+2|Jk| are
different.
Since {a0, a1, . . . , aT } is a code with distance at least d+ 3 and |Jm| ≤ d, strings from
V (am, Jm) that are substituted by ρβ ∪ ρ to rows S⌊(n−1)/2⌋+1...⌊(n−1)/2⌋+1+2|Jk| differ
from the strings substituted by ρj ∪ ρ to rows {wj |j ∈ [T ] \m} and a0.
All strings from V (am, Jm) are different from am + ek(m) · βm = am + ek(m) in the
k(m)th bit.
No string from V (am, Jm) can be substituted by ρβ ∪ ρ to non-special rows.

So far ρβ ∪ ρ substitutes values to variables from several rows. Notice that every binary
string except a0 is used at most once and a0 is used twice (for rows i0 and j0). First of
all, we can extend ρj ∪ ρ to all variables such that we will have only two equals rows (i0
and j0 equals a0). Hence, ρβ ∪ ρ satisfies

∧
C∈C C, thus by Lemma 5, ρβ ∪ ρ satisfies φ.
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Case 2. There exists wk0 ∈ S⌊(n−1)/2⌋+1...n−1 for some k0 ∈ [T ]. We fix an arbitrary T

non-special rows f1, f2, . . . , fT from S1...⌊(n−1)/2⌋ (it can be done since T < n/4).
For every α ∈ {0, 1}T we define a substitution ρα to the variables of the first part:
Let now k(i) denote the index of π-first variable of the fith row. For every i ∈ [T ], ρα

substitutes to the variables of Xfi
from the first part corresponding values of the binary

string ai + ek(i) · αi; recall that for k ∈ [ℓ], ek denote the element of {0, 1}l with ℓ − 1
zeros and the only one on the kth place. We notice that the variable Xfi,k(i) is necessarily
in the first part.
If i ∈ {i0, j0} ∩ S1...⌊(n−1)/2⌋, then ρα substitutes to the variables from Xi in the first
part corresponding values from the binary string a0.
We say that a binary string s ∈ {0, 1}l is bad if s = a0 or there exist b ∈ {0, 1}l with the
Hamming distance at most 1 from s and i ∈ [T ] such that b agrees with ai on the set of
bits Jk0 ∪ {k(i)}. The number of bad strings is at most 1 + (l+ 1) · T · 2d+1 < n/2. So for
every row i ∈ S1...⌊(n−1)/2⌋ \ {f1, . . . , fT , i0, j0} we can choose not bad string bi by some
fixed way that is not dependent on α. ρα substitutes to the first part variables from Xi

corresponding values from bi.

For every distinct α, β ∈ {0, 1}T we build a substitution ρ into the variables of the second
part that separates φ|ρα

and φ|ρβ
. Without loss of generality assume that there exists index

m ∈ [T ] such that αm = 0 and βm = 1.
We choose arbitrarily 2|Jk0 |−1 non-special rows g1, . . . , g2|Jk0 |−1 in S⌊(n−1)/2⌋...n−1. Recall

that k(m) is the index of the π-first variable of the row fm. Consider two sub-cases:

Case 2.1. k(m) ̸∈ Jk0 . Let us define a partial substitution ξ; the substitution ρ will be an
extension of ξ.

For every i ∈ [T ], ξ substitutes to the variables of Xfi from the second part corresponding
values of the binary string ai

If i ∈ {i0, j0}, then ξ substitutes to the variables from Xi in the second part corresponding
values from the binary string a0.
For i ∈ S1...⌊(n−1)/2⌋ \ {f1, . . . , fT , i0, j0}, ξ substitutes to the second part variables from
Xi corresponding values from bi.
ξ substitutes to variables from Xwk0

corresponding values from am.
To the rows g1, . . . , g2|Jk0 |−1, ξ substitutes distinct values from V (am, Jk0)\{am}. (Notice
that both sets have the same cardinality 2|Jk0 | − 1).

▷ Claim 29. φ|ρα∪ξ = 0.

Proof. The proof is similar to the proof of Claim 28. Recall that Jk0 are indices of Z-variables
from wk0 . Let τ be restriction of ρα ∪ ξ to non-Z variables; τ substitutes to non-Z variables
of wk0 values from am. All strings from V (am, Jk0) are already substituted by ρα ∪ ξ to the
rows g1, . . . , g2|Jk0 |−1 and fm. So, for every fixed values of Z-variables, ρα ∪ ξ falsifies some
clause from C. Hence by the same reasons as in Claim 28, φ|τ = φ|ρi∪ξ = 0. ◁

Now we have to define ρ by extending ξ on other variables to ensure that φ|ρβ∪ρ = 1.
Since k(m) ̸∈ Jk0 , ρβ ∪ ξ does not substitutes an element of V (am, Jk0) to Xfm

, hence all
strings that are substituted by ρβ ∪ ξ so far are distinct except a0 that is substituted two
times: to rows Xi0 and Yi0 . But C does not forbid to have Xi0 and Xj0 with value a0. So we
can continue ξ to ρ to satisfy ϕ as we did in Case 1.
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Case 2.2. k(m) ∈ Jk0 . We first try to define ρ as an extension of ξ as in Case 2.1:
By Claim 29, φ|ρα∪ξ = 0. But now we have a problem with extending ξ to ρ such that

φ|ρβ∪ρ = 1 since in this case ρβ ∪ ξ substitutes to Xfm
the string am + ek(m) from V (am, Jk0)

and, hence, ρβ ∪ ξ substitutes the same string into two different rows of the matrix: fk

and some row from {g1, . . . , g2|Jk0 |−1}. If it is not forbidden by clauses from C then we can
continue ξ to ρ such that φ|ρj∪ρ = 1 as in the previous case.

Otherwise, we redefine ξ in the following way: we flip the value of ξ on some non-Z
variable from Xwk0

. Now all strings that are substituted by ρi ∪ ξ are different (except a0)
since only am and a0 were substituted two times by the old version of ξ. Here we use the fact
that the new string substituted to wk0 is bad since it is within distance 1 from am. Hence we
can continue ξ to ρ such that φ|ρα∪ρ = 1. But now φ|ρβ∪ρ = 0 since two different non-special
rows are substituted with am + ek(m) and it is forbidden by a clause from φ. ◀

5 Further Research

In this section, we would like to highlight a few open questions that naturally follow from
our current research:
1. Prove a super-polynomial lower bound for the OBDD(∧, ∃, reordering) proof system.
2. Is BPHPn+1

n hard for the OBDD(∧, ∃) proof system?
3. Is it possible to separate the OBDD(∧, ∃) proof system and OBDD(∧, ∃) algorithms?
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Abstract
It has become standard that, when a SAT solver decides that a CNF Γ is unsatisfiable, it produces
a certificate of unsatisfiability in the form of a refutation of Γ in some proof system. The system
typically used is DRAT, which is equivalent to extended resolution (ER) – for example, until this
year DRAT refutations were required in the annual SAT competition. Recently [Bogaerts et al. 2023]
introduced a new proof system, associated with the tool VeriPB, which is at least as strong as DRAT
and is further able to handle certain symmetry-breaking techniques. We show that this system
simulates the proof system G1, which allows limited reasoning with QBFs and forms the first level
above ER in a natural hierarchy of proof systems. This hierarchy is not known to be strict, but
nevertheless this is evidence that the system of [Bogaerts et al. 2023] is plausibly strictly stronger
than ER and DRAT. In the other direction, we show that symmetry-breaking for a single symmetry
can be handled inside ER.
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1 Introduction

We write Lit for the set of propositional literals and 0, 1 for the propositional constants. A
clause is a disjunction which may contain 0, 1 or a literal together with its negation; in the
last two cases we call it tautologous. A conjunctive normal form formula, or CNF, is a set of
clauses, understood as a conjunction. We write ⊥ for the empty clause and ⊤ for the empty
CNF. For a clause C = x1 ∨ · · · ∨ xk we write ¬C for the CNF ¬x1 ∧ · · · ∧ ¬xk.

A substitution is a map ω : Lit ∪ {0, 1} → Lit ∪ {0, 1} which respects negations and is
the identity on {0, 1}. We view a partial assignment as a kind of substitution. For literals
p1, . . . , pk we write p⃗↾ω for the tuple ω(p1), . . . , ω(pk). For a clause C, we write C↾ω for the
clause {ω(p) : p ∈ C}. For a CNF Γ, we write Γ↾ω for {C↾ω : C ∈ Γ}. We write ω ⊨ Γ to
mean that Γ↾ω is tautologous, that is, every clause is tautologous. If ω is a partial assignment
this is the same as the usual meaning of ⊨. The composition of substitutions τ, ω is defined
by τ ◦ ω(p) = τ(ω(p)). Note that Γ↾τ◦ω = (Γ↾ω)↾τ and thus τ ⊨ Γ↾ω if and only if τ ◦ ω ⊨ Γ.

▶ Definition 1. A symmetry of a CNF Γ is a substitution ω such that Γ↾ω = Γ.

Hard combinatorial formulas often have many symmetries. A successful heuristic to make
such formulas easier for SAT solvers is symmetry-breaking, usually in the form of introducing
a lex-leader constraint [12]. We illustrate this in the following proposition. Suppose Γ is
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a CNF in variables z1, . . . , zn and suppose we have a formula [x1, . . . , xn ≤lex y1, . . . , yn]
expressing the lexicographic order on assignments to x⃗ and y⃗. For now we suppress technical
issues of how exactly we express this, and tacitly treat [x⃗ ≤lex y⃗] as though it is a CNF.

▶ Proposition 2. If ω is a symmetry of Γ, then Γ and Γ ∪ [z⃗ ≤lex z⃗↾ω] are equisatisfiable.

Proof. Suppose Γ is satisfiable. Let α be a lexicographically minimal assignment such that
α ⊨ Γ. Then by symmetry α ⊨ Γ↾ω and thus α ◦ ω ⊨ Γ. By minimality we have α ≤lex α ◦ ω
which, working through the definitions, gives us that α ⊨ [z⃗ ≤lex z⃗↾ω] as required. ◀

The new formula Γ ∪ [z⃗ ≤lex z⃗↾ω] is potentially much easier to solve than the original Γ,
because the extra constraint can substantially shrink the space of partial assignments that
the solver has to search through. Note that the proof still works if we simultaneously add
lex-leader constraints for several different symmetries.

It is now common for SAT solvers to have a proof-logging component which, when it
decides that a formula Γ is unsatisfiable, will generate a certificate of unsatisfiability – in
other words, a refutation of Γ. For this to be useful, it must be in a well-known proof system
for which trusted software exists to verify that the refutation is correct. The standard system
used for this is DRAT [30]. However, it is open to what extent DRAT can (feasibly) handle
reasoning that uses symmetry-breaking, especially for more than one symmetry [16].

This issue is addressed in [4] which introduces a new proof-logging system with tools to
handle quite general symmetry-breaking, extending DRAT. It builds on the system VeriPB [14]
and as such uses reasoning using linear inequalities, rather than clauses; furthermore it is
equipped to solve optimization problems, rather than just satisfiability.

We study the proof complexity of this system (as a refutation system for CNFs). We
show that it is equivalent to G1, a system based on limited reasoning with QBFs which is one
level above extended resolution (ER) in a natural hierarchy of proof systems [24]. This is in
contrast to the redundancy-based systems which have been studied recently, such as DRAT,
propagation redundancy and substitution redundancy, which are in their full generality all
equivalent to ER [21, 17, 5]. This may represent another step in the strength of reasoning
used in SAT algorithms, like from DPLL and treelike resolution, to CDCL and resolution,
to the just-mentioned systems and ER [13, 26, 1]. In particular, it is unlikely that the new
system in [4] can be simulated by DRAT.

The main tool used in [4] for symmetry-breaking is called the dominance-based strength-
ening rule. It is based on the following principle, which we express here in the language of
CNFs and call “informal” because we are sweeping under the carpet the exact nature of the
formulas ∆ and [x⃗ <lex y⃗] (intended to express strict lexicographic order).

▶ Proposition 3 (informal). Let Γ,∆ be formulas, where Γ is in variables z⃗ and has the
property that any assignment satisfying Γ can be extended to satisfy ∆. Suppose we have a
clause C and a substitution ω such that

Γ ∧ ∆ ∧ ¬C ⊨ Γ↾ω ∧ [z⃗↾ω <lex z⃗]. (1)

Then Γ and Γ ∧ C are equisatisfiable.

Proof (sketch). Suppose Γ is satisfiable. Let α be a lexicographically minimal assignment
such that α ⊨ Γ. Extend α to α∪β satisfying Γ∧∆. If α∪β ⊨ C then we are done. Otherwise,
from the entailment (1) we know α ∪ β ⊨ Γ↾ω ∧ [z⃗↾ω <lex z⃗]. Letting α′ = (α ∪ β) ◦ ω, we
conclude that α′ ⊨ Γ and α′ <lex α, contradicting the minimality of α. ◀



L. A. Kołodziejczyk and N. Thapen 20:3

The rule says roughly: if we have derived Γ, and have available a suitable ∆, ω and a
proof of entailment (1), then we can derive Γ ∧C. (In fact, the full rule in [4] is more general,
since it is not restricted to the lexicographic ordering.)

Machinery exists to study the strength of rules of this kind by studying how easy it is to
prove their soundness in the first-order setting of bounded arithmetic. Specifically, to carry
out the proof of Proposition 3 it is sufficient to know that a nonempty polynomial-time set
(in this case the set of α such that α ⊨ Γ) always has a lexicographically least element. This
puts the system inside the theory T 1

2 , which is associated with G1 (see below for definitions).
The harder direction, lower-bounding the strength of the rule, uses similar machinery.

Consider the transformation α 7→ α′ in the proof above. We claim that, given an arbitrary
polynomial time function f , we can construct an instance of the rule where this transformation
is given by f . We do this by defining ∆ to compute f and store the resulting values in β,
and defining ω to pull these values from β back to the z⃗ variables, as α′. Observe that
in the proof, it is not actually necessary for α to be lexicographically minimal; the “local
minimality” property that α ≤lex f(α) is sufficient. We show that a converse holds: that
using the rule, we can find a local minimum of this kind, or to say it more precisely, we can
efficiently derive a contradiction from the statement that there is no local minimum.

The problem of finding such a local minimum is known as polynomial local search, or
PLS [20]. It is known that if we are only interested in sentences of low quantifier complexity,
such as “CNFs in this family are unsatisfiable”, then every logical consequence of “every
polynomial-time set has a least element”, that is, of T 1

2 , is already a consequence of the
apparently weaker statement “every PLS problem has a solution”. Using this we can show
that, roughly speaking, every CNF which can be proved unsatisfiable in T 1

2 has a short
refutation in the proof system in [4], where the refutation uses an instance of the rule
constructed from a PLS problem as described above. It follows that the system simulates G1.

The rest of the paper fills in the details of these arguments. In Section 2 we recall the
definitions of some proof systems we will need. These are G1 itself; cutting planes, which is
the foundation for the system in [4]; and ER, where we will need to work extensively with
derivations as well as refutations. In Section 3 we define our version of the system in [4],
where we have removed the machinery for handling optimization problems. We call this the
dominance proof system, and in it the dominance-based strengthening rule can be used for
rather general orderings, not just lexicographic. We will work more with a restriction of it, the
linear dominance proof system, in which it is limited to essentially the lexicographic ordering.
We also define a simpler auxiliary proof system ER-PLS, which uses clauses rather than
inequalities and captures the properties of the system that are important for us (illustrated
in Proposition 3). It will follow from our results that, as a system for refuting CNFs, it is
equivalent to the linear dominance system. In Section 4 we describe some results we need
from bounded arithmetic and give a formal definition of PLS. We then show our main result,

▶ Theorem 4. The linear dominance system is equivalent to G1.

The proof is in three parts. Section 5 contains the main technical work of the paper,
showing, in Theorem 18, that ER-PLS simulates G1, as sketched above. Section 6 shows
that the linear dominance system in turn simulates ER-PLS. For the remaining direction,
that G1 simulates linear dominance, it is enough to show that linear dominance is sound,
provably in T 1

2 . This is in Section 7, where we also briefly discuss the difference between
linear dominance and the full dominance system.

In Section 8 we study what we can prove in ER about fragments of these systems. We
show essentially that, in Proposition 3 above, if the mysterious formula ∆ is not present then
we do not need to use minimality, or even PLS, in the proof. This is because without the step

SAT 2024



20:4 The Strength of the Dominance Rule

where we extend α to satisfy ∆, the move from α to α′ does not involve any computation, but
amounts to shuffling the components of α around using the substitution ω, and for simple
graph-theoretical reasons we can compute the ith iteration ωi in polynomial time without
invoking any stronger principles. In Section 8.1 we use this observation to show a technical
result, that a natural weakening of the linear dominance system is already simulated by ER.
In Section 8.2 we use a similar construction to show1:

▶ Theorem 5. Define the system Q1 as ER plus the power to add a lex-leader constraint for
a single symmetry. Then Q1 is simulated by ER (and thus by DRAT).

The full paper [22] contains an appendix with some additional technical material.

We finish this section by addressing the natural question: what is this hierarchy of proof
systems above ER, and why should we expect it to be strict? After all, ER is already a
very strong system with many tools for proving combinatorial and algebraic statements, and
seems to lie well beyond current methods for proving lower bounds [28].

ER was shown in [10] to correspond to the theory PV, which models reasoning with
polynomial-time concepts (see Section 4 for definitions). In [24] the systems G0, G1, G2, . . .

of quantified Boolean reasoning were introduced, to correspond in the same way to a
hierarchy T 0

2 , T
1
2 , T

2
2 , . . . of bounded arithmetic theories extending PV (which we can identify

with T 0
2 [19]), where T 1

2 can reason with PNP concepts, T 2
2 with PΣp

2 , and so on. In particular,
if we ignore issues of uniformity, the unsatisfiable CNFs with short refutations in Gi capture
precisely the universal sentences2 provable in T i

2. It is a classical result that the fragments
IΣ0, IΣ1, . . . of Peano arithmetic are separated by universal sentences. Specifically, the
consistency statement for IΣk has this form and is provable in IΣk+1 but not in IΣk (see
e.g. [15, Chapter I.4(c)]). It is expected, essentially by analogy, that the analogous theories
T 0

2 , T
1
2 , . . . are also separated at the universal level by some kind of consistency statement,

although it is known that classical consistency will not work [31].
In the case we are interested in here, of PV and T 1

2 , there is some evidence of separation
at the ∀Σb

1 level (one step above universal) since it is a logical version of the question: is the
TFNP class PLS different from FP? Here we at least have a relativized separation between
PLS and FP [8], although this implies nothing directly about the unrelativized theories.

2 Traditional proof systems

We require that proof systems are sound and that refutations in a given system are recognizable
in polynomial time. When comparing two systems P and Q we are usually interested in
their behaviour when refuting CNFs, and we use the following basic definition.

▶ Definition 6. We say that Q simulates P if there is a polynomial-time function which,
given a P -refutation of a CNF Γ, outputs a Q-refutation of Γ. Q and P are equivalent if
they simulate each other.

Often it will make sense to discuss not only refutations of formulas, but also derivations
of one formula from another. We will use the notation e.g. “a derivation Γ ⊢ ∆” instead of
“a derivation of ∆ from Γ” and will write π : Γ ⊢ ∆ to express that π is such a derivation.

1 We believe this is more general than the result about single symmetries in [16], since we handle an
arbitrary symmetry, not just an involution; see the discussion in [4].

2 That is, sentences consisting of a sequence of unbounded universal quantifiers followed by a polynomial
time predicate. We could also write ∀Πb

1.
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2.1 Quantified Boolean formulas and G1

G1 is a fragment of G, a proof system used for reasoning with quantified Boolean formulas.
We give only a brief description of G – for more details see [23, Chapter 4]. We will only
consider fragments of G as systems for refuting CNFs; for comparisons of G with some other
systems in the context of proving quantified Boolean formulas, see e.g. [3, 9].

A quantified Boolean formula, or QBF, is built from propositional variables and connectives
in the usual way, and also allows quantification over Boolean variables. That is, if F (x) is
a QBF containing a variable x, then so are ∃xF (x) and ∀xF (x). In this context ∃x and
∀x are Boolean quantifiers and these formulas semantically have the expected meanings
F (0) ∨ F (1) and F (0) ∧ F (1). We stratify QBFs into classes called Σq

1, Πq
1,Σ

q
2,Π

q
2 etc. in

the usual way, by counting quantifier alternations. In particular, Σq
1 is the closure of the

class of (quantifier-free) Boolean formulas under ∨,∧ and ∃. The strength of proof systems
working with QBFs is that they allow us to represent an “exponential-size concept” such as∨

a⃗∈{0,1}n F (⃗a) with a polynomial-size piece of formal notation ∃x1 . . . xnF (x⃗).
The proof system G is an extension of the propositional sequent calculus. In this context

a sequent is an expression of the form

A1, . . . , Ak −→ B1, . . . , Bℓ

where A1, . . . , Ak and B1, . . . , Bℓ are QBFs. Such a sequent is understood semantically to
mean the same as

∧
i Ai →

∨
j Bj , and we say that an assignment satisfies a sequent if it

satisfies this formula. A derivation in G is a sequence of sequents, each of which is either
an axiom of the form A −→ A, or follows from one or two earlier sequents by one of the
rules. These rules are sound and complete and we will not list them, as the details are not
so important for us (see Section 4 for our justification of this). For k ∈ N the system Gk is
the restriction of G which only allows formulas from Σq

k ∪ Πq
k to appear in derivations.

We are interested in proof systems as ways of refuting CNFs. To turn G1 into such a
system we have the following definition, where for definiteness we think of Γ as a single QBF
(rather than, say, as the cedent given by its clauses) and where ⊥ is the empty cedent.

▶ Definition 7. A G1 refutation of a CNF Γ is a G1 sequent calculus derivation of the
sequent Γ −→ ⊥.

2.2 Pseudo-Boolean constraints and cutting planes
Following [4], we use the term pseudo-Boolean constraint, or PB constraint, for a linear
inequality with integer coefficients over 0/1-valued variables. We will sometimes call a
set of such constraints a PB formula. PB constraints generalize clauses, since a clause
C = x1∨ . . .∨xn∨¬y1∨ . . .∨¬ym can be expressed by a constraint of the form x1 + · · · +xn +
(1 − y1) + · · · + (1 − ym) ≥ 1. We call this constraint C∗ and will also write Γ∗ for the PB
formula obtained by taking C∗ for each clause C in a CNF Γ.

If C is a PB constraint Ax⃗ ≥ b we write ¬C for the PB constraint Ax⃗ ≤ b− 1. Note that,
although it is semantically the same, this denotes a different piece of syntax from ¬C when
C is a clause. Given a substitution ω, we write C↾ω for the PB constraint obtained by simply
replacing each variable x in C with ω(x), and we use a similar notation for PB formulas.

We use cutting planes [11], or CP, as a derivational system for deriving one PB formula G
from another PB formula F . A CP derivation is a sequence of PB constraints, including
every constraint from G, such that each constraint is either from F , or is a Boolean axiom
of the form xi ≥ 0 or xi ≤ 1, or follows from earlier constraints by one of the rules. These
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20:6 The Strength of the Dominance Rule

are addition – we can derive a new constraint by summing integral multiples of two old
constraints; and rounding – from a constraint dAx⃗ ≥ b, where d > 0 is an integral scalar
and A is an integral matrix of coefficients, we can derive Ax⃗ ≥ ⌈b/d⌉. We use the notation
F ⊢CP G for CP derivations. In a formal CP derivation, coefficients are written in binary.

2.3 Extended resolution as a derivational system
For CNFs Γ and ∆, a resolution derivation Γ ⊢ ∆ is a sequence of clauses, beginning with
the clauses of Γ and containing every clause from ∆, such that each clause in the sequence is
either in the initial copy of Γ or is derived from earlier clauses by the resolution or weakening
rule. Here the resolution rule derives C ∨D from C ∨ x and D ∨ ¬x, for any variable x, and
the weakening rule derives D from C for any D ⊇ C (although see below for a restriction on
weakening in the context of extended resolution derivations). Because we allow propositional
literals 0 and 1 to occur in clauses, we need to be able to remove them, so we also allow
derivation of C from C ∨ 0 (this can be thought of as resolution with a notional axiom “1”).
A resolution refutation of Γ is a derivation of Γ ⊢ ⊥.

An extension axiom has the form of three clauses ¬u ∨ ¬v ∨ y, ¬y ∨ u and ¬y ∨ v which
together express that y is equivalent to u∧ v. The intended use is that u, v are literals and y
is a newly-introduced variable. For good behaviour under restrictions we also allow extension
axioms of the form ¬u ∨ y, ¬y ∨ u expressing that y is equivalent to a single existing literal,
and of the form y or ¬y expressing that y is equivalent to a constant.

▶ Definition 8. For CNFs Γ and ∆, an extended resolution (ER) derivation Γ ⊢ ∆ is a
sequence of clauses, beginning with Γ and including every clause in ∆. Each clause in the
sequence either appears in the initial copy of Γ, or is derived from earlier clauses by resolution
or weakening (where weakening is not allowed to introduce a variable that has not appeared
earlier in the sequence3) or by the extension rule, which allows us to introduce an extension
axiom defining a variable that has not appeared earlier in the sequence from variables that
have appeared earlier.

Such a derivation is sound in the following sense: any assignment to all variables in Γ
which satisfies Γ can be extended to an assignment to all variables in ∆ which satisfies ∆.
The extension axioms in the derivation tell us explicitly how to extend the assignment.

We will often need to handle many extension axioms at once:

▶ Definition 9. Let x⃗, y⃗ be disjoint tuples of variables. We say that ∆ is a set of extension
axioms over x⃗; y⃗ if it can be written as a sequence of extension axioms defining variables
y1, . . . , yr in order, where each yi is defined in terms of variables from among x⃗, y1, . . . , yi−1.

Equivalently, such a ∆ can be thought of as describing a Boolean circuit and asserting
that, on input x⃗, the values computed at the internal nodes are y⃗. We also introduce notation
for writing sets of extension axioms in this way:

▶ Definition 10. Suppose x⃗, y⃗ are tuples of variables and C is a circuit with gates of fan-in 2.
We write [y⃗ = C(x⃗)] for the set of extension axioms over x⃗; y⃗ expressing that the non-input
nodes of the circuit have values y⃗ on inputs x⃗ (we assume x⃗, y⃗ have suitable arities). If the
circuit has a distinguished output node we label the corresponding variable in y⃗ as yout.

3 This restriction on weakening is probably not strictly necessary. We include it because it has the helpful
consequence that each new variable comes with an explicit definition in terms of the old variables.



L. A. Kołodziejczyk and N. Thapen 20:7

The condition that the extension rule must introduce new variables has some counter-
intuitive consequences, and we must take extra care when we use ER as a derivational system.
For example, there are ER derivations ⊤ ⊢ x and ⊤ ⊢ ¬x, (where ⊤ is the empty CNF) but
there is no derivation ¬x ⊢ x, even though ¬x extends ⊤, and no derivation ⊤ ⊢ x ∧ ¬x. In
many ways the new variables behave like existentially quantified bound variables.

Under some reasonable conditions on how extension variables are used, we can avoid
problems related to such issues. Below we formally prove two lemmas of this kind, which
we will refer to as needed. We could avoid the issue by working with some other system
equivalent to ER, such as extended Frege, circuit Frege [18] or even treelike G1, but it would
then be harder to show that the resulting system is simulated by linear dominance.

We use a convention that, in the context of ER derivations, when we write an expression
of the form Γ(x⃗) ⊢ ∆ with some variables x⃗ displayed on the left, we mean that every variable
in x⃗ is treated as an “old” variable in this derivation and as such is not used as an extension
variable in any instance of the extension rule, even if it does not actually appear in the
CNF Γ(x⃗).

▶ Lemma 11. Let Γ(x⃗), A(x⃗, y⃗), B(x⃗, z⃗),∆(x⃗, w⃗) by CNFs, where we assume x⃗, y⃗, z⃗, w⃗ are
disjoint and no other variables appear. Suppose we have ER derivations

π1 : Γ(x⃗) ∧A(x⃗, y⃗) ⊢ B(x⃗, z⃗) and π2 : Γ(x⃗) ∧B(x⃗, z⃗) ⊢ ∆(x⃗, z⃗, w⃗).

Then we can construct an ER derivation Γ(x⃗) ∧A(x⃗, y⃗) ⊢ ∆(x⃗, z⃗, w⃗) in polynomial time.

Proof. We first copy π1. Then we copy π2, except that every extension variable in π2 which
is not in w⃗ is given a new name, to avoid clashes with variables y⃗ and other extension
variables that appeared in π1. ◀

▶ Lemma 12. Given an ER derivation π1 : Γ(x⃗) ⊢ ∆ ∧ A, where ∆ is a set of extension
axioms over x⃗; y⃗, we can construct in polynomial time an ER derivation π2 : Γ(x⃗)∧∆ ⊢ ∆∧A.

Proof. Let ∆′ and A′ be the same as ∆ and A except that we have replaced every variable yi

with a new variable zi. From Γ ∧ ∆, we can derive ∆′ ∧ A′ by a copy of π1 with ∆ added
to the initial clauses and with each yi changed to zi everywhere outside of ∆. Then we
can work through y⃗ and derive, from the relevant extension axioms in ∆ and ∆′, using the
normal rules of resolution, that yi ↔ zi; formally, this is the two clauses ¬yi ∨ zi and ¬zi ∨ yi.
Finally we resolve these clauses with the clauses of A′ to derive A. ◀

3 The dominance rule

We define three refutational proof systems using versions of the dominance-based strength-
ening rule of [4]. The dominance proof system is intended to be the same as the system
described in [4] except that we have removed the machinery for talking about optimization,
that is, everything related to the objective function f . The linear dominance proof system
restricts this by only allowing a particular kind of ordering to be used in the dominance
rule; the practical work in [4] in fact only needs this weaker system. Lastly we introduce our
auxiliary system ER-PLS.

In these systems, often we can only apply a rule on the condition that some other derivation
Γ ⊢ ∆ or C ⊢CP D exists, in ER or CP, possibly involving formulas that do not appear
explicitly in the proof we are working on; or that some other polynomial-time-checkable
object exists, such as a substitution ω. To ensure that correctness of a proof is checkable in
polynomial time we implicitly require that, in a formal proof in a dominance-based system,
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20:8 The Strength of the Dominance Rule

each application of the rule is labelled with an example of the object in question, with the
size of the labels (that is, the CP derivations, substitutions etc.) counted towards the size of
the formal proof.

3.1 The dominance proof system
This is a system for refuting PB formulas. As in [4], we will call steps in a refutation
configurations, rather than lines. A configuration is a quadruple (C ,D ,O⪯, z⃗) where

C is a set of PB constraints called core constraints
D is a set of PB constraints called derived constraints
O⪯(x⃗, y⃗) is a PB formula where x⃗ and y⃗ both have the same arity as z⃗
z⃗ is a tuple of variables.

We put no conditions on which variables appear in C and D , except that the variables x⃗, y⃗
in O⪯(x⃗, y⃗) should be thought of as dummy variables that are not related to the rest of the
proof. In a valid proof, in every configuration the formula O⪯(x⃗, y⃗) defines a preorder and we
use this with z⃗ to define a preorder ⪯ on assignments, writing α ⪯ β if O⪯(x⃗, y⃗) is satisfied
under the assignment that takes x⃗ to α(z⃗) and y⃗ to β(z⃗).

Semantically a configuration can be thought of as asserting that C is satisfiable, and
that if we order assignments by O⪯ on z⃗ as described above, then for any assignment α
satisfying C , some assignment β with β ⪯ α satisfies C ∪ D (see Definition 19 below).

A refutation of a PB formula F is then a sequence of configurations, beginning with
(F, ∅,⊤, ∅), where ⊤ is the empty PB formula, and ending with a configuration in which C

or D contains the contradiction ⊥, that is, 0 ≥ 1. Each configuration is derived from the
previous configuration (C ,D ,O⪯, z⃗) by one of the following rules:

Implicational derivation rule. Derive (C ,D ∪ {C},O⪯, z⃗), if there is a derivation4

C ∪ D ⊢CP C.

(Objective bound update rule – this appears in [4], but we omit it from our systems as it
only affects the objective function f , which we do not use.)

Redundance-based strengthening rule. Derive (C ,D ∪ {C},O⪯, z⃗) if there is a substitu-
tion ω and a derivation C ∪ D ∪ {¬C} ⊢CP (C ∪ D ∪ {C})↾ω ∪ O⪯(z⃗↾ω, z⃗).

Deletion rule. Derive (C ′,D ′,O⪯, z⃗) if
1. D ′ ⊆ D and
2. C ′ = C or C ′ = C \ {C} for some constraint C derivable by the redundance rule above

from (C ′, ∅,O⪯, z⃗)5.

Transfer rule. Derive (C ′,D ,O⪯, z⃗) if C ⊆ C ′ ⊆ C ∪ D . In other words, we can copy
constraints from D to C

Dominance-based strengthening rule. We first give a slightly informal definition: derive
(C ,D ∪ {C},O⪯, z⃗) if there is a substitution ω and, informally, a derivation

C ∪ D ∪ {¬C} ⊢CP C↾ω ∪ (z⃗↾ω ≺ z⃗)

4 In [4], the derivation is allowed to use some additional inferences beyond those of CP. For simplicity we
omit these, as in the presence of the redundance-based strengthening rule, even strengthening CP here
to a system like extended Frege would not make any difference to the overall dominance system. In
particular, our proof of the simulation of linear dominance by G1 in Section 7 would still go through.

5 This restriction of the deletion rule ensures that it preserves semantic validity under the intuitive
meaning of configurations mentioned above. See Section 7 for an argument.
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where z⃗↾ω ≺ z⃗ expresses that z⃗↾ω is strictly smaller than z⃗ in the ordering O⪯. However it
may be that any PB formula expressing the strict inequality (z⃗↾ω ≺ z⃗) is very large. So
formally the rule is: derive (C ,D ∪{C},O⪯, z⃗) if there is a substitution ω and two derivations

C ∪ D ∪ {¬C} ⊢CP C↾ω ∪ O⪯(z⃗↾ω, z⃗)
C ∪ D ∪ {¬C} ∪ O⪯(z⃗, z⃗↾ω) ⊢CP ⊥.

Order change rule. From (C , ∅,O⪯, z⃗) derive (C , ∅,O ′
⪯, z⃗

′) if O ′
⪯ is CP-provably a preorder.

That is, if there are derivations ∅ ⊢CP O⪯(u⃗, u⃗) and O⪯(u⃗, v⃗) ∪ O⪯(v⃗, w⃗) ⊢CP O⪯(u⃗, w⃗).

3.2 The linear dominance proof system
This restricts the dominance proof system to only use orderings O⪯ arising from a multilinear
objective function. Formally, we require that O⪯(x⃗, y⃗) is always of the form f(x⃗) ≤ f(y⃗),
where f is a multilinear function x⃗ 7→

∑
i bixi for some constants bi. These constants can

be changed using the order change rule. We are no longer required to explicitly prove that
O⪯(x⃗, y⃗) is an ordering, as CP can always prove this for this restricted form.

The most important ordering of this form is the lexicographic ordering, which we get by
setting f(x⃗) 7→

∑
i 2ixi (for a suitable ordering of the variables in x⃗).

3.3 The system ER-PLS
This system uses the clausal version of the dominance rule sketched in Proposition 3 in the
introduction. The name is intended to suggest that it has a similar connection to polynomial
local search “computations” as ER has to polynomial time.

We fix a polynomial-time constructible family of CNFs defining lexicographic ordering.
That is, for each k we have a CNF [x1, . . . , xk ≤lex y1, . . . , yk], which may also use some
auxiliary variables z⃗, such that for all α, β ∈ {0, 1}k there is an assignment to z⃗ satisfying
[α ≤lex β] if and only if α ≤ β lexicographically. It is not too important which CNF we use
for [x⃗ ≤lex y⃗]; for a convenient one, see the full paper.

An ER-PLS refutation of a CNF Γ is formally a sequence of CNFs, beginning with Γ and
ending with a CNF containing the empty clause ⊥. At each step we apply one of the two
rules below to derive the next CNF in the sequence.

ER rule. From Γ derive Γ∧∆ if there is an ER derivation Γ ⊢ ∆, in the sense of Definition 8.

Dominance rule. Let x⃗ list all variables of Γ in some order and let C be a clause in these
variables. From Γ derive Γ ∧ C, provided we have
1. a set ∆ of extension axioms over x⃗; y⃗
2. a substitution ω mapping variables x⃗ to variables among x⃗ ∪ y⃗

3. two ER derivations
a. Γ ∧ ∆ ∧ ¬C ⊢ Γ↾ω

b. Γ ∧ ∆ ∧ ¬C ∧ [x⃗ ≤lex x⃗↾ω] ⊢ ⊥
with the technical condition that the auxiliary variables z⃗ used in [x⃗ ≤lex x⃗↾ω] may not
appear in Γ, ∆, or C.

Informally, condition 3 can be thought of as asking for a single ER derivation Γ∧∆∧¬C ⊢
Γ↾ω ∧ [x⃗↾ω<lex x⃗], as in Proposition 3. Note that we do not have any deletion rule, that is,
we can only grow working set of clauses Γ, and never shrink it. This is because Γ is modelled
on the core constraints C in the dominance system, which can only be deleted in very specific
situations. For simplicity we do not allow deletion at all, as we will not need it.
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▶ Lemma 13. If Γ′ is derived from Γ by a rule of ER-PLS, then Γ′ and Γ are equisatisfiable.

Proof. The only nontrivial case is the forward direction of the dominance rule. This is
proved in the same way as Proposition 3 in the introduction, with the cosmetic change that
we now have [x⃗ ≤lex x⃗↾ω] on the left of the entailment rather than [x⃗↾ω<lex x⃗] on the right.
We must also deal now with the auxiliary variables in [x⃗ ≤lex x⃗↾ω], but since these are not in
the domain of the ordering this presents no problem. ◀

4 Bounded arithmetic

We will carry out some arguments in theories of bounded arithmetic, which we will turn into
propositional proofs using variants of well-known translations. Here we give a brief overview
– for more see e.g. [23, Chapters 9 and 12]. When we write that a formula with free variables
is provable in a first-order theory, we mean that its universal closure is provable.

4.1 Theories
PV is the canonical theory for polynomial-time reasoning [10]. Its language contains a
function symbol, called a PV function, for every polynomial-time algorithm on N. Its
axioms are defining equations for all PV functions, based on Cobham’s characterization of
polynomial-time functions. See e.g. [23, Chapter 12.1] for a precise definition (there the
theory is called PV1). Importantly, PV proves the principle of mathematical induction for
any property defined by a PV formula – that is, by a quantifier-free formula in the language
of PV. Such formulas define precisely the polynomial-time properties.

More powerful theories can be obtained by extending PV with stronger induction axioms.
A formula in the language of PV is Σb

1 if it has the form ∃x≤ t φ, where t is a term not
containing x and φ is a PV formula; unsurprisingly, Σb

1 formulas define exactly properties in
NP. A formula is Σb

2 if it has the form ∃x≤ t1 ∀y≤ t2 φ for φ a PV formula. The classes Πb
1

and Πb
2 are defined dually.

The theory T1
2 (a more accurate name would be T 1

2 (PV)) extends PV by induction
axioms for all Σb

1 formulas. T 1
2 is the weakest theory that suffices to prove the least number

principle for Σb
1 formulas, that is, that every nonempty NP set has a least element; actually,

even the least number principle for PV formulas already implies T 1
2 over PV [6].

The theory S1
2 , intermediate in strength between PV and T 1

2 , extends PV by the length
induction axioms for Σb

1 formulas, that is, universal closures of statements of the form

ψ(0) ∧ ∀x (ψ(x) → ψ(x+ 1)) → ∀xψ(|x|)),

where ψ is Σb
1 and | · | stands for the length function that takes a number x to its length in

binary notation. The theory S2
2 is a strengthening of T 1

2 that additionally contains length
induction for Σb

2 formulas. It should be noted that S1
2 proves length induction also for Πb

1
formulas, T 1

2 proves induction also for Πb
1 formulas, and so on.

Ordered by strength, we have PV ⊆ S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ . . . . There is also partial

conservativity between some adjacent theories. In particular, S1
2 is ∀Σb

1-conservative over
PV and S2

2 is ∀Σb
2-conservative over T 1

2 [7]. This means that if ψ(x) is a Σb
1 formula and S1

2
proves ∀xψ(x), then PV proves it as well; analogously for Σb

2 formulas, S2
2 and T 1

2 .

There is a well-known connection between propositional proof systems and arithmetic
theories, linking ER to PV (and S1

2) and G1 to T 1
2 (and S2

2). The following theorem, which
shows that a theory proves the soundness of the corresponding proof system, can be viewed
as an upper bound: it says that, for example, G1 is in some sense no stronger than T 1

2 . We
use this for our main result in Section 5.
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▶ Theorem 14 ([10, 24]). S1
2 – and by conservativity, PV – proves the CNF-reflection

principle for ER: “any CNF refutable in ER is unsatisfiable”. Similarly, S2
2 – and by

conservativity, T 1
2 – proves the CNF-reflection principle for G1: “any CNF refutable in G1

is unsatisfiable”.

Proof sketch. We first consider G1. The statement “sequent s, containing only formulas
from Σq

1 ∪ Πq
1, is satisfied by assignment α to its free variables” can be naturally written as a

Πb
2 formula σ(s, α). Using this we formalize the natural proof of the soundness of G1 as a

length induction on a Πb
2 formula, roughly as follows: given a G1 derivation π, we show by

induction down π that ∀ασ(s, α) holds for every line s of π. If the last line has the form
Γ ⊢ ⊥ for a CNF Γ, this means that Γ cannot be satisfiable.

The part about ER is proved by a similar argument, but with the length induction
hypothesis being “every line in the ER refutation π up to the current one is satisfiable”.
This can be stated in a Σb

1 way, holds at the beginning of π if the CNF Γ being refuted is
satisfiable, but no longer holds once π reaches the empty clause ⊥. ◀

In the other direction, it is possible to translate proofs in an arithmetic theory into
uniform families of propositional proofs. We will use this translation for PV and ER, and we
give a slight refinement of it in Section 4.2. Such translations can also be used to give a kind
of converse to Theorem 14, with a proof similar to our approach in Section 5 below:

▶ Theorem 15 ([10, 24]). If PV (equivalently S1
2) proves the CNF-reflection principle for a

propositional proof system Q, then ER simulates Q. Similarly, if T 1
2 (equivalently S2

2) proves
the CNF-reflection principle for Q, then G1 simulates Q.

Theorems 14 and 15 together give us a close association between T 1
2 and short G1 proofs,

and in fact we prove our results about G1 indirectly using these theorems, rather than by
reasoning about G1 itself. This is largely the reason that we did not include a complete
description of G1 in Section 2.1.

Another important property of T 1
2 – and, by conservativity, of S2

2 – is that its ∀Σb
1

consequences can be witnessed by polynomial local search. We formally define a PLS problem
as a triple (tw, θw, Nw), where t,N are respectively a unary and a binary PV function, θ is a
binary PV formula, and the distinguished argument w written in the subscript is an instance
of the problem. The formula θ defines the domain of the problem on instance w (tacitly,
any element of the domain is required to be at most polynomially larger than w); tw is an
initial value that should be in the domain; and Nw is a one-place neighbourhood function,
which attempts to map any value in the domain to a strictly smaller value in the domain.
Since the domain has a least element as long as it is nonempty, Nw will sometimes fail, and
a solution to the problem on instance w is either tw, if ¬θw(tw), or a value y such that θw(y)
but either ¬θw(Nw(y)) or Nw(y) ≥ y.

The PLS witnessing theorem for T 1
2 , originally proved in [8], says that if T 1

2 proves
∀w ∃y≤ t φ, where φ is a PV formula, then the task of finding y given w can be reduced
to a PLS problem. Written in a modern form, which also includes an upper bound on the
strength of the theory needed to prove correctness of the reduction, we have:

▶ Theorem 16 ([2, Theorem 2.5]). Assume that T 1
2 ⊢ ∀w ∃y≤ t φ(w, y), where φ is a PV

formula. Then there is a PLS problem Qw = (tw, θw, Nw) and a PV function f such that
the following are provable in PV:
1. ¬θw(tw) → φ(w, f(w))
2. θw(z) ∧ ¬θw(Nw(z)) → φ(w, f(z))
3. θw(z) ∧Nw(z) ≥ z → φ(w, f(z)).
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4.2 Propositional translations

We use a version of the translation from PV proofs to polynomial-time constructible families
of ER proofs, due to Cook [10].6 We first describe how to translate formulas. Consider a
PV formula θ(x⃗). Let k⃗ represent a choice of binary bit-lengths for the variables x⃗ (we will
not be very formal about k⃗; we can think of this notation as assigning a length to every free
first-order variable in the universe). Supposing x⃗ = x1, . . . , xℓ, we will code each xi using a
ki-tuple of new propositional variables x1

i , . . . , x
ki
i , which tuple we write just as x⃗i.

By definition, θ is a quantifier-free formula built from PV functions. So we can construct,
in some canonical way based on the structure of θ, in time polynomial in the bit-lengths
k1, . . . , kℓ, a Boolean circuit C(x⃗1, . . . , x⃗ℓ) evaluating θ on binary inputs of these lengths.
Following Definition 10, we introduce a tuple of new variables z⃗, one for each node in C,
and define the propositional translation [[θ(x⃗)]]k⃗ to be the CNF [z⃗ = C(x⃗1, . . . , x⃗ℓ)] ∧ zout.
Unless stated otherwise, we assume that the translations of any two explicitly listed formulas
have disjoint auxiliary variables z⃗. For example, in Proposition 17, we assume that the
translations of φ1, . . . , φr, θ all have disjoint auxiliary variables, even if some formula appears
twice in this list.

We now state how we translate proofs. For more details see the full paper.

▶ Proposition 17. Suppose PV proves a sentence ∀x⃗, φ1(x⃗) ∧ · · · ∧ φr(x⃗) → θ(x⃗), where
φ1, . . . , φr, θ are quantifier-free. Then for any assignment k⃗ of bit-lengths to the variables x⃗,
we can construct in time polynomial in k⃗ an ER derivation

[[φ1(x⃗)]]k⃗ ∧ · · · ∧ [[φr(x⃗)]]k⃗ ⊢ [[θ(x⃗)]]k⃗.

5 ER-PLS simulates G1

This section contains the main technical work of the paper. We begin by constructing some
PV proofs. We will use propositional translations of these in our simulation.

Let Sat(a, x) be a natural PV formula expressing that CNF a is satisfied by assignment x.
Let Ref(a, b) be a natural PV formula expressing that b is a G1 refutation of a. We may
take ∀a, b, x ¬Sat(a, x) ∨ ¬Ref(a, b) as the CNF-reflection principle for G1, stating that any
CNF refutable in G1 is unsatisfiable. By Theorem 14 this is provable in T 1

2 .
CNF-reflection is a universally-quantified PV formula, so in particular it is ∀Σb

1. Thus by
Theorem 16, there is a PLS problem Qw = (tw, θw, Nw), where to save space we think of a, b, x
as combined into a single parameter w which we write as a subscript, such that the existence
of a solution to Qw implies ¬Sat(a, x) ∨ ¬Ref(a, b), provably in PV. Precisely, PV proves
the following three formulas, in free variables a, b, x, y (note that since the CNF-reflection
principle does not contain an existential quantifier, we do not need the function f that
appears in Theorem 16):
1. ¬θw(tw) → (¬Sat(a, x) ∨ ¬Ref(a, b))
2. θw(y) ∧ ¬θw(Nw(y)) → (¬Sat(a, x) ∨ ¬Ref(a, b))
3. θw(y) ∧Nw(y) ≥ y → (¬Sat(a, x) ∨ ¬Ref(a, b)).

6 We emphasize that we are using the Cook translation, rather than the Paris-Wilkie translation of
e.g. [27]. The Paris-Wilkie translation is usually used to translate first-order proofs involving an oracle
symbol into families of small proofs in relatively weak propositional systems. For example, it translates
(a relativized version of) T 1

2 into polylogarithmic-width resolution.
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By standard properties of PLS, we may assume in order to simplify some things below that
the bit-length of tw depends only on the components a, b of w and not on the assignment x,
and that Nw is hard-wired to never give output bigger than tw.

Making some small rearrangements and introducing a new variable u for the neighbour
of y, we get that PV proves

F1. Sat(a, x) ∧ Ref(a, b) ∧ y = tw → θw(y)
F2. Sat(a, x) ∧ Ref(a, b) ∧ θw(y) ∧ u = Nw(y) → θw(u)
F3. Sat(a, x) ∧ Ref(a, b) ∧ θw(y) ∧ u = Nw(y) ∧ y ≤ u → ⊥.

With these proofs in hand we can describe the simulation.

▶ Theorem 18. ER-PLS simulates G1.

Proof. We are given a CNF A and a G1 refutation B of A. We want to construct, in
polynomial time, an ER-PLS refutation of A. We will build the refutation using propositional
translations of the proofs F1-F3 above. We begin by calculating the bit-length of the variables
a, b, x, y, u which we will use in the translation.

Let n be the number of variables in A and let m and ℓ be the bit-length of the strings
coding A and B respectively. We may assume n ≤ m. We will use m, ℓ, n as the respective
bounds on the bit lengths of a, b, x. By our simplifying assumption on the problem Qw we
can find a bound r, polynomial in m and ℓ, on the bit-length of tw for parameters w of the
lengths we are considering. We may also use r as the bit-length for both y and u, since
Nw needs at most r bits to encode its output. Thus we use these bounds m, ℓ, n, r, r as the
bit-length parameter k⃗ in all our propositional translations below. As a result, all the CNFs
we obtain from the translation will have size polynomial in m+ ℓ. For simplicity of notation,
we will omit actually writing the subscript k⃗.

Applying Proposition 17 to F1, F2 and F3, we obtain, in time polynomial in m+ ℓ, the
following ER derivations:

P1 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[y = tw]] ⊢ [[θw(y)]]
P2 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[θw(y)]] ∧ [[u = Nw(y)]] ⊢ [[θw(u)]]
P3 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[θw(y)]] ∧ [[u = Nw(y)]] ∧ [[y ≤ u]] ⊢ ⊥.

These formulas and derivations are in propositional variables a⃗, b⃗, x⃗, y⃗, u⃗ that arise from
a, b, x, y, u in the translation, using the bit-lengths described above (plus the requisite
auxiliary and extension variables).

Now let τ be the substitution (in fact a partial assignment) that first replaces the
propositional variables a⃗ and b⃗ with the actual bits of A and B. Then, recalling that the
CNFs [[Sat(a, x)]] and [[Ref(a, b)]] are defined in terms of Boolean circuits taking a⃗, b⃗, x⃗ as
input, we compute the values of all nodes in these circuits that do not depend on x⃗ (for
[[Ref(a, b)]] this means all nodes) and let τ assign those values to the corresponding auxiliary
variables in the CNFs.

Applying τ to the derivations above, each of P1↾τ , P2↾τ , P3↾τ is still a valid ER refutation.
However we may delete [[Ref(a, b)]]↾τ from the assumptions, since by construction τ satisfies
every clause in [[Ref(a, b)]], because B is in fact a refutation of A. Furthermore we make the
following claims, where all the circuits and derivations asserted to exist are constructible in
polynomial time from A and B. For the notation [z⃗ = C(e⃗)] see Definition 10.
1. Write A(x⃗) for the CNF A with the variables renamed to x1, . . . , xn. Then there is an

ER derivation A(x⃗) ⊢ [[Sat(a, x)]]↾τ .
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2. There is a circuit Dθ and auxiliary variables z⃗y and z⃗u such that
a. [[θw(y)]]↾τ has the form [z⃗y = Dθ(x⃗, y⃗)] ∧ zout

y

b. [[θw(u)]]↾τ has the form [z⃗u = Dθ(x⃗, u⃗)] ∧ zout
u .

Abusing notation, we may write these as [θ̂(x⃗, y⃗)] and [θ̂(x⃗, u⃗)].
3. There is a circuit t̂ and auxiliary variables z⃗t such that there is an ER derivation

[(y⃗, z⃗t) = t̂(x⃗)] ⊢ [[y = tw]]↾τ .
4. There is a circuit N̂ and auxiliary variables z⃗N such that there is an ER derivation

[(u⃗, z⃗N ) = N̂(x⃗, y⃗)] ⊢ [[u = Nw(y)]]↾τ .
5. There is an ER derivation [y⃗ ≤lex u⃗] ⊢ [[y ≤ u]]↾τ .

Here claim 2 is true by construction, and for claim 5 note that the CNF [[y ≤ u]] is
not changed after restricting by τ . Otherwise we appeal to the well-known strength and
robustness of ER and the fact that we are able to choose how to express Sat, and even y ≤ x,
in PV. We give more details of claim 1 in the full paper.

Combining the derivations provided by the claims with P1↾τ , P2↾τ , P3↾τ and appealing to
Lemma 11 we get that the following three ER derivations can be constructed in polynomial
time from A and B.

R1 : A(x⃗) ∧ [(y⃗, z⃗t) = t̂(x⃗)] ⊢ [θ̂(x⃗, y⃗)]

R2 : A(x⃗) ∧ [θ̂(x⃗, y⃗)] ∧ [(u⃗, z⃗N ) = N̂(x⃗, y⃗)] ⊢ [θ̂(x⃗, u⃗)]

R3 : A(x⃗) ∧ [θ̂(x⃗, y⃗)] ∧ [(u⃗, z⃗N ) = N̂(x⃗, y⃗)] ∧ [y⃗ ≤lex u⃗] ⊢ ⊥.

For example, for R2 we first combine the derivation in claim 1, the first identity in claim 2,
and the derivation in claim 4 to derive the LHS of P2↾τ from the LHS of R2 (we may need
to rename some variables introduced by the extension rule to avoid clashes when we combine
derivations, as in the proof of Lemma 11). By Lemma 11 we can then use P2↾τ to derive
[[θw(u)]]↾τ , which is precisely the RHS of R2 by the second identity in claim 2.

The reader should note that R1–R3 still capture the same idea that we began this section
with, but now in a nonuniform version: they constitute a proof in ER that if y⃗ is a solution
of a PLS problem related to Qw, where w is the instance (A,B, x⃗), then A(x⃗) is false.

We can now describe an ER-PLS refutation of A(x⃗), and thus one of A. It will use
one application of the ER rule and one of the dominance rule. We begin with A(x⃗).
We then introduce the clauses [θ̂(x⃗, y⃗)] by the ER rule. This is allowed, because we can
obtain them from A(x⃗) by the following ER derivation: first write down the extension
axioms [(y⃗, z⃗t) = t̂(x⃗)], then use R1.

To finish the refutation we use the dominance rule to derive the empty clause. That is,
in the rule we take the new clause C to be empty. The other ingredients are as follows.
1. We set Γ := A(x⃗) ∧ [θ̂(x⃗, y⃗)], so Γ consists of all the clauses we have so far.
2. We let v⃗ := y⃗, z⃗y, x⃗ list all variables that occur in Γ. Here we deliberately put y⃗ first so

that it is most significant in determining the lexicographic order of assignments to v⃗.
3. We set ∆ := [(u⃗, z⃗N ) = N̂(x⃗, y⃗)] ∧ [z⃗u = Dθ(x⃗, u⃗)]. This is a set of extension axioms over

v⃗; u⃗, z⃗u, z⃗N .
4. We set ω to be the substitution which maps each variable in y⃗, z⃗y to the corresponding

variable in u⃗, z⃗u and is the identity everywhere else.
The substitution ω is chosen so that Γ↾ω = A(x⃗) ∧ [θ̂(x⃗, u⃗)]. Also ∆ and ω are chosen so that
the range of ω is a subset of the variables appearing in ∆, as required by the rule.

The reader should have in mind the following informal process, as sketched in the
introduction. Suppose we have an assignment α to v⃗ satisfying Γ = A(x⃗) ∧ [θ̂(x⃗, y⃗)]. By R2,
we can use the circuits described in ∆ to extend it to an assignment α ∪ β to v⃗, u⃗, z⃗u, z⃗N
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satisfying Γ↾ω = A(x⃗) ∧ [θ̂(x⃗, u⃗)], and by R3 the u⃗-part of β must be strictly smaller than
the y⃗-part of α. By the construction of ω, if we let α′ := (α ∪ β) ◦ ω then α′ again satisfies
A(x⃗) ∧ [θ̂(x⃗, y⃗)], with the y⃗-part of α′ the same as the u⃗-part of β. In this way ∆ and ω work
together to simulate one step in the exponential-time algorithm to solve PLS by producing
smaller and smaller “feasible solutions” y⃗ such that [θ̂(x⃗, y⃗)]. Specifically, ∆ computes the
next solution and writes it on its new variables u⃗, then ω copies the values of u⃗ back to the
old variables, overwriting y⃗.

Formally, to complete the proof we need to construct two ER derivations
(a) Γ ∧ ∆ ⊢ Γ↾ω

(b) Γ ∧ ∆ ∧ [v⃗ ≤lex v⃗↾ω] ⊢ ⊥.
Strictly speaking we should also include ¬C in both sets of assumptions, but since C is the
empty clause omitting this makes no difference.

Writing out (a) in more detail, what we need to show is

A(x⃗) ∧ [θ̂(x⃗, y⃗)] ∧ [(u⃗, z⃗N )=N̂(x⃗, y⃗)] ∧ [z⃗u=Dθ(x⃗, u⃗)] ⊢ A(x⃗) ∧ [θ̂(x⃗, u⃗)].

If the clauses [z⃗u = Dθ(x⃗, u⃗)] were not present on the left then R2 would already be a
derivation of this. However these clauses are part of [θ̂(x⃗, u⃗)], so we can use R2 with an
appeal to Lemma 12.

For (b), we observe that [v⃗ ≤lex v⃗↾ω] means precisely [(y⃗, z⃗y, x⃗) ≤lex (u⃗, z⃗u, x⃗)], from which
formula we can easily derive in ER that [y⃗ ≤lex u⃗]. Hence we can use R3 and Lemma 11. ◀

6 Linear dominance simulates ER-PLS

Recall from Section 2.2 the notation C∗ and Γ∗ for converting clauses and CNFs into
equivalent PB constraints and formulas. We will show that, given a derivation of ∆ from Γ in
ER-PLS, we can construct in polynomial time a derivation of (∆∗, ∅,⊤, ∅) from (Γ∗, ∅,⊤, ∅)
in the linear dominance system, which implies the simulation. So we must show how to
handle the two rules of ER-PLS: the ER rule and the dominance rule.
ER rule. This follows straightforwardly by the well-known simulation of resolution by
cutting planes [11] and, for extension steps, using the redundance-based strengthening rule
(of the linear dominance system) and standard arguments about how to add extension axioms
as redundant clauses, see e.g. [25]. A detailed proof is included in the full paper.
Dominance rule. Suppose we have a CNF Γ and a clause C, both in variables x1, . . . , xn,
plus a set ∆ of extension axioms over x⃗; y⃗, a substitution ω mapping variables x⃗ to variables
x⃗ ∪ y⃗, and two ER derivations
(a) Γ ∧ ∆ ∧ ¬C ⊢ Γ↾ω

(b) Γ ∧ ∆ ∧ ¬C ∧ [x⃗ ≤lex x⃗↾ω] ⊢ ⊥.
We will describe a derivation from (Γ∗, ∅,⊤, ∅) of (Γ∗ ∪ {C∗}, ∅,⊤, ∅).

We can combine the derivations for (a) and (b) above to construct an ER derivation

π : Γ ∧ ∆ ∧ ¬C ⊢ Γ↾ω ∧ [x⃗↾ω <lex x⃗].

where [x⃗ <lex y⃗] represents strict lexicographic ordering – see the full paper for details.
Furthermore we may assume that π is actually a resolution derivation, that is, that it does
not include any applications of the extension rule. This is because we can move all extension
axioms introduced by that rule from the body of the derivation to ∆, preserving the order
in which they appeared in the derivation. That process turns ∆ into a set of extension
axioms over x⃗; y⃗, z⃗, where z⃗ now includes all extension variables that were introduced in the
original π, and in particular all auxiliary variables in [x⃗↾ω <lex x⃗].
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To build the derivation in the linear dominance system, we first change the ordering from
the trivial order ⊤ to the lexicographic order on x1, . . . , xn, with the most significant bits
first. This can be done using the order change rule; see Section 3.2. So we are now in the
configuration (Γ∗, ∅,O⪯, x⃗), where O⪯ is the lexicographic order.

We then derive (Γ∗,∆∗,O⪯, x⃗), where we add each extension axiom in ∆ in turn using
the redundance-based strengthening rule, in the same way that we handle extension axioms
in the the ER rule. We must check that we satisfy the order condition for this rule, but this
is easy, since the substitutions used do not affect x⃗ variables, which are the only variables
relevant to the ordering. Again the details can be found in the full paper.

Now we use dominance-based strengthening to derive (Γ∗,∆∗ ∪ {C∗},O⪯, x⃗). We apply
the normal translation from resolution into CP to π to get

Γ∗ ∪ ∆∗ ∪ {(¬C)∗} ⊢CP (Γ↾ω)∗ ∪ [x⃗↾ω <lex x⃗]∗.

It is easy to construct a short derivation ¬(C∗) ⊢CP (¬C)∗. We can also construct a derivation
[x⃗↾ω <lex x⃗]∗ ⊢CP O≺(x⃗↾ω, x⃗) in polynomial time, where O≺ is strict lexicographic ordering
written in the natural way using the same multilinear function f as O⪯ – see the full paper.
Moreover, (Γ↾ω)∗ is the same as (Γ∗)↾ω. Thus we have

Γ∗ ∪ ∆∗ ∪ {¬(C∗)} ⊢CP (Γ∗)↾ω ∪ O≺(x⃗↾ω, x⃗). (2)

Finally, from (2) we can trivially construct a derivation

Γ∗ ∪ ∆∗ ∪ {¬(C∗)} ∪ O⪯(x⃗, x⃗↾ω) ⊢CP ⊥. (3)

The derivations (2) and (3) are what we need to apply the dominance-based strengthening
rule to derive C∗ (after weakening O≺ in (2) to O⪯). This completes the proof.

7 G1 simulates linear dominance

For this result we will use Theorem 15, which states that for a propositional proof system Q,
if S2

2 proves the CNF-reflection principle for Q, then G1 simulates Q. We take Q to be the
linear dominance system, considered as a system for refuting CNFs. That is, a Q-refutation
of a CNF Γ is a linear dominance refutation of Γ∗. Thus for the simulation it is enough to
prove in S2

2 that the existence of such a refutation of Γ∗ implies that Γ is unsatisfiable.
We do this by formalizing in S2

2 as much as we can of the proof of soundness of the
dominance system from [4]. We run into a problem when dealing with the dominance rule.
To show it is sound, it is enough to show that if a CNF is satisfiable, then it has a least
satisfying assignment with respect to the ordering O⪯. However as far as we know the general
statement of this form, that an arbitrary ordering has a least element, is not provable in S2

2 ,
and is known to be unprovable if the ordering given is by an oracle [29]. It is provable in T 2

2 ,
and hence in S3

2 , by a simple inductive argument. By the methods in this section it follows
from this that the full dominance system is simulated by G2.

To stay inside the strength of S2
2 we chose to work with the linear dominance system

instead since T 1
2 , and hence also S2

2 , can prove that any nonempty set of strings has a
least element in the lexicographic ordering, which is enough to prove the soundness of the
dominance rule restricted to such an ordering.7

We use a definition from [4].

7 Whether the dominance system is strictly stronger than linear dominance is unclear. Conceivably to
bound the strength of the full dominance rule we could make use of the fact that the ordering is not
given by an arbitrary relation, but by a relation which is provably an ordering in CP.
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▶ Definition 19. A configuration (C ,D ,O⪯, z⃗) is called valid if
1. C is satisfiable
2. For every total assignment α ⊨ C , there is a total assignment β with β ⪯ α and β ⊨ C ∪D .

Notice that validity is a Πb
2 condition, and in particular S2

2 is strong enough to do all
the basic reasoning we need about sums and inequalities. Working in S2

2 , suppose for a
contradiction we are given a satisfiable CNF Γ and a linear dominance refutation π of Γ∗. We
will use Πb

2 length induction, taking as our inductive hypothesis that the ith configuration
in π is valid. The base case is the initial configuration (Γ∗, ∅,⊤, ∅), which is valid by
assumption (since any assignment satisfying Γ already satisfies Γ∗). On the other hand
the final configuration in π is not valid, since in that configuration C ∪ D is not satisfiable.
Therefore to derive a contradiction it is enough to show that every rule preserves validity.

Since the soundness of CP is trivially provable in PV, this is easy for the implicational
derivation, transfer and order change rules. For the remaining rules, namely redundance-
based strengthening, deletion and dominance-based strengthening, suppose we are at a valid
configuration (C ,D ,O⪯, z⃗).

Redundance-based strengthening rule. We have a substitution ω and we know

C ∪ D ∪ {¬C} ⊨ (C ∪ D ∪ {C})↾ω ∪ O⪯(z⃗↾ω, z⃗).

Let α ⊨ C . By the inductive hypothesis there is β ⪯ α such that β ⊨ C ∪ D , and we want
to find β′ ⪯ α such that β′ ⊨ C ∪ D ∪ {C}. If β ⊨ C then we set β′ = β. Otherwise we set
β′ = β ◦ ω, and the properties of β′ follow from the assumption.

Deletion rule. The interesting case is that we derive (C ′,D ′,O⪯, z⃗) with D ′ ⊆ D and
C ′ = C \ {C} for some C derivable by the redundance rule from (C ′, ∅,O⪯, z⃗). Let α ⊨ C ′.
If α ⊨ C then there is nothing to show. Otherwise, using the notation of the redundance
rule, we let α′ = α ◦ ω and know that α′ ⪯ α and α′ ⊨ C . The inductive hypothesis then
gives us β′ ⪯ α′ with β′ ⊨ C ∪ D , so in particular β′ ⪯ α and β′ ⊨ C ′ ∪ D ′.

For all rules so far, the proof that validity is preserved goes through even in PV. For
the last rule we will need to minimize the value of a PV function on a polynomial-time
computable set, which can be done in S2

2 , since it extends T 1
2 (see Section 4.1).

Dominance-based strengthening rule. We derive (C ,D ∪ {C},O⪯, z⃗), and for a given
substitution ω we know

C ∪ D ∪ {¬C} ⊨ C↾ω ∪ f(z⃗↾ω) ≤ f(z⃗)
C ∪ D ∪ {¬C} ∪ {f(z⃗) ≤ f(z⃗↾ω)} ⊨ ⊥

where f is the linear function defining O⪯. Let α ⊨ C . We want to find β′ ⪯ α such that
β′ ⊨ C ∪ D ∪ {C}. Let S be the set of total assignments ⪯-below α satisfying C . Let β be a
member of S for which f(β) is minimal (where f(β) stands for f applied to the z⃗ variables
of β). Using the least number principle for Σb

1 formulas available in S2
2 , we can find such a β.

By the inductive hypothesis (that is, the validity of (C ,D ,O⪯, z⃗)) we may assume that
β ⊨ C ∪ D . If β ⊨ C then we set β′ = β. Otherwise let β′ = β ◦ ω. By the first entailment in
the rule, β′ ⊨ C and f(β′) ≤ f(β), so β′ ∈ S. Therefore by the minimality of f(β) we have
f(β) ≤ f(β′). But this contradicts the second entailment.

This completes the proof that S2
2 proves the soundness of the linear dominance system,

which is thus simulated by G1.
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8 Simulations of fragments by ER

8.1 Weak linear dominance
Consider the version of the linear dominance system in which we limit the dominance-based
strengthening rule by only allowing it to be applied when the set D of derived clauses is
empty. That is, we replace it with the rule: from (C , ∅,O⪯, z⃗) derive (C ∪ {C}, ∅,O⪯, z⃗) if
there is a substitution ω and derivations

C ∪ {¬C} ⊢CP C↾ω ∪ f(z⃗↾ω) ≤ f(z⃗)
C ∪ {¬C} ∪ {f(z⃗) ≤ f(z⃗↾ω)} ⊢CP ⊥.

where f is the linear function defining O⪯. We shall refer to this system as the weak linear
dominance system.

▶ Proposition 20. The weak linear dominance system is simulated by ER.

To prove the simulation, we use a lemma saying that PV knows that there is a polynomial
time function that lets us iterate a substitution m times, when m is given in binary.

▶ Lemma 21. There is a polynomial time function g(ω,m) which takes as input a substitu-
tion ω on variables z1, . . . , zn and a number m (coded in binary) and outputs the substitu-
tion ωm. Furthermore this works provably in PV, that is, PV ⊢ g(ω,m+ 1) = g(ω,m) ◦ ω.

Proof. Fix a variable zi and consider the sequence zi, ω(zi), . . . , ω2n+2(zi) as a walk through
the space Lit ∪ {0, 1}. The sequence can be produced by a PV function on input ⟨ω, i⟩. By
the pigeonhole principle, which is available in PV here since n is small (polynomial in the
length of the input), this sequence must touch some point twice. That is, it consists of a walk
of length ki to some u ∈ Lit ∪ {0, 1}, followed by a loop of some size ℓi, where 0 ≤ ki ≤ 2n+ 1
and 1 ≤ ℓi ≤ 2n. Again, the numbers ki, ℓi can be computed by a PV function on input ⟨ω, i⟩

Thus to compute ωm(zi) for m > 2n+ 2 it is enough to calculate the remainder of m− k

divided by ℓ: namely, ωm(zi) = ωki+((m−ki) mod ℓi)(zi). ◀

Proof of Proposition 20. By Theorem 15, it is enough to show that the soundness of the
weak linear dominance system is provable in S1

2 . So, working in S1
2 , suppose that a CNF Γ is

satisfiable but that Γ∗ has a refutation π in the system. We will derive a contradiction. We
will use length induction, but with a weaker inductive hypothesis than was used in Section 7
for the soundness of full linear dominance. Namely, we will show that for each configuration
(C ,D ,O⪯, z⃗) in turn in π, C ∪ D is satisfiable. Satisfiability is a Σb

1 property, so this is a
form of length induction we can carry out in S1

2 . It yields a contradiction when we get to
the last configuration in π.

The first configuration is satisfiable, by the assumption on Γ. It is easy to see that every
rule, other than dominance-based strengthening, preserves satisfiability; in the case of the
redundance-based strengthening rule, this is by the standard argument about composing the
current assignment once with ω, if necessary.

So suppose we are dealing with the weak dominance-based strengthening rule. We have
an assignment α which satisfies the current configuration (C , ∅,O⪯, z⃗), and we want to satisfy
(C ∪ {C}, ∅,O⪯, z⃗). We have a substitution ω and derivations

C ∪ {¬C} ⊢CP C↾ω ∪ f(z⃗↾ω) ≤ f(z⃗)
C ∪ {¬C} ∪ {f(z⃗) ≤ f(z⃗↾ω)} ⊢CP ⊥.
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for a linear f . Suppose for a contradiction that C ∪ {¬C} is unsatisfiable. Then, since CP
derivations are provably sound (even in PV) we know that for any assignment β, if β ⊨ C ,
then β ◦ ω ⊨ C and f(β ◦ ω) < f(β).

We may assume without loss of generality that f only takes values between 0 and some
upper bound m. Writing αi for α ◦ ωi, we use induction (rather than length induction) on i

to show that for all i we have

αi ⊨ C and f(αi) ≤ m− i.

By Lemma 21, this is a PV formula, so this induction can be carried out in S1
2 (if the formula

were Σb
1, we would only be able to use length induction). The base case i = 0 is true by

the assumptions about α and f , and the inductive step follows from the discussion in the
previous paragraphs. We conclude that f(αm+1) ≤ −1, which is impossible. ◀

8.2 Symmetry breaking in ER
Let us define a proof system Q, which we could call ER plus static symmetry breaking.
A refutation of a CNF Γ in Q consists of an initial step, in which we list a sequence of
symmetries ω1, . . . , ωk of Γ and write down the corresponding lex-leader constraints (where
for each constraint we use fresh auxiliary variables). This is followed by an ER refutation of
Γ augmented by these constraints, that is, of Γ′ := Γ ∧

∧
i[z⃗ ≤lex z⃗↾ωi ].

For k ∈ N we define Qk to be Q limited to only adding axioms for k symmetries.

▶ Proposition 22. The full system Q is sound, and is simulated by G1.

Proof. We repeat the proof of Proposition 2, except this time we fill in some details. To
prove soundness, it is enough to show that, supposing Γ is satisfiable, Γ′ is satisfiable as
well. Let α be a lexicographically minimal assignment to the z⃗-variables satisfying Γ. We
claim that an extension of α satisfies Γ′. To see this, let ωi be any symmetry from our list.
Then α ⊨ Γ implies α ⊨ Γ↾ωi

, and thus α ◦ ωi ⊨ Γ. By minimality of α we have α ≤lex α ◦ ωi,
and thus, extending α to β which satisfies the extension axioms in the definition of ≤lex,
we have that β satisfies the symmetry-breaking axiom [z⃗ ≤lex z⃗↾ωi

]. In this way we can
simultaneously satisfy such axioms for all i, by the assumption that auxiliary variables are
disjoint.

For the simulation by G1, it is enough to observe that this argument can be cast as a
proof of the CNF-reflection principle for Q and carried out in T 1

2 . Then we can appeal to
Theorem 15. ◀

The converse direction is presumably false:

▶ Proposition 23. G1 is not simulated by Q, assuming G1 is not simulated by ER.

Proof. Let Γn be a family of CNFs which have polynomial-sized refutations in G1 but require
superpolynomial size in ER. Then it is easy to construct a polynomial-sized CNF An such
that Γn ∪An has no symmetries; assuming Γn has variables x1, . . . , xm, a convenient example
consists of clauses xi ∨ y1 ∨ · · · ∨ yi for each i, where y1, . . . , ym are new variables. Then G1
refutations of Γn still work for Γn ∪An (we may need to add one more weakening step). On
the other hand, if π is any Q refutation of Γn ∪An, then it must be just an ER refutation,
and we can turn it into an ER refutation of Γn by applying the restriction which sets every
yi variable to 1. Thus π must have superpolynomial size. ◀

We can now prove Theorem 5 from the introduction, that Q1 is simulated by ER.

SAT 2024
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Proof of Theorem 5. We will show that the soundness of Q1 is provable in S1
2 . The result

then follows by Theorem 15. Let Γ be a CNF and let ω be a symmetry of Γ. Let Γ′ :=
Γ ∧ [z⃗ ≤lex z⃗↾ω] and suppose we are given an ER refutation of Γ′. We will show, with a proof
formalizable in S1

2 , that if Γ is satisfiable then so is Γ′. We can then derive a contradiction,
since S1

2 proves the soundness of ER (see Theorem 14).
Working in S1

2 , suppose α ⊨ Γ. As in the proof of Proposition 20 we write αi for α ◦ ωi,
and use the fact that by Lemma 21 this can be computed in polynomial time. Suppose for
a contradiction that Γ ∧ [z⃗ ≤lex z⃗↾ω] is unsatisfiable. It follows that for any assignment β,
if β ⊨ Γ then β ◦ ω <lex β. On the other hand, if β ⊨ Γ then we already know β ◦ ω ⊨ Γ,
since Γ↾ω = Γ. Assuming that there are n many z-variables we have α ≤lex 2n − 1, where
we identify 2n − 1 with a string of 1s of length n. Thus we can reach a contradiction by a
similar induction as in the proof of Proposition 20, showing inductively that for each i we
have αi ⊨ Γ and αi ≤lex 2n − i. ◀

This proof breaks down immediately even for Q2, since we do not have any equivalent of
Lemma 21 for arbitrary compositions of two substitutions.

We briefly discuss how one could directly construct an ER refutation from a Q1 refutation,
without going through bounded arithmetic and Theorem 5. The main task is to construct a
circuit C which, when given an assignment α such that α ⊨ Γ, outputs an assignment β such
that β ⊨ Γ ∧ [z⃗ ≤lex z⃗↾ω]. Furthermore this property of C must be provable in ER, in the
sense that we have an ER derivation Γ(x⃗) ∧ [z⃗ = C(x⃗)] ⊢ Γ(z⃗) ∧ [z⃗ ≤lex z⃗↾ω] (where we are
suppressing auxiliary variables in C and ≤lex). We will just describe C.

We use a subcircuit which takes input z⃗, i and computes αi := z⃗↾ωi using the algorithm
for g in Lemma 21. The circuit C finds i such that the two conditions αi ⊨ Γ and αi ≤lex 2n−i
hold for i, but one of them fails for i+ 1, and outputs αi. Such an i can be found by binary
search, since both conditions hold for i = 0 and the second one must fail for i = 2n + 1.
Since αi ⊨ Γ and αi+1 = αi ◦ ω, we have that αi+1 ⊨ Γ as ω is a symmetry. We conclude
that the second condition fails and αi+1 >lex 2n − i− 1. Thus αi+1 ≥lex αi, meaning that
αi ≤lex αi ◦ ω as required.
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Abstract
In this paper, we explore the application of blocked clause elimination for projected model counting.
This is the problem of determining the number of models ∥∃X.Σ∥ of a propositional formula Σ after
eliminating a given set X of variables existentially. Although blocked clause elimination is a well-
known technique for SAT solving, its direct application to model counting is challenging as in general
it changes the number of models. However, we demonstrate, by focusing on projected variables
during the blocked clause search, that blocked clause elimination can be leveraged while preserving
the correct model count. To take advantage of blocked clause elimination in an efficient way during
model counting, a novel data structure and associated algorithms are introduced. Our proposed
approach is implemented in the model counter d4. Our experiments demonstrate the computational
benefits of our new method of blocked clause elimination for projected model counting.
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1 Introduction

Propositional model counting consists determines the number of models of a propositional
formula Σ, typically represented in conjunctive normal form (CNF). Many applications however
require a projected variant focusing on a specific set X of variables of interest: given a
propositional formula Σ and a set X of propositional variables to be forgotten, the projected
model counting problem consists in computing the number of interpretations over the variables
occurring in Σ but not in X, which coincide on X with a model of Σ. In other words, the goal
is to count the number of models of the quantified Boolean formula ∃X.Σ over its variables
(i.e., those present in Σ but absent in X).

The projected model counting problem is significant for various application domains
of artificial intelligence (AI). For instance, in planning scenarios, it helps to evaluate the
robustness of a plan by determining the number of initial states from which the plan execution
leads to a goal state [4]. Additionally, its applicability extends beyond AI to formal verification
problems [19] and database operations [1]. As a generalization of the standard model counting
problem #SAT, for the special case X = ∅, the projected model counting problem is at least
as complex as #SAT (#P-hard). However, the possibility to eliminate some variables actually
also might simplify the problem, such as when all variables in Σ belong to X, reducing the
problem to simply determining the satisfiability of Σ. However, in practice projected model
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counting often turns out to be more challenging than the standard model counting problem.
This can be explained by the additional constraints imposed on the branching heuristic, i.e.,
in which order variables can be used as decisions, making the problem inherently harder.
This is also reflected for instance in upper known bounds in the literature [9] on the time
complexity of model counting even formulas with fixed treewidth k, i.e., O(2k) for standard
and O(22k ) projected model counting.

One way to speed up model counting is to employ preprocessing which simplifies the
formula before tackling the model counting task. Preprocessing methods have shown to be
effective across various automated reasoning tasks, notably in SAT solving and QBF solving
[6]. Among these preprocessing techniques, blocked-clause elimination (BCE) [15] signific-
antly improves solver performance by emulating several other, more complex preprocessing
techniques [16]. Blocked clauses, initially introduced by Kullmann [20] as a generalization
of extended resolution clauses, are pivotal in propositional preprocessing techniques. In
essence, a clause α is deemed blocked within a CNF formula Σ if it includes a literal ℓ for
which all conceivable resolvents of α over ℓ yield tautologies. Removal of blocked clauses can
significantly enhance the performance of SAT solvers [15]. Furthermore, generalized forms of
BCE have demonstrated remarkable performance improvements in solving problems beyond
NP, such as QBF [12], DQBF [31] and even first-order theorem proving [18].

However, while several preprocessing techniques used for SAT solving can be adapted to
improve model counting [25, 22], others, such as the blocked clause elimination technique,
are unsuitable due to their inability to preserve the number of models. In this paper, we
address this challenge by delineating conditions under which the use of BCE is correct in
projected model counting. Specifically, we demonstrate that focusing on projected variables
during the blocked clause search is correct, i.e., gives the same projected count. The rationale
behind this lies in the fact that when concentrating on sub-formulas containing only projected
variables, the requirement boils down to ensure satisfiability. Consequently, clauses blocked
on projected variables can safely be removed.

When used for model counting, simplification techniques are typically applied up-front
during preprocessing and even though modern SAT solvers make heavily use of interleaving for-
mula simplification with CDCL search, also called inprocesssing [17], this form of simplification
is currently performed only at the root-level (decision level zero). In this paper we go beyond
root-level simplification and propose to dynamically apply the blocked clause elimination
technique dynamically during search at every decision level in the form of dynamic blocked
clause elimination. In this sense our approach is similar to look-ahead solving [14], which use
simplification techniques during search, i.e., probing techniques, at every decision level.

To accomplish this, we introduce novel data structures and associated algorithms tailored
for dynamic inprocessing. Our method efficiently identifies clauses eligible for elimination by
employing a mechanism akin to watched literals. Importantly, this methodology is not tied
to a specific model counter; it seamlessly integrates into any state-of-the-art model counter.

To assess the efficiency of our approach, we conducted experiments using the model
counter d4 [24], modified to integrate our newly developed data structures and algorithms
for projected model counting. We evaluated the performance of this new version of d4
across various benchmarks from recent model counting competitions (available at https:
//mccompetition.org/). Our experimental results underscore the computational advantages
of employing blocked clause elimination for projected model counting. For certain benchmarks,
the adoption of BCE dynamic inprocessing led to a substantial reduction in computation time,
with time savings of up to one order of magnitude compared to the baseline version of d4.
To ensure that the improvements are indeed attributable to the use of BCE inprocessing, we
also examined a version of d4 that implements BCE dynamically during preprocessing only.

https://mccompetition.org/
https://mccompetition.org/


J.-M. Lagniez, P. Marquis, and A. Biere 21:3

Interestingly, our findings indicate that employing BCE in preprocessing had no discernible
impact on the effectiveness of the model counter d4, underscoring the possibility to take
advantage of BCE eagerly during the model counting process.

The remainder of the paper is structured as follows. The next section provides formal
preliminaries. Following this, we delve into theoretical insights and give implementation
details on how to perform BCE dynamically during search. Then, we outline the experimental
protocol adopted for our empirical evaluations, along with the corresponding results. Finally,
we conclude the paper, offering insights into potential avenues for future research. The source
code and benchmarks utilized in our experiments are provided as supplementary materials.

2 Preliminaries

Let L be a propositional language built up from a finite set of propositional variables P and
the standard logical connectives. The symbols ⊥ and ⊤ represent the Boolean constants for
falsehood and truth, respectively. A literal ℓ is either a propositional variable (e.g., x) or its
negation (¬x). For a literal ℓ defined over variable x, its complementary literal ℓ is defined
as ℓ = ¬x if ℓ = x, and ℓ = x if ℓ = ¬x, with Var(ℓ) = x denoting the variable of ℓ. A term
is a conjunction of literals. A clause is a disjunction of literals. Terms and clauses are also
interpreted as their sets of literals whenever convenient.

A clause is a tautology if it contains ⊤, or both x and ¬x for some variable x. A CNF
formula Σ is a conjunction of clauses, also viewed as set of clauses when needed. The set
of propositional variables occurring in Σ is denoted Var(Σ). If a variable x ∈ X does not
belong to Var(Σ), then x is said to be free in Σ. Each clause is associated with a unique
identifier represented as an integer. A clause αi of a CNF formula Σ can be accessed using its
identifier through square bracket notation, denoted as Σ[i]. Thus αi is also noted Σ[i]. We
denote by Sℓ(Σ) the set of clauses of Σ that contain literal ℓ. When no ambiguity about Σ is
possible, we simply use the shorthand notation Sℓ instead of explicitly writing Sℓ(Σ).

▶ Example 1. Consider the CNF formula Σ = {α1, α2, . . . , α11} with

1 : x1 ∨ x2 2 : ¬x2 ∨ x3 3 : ¬x1 ∨ ¬x2 ∨ ¬y1 4 : x1 ∨ ¬x3 ∨ y1

5 : x2 ∨ ¬x3 ∨ y2 6 : x1 ∨ ¬x3 ∨ ¬y2 7 : y3 ∨ x2 8 : ¬y3 ∨ ¬x2 ∨ ¬x3

9 : ¬y3 ∨ x1 10 : ¬y3 ∨ ¬y2 ∨ x3 11 : y3 ∨ y2 ∨ x2

Var(Σ) = {x1, x2, x3, y1, y2, y3}, Sx1(Σ) = {α1, α4, α6, α9}, and Σ[2] = α2 = ¬x2 ∨ x3.

An interpretation (or world) over P, denoted by ω, is a mapping from P to {0, 1}.
Interpretations ω are often represented by sets of literals (one per variable in P), of exactly
those literals set to 1 by ω. The collection of all interpretations is denoted by W. An
interpretation ω is a model of a formula Σ ∈ L if and only if it satisfies the formula in
accordance with the usual truth-functional interpretation. The set of models of the formula
Σ is denoted by mod(Σ), defined as {ω ∈ W | ω |= Σ}. The symbol |= denotes logical
entailment, while ≡ denotes logical equivalence. For any formulas Σ, Ψ ∈ L, we have Σ |= Ψ
if and only if mod(Σ) ⊆ mod(Ψ) and Σ ≡ Ψ if and only if mod(Σ) = mod(Ψ). The notation
∥Σ∥ indicates the number of models of Σ over Var(Σ).

▶ Example 2 (Example 1 cont’d). ∥Σ∥ = 9 and the models of Σ are:
{¬x1, x2, x3, y1, ¬y2, ¬y3} {x1, ¬x2, x3, y1, y2, y3} {x1, ¬x2, x3, ¬y1, y2, y3}
{x1, ¬x2, ¬x3, ¬y1, y2, y3} {x1, ¬x2, ¬x3, y1, ¬y2, y3} {x1, ¬x2, ¬x3, y1, y2, y3}
{x1, ¬x2, ¬x3, ¬y1, ¬y2, y3} {x1, x2, x3, ¬y1, y2, ¬y3} {x1, x2, x3, ¬y1, ¬y2, ¬y3}
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For a formula Σ ∈ L and a subset X ⊆ P , ∃X.Σ represents, up to logical equivalence, the
most general consequence of Σ that is independent of the variables in X (see for instance [28]
for details). We note Var(∃X.Σ) = Var(Σ) \X.

▶ Example 3 (Example 1 cont’d). Let X = {y1, y2, y3}. We have ∥∃X.Σ∥ = 4 and the models
of ∃X.Σ over V ar(∃X.Σ) are {{¬x1, x2, x3}, {x1,¬x2, x3}, {x1,¬x2,¬x3}, {x1, x2, x3}}.

The conditioning of a CNF formula Σ by a consistent term γ results in the formula denoted
by Σ|γ , where Σ|γ is obtained from Σ by removing each clause from containing a literal of γ

and simplifying the remaining clauses, by removing from them complementary literals to
those in γ. If, during the simplification, a clause becomes empty, then Σ|γ is unsatisfiable.

The conditioning of Σ on ℓ is equivalent to the formula ∃Var(ℓ).(Σ ∧ ℓ). When ℓ is a unit
clause of Σ, Σ|ℓ is satisfiable if and only if Σ is satisfiable. Boolean Constraint Propagation
(BCP) [29] is the algorithm that, given a CNF formula Σ, returns a CNF formula closed under
unit propagation, i.e., that does not contain any unit clauses. The resulting formula is
obtained by repeating the unit propagation of a unit clause of Σ in the formula Σ while
such a unit clause exists. The identifiers assigned to clauses in Σ remain unaltered by BCP.
Consequently, BCP(Σ)[i] will retrieve the clause αi resulting from the application of BCP on
Σ, which could be ⊥, ⊤, or a subset of αi.

▶ Example 4 (Example 1 cont’d). The formula BCP(Σ|¬x1) = (x2)∧(x3)∧(y1)∧(¬y2)∧(¬y3) is
the result of conditioning Σ with the literal ¬x1 and applying BCP to Σ|¬x1 . BCP(Σ|¬x1)[1] = ⊤
and BCP(Σ|¬x1)[4] = y1.

The resolution rule asserts that given two clauses α1 = {ℓ, a1, . . . , an} and α2 =
{ℓ, b1, . . . , bm}, the resulting clause α = {a1, . . . , an, b1, . . . , bm}, is the resolvent of α1 and α2
on the literal ℓ. This operation is denoted as α = α1⊕α2. This concept extends naturally to
sets of clauses: for two sets Sℓ and Sℓ containing clauses that all involve ℓ and ℓ, respectively,
we define Sℓ ⊕ Sℓ = {α1 ⊕ α2|α1 ∈ Sℓ, α2 ∈ Sℓ, and α1 ⊕ α2 is not a tautology}.

▶ Example 5 (Example 1 cont’d). Let S¬x1 = {(¬x1 ∨ ¬x2 ∨ ¬y1)}, Sy3 = {(y3 ∨ x2), (y3 ∨
y2∨x2)} and S¬y3 = {(¬y3∨¬x2∨¬x3), (¬y3∨x1), (¬y3∨¬y2∨x3)}. We have Sy3⊕S¬y3 =
{(x1 ∨ x2), (¬y2 ∨ x3 ∨ x2), (y2 ∨ x2 ∨ x1)} and {(x1 ∨ x2)} ⊕ Sx1 = ∅.

The simplification technique known as Blocked Clause Elimination (BCE) [15, 12], targets
the removal of specific clauses termed blocked clauses from CNF formulas [20]. In the context
of a CNF formula Σ, a literal ℓ within a clause α is termed a blocking literal if it blocks α

with respect to Σ. This occurs when, for every clause α′ in Σ containing ℓ, the resulting
resolvent α ⊕ α′ on ℓ is a tautology. In essence, for a given CNF and its clauses, a clause
is considered blocked if it contains a literal that can effectively block it. Applying BCE to
Σ leads to remove every clause containing a blocking literal and by repeating the process
iteratively until no blocked literal exists. [15, 12] illustrates that the outcome of BCE remains
satisfiable equivalent regardless of the sequence in which blocked clauses are eliminated. More
generally, blocked clause elimination converges to a unique fixed point for any CNF formula,
establishing the confluence of the method.

▶ Example 6 (Example 1 cont’d). Above we have shown that the clause (x1∨x2) is blocked by
x1 and therefore can be eliminated. Following this, both (¬x1∨¬x2∨¬y1) and (x1∨¬x3∨y1)
can be removed interchangeably, as they are respectively blocked by y1 and ¬y1. Subsequently,
(¬y3 ∨ ¬y2 ∨ x3), blocked by ¬y2, is eliminated, along with the two clauses, (¬y3 ∨ x1) and
(x1 ∨ ¬x3 ∨ ¬y2), both blocked by x1. Next, (y3 ∨ x2) is removed as it is blocked by y3.
Following this, both (x2 ∨ ¬x3 ∨ y2) and (y3 ∨ y2 ∨ x2), blocked by y2, can be eliminated.
Then, (¬y3 ∨ ¬x2 ∨ ¬x3) is removed because it is blocked by y3, and finally, the last clause
(¬x2 ∨ x3) is removed because it is blocked by both ¬x2 and x3. Thus, BCE(Σ) = ∅.



J.-M. Lagniez, P. Marquis, and A. Biere 21:5

As highlighted in [20], the removal of any blocked clause ensures the preservation of
unsatisfiability. However, as illustrated by the previous example, utilizing blocked clause
elimination (BCE) on a CNF formula Σ does not ensure that the resulting formula BCE(Σ)
has the same number of models as Σ. In the next section, we will delve into the specific
conditions under which BCE can be effectively used for projected model counting.

3 Blocked Clause Elimination for Projected Model Counting

Our goal is to use blocked clause elimination dynamically during search in projected model
counting. The primary challenge is to identify conditions under which such simplification is
allowed. Section 3.1 provides novel theoretical insights permitting the removal of blocked
clauses and Section 3.2 introduces new algorithms to efficiently identify them.

3.1 Theoretical Insights
As illustrated by Example 6, the BCE rule cannot be applied indiscriminately. When applied
to the formula Σ provided in Example 1, the result is a tautological formula, indicating that
∥BCE(Σ)∥ = 1 (since V ar(BCE(Σ)) = ∅ this correspond to 26 = 64 models over V ar(Σ)),
which differs from ∥Σ∥ = 9. It is essential to note that blocked clause elimination guarantees
the preservation of satisfiability but not necessarily equivalence or the number of models.
However, the picture changes when addressing the projected model counting problem. As
we will demonstrate in Proposition 7, it is feasible to eliminate clauses that are blocked on
projected variables. The rationale behind this lies in the fact that when focusing on sub-
formulas containing only projected variables, the requirement is only to ensure satisfiability.
Consequently, clauses blocked on projected variables can be removed in this case:
▶ Proposition 7. Let ∃x.Σ be an existentially quantified CNF formula. If a non-tautological
clause α ∈ Σ is blocked by a literal ℓ ∈ α with V ar(ℓ) = x, then ∃x.Σ is logically equivalent
to ∃x.Σ′, where Σ′ = Σ \ {α}.
Proof. To establish the logical equivalence ∃x.Σ ≡ ∃x.Σ′, we need to demonstrate both
(1) ∃x.Σ |= ∃x.Σ′ and (2) ∃x.Σ′ |= ∃x.Σ. For condition (1) since Σ |= Σ′ it follows directly
that ∃x.Σ |= ∃x.Σ′. Now, let us demonstrate the second condition. We have to prove for any
interpretation ω satisfying ∃x.Σ′, that ω also satisfies ∃x.Σ. Consider an interpretation ω

satisfying ∃x.Σ′. This means that ω satisfies (Σ′
|x ∨ Σ′

|¬x). We need to address two scenarios
depending on whether ω satisfies Σ′

|x or Σ′
|¬x. If ω satisfies Σ′

|x, then Σ′
|x ≡ Σ|x. Since Σ|x

entails Σ|x ∨ Σ|¬x, we conclude that ω satisfies ∃x.Σ. Let us consider the second scenario
where ω satisfies Σ′

|¬x but not Σ′
|x (the case when ω |= Σ′

|x has just been discussed). First,
both Σ′

|x and Σ′
|¬x contain clauses from Σ′ that do not involve variable x. Therefore, if ω

does not satisfy Σ′
x but satisfies Σ′

¬x, there must be a clause β ∈ Σ′ with ¬x ∈ β and ω✓✓|= β|x.
Now, let us demonstrate that ω satisfies Σ|¬x. Since Σ|¬x ≡ (Σ′ ∧ α)|¬x ≡ Σ′

|¬x ∧ α|¬x, we
only need to show that ω satisfies α|¬x. As α is blocked on x in Σ, each resolvent between α

and a clause of Σ containing ¬x is a tautology. Particularly, β ⊕ α is a tautology, implying
that there exists a literal ∃y ∈ β such that ¬y ∈ α and x ̸= y. Since we have established that
ω ✓✓|= β|x, this implies that ω satisfies ¬y, hence ω satisfies α|¬x. This demonstrates that ω

satisfies Σ′
¬x ∧ α¬x, and consequently, ω satisfies Σ|¬x. Using similar reasoning as before, we

can show that ω satisfies ∃x.Σ. Therefore, for any interpretation ω that satisfies ∃x.Σ′, it
follows that ω satisfies ∃x.Σ, proving ∃x.Σ′ |= ∃x.Σ. ◀

Proposition 7 only considers formulas with a single existentially quantified and thus
projected variable. This can be extended to sets of variables:

SAT 2024



21:6 Dynamic Blocked Clause Elimination for Projected Model Counting

▶ Corollary 8. Let ∃X.Σ be an existentially quantified CNF formula. If a non-tautological
clause α ∈ Σ is blocked by a literal ℓ ∈ α such that V ar(ℓ) ∈ X, then ∃X.Σ is logically
equivalent to ∃X.Σ′, where Σ′ = Σ \ {α}.

Proof. The proof is straightforward. Proposition 7 establishes ∃x.Σ ≡ ∃x.Σ′. Therefore, we
directly deduce that ∃X \ {x}.(∃x.Σ) ≡ ∃X \ {x}.(∃x.Σ′). ◀

Corollary 8 demonstrates the potential of utilizing blocked clause elimination to enhance
projected model counters. Our objective is not only to identify the set of blocked clauses in
preprocessing but also to perform this operation during search dynamically. However, naive
algorithms for blocked clause elimination are in the worst case at least quadratic in the size
of the formula, which is clearly infeasible for dynamic blocked clause elimination. In the
following section, we capitalize on the observation that model counters typically follow the
trace of DPLL solvers. To efficiently detect blocking literals and remove blocked clauses, a
dedicated data structure along with associated algorithms are designed.

3.2 Implementation Details
To improve the efficiency of identifying clauses eligible for removal through the blocked
clause elimination rule, we introduce the BlockedClauseManager object in this section. This
specialized utility integrates efficient structures and algorithms crafted for this purpose, and
is not exclusive to the projected model counter d4. It can be seamlessly employed in any
state-of-the-art projected model counter.

To identify clauses eligible for elimination due to being blocked by a literal, we use a
mechanism akin to the concept of watched literals. Given a formula ∃X.Σ, we aim to capture
scenarios where a clause α cannot be eliminated via the blocked clause elimination rule,
which occurs when there is no literal ℓ ∈ α such that α is blocked on x, and Var(ℓ) ∈ X.
Specifically, a clause α is not blocked on a literal ℓ̄ ∈ α if there exists another clause α′ such
that ℓ̄ ∈ α′ and α⊕ α′ is not a tautology. Consequently, the invariant we adopt stipulates
that for each literal ℓ ∈ α such that Var(ℓ) ∈ X, either ℓ is assigned or there must exist a
clause α′ where ℓ̄ ∈ α′, and α⊕ α′

✚≡⊤.

▶ Example 9 (Example 1 cont’d). When evaluating α3, it is not feasible to associate the
literal ¬y1 with a clause from Σ without resulting in a tautology. Therefore, α3 can be safely
removed from Σ. Conversely, when examining α11, it is feasible to associate the literal y3
with clause α9 and the literal y2 with clause α6, demonstrating that α11 cannot be eliminated
from the formula using the blocked clause elimination rule.

Since blocked elimination can ignore (implied) learned clauses [17], the set {α} ⊕ Sℓ̄,
representing possible resolutions on a literal ℓ concerning a clause α ∈ Σ, can be computed
once at the outset. Consequently, when the watched clause to assess whether α is blocked
on ℓ is deactivated, it suffices to consider clauses in {α} ⊕ Sℓ̄ rather than re-evaluating each
clause of Sℓ̄ to determine if the resolution rule yields a tautology. The first data structure
incorporated into our BlockedClauseManager is thus a set of triples (ℓ, α, {α}⊕Sℓ̄), referred
to as protectedTriple.

The function initProtectedTriple, outlined in Algorithm 1, is designed for this purpose.
When provided with the existentially quantified CNF formula ∃X.Σ, it begins by enumerating
all variables x in X (lines 2–5). Subsequently, it iterates through each possible triple
(ℓ, α, {α} ⊕ Sℓ̄) such that ℓ ∈ {x,¬x}, ℓ ∈ α, and α ∈ Sℓ (lines 3–5), adding them into
protectedTriple (line 5). Moving forward, we will primarily work with clause identifiers
rather than the clauses themselves. Therefore, when referring to a clause α in the following
discussions, we are actually addressing its identifier. This applies similarly to sets of clauses;
we will focus on the set of identifiers corresponding to the clauses within the set.
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Algorithm 1 initProtectedTriple.

Input: ∃X.Σ an existentially quantified CNF formula.

1 protectedTriple← ∅
2 for x ∈ X do
3 for ℓ ∈ {x,¬x} do
4 for α ∈ Sℓ(Σ) do
5 protectedTriple← protectedTriple ∪ {(ℓ, α, {α} ⊕ Sℓ̄(Σ)}

▶ Example 10 (Example 1 cont’d). Upon invoking the function initProtectedTriple on
the existentially quantified formula ∃X.Σ provided in Example 1, the set protectedTriple
contains the following triples: (y1, 4, {}), (¬y1, 3, {}), (y2, 5, {6}), (y2, 11, {6}), (¬y2, 10, {}),
(¬y2, 6, {5, 11}), (y3, 7, {9, 10}), (y3, 11, {9}), (¬y3, 8, {}), (¬y3, 9, {7, 11}), (¬y3, 10, {7}).

For each triple (ℓ, α, C) in protectedTriple, we need to watch a clause from C to ensure
that clause α is not blocked by ℓ. To achieve this, we incorporate into BlockedClauseManager
a map of watching lists, denoted as watches. This structure associates each clause α ∈ Σ
with a set of triples watches[α] that are being watched by α.

Algorithm 2 presents the pseudo-code for the function initWatchList. Given an exist-
entially quantified CNF formula ∃X.Σ, this function initializes the watches structure and
returns the indices of blocked clauses U , which are the clauses for which it is impossible to
associate a sentinel. The function begins by initializing the set of blocked clauses as empty
(line 2). Then, it initializes the map watches by associating an empty set with each clause
of Σ (lines 2–3). Next, it iterates over the triples in the protectedTriple set to associate a
sentinel with each of them (lines 4–6). For each triple t = (ℓ, α, C), where C represents the
set of non-tautological clauses, the algorithm checks whether C is empty. If it is, α is added
to the set of blocked clauses (line 5). Otherwise, a clause α′ from C is selected, and the triple
t is added to the watching list of α′ (line 6).

Algorithm 2 initWatchList.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: B is a set of identifiers of clauses that are blocked.

1 U ← ∅
2 Let watches an empty map
3 for α ∈ Σ s.t. V ar(α) ∩X ̸= ∅ do watches[α] = {}
4 for t = (ℓ, α, C) ∈ protectedTriple do
5 if C = ∅ then U ← U ∪ {α}
6 else watches[α′]← watches[α′] ∪ {t} with α′ ∈ C
7 return U

▶ Example 11 (Example 1 cont’d). Upon calling the function initWatchList on the exist-
entially quantified formula ∃X.Σ provided in Example 1, the following represents a potential
initialization of the watched structure:

watches[6] = {(y2, 5, {6}), (y2, 11, {6})} watches[5] = {(¬y2, 6, {5, 11})}
watches[9] = {(y3, 7, {9, 10}), (y3, 11, {9})} watches[7] = {(¬y3, 9, {7, 11}), (¬y3, 10, {7})}
watches[3] = watches[4] = watches[8] = watches[10] = watches[11] = ∅
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To finalize the initialization of the BlockedClauseManager object, we incorporate two
arrays for maintaining records of assigned variables and satisfied clauses. The first array,
named isAssignedVar, associates each variable in X with a Boolean value set to true if
the variable is assigned, and false otherwise. The second array, named isActiveClause,
associates each clause of Σ (identified by their identifier) with a Boolean variable set to true if
the clause is active, and false otherwise. The arrays isAssignedVar and isActiveClause
are initialized with false and true, respectively, for all their elements. We also need a stack
S of pairs, each consisting of variables and clauses. This stack is used to track the changes
made to isAssignedVar and isActiveClause during each call of the function propagate.

Algorithm 3 outlines all the necessary steps for the initialization process. It begins by
initializing the two arrays (lines 1–2). Then, the set of triples is initialized by invoking
the function initProtectedTriple on ∃X.Σ. Next, the watches structure is initialized by
calling the function initWatchList on ∃X.Σ, and the set of blocked clauses is collected in
U . We initialize S as an empty stack of pairs, where each pair consists of a set of variables
and a set of clauses. Finally, the function propagate is called to gather all the initially
blocked clauses. This function, described afterwards, takes a set of inactive clauses and a
set of freshly assigned variables as input, and returns a set of clauses that are identified as
blocked (further details will be provided later).

Algorithm 3 init.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: B is a set of identifiers of clauses that are blocked.

1 Let isAssigned be an array s.t. isAssigned[x] = false for each x ∈ X

2 Let isActiveClause be an array s.t. isActiveClause[α] = true for each α ∈ Σ
3 initProtectedTriple(∃X.Σ)
4 U ← initWatchList(∃X.Σ)
5 S is an empty stack of pairs of the form (variables, clauses)
6 return propagate(U, ∅)

Before delving into the specifics of how the function propagate operates, it is important
to highlight that when conditioning a formula by a literal x, without rendering it unsatisfiable,
there is no need to consider clauses shortened by this assignment. Consider a clause α ∈ Σ
with ℓ̄ ∈ α. We aim to demonstrate that α \ {ℓ̄} ∈ Σ|ℓ cannot be blocked by any literal
ℓ′ ∈ α \ {ℓ} in Σ|ℓ. Given that α is not blocked in Σ, for every ℓ′ ∈ α \ {ℓ̄}, there exists
α′ ∈ Σ such that ℓ̄′ ∈ α′ and α⊕α′

✚≡⊤. Firstly, note that ℓ /∈ α′; otherwise, α⊕α′ would be
a tautology. We then consider two cases based on whether ℓ̄ belongs to α′. In the first case
when ℓ̄ ∈ α′, we have α′ \ {ℓ̄} ∈ Σ|ℓ, and since the resolution between α \ {ℓ̄} and α′ \ {ℓ̄} is
not a tautology, it follows that α \ {ℓ} is not blocked on ℓ′. In the second case where ℓ̄ /∈ α′,
α′ ∈ Σ|ℓ, and once more, α \ {ℓ} is not blocked on ℓ′ because α′ \ {ℓ} ⊕ α′

✚≡⊤.

▶ Example 12 (Example 9 cont’d). Let us examine the formula Σ|¬x2 . It is evident that α11
remains an unblocked because, with the literals present in the resulting clauses y3 ∨ y2, we
can still reference the same clauses from Σ|¬x2 to maintain the invariant.

There are two scenarios where it becomes pertinent to evaluate whether a clause can
be eliminated due to being blocked: when an active clause has been satisfied by a literal,
or when an active clause has been blocked by a literal. Thus, once certain clauses become
inactive, that are clauses satisfied or blocked, it becomes imperative to update the watches
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structure accordingly. The process for this update closely resembles the mechanism for
updating watched literals in modern SAT solvers. Specifically, for each newly inactive clause
α, we need to iterate through the list of triples from watches[α] associated with α. For each
triple t = (ℓ, α, C) of watches[α], if ℓ is not assigned and α is active, we must search for
another sentinel in C – that is, an active clause. The concept here is to ensure that each
triple t = (ℓ, α, C) is linked with a clause. Additionally, if t is active, meaning α is active,
it should be watched by an active clause. Otherwise, if t is watched by an inactive clause
α′, we must ensure that when we reactivate α, α′ is also made active again. This aspect is
crucial as it guarantees the backtrack freeness of our structure.

Algorithm 4 outlines the pseudo-code for the function propagate, which fulfills the
aforementioned requirements. It takes as input a set of clauses identified by their identifiers,
denoted as U , that have become inactive, and a set of freshly assigned variables Y . The
function returns the set B of clauses detected as being blocked. The algorithm begins by
updating the two arrays isAssignedVar and isActiveClause to reflect the assignment of
variables in Y and the inactivation of clauses in U (lines 1–2). Next, the set of blocked
clauses B is initialized to be empty (line 3). Then, for each inactive clause α stored in U , the
watches map is updated (lines 4–18). To accomplish this, an inactive clause α is selected
and removed from U (lines 5–6). Subsequently, the set tmpWatch is initialized to be empty,
and it is used to store triples that will be watched by α, containing triples with assigned
variables or inactive clauses (line 18). Since α is now inactive, active triples associated with
α need to be redistributed to other active clauses.

This operation is conducted in the for loop where each triple t = (ℓ, α′, C) from watches[α]
is considered (lines 8–17). If ℓ is assigned or if α′ is inactive (line 9), α can continue to
watch t, and thus t is added to tmpWatch (line 10). However, if there exists an active clause
α′′ in C (line 11), then triple t is added to the watch list of α′′ (line 12). Lastly, if it is
impossible to associate t with an active clause (lines 13–17), then clause α′ is considered
blocked, implying that α can continue to watch α′ since they will both become active together
upon backtracking (line 14). Moreover, α′ is added to B, α′ is added to U to handle α′ later
(line 16), and clause α′ is marked as inactive (line 17). Upon completing the update of the
watches map, the assigned variables and inactivated clauses are pushed onto stack S (line
19). Finally, the set of clauses identified as blocked is returned at line 20.

▶ Example 13 (Example 1 cont’d). Consider the scenario where the literal x1 is assigned
to true. In this case, clauses 1, 4, 6, 9 become satisfied. Invoking the function propagate
with this information will result in the function returning {11} as the set of detected blocked
clauses. The various structures within our BlockedClauseManager object will be updated
as follows:

watches[7] = {(¬y3, 9, {7, 11}), (¬y3, 10, {7})} watches[5] = {(¬y2, 6, {5, 11}), (¬y2, 10, {5})}
watches[9] = {(y3, 11, {9})} watches[6] = {((y2, 11, {6})}
watches[10] = {(y2, 5, {6, 10}), (y3, 7, {9, 10})}
watches[3] = watches[4] = watches[8] = watches[11] = ∅ S = ({x1}, {1, 4, 6, 9, 11})
isActiveClause = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0] isAssignedVar = [1, 0, 0]

As mentioned earlier, our structure is designed to be backtrack-free. Therefore, the only
operation needed during backtracking is to retrieve from the stack S the elements of the
two arrays isAssignedVar and isActiveClause that require reinitialization. Algorithm 5
outlines the steps involved in the backtracking process.

To conclude this section, let us illustrate how BlockedClauseManager is used within a
DPLL-style projected model counter, such as the one employed in the model counter d4 [24].
It is worth noting that our proposed approach can also be applied to other types of projected
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Algorithm 4 propagate.

Input: U represents a set of clause identifiers corresponding to the newly inactive
clauses, and Y denotes the set of variables that have been newly assigned.

Output: B is a set of identifiers of clauses that are blocked.

1 for x ∈ Y do isAssigned[y] = true
2 for α ∈ U do isActiveClause[α] = false
3 B ← ∅
4 while U ̸= ∅ do
5 Let α ∈ U

6 U ← U \ {α}
7 tmpWatch = ∅
8 for t = (x, α′, C) ∈ watches[α] do
9 if isAssigned[x] or not isActiveClause[α′] then

10 tmpWatch← tmpWatch ∪ {t}
11 else if ∃α′′ ∈ C s.t. isActiveClause[α′] then
12 watches[α′′]← watches[α′′] ∪ {t}
13 else
14 tmpWatch← tmpWatch ∪ {t}
15 B ← B ∪ {α′}
16 U ← U ∪ {α′}
17 isActiveClause[α′]← false

18 watches[α]← tmpWatch

19 push the couple (Y, B ∪ U) in S

20 return B

model counters, such as those discussed in [30, 26, 8, 7, 10]. Algorithm 6 outlines the count
function, which is invoked on ∃X.Σ, an existentially quantified CNF formula, returning the
number of models of ∃X.Σ over V ar(Σ) \ X. Specifically, this function creates a global
variable named bce, which is a BlockedClauseManager object (line 1), initializes it (line 2),
removes the detected blocked clauses (line 3), and calls the recursive algorithm count_main
on the simplified formula (line 4). It is important to note that while this function initializes
the object necessary for enforcing BCE during model counting, the actual computation of
the number of models is performed within the count_main function, which is described
afterwards.

Algorithm 7 outlines the recursive function count_main, which serves as a pseudo-code
representation of a DPLL-style projected model counter. This function operates on ∃X.Σ,
an existentially quantified CNF formula, and computes the number of models of ∃X.Σ over
V ar(Σ) \X. The blue portion of the algorithm, which differs from the baseline due to the
inclusion of BCE management, will be discussed later.

The function begins by invoking BCP on the input formula Σ at line 1. For simplicity, we
assume that BCP returns a triple consisting of the set of unit literals units, the set of satisfied
clauses S, and the simplified formula Σ without clauses from S and the unit literals from
units. If the formula returned by BCP contains an empty clause, indicating unsatisfiability,
the function returns 0 (line 3). At line 5, the algorithm visits a cache to determine whether
the current formula Σ has been previously encountered during the search. The cache, which
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Algorithm 5 backtrack.

1 (X, C)← top(S)
2 pop(S)
3 for x ∈ X do isAssignedVar[x] = false
4 for α ∈ C do isActiveClause[α] = true

Algorithm 6 count.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: the number of models of ∃X.Σ over V ar(Σ) \X

1 global bce is an BlockedClauseManager object
2 B ← init(bce)
3 Σ← Σ \ {Σ[i] s.t. i ∈ B}
4 return count_main(Σ)

starts empty, stores pairs comprising a CNF formula and its corresponding projected model
count with respect to X. Whenever Σ is found in the cache, instead of recalculating ∥∃X.Σ∥
from scratch, the algorithm retrieves cache(Σ) (line 7) to streamline the computation. If the
formula is satisfiable, connectedComponents is called (line 8) on Σ to partition it into a set
of CNF formulae that are pairwise variable-disjoint. This procedure is a standard method
employed in model counters. It identifies connected components of the primal graph of Σ and
returns a set comps of CNF formulae, ensuring that each pair of distinct formulae in comps

does not share any common variable. The variable cpt, used to accumulate intermediate
model counts, is initialized to 1 (line 9). Then, the function iterates over the connected
components Σ′ identified in comps (lines 10–14) to count the number of models of each
component. If the considered component Σ′ only contains variables from X, the model count
accumulated in cpt is multiplied by 1 if Σ′ is satisfiable and 0 otherwise. If V ar(Σ′)\X is not
empty, a variable v from this set is chosen, and the function count_main is recursively called
on Σ′ where v is assigned true and on Σ′ where v is assigned false. The results returned
by the two recursive calls are then summed up and multiplied by the variable cpt (line 14).
Before returning the accumulated model count in cpt (line 17), the formula Σ is added to
the cache associated with the corresponding projected model count cpt (line 15).

To integrate BCE into the search process (blue part), we first call the function propagate
on S and units to update the information managed by the bce object and compute the set
of blocked clauses B (line 3). Then, at line 4, we eliminate the stored set of blocked clauses
B. To maintain consistency between the BCE manager information and the ongoing recursive
call, the backtrack function must be executed before returning the calculated model count
(lines 6 and 16).

4 Experimental Evaluation

Our aim was to empirically assess the advantages of employing blocked clause elimination
in solving instances of the projected model counting problem. For our experimentation, we
used 500 CNF instances from the three recent model counting competitions (the 2021, 2022,
and 2023 editions documented at https://mccompetition.org/). We excluded instances
from the 2020 competition due to incompatibility with our software caused by changes in
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Algorithm 7 count_main.

Input: ∃X.Σ an existentially quantified CNF formula.
Output: the number of models of ∃X.Σ over V ar(Σ) \X

1 (units, S, Σ)← bcp(Σ)
2 if ⊥ ∈ Σ then return 0
3 B ← bce.propagate(S, {x|ℓ ∈ units and V ar(ℓ) = x})
4 Σ← Σ \ {Σ[i] s.t. i ∈ B}
5 if cache(Σ) ̸= nil then
6 bce.backtrack()
7 return cache(Σ)
8 comps← connectedComponents(Σ)
9 cpt← 1

10 for Σ′ ∈ comps do
11 if V ar(Σ′) \X = ∅ then cpt← cpt× (SAT(Σ′)?1 : 0)
12 else
13 Let v ∈ V ar(Σ′) \X

14 cpt← cpt× (count_main(Σ′ ∧ v) + count_main(Σ′ ∧ ¬v))

15 cache(Σ)← cpt

16 bce.backtrack()
17 return cpt

the input format. The instances were categorized into three datasets: 200 from the 2021
competition, 200 from the 2022 competition, and 100 from the 2023 competition. Notably,
as the full set of 2023 instances was unavailable at the time of writing, we only included the
100 public instances provided by the organizers.

The projected model counter used for the evaluation was d4 [24]. Our experiments were
conducted on Intel Xeon E5-2643 processors running at 3.30 GHz with 32 GiB of RAM,
operating on Linux CentOS. Regarding the model counting competition, each instance was
subject to a time-out of 3600 seconds and a memory limit of 32 GiB. For each instance, we
measured the computation times required by three different versions of d4 for counting the
numbers of projected models. These versions include:

d4: This is the standard version of d4, as given at https://github.com/crillab/d4v2.
d4+BCEp: This version of d4 incorporates blocked clause elimination performed once
during a preprocessing phase.
d4+BCEi: In this version of d4, blocked clause elimination is performed dynamically
throughout the search achieved by the model counter.

For all the versions under consideration, a preprocessing step of 60 seconds was conducted.
This preprocessing involves running BiPe [27], followed by the occurrence elimination and
vivification preprocessing for 10 iterations as described in [23] (we only replace the gate
simplification with BiPe).

Table 1 presents the number of instances for which different versions of d4 terminated
within the specified time and memory constraints. The correctness of the extended versions
of d4 was verified by comparing their returned model counts with those of the baseline
version. For all instances solved by the baseline version, the extended versions returned
the same model counts. The table clearly demonstrates that leveraging dynamical blocked

https://github.com/crillab/d4v2
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Table 1 The table shows the numbers of instances solved by different versions d4 within a time
limit of 3600 seconds and a memory limit of 32 GiB. The number of memory out (MO) are reported
between brackets.

2021 (200) 2022 (200) 2023 (100) All (500)
d4 139 (56 MO) 149 (24 MO) 73 (9 MO) 361 (89 MO)

d4+BCEp 139 (56 MO) 149 (25 MO) 73 (9 MO) 361 (90 MO)
d4+BCEi 172 (23 MO) 163 (8 MO) 78 (4 MO) 413 (35 MO)

clause elimination significantly improves the performance of the model counter in practice.
Furthermore, regardless the benchmark set considered, the version of d4 equipped with
dynamic blocked clause elimination systematically solved more instances than the two other
versions. This indicates that the improvement is not limited to specific benchmark sets.
Moreover, Table 1 shows that using blocked clause elimination solely during preprocessing
phase did not lead to increase the number of instances solved. This demonstrates that for
effective results, blocked clause elimination needs to be performed eagerly.
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Figure 1 Experimental results.

Figure 1a presents a pairwise comparison between d4 and d4+BCEi on a scatter plot. Each
data point represents an instance, with the x-axis indicating the time (in seconds) required
to solve it using the baseline version of d4, and the y-axis representing the time for the
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enhanced version d4+BCEi. The experimental results unequivocally demonstrate that the
version of d4 with dynamic blocked clause elimination generally outperforms the baseline
version of d4. Furthermore, the figure reveals instances where d4+BCEi achieves speeds one
order of magnitude faster than the baseline version d4.

Focusing on instances solved by both approaches and exhibiting a solving time difference
of more than five seconds, the baseline version d4 beat d4+BCEi for 75 instances, achieving an
average speedup of 4%. This speedup is calculated as the ratio between the running times of
the methods, with a peak improvement of 14% and the third quartile indicating a speedup of
7%. We investigated the factors contributing to the greater efficiency of the baseline version
compared to the one employing dynamic blocked clause elimination, but we were unable to
identify a definitive reason. It is hypothesized that the removal of clauses may negatively
impact branching, potentially leading to a slightly larger search space explored by the model
counter. On the contrary, we discovered 150 instances for which d4+BCEi outperformed the
baseline version of d4. For them, d4+BCEi exhibits an average speed increase of 40 times
compared to the baseline, with a peak improvement of up to 3000 times. The second quartile
of the time distribution demonstrates a 50% improvement, while the third quartile shows a
remarkable 600% enhancement.

Figure 1b showcases the number of decisions made by d4 and d4+BCEi on instances solved
by both methods. This visualization sheds light on the fact that the performance enhancement
cannot be solely attributed to a reduction in memory usage, which might otherwise account
for the observed decrease in memory consumption with d4+BCEi. It is widely recognized
that the cache structure frequently serves as the primary memory bottleneck. Consequently,
removing clauses reduces the size of cache entries, which typically results in decreased memory
consumption and associated memory overhead. Nevertheless, as depicted in Figure 1b, the
use of blocked clause dynamic elimination also results in a decrease in the number of decisions
required by the model counter to complete its task. This underscores that the performance
gain is not solely a consequence of an inadequate memory limit setting. Thus, even with a
significant increase in the memory limit, employing dynamic blocked clause elimination proves
highly advantageous in practice. Specifically, for 71 instances, d4 required fewer decisions
than d4+BCEi, with an average difference of 6460 decisions in favor of d4. The second quartile
exhibited a difference of 102 decisions, while the third quartile showed a difference of 306
decisions across these instances. Conversely, d4+BCEi required fewer decisions than d4 for
231 instances, with an average difference of 12,249,678 decisions in favor of d4+BCEi. The
second quartile exhibited a difference of 33,005 decisions, while the third quartile showed a
difference of 1,602,452 decisions across these instances.

Figure 1c gives the proportion of clauses removed through dynamic blocked clause relative
to the number of decisions made for instances solved by d4+BCEi. As observed in the plot,
for approximately 300 instances, the average number of blocked clauses removed at each
decision is at least 10. For about 100 of these instances, the average number of blocked
clauses removed at each decision is at least 100. Additionally, for certain benchmarks, more
than 1000 clauses where removed at each decision. While there is some variation in the extent
of deletion across different steps, the plot clearly demonstrates that a substantial number of
clauses are generally eliminated when employing dynamic blocked clause elimination.

5 Conclusion and Perspectives

In conclusion, this paper has explored the utilization of the blocked clause elimination
dynamically during projected model counting. Despite its widespread application in the
satisfiability problem, the blocked clause elimination rule posed challenges for model counting
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due to its inability to maintain the number of models unchanged. However, through focused
attention on projected variables during the search for blocked clauses, we have demonstrated
the feasibility of leveraging this rule while preserving the correct model count. To achieve
this, we introduced a new data structure and corresponding algorithms tailored for leveraging
blocked clause elimination dynamically during search. This innovative machinery has
been integrated into the projected model counter d4, enabling us to conduct comprehensive
experiments that showcase the computational benefits of our approach. Our results underscore
the efficacy of leveraging the blocked clause elimination rule technique for projected model
counting, opening avenues for further exploration and refinement in this domain.

Exploring extensions of blocked clause elimination (BCE) in the context of projected model
counting is interesting future work. This particularly includes considering the elimination
of resolution asymmetric tautologies (RAT) [17], or even covered [11, 5] or propagation
redundant (PR) [13] clauses. These approaches hold the potential to uncover additional
redundant clauses, that can be eliminated and thus improve efficiency of projected model
counting. In addition, we envision the development of novel branching heuristics designed to
prioritize the elimination of clauses that prevent removal of blocked clauses. These improved
decision heuristics, could create more instances where clauses become blocked and thus
eliminated, again with the goal to improve solver efficiency. Furthermore, we want to explore
the applicability of blocked clause elimination to other reasoning tasks, particularly to the
weighted Max#SAT problem [3, 2] or counting tree models of QBF formulas [21].
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Abstract
Unit propagation is known to be one of the most time-consuming procedures inside CDCL-based SAT
solvers. Not surprisingly, it has been studied in depth and the two-watched-literal scheme, enhanced
with implementation details boosting its performance, has emerged as the dominant method.

In pseudo-Boolean solvers, the importance of unit propagation is similar, but no dominant
method exists: counter propagation and watched-based extensions are efficient for different types of
constraints, which has opened the door to hybrid methods. However, probably due to the higher
complexity of implementing pseudo-Boolean solvers, research efforts have not focused much on
concrete implementation details for unit propagation but rather on higher-level aspects of other
procedures, such as conflict analysis.

In this paper, we present (i) a novel methodology to precisely assess the performance of
propagation mechanisms, (ii) an evaluation of implementation variants of the propagation methods
present in RoundingSat and (iii) a detailed analysis showing that hybrid methods outperform the
ones based on a single technique. Our final contribution is to show that a carefully implemented
hybrid propagation method is considerably faster than the preferred propagation mechanism in
RoundingSat, and that this improvement leads to a better overall performance of the solver.
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1 Introduction

CDCL-based SAT solvers [25] have become the method of choice to solve a variety of problems
coming from diverse areas such as system verification [10], security [17, 32], cryptography [31]
and even mathematics [22]. Nevertheless, theoretical results [4, 27] have identified problems
for which no polynomial CDCL execution exists. The reason for this is that resolution,
the proof system on which SAT solvers are based, does not provide polynomial proofs for
them [21]. This is particularly troublesome for problems, like the pigeon hole principle, which
frequently appear in real-world problems [2]. Another well-known limitation of SAT regards
the poor expressivity of its input language, which does not allow, for example, encoding
numerical constraints in a natural way.

Pseudo-Boolean (PB) solving, also known as 0-1 Integer Linear Programming, has emerged
as a remarkable alternative to SAT. The input language to PB solvers, consisting of 0-1
linear constraints, is an extension of propositional clauses, and allows for more compact
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encodings. In addition, CDCL-based PB solvers [28] are, at least from the theoretical point
of view, exponentially more powerful than SAT solvers because they can reason using the
cutting-planes proof system [13], which is exponentially stronger than resolution.

CDCL-based PB solvers incorporate many of the techniques that turned out to be essential
in SAT solvers. Among them, a crucial procedure is unit propagation, which, given a clause
where all literals are false except one that is unassigned, extends the assignment by adding
this literal. The efficiency of this procedure is paramount for the overall performance of
solvers, and hence efficient ways to implement it have been developed. Out of all these
methods, the two-watched literal scheme [26] has established itself as the dominant method
in SAT. It is based on a simple fact: if two non-false literals exist in a clause, no unit
propagation is possible. Hence, two non-false literals are watched, and only when one of
them becomes false, the clause is checked for propagation.

This idea is not so simple in PB constraints because the number of literals to be watched
depends on its coefficients. Due to this reason, PB watched-literal propagation and counter
propagation, the simpler version where all literals in every constraint are watched, have
co-existed in PB solvers with no strong evidence of one method clearly outperforming the
other: the PBS solver [3] used counter-based propagation without mentioning the possibility
of using watches. The Galena [11] authors mentioned that watches are effective when the
sum of the coefficients is large compared with the independent term. However, they opted
to always use counters. Initially, the Pueblo solver [29] used counters but later moved
to a version with watch propagation [30]. In the Sat4j [5] solver, both procedures are
implemented and, according to the authors, not much difference was observed among them,
with a slight preference for watches. Finally, RoundingSat [14] concluded that watched
propagation was more efficient but, when specialized procedures for clauses and cardinality
constraints are implemented, which is a standard technique used in all solvers, the difference
is fairly small.

Surprisingly, with the remarkable exception of RoundingSat, it is not possible to find
in the literature rigorous experimental evaluations that support any of these design decisions.
The situation is dramatically different when it comes to SAT-based unit propagation. As an
example, the cache behavior of watched-literal propagation has been thoroughly studied in a
number of papers [33, 12, 23, 24], where important propagation speedups are reported. This
caused solvers like MiniSAT [18], PicoSAT [6] or Lingeling [7] to incorporate carefully
designed implementations of watched propagation [8]. A very pedagogical reference is the
source code of CaDiCaL [9], where design decisions are discussed with pointers to the papers
on which they rely.

This type of research efforts are very delicate because minimal changes on the implement-
ation of propagation procedures can cause solvers to have dramatically different runtimes
that are not directly related with the propagation scheme. This makes improvements that
are not groundbreaking impossible to be perceived, because they are mostly blurred by the
chaotic behavior of the solver.

In this paper we leverage SAT-solver implementers’ knowledge and use that to improve
the performance of PB solvers. For that purpose, we considered RoundingSat and improved
the implementation of their propagation routines. We chose this solver because it is the most
successful and actively maintained PB solver: its team has recently devoted considerable
efforts to develop smart conflict analysis procedures [19], add core-guided techniques [16]
and integrate MIP solvers [15], which has led RoundingSat to be “the world’s fastest
pseudo-Boolean solver” [1]. This speed is particularly striking because, in our opinion, its
authors have focused more on the development of techniques that can give exponential
improvements than on lower-level implementation aspects.
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In order to evaluate the impact of the improvements we introduce, we also present a novel
methodology that, by generating log files with the information of a solver execution, allows
us to guarantee that the solver always traverses the search space in the same way. With this
certainty, we can assess the precise impact of different unit propagation variants.

This paper is organized as follows. After some preliminaries in Section 2, we explain our
novel methodology to compare propagation procedures in Section 3. Sections 4 and 5 present
our improvements on counter and watched-based propagation, respectively. Section 6 reports
on the development of a hybrid method for propagation and we conclude in Section 7.

Contributions
(I) First, we present a novel methodology for experimentally evaluating different propaga-

tion schemes. This has allowed us to detect small improvements that otherwise would
have been unnoticed. It is well known in the solver developer community that by
joining the forces of many small improvements, significant speed-ups may be achieved.

(II) Second, we describe and evaluate improvements on the implementation of counter and
watch-based propagation in RoundingSat, giving concrete reasons for their impact.

(III) Third, we report on the use of hybrid approaches, where the decision to use counter or
watched propagation is done per constraint. Although this was already mentioned in
Galena and RoundingSat, where it was said to be not superior to counters in the
first solver, and left as future work in the second, here we show that a hybrid approach
clearly outperforms the virtual best solver that always chooses the best option between
using counters or watches for all constraints.

(IV) Finally, we show that improvements in unit propagation do not negatively affect other
components of the solver. That is, the improved solver is indeed faster and solves
more instances than the original one.

2 Preliminaries

Pseudo-Boolean Constraints. Let X be a set of propositional variables. A literal is either a
variable (x) or the negation of one (x). We will assume that x = x. A (pseudo-Boolean or PB)
constraint is a 0-1 linear inequality

∑
i cili ≥ d where the li’s are literals and, without loss of

generality, the ci’s (coefficients) and d (degree) are positive integers. When all coefficients
are 1 we say that the constraint is a cardinality constraint and if, in addition, d is also 1 we
say that it is a clause. A formula is a set of constraints.

Satisfiability. An assignment ρ is a set of non-contradictory literals. It is total if for any
x ∈ X either x ∈ ρ or x ∈ ρ, and partial otherwise. A literal l is true in ρ if l ∈ ρ, is
false if l ∈ ρ and is undefined otherwise. Given a constraint C of the form

∑
i cili ≥ d, an

assignment ρ satisfies it if
∑

i:li∈ρ ci ≥ d, and falsifies it if no extension of ρ can satisfy it.
If we define slack(C, ρ) = (

∑
i:li ̸∈ρ ci) − d, it can be seen that ρ falsifies C if and only if

slack(C, ρ) < 0. Note the slack expression sums the coefficients of all non-false literals, and
that is the maximum value that the left hand side of the constraint can reach. If even that
does not exceed d, no extension of ρ will do. An assignment that satisfies all constraints of a
formula is called a model. Sometimes, instead of looking for any model, we are interested in
finding one that minimizes a certain linear objective function

∑
i aili.

Unit Propagation. Given a constraint C =
∑

i cili ≥ d and an assignment ρ, we say that
C unit propagates li under ρ if li is undefined in ρ, but li is true in any total assignment
extending ρ that satisfies C. The latter is equivalent to checking whether slack(C, ρ) < ci,
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i.e., if we do not set li to true, the constraint becomes falsified. Given a formula F and an
assignment ρ, unit propagation of F under ρ is the outcome of applying the following two
rules until a fixpoint is reached: (i) if ρ falsifies a constraint C ∈ F , a conflict is found with
conflicting constraint C and we stop, (ii) if ρ unit propagates some literal l due to constraint
C, extend ρ := ρ ∪ {l} with reason C.

Conflict-Driven Pseudo-Boolean Solving. A generalization of the well-known CDCL [25]
algorithm for SAT can be applied to the pseudo-Boolean case [28]. The algorithm starts
with an empty assignment ρ and proceeds as follows: (1) Apply unit propagation, possibly
extending ρ. (2) If a conflict is found, a conflict analysis procedure derives a constraint C

(called lemma) that can be safely added to the formula. If C is the constraint 0 ≥ 1, the
formula is unsatisfiable, otherwise it is guaranteed that after removing some literals from ρ in
a last-in first-out way (backjumping), C allows some literal to be unit propagated. Hence, we
go to step 1. (3) If no conflict is found, and ρ is total, it is a model of the formula. Otherwise,
an undefined literal l (decision literal) is added to ρ and we go to step 1. The choice of l is
determined by sophisticated heuristics.

Since the set of constraints might grow too much, periodically a cleanup process that
deletes some lemmas is performed. Also periodically, the process restarts: roughly speaking,
ρ is reset to the empty set. Since all lemmas in the formula are still kept, the behavior of the
algorithm will change.

3 Design of a Fair Evaluation of Different Propagation Mechanisms

Developing a state-of-the-art PB/SAT solver not only consists in implementing and combining
the appropriate techniques. Optimizing its implementation is a critical task, which turns
out to be very complex due to the “chaotic” behavior of these solvers. On a single instance,
seemingly innocuous changes may have a strong impact on the overall solver runtime, but
this does not necessarily mean that this change is worth incorporating to the solver. One
prominent example of this phenomenon takes place when optimizing unit propagation. A
simple change in the order in which clauses are processed during this procedure drives the
solver towards finding one conflicting clause or another, which in turn, leads to different
learned lemmas and to completely different search space traversal. Hence, evaluating the
impact of a new implementation technique on a small set of benchmarks is hopeless. This is
usually fixed by performing exhaustive experiments on very large sets of benchmarks, hoping
that, by evaluating some measure over all the collected data, one will be able to conclude
whether this implementation method pays off or not. In our opinion, this has at least two
problems. Firstly, it makes the evaluation of these improvements a very time-consuming
task. Secondly, modest improvements are not observable with this methodology, because the
noise produced by the changes in search space exploration end up hiding their real impact.

In order to avoid this troublesome scenario, we want to force the solver to explore the
search space in the same way, independently of the unit propagation mechanism we implement.
The good news is that the outcome of the unit propagation procedure is almost unique. If
there is no conflict, any complete propagation procedure will add exactly the same literals to
the assignment. The only difference is that they may be added in a different order, or due
to different reasons, but we will see that this is not a problem for our method. Otherwise,
if unit propagation derives a conflict, any complete procedure will find it. However, since
propagation stops as soon as it finds the first conflicting clause, different propagation variants
may find different conflicting clauses, which will lead to the generation of different lemmas
by conflict analysis and subsequent different search space exploration.
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Intuitively our methodology relies on an oracle that, after a conflicting clause is found,
tells the solver which lemma should be learned. In principle, that would allow the solver to
always explore the search space in the same way1. However, there are other ingredients in
the CDCL procedure that have a strong effect on the search behavior: decision heuristics,
cleanups and restarts. For that reason, our oracle will in addition have to inform the solver
about (i) which literal should be the next decision, (ii) when the next cleanup should be
applied and which constraints should be removed, and (iii) at which point a restart should
be applied.

In this paper, the role of the oracle will be played by a log, which is a file obtained from the
execution of a PB solver where all the previously mentioned information is written. It is not
difficult to modify a PB solver so that it reads these logs. The solver then mostly consists of
only the unit propagation procedure, since the outcome of all other computationally-expensive
tasks is provided by the oracle. With this infrastructure setup, we can change the unit
propagation procedure with the guarantee that the search behavior of the solver (i.e. number
of decisions, number of conflicts, etc.) will be the same.

Since RoundingSat2 is probably the fastest existing CDCL-based PB solver, we have
chosen it in order to conduct our work. In the rest of the paper, except in the very last
experiment, RoundingSat is always executed reading the logs we previously generated.
This experimentation3 was done on 3.3Ghz 16GB Intel Xeon E-2124 machines over a small
(about 100) set of benchmarks we selected from the OPT-SMALLINT-LIN (optimization
problems with small integers and linear constraints) category of the 2016 Pseudo-Boolean
Competition4, the last edition that took place. Benchmarks were chosen so as to contain a
variety of runtimes, ranging from easier (a few seconds) to more difficult ones (more than
one hour).

4 Counter-Based Propagation

RoundingSat follows the standard way to implement propagation in Conflict-Driven
Learning solvers: for each literal l, a vector wlist(l) (the watch list of l) contains a superset
of the constraints5 that might have become false or propagating due to adding l to the
assignment. Hence, even by visiting only these constraints, all propagations and conflicts are
detected. Let us see in detail how this is implemented in RoundingSat.

In counter-based propagation, every constraint C of the form
∑

i cili ≥ d has an element
of type Watch in wlist(li) for all i. This element is a pair ⟨ctrP tr, idx⟩, where ctrP tr can be
seen as a pointer to C and idx is the position of li in C. At some point after a literal l is
added to the assignment, l is checked for propagation: all elements of wlist(l) are traversed
and the function in Algorithm 1 is called, which assumes that constraints are always sorted
from largest coefficient to smallest.

1 In conflicting decision levels, the number of propagated literals may still be different due to the possibility
of finding different conflicting clauses. Fortunately, this had a negligible impact on propagation time.

2 In order to reproduce the results in [14] we have worked on the version used in that paper. However, we
want to remark that the newest version of RoundingSat has not changed its propagation routines.

3 Additional material can be found in https://github.com/dearzhaorui/speedup-roundingSat.
4 https://www.cril.univ-artois.fr/PB16/
5 Note that watch lists also contain clauses and cardinality constraints, which have specialized propagation

procedures, but we mostly ignore them in this paper. We added binary clauses as another particular
type of constraint, but this did not change the performance significantly.
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Algorithm 1 Counter-based propagation procedure.

1 Function Propagate-Counter(Watch w):
2 Constraint ctr := w.ctrPtr
3 if isDeleted(ctr) then return
4 if not isPBCounter(ctr) then return
5 coef := ctr [w.idx].coef
6 maxCoef := ctr [0 ].coef
7 ctr .slack := ctr .slack − coef
8 if ctr.slack < 0 then return CONFLICT
9 if ctr.slack < maxCoef then // possible propagation

10 i := 0
11 while i < ctr.size and ctr.slack < ctr[i].coef do
12 if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
13 i := i + 1
14 return OK

Let us first remark that lines 3 and 4 are not part of a standard counter propagation
routine. However, for every element in the watch list, RoundingSat first checks whether it
is a deleted constraint, and then checks the type of the constraint in order to decide which
propagation mechanism is invoked. We added them to Algorithm 1 to make it evident that
in RoundingSat these two lines are always executed.

If we consider ρ̂ to be the set of literals in the current assignment ρ that have been
checked for propagation, the slack field in a constraint stores the sum of the coefficients of
the non-false literals w.r.t ρ̂ minus the degree, i.e. slack(C, ρ̂). Since ρ̂ ⊆ ρ, it holds that
slack(C, ρ) ≤ slack(C, ρ̂). If this is a negative value (line 8), the constraint is falsified by ρ̂

and hence by ρ.
In order to check for propagation, if maxCoef is the maximum coefficient in the constraint

we know that if slack(C, ρ̂) ≥ maxCoef , then slack(C, ρ̂) ≥ ci for all i and hence ρ̂ does
not propagate any literal. This is checked in line 9. Otherwise, the constraint is checked for
propagation w.r.t ρ̂. Note that since the constraint is ordered by coefficient, once a literal is
not large enough to be propagated, none of the subsequent literals will be (second condition
in line 11). A final remark is that eventually all literals are checked for propagation (ρ̂ = ρ)
and hence all conflicts and propagations w.r.t. ρ are finally computed.

Algorithm 1 is in fact a simplified version of the one in RoundingSat [14], which contains
an important optimization that allows the loop at line 11 to not always start with i = 0. More
concretely, if one execution of the loop stops at some position k < ctr.size and no backjump
is applied, the next traversal of the constraint can start at position k. This improvement
will be present in all our variations of counter-based propagation because we independently
confirmed that it does indeed improve the performance.

Minimizing the Number of Constraint Loads. As we have mentioned, when a literal l

becomes false, the watch list of l is traversed, checking constraints in that list for propagation.
This has no remarkable difference with what happens in SAT solvers. Since constraints are
consecutively accessed in the order in which they appear on the watch list, one would like to
keep them as close in memory as possible, so as to minimize the number of cache faults. This
is usually done with a class (ClauseAllocator in systems deriving from MiniSAT or Arena in
CaDiCaL or Kissat [9]) that encapsulates the clause memory management. However, due
to the huge number of clauses, this is still a bottleneck in SAT solvers. As the CaDiCaL
source code literally says: “the cache line with the clause data is forced to be loaded here
and thus this first memory access below is the real hot-spot of the solver”.
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Hence, in a PB solver, when we visit constraints we should try to avoid loading the
constraint into memory as much as possible. This is something that, as we will see, was not
considered in RoundingSat, where priority was given to developing an extremely modular
and flexible system where all information is kept in their expected data type. This is a
very natural decision design that facilitates extending the system with more sophisticated
reasoning techniques, but has some impact on efficiency.

More concretely, a Constraint object in RoundingSat contains, among others, the
following fields: a C-like array of 32-bit integers with its coefficients and literals, a 64-bit
integer storing the degree, a 64-bit integer for the slack (where the 3 smallest possible values
are reserved to express that this constraint is a clause, a cardinality constraint or a PB
constraint), a 64-bit integer that uses 1 bit to express whether the constraint is deleted, 1 bit
to indicate whether counter or watch propagation is to be used for this constraint, 30 bits
for the size, and some others bits for information that is not relevant for our purposes.

A quick analysis of Algorithm 1 reveals that the solver always executes line 3, which
forces the constraint to be loaded into memory, because the deletion information is inside
the constraint. In order to minimize the number of times that the constraint is loaded (the
hot-spot of the solver) we suggest to store all necessary information about a constraint in
the watch list by modifying the structure Watch. More concretely:

The type of constraint (binary clause, clause, cardinality constraint, counter PB constraint,
watched PB constraint), needed in line 4 of Algorithm 1, will be stored in Watch.
The coefficient of the watched literal (line 5) will also be stored in Watch.
The slack of the constraint cannot be stored in Watch, because modifying it (line 7)
would require traversing all other watch lists where this constraint occurs. Hence, we
create a vector of 64-bit integers, indexed by a constraint identifier. This is much better
from the memory point of view, because all slacks are in contiguous memory, unlike what
happens with constraints.
The maximum coefficient of the constraint will not be stored anywhere. What we suggest
is that the slack vector contains an integer corresponding to the definition of slack(C, ρ̂)
minus the maximum coefficient. We call this vector slackMM and will be enough to
detect conflicts and propagations.
The information about whether a constraint is deleted or not could be stored in Watch.
However, that would make cleanup slightly slower since whenever a constraint is marked
for deletion, the corresponding watch lists should be traversed. What we suggest is
to keep this information in the slackMM vector, where 1 bit corresponds to deletion
information and the rest to the value we have described before.

Summing up, for PB constraints the Watch structure needs three pieces of information:
the identifier of the constraint, the index of the literal in the constraint, as well as the
coefficient6. The new structure will contain 3 integers in such a way that they also suffice
to also store all the additional information we need (type of constraint, the other literal in
binary clauses, a cached literal7 for long clauses, and the index of the literal in a cardinality
constraint):

internal_id: stores the identifier of the constraint, only needed for PB constraints.

6 The index is indeed not necessary for counter-based propagation. However, it will be needed for
watch-based propagation. Since our goal is to develop a hybrid method, we store the index here as well.

7 Sometimes called blocking literal, it is a well-known technique in SAT-based unit propagation that
prevents loading the clause in some situations.
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Algorithm 2 Improved counter-based propagation procedure.

1 Function Improved-Propagate-Counter(Watch w):
2 id := w.identifier()
3 if slackMM[id].isDeleted then return
4 if w.type() ̸= PB-counter then return
5 coef := w.coefficient()
6 slackMM [id].slack := slackMM [id].slack − coef
7 if slackMM[id].slack < 0 then // possible prop., but check conflict
8 Constraint ctr := constraints[id]
9 slack := slackMM [id].slack + ctr [0 ].coef // ctr sorted by coef.

10 if slack < 0 then return CONFLICT
11 i := 0
12 while i < ctr.size and slack < ctr[i].coef do
13 if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
14 i := i + 1
15 return OK

idx_type: this is used for storing the index of the literal and partially, the constraint type.
For binary clauses this integer is equal to −1; for longer clauses to an integer smaller
than −1; for cardinality constraints, the last bit of this integer is 1, and the rest of the
bits store the index of the literal in the constraint; finally, for PB constraints its last bit
is 0, and the rest of the bits contain the index. Note that this yet does not allow us to
distinguish between counter or watch-based constraints. This will be done using the sign
of the next field.
coef_lit: for bin clauses, it contains the other literal in the clause. For PB constraints,
it contains the coefficient of the literal for counter-based constraints, which is always
positive, and minus the coefficient for watch-based constraints. This field is not used for
long clauses or cardinality constraints.

The Constraint structure is the same except for the slack information, that has been
removed. All these changes allow us to implement the more efficient version of counter-based
propagation of Algorithm 2.

Note that lines 3, 4 and 5, that check for deletion, constraint type and retrieve the
coefficient, do not load the constraint yet and only require access to information in the Watch
element. If line 6 is executed, slackMM will be loaded into memory. Only if the check
in line 7, that corresponds to line 9 in Algorithm 1, succeeds we load the constraint into
memory in line 8. In this case, we recompute the actual slack of the constraint in line 9 and
check for conflict afterwards. The rest of the algorithm is unchanged.

We computed, for every benchmark in our suite, the percentage of Watch elements of
type PB for which we loaded the constraint, i.e, for which line 8 was executed and obtained
an average of 6.29% and a median of 1.26%. This is a remarkably low number that shows
that the number of constraint loads is reduced dramatically by Algorithm 2.

In addition, in [14] it is explained how to restore the slack information upon backjumping:
whenever a literal is removed from ρ, the watch list of l is visited and for every PB constraint
in that list, its slack is increased by the coefficient of l in the constraint. This again requires
accessing all constraints, whereas in our implementation, only the slackMM vector will be
loaded into memory.

An analysis of the impact of this improvement can be seen in the top-left scatter plot of
Figure 1. Plots of this type will always compare a baseline system with an enhancement, with
a caption of the form “Enhancement vs. Baseline”. A point (100, 2) represents a benchmark
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for which the baseline version took 100 seconds and the enhancement took 100/2 = 50
seconds, whereas a point (100, −2) corresponds to a benchmark for which the baseline version
took 100 seconds and the enhanced one took 100 · 2 = 200 seconds. Hence, points with
positive y’s always represent benchmarks for which the enhancement was indeed faster. Note
the logarithmic scale on the x axis and that, for each plot, the scale on the y may be different.
For the top-left scatter plot in Figure 1, the baseline system (original counter) corresponds
to a variant of RoundingSat that uses counter-based propagation for all constraints except
for cardinality constraints and clauses.

Revisiting Garbage Collection Frequency. In order to evaluate the impact of each of the
improvements we present, we will always consider as a baseline the system that implements
all previous modifications. Hence, we now consider as the reference a system where most
information has been moved out of the Constraint class and we assess what is the gain
obtained by adding the new improvement we present next.

Whenever a cleanup is performed, RoundingSat does the following: the set of constraints
is traversed and some of them are marked as deleted, changing the bit allocated for this inside
slackMM . In this case, a variable that contains the amount of memory that is occupied
by deleted constraints is increased. If this variable exceeds a certain threshold, garbage
collection is applied: all surviving constraints are reallocated contiguously in the database
and watch lists are rebuilt with no reference to the deleted constraints.

In our opinion, this has two unwanted effects. First of all, watch lists are larger than
strictly necessary, and this can slow down the system. Secondly, the constraints database is
not as compact as possible and accesses to constraints will be more costly. We suggest to
apply garbage collection in every cleanup. This would probably not pay off in a system that
applies cleanups extremely often, because the extra cost of applying the garbage collection
procedure at every cleanup would exceed the speedups obtained during propagation. Since
after this change there will be no deleted constraints in any watch list, it is no longer necessary
to use one bit of slackMM to store this information. This will slightly speed up the access
to the slack information, that will now occupy all 64 bits of slackMM .

As the middle scatter plot in the first row of Figure 1 shows, this modification has
beneficial effects in almost all benchmarks. This is obviously a less remarkable improvement
than the first one, but our novel methodology has allowed us to detect that this indeed
enhances the runtime and, moreover, is extremely easy to implement.

Deletion of Elements in Watch Lists During Propagation. When performing propagation
in a counter-based system, no PB constraint is ever deleted from any watch list. This is
because all literals in every constraint are always “watched”. However, let us remember that
watch lists also contain clauses, for which the two-watched literal scheme is used. In this
method, literals are sometimes unwatched, and this forces the corresponding element in the
watch list to be deleted. The same phenomenon happens with watched-literal extensions for
propagating cardinality constraints.

In order to use contiguous memory, watch lists in RoundingSat, and in state-of-the-art
SAT solvers, are implemented as vectors. This makes it difficult to delete an element which
is not the last one. In RoundingSat, this is done by copying the last element of the vector
to the position of the element to be deleted, and then removing the last element. However,
in SAT solvers like MiniSAT, CaDiCaL and Kissat, another solution is proposed.
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Figure 1 Impact of several improvements on counter-based propagation.

The idea is to read the watch list and, at the same time, write in the same vector the
list that will result after the deletions have been performed. This is possible by keeping two
pointers, one pointing to the position we are reading, and the other one to the position where
we are writing. Since the first will always be to the right (or at the same position) of the
second one, both things can be done at the same time without the two processes interfering
with each other.

In terms of memory access this latter mechanism is better than the solution used in
RoundingSat which, in the presence of long lists, often accesses positions in the vector
that are very far away. This is what happens in counter-based propagation, where the fact
that all literals are watched creates watch lists that are very long. On the other hand, one
could argue that the solution used in SAT solvers incurs in some overhead due to performing
a larger number of write operations. This, for example, would occur in a list where only
the first element has to be deleted: RoundingSat would only perform one write operation
whereas the other solution has as many writes as elements in the vector.

The rightmost plot in the first row of Figure 1 shows that implementing the SAT approach
to deleting elements on top of the system that incorporates the two previous adjustments
results in improvements in almost all benchmarks. Again, gains are limited. However, the
addition of the last two small enhancements has some positive impact. This can be seen by
comparing the leftmost scatter plot in the second row (a comparison between the original
RoundingSat system and the one with all improvements) and the leftmost plot in the
first row (a comparison between the original RoundingSat versus the system that only
incorporates the first major improvement). Note that the distribution of the points is very
similar, but the y scale is larger.

All this is summarized in the cactus plot of Figure 1. Note that there was no time limit
in this experiment: we let all systems run until they processed the entire log. This is why
the cactus plot shows that all systems end up processing all benchmarks. However, if a more
strict time limit was given, the performance of the system with all improvements outperforms
the system with only the first one, which is of course the major contributor to the overall
speedup of the system.
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Algorithm 3 Watch-based propagation procedure.

1 Function Propagate-Watch(Watch w):
2 Constraint ctr := w.ctrPr
3 if isDeleted(ctr) then return
4 if not isPBWatched(ctr) then return
5 coef := ctr [w.idx].coef
6 maxCoef := ctr [0 ].coef
7 ctr .wslack := ctr .wslack − coef
8 i := 0
9 while i < ctr.size and ctr.wslack < maxCoef do

10 Lit l := ctr [i].lit
11 if not isFalse(l) and not ctr[i].watched then
12 ctr [i].watched := true
13 wlist(l) := wlist(l) ∪ {⟨ctr , i⟩}
14 ctr .wslack := ctr .wslack + ctr [i].coef
15 i := i + 1
16 if ctr .wslack ≥ maxCoef then
17 ctr [w.idx].watched := false
18 wlist(ctr [w.idx].lit) := wlist(ctr [idx].lit) \ {⟨ctr , w.idx⟩}
19 return OK
20 if ctr.wslack < 0 then return CONFLICT
21 j := 0
22 while j < ctr.size and ctr.wslack < ctr[j].coef do
23 if isUndef(ctr[j].lit) then propagate(ctr [j].lit)
24 j := j + 1
25 return OK

5 Watch-Based Propagation

Watch-based propagation can be seen as a refinement of counter-based propagation. The idea
is to associate to each constraint a set of watched literals watches(C). In RoundingSat, for
each literal l ∈ watches(C), an entry of type Watch = ⟨ctrP tr, idx⟩ is added to wlist(l), and
only when l becomes false we will traverse wlist(C), and hence C, checking for a propagation
or a conflict. In counter-based propagation, watches(C) consists of all literals in C and
hence, whenever any literal in C becomes false a visit to the constraint is triggered. In
watch-based propagation, we will do so only when some literal in watches(C) becomes false.
Hence, a reduction in the size of watches(C) will reduce the amount of work to be done.

Following the notation in [14], if we define watchslack(C, ρ) = (
∑

i:li ̸∈ρ
li∈watches(C)

ci) − d we can

easily see that watchslack(C, ρ) ≤ slack(C, ρ) and hence if watchslack(C, ρ) ≥ maxCoef(C)
we can guarantee that C is neither conflicting nor propagating. Hence our goal is to watch a
small set of literals for which the previous inequality holds. Note also that watchslack(C, ρ)
only changes if some l ∈ watches(C) becomes false. All these remarks are the core of
watch-based propagation routine in RoundingSat that we show in Algorithm 3.

It starts by decrementing the watchslack in line 7. If, after that, it is still larger than the
maximum coefficient the algorithm skips the loop in lines 9–14 and executes lines 16–17: the
literal that became false is removed from the watches set by marking it as unwatched in ctr

and removing it from the corresponding watch list. Otherwise, the loop in lines 9–14 tries to
extend the set watches so that the watchslack is larger than the maximum coefficient. If this
is possible, lines 16–17 are executed. Otherwise, if the watchslack is negative, a conflict is
declared in line 19. Finally, if watchslack is not larger than the maximum coefficient, but it
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is not negative, a propagation might be possible. This is checked in lines 20–23 by traversing
the constraint and looking for literals to be propagated. For a more detailed description and
theoretical justification, we refer the reader to [14].

Again, this is a slightly simplified version of what is done in RoundingSat. In particular,
the same optimization that we mentioned in counter-based propagation that allows one to
not always start the loop in lines 20–23 at position 0 is applied. Also, if the function is
called on a certain constraint and the loop in lines 9–14 cannot extend watches so that
watchslack is larger than the maximum coefficient, we know that in any subsequent call to
this routine on the same constraint that is made with no backjump in between, we can skip
this loop because it will not succeed either. These two optimizations are present in all our
modifications of the algorithm.

Minimizing the Number of Constraint Loads. As we mentioned in the previous section,
our aim is to reduce the number of times when a constraint is loaded into memory, because it
is a very time-consuming task. If we analyze the code, we can see that, if after decreasing the
watchslack it is still large enough, we have to unmark the coefficient, which is information
stored in the constraint. In particular, RoundingSat uses the sign of the coefficient (which
we know are always positive) to indicate whether the literal is watched or not. Otherwise, if
we have to extend the set of watches we obviously have to load the constraint into memory as
well. Hence, there does not seem to be too much room for reducing the number of constraint
loads.

One could try to develop a sophisticated way to store outside of the constraint object
the information about who is watched in every constraint. That would allow us to avoid
loading the constraint when the watchslack is large enough even after we decrease it. Our
experimental analysis showed that this situation happens in around 20% of the cases. Hence,
we believe there is still some space for improvement by a major modification of the propagation
scheme.

Despite our initial analysis of this improvement was not very optimistic, our results show
that, by applying the same modification we described for counter-based propagation we still
obtain propagation speed-ups, as the leftmost plot in the first row of Figure 2 shows. This is
due to at least three reasons. First of all, for deleted constraints we do not have to load the
constraint into memory. Secondly, checking the type of constraint that the Watch element
contains, in order to decide which propagation routine should be called, does not require
loading the constraint. This is beneficial, for example, in constraints like clauses where the
propagation mechanism does not require to always load the constraint into memory. Finally,
backjumping traverses watch lists and updates the watchslack of the constraints appearing
in them. Having moved this information outside of the constraint prevents the system from
loading all these constraints into memory.

Revisiting Garbage Collection Frequency. Note that, as we did with counter-based propaga-
tion, we evaluate improvements by comparing them with a system that already incorporates
all previously proposed adjustments. As it happened with counter-based propagation, in-
crementing the garbage collection frequency only produces some moderate improvements.
The center plot in the first row of Figure 2 shows that the improvements are even more
limited than with counter-based propagation. The most plausible reason is that, since deleted
constraints only appear in the watch lists of its watched literals, which might be a very small
subset of them, the number of elements marked for deletion in these lists is not large enough
to be a problematic issue.
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Deletion of Elements in Watch Lists During Propagation. It was unexpected to us that,
as the rightmost plot in the first row of Figure 2 indicates, modifying the deletion of elements
in watch lists to mimic the way it is done in SAT solvers slowed down the propagation
procedure. However, a more careful analysis allowed us to realize that this should not have
been such a big surprise.

The reason for this behavior is the length of the watch lists. As we mentioned, the original
way of RoundingSat to delete elements in watch lists accesses the last element of the list,
and this can be harmful due to memory access issues if the list is very long. For counters,
the average watch list length over the benchmarks we are considering was 2365, and the
median 564. For watch-based propagation, this figure was much lower: 203 on average and a
median of 71. Hence, our concerns about having too long lists do not apply in watch-based
propagation. However, since our goal is to develop a hybrid approach where some constraints
will be watched and some others will be counter-based, we will keep this modification.

Circular Search for Watched Literals. In [20], a simple but effective improvement on the
two-watched literal scheme for propagation in SAT solvers was described. The idea is that,
whenever the clause is traversed in order to find another literal to watch, instead of starting
from the beginning of the clause, as it was usually done, we search for it in a circular way.
More precisely, the novel procedure stores with every clause the position in which the last
search for new literals to be watched stopped. Next time the same operation is performed,
the search starts from that position instead of from the beginning.

The reason why that is beneficial is that it is known that one prefers to watch literals
that are inactive, i.e., that are rarely added to the assignment, because they cause almost no
work in propagation. By searching in a circular way, all literals have the same chances to be
watched and hence, if inactive literals exist, it will be more likely that the procedure ends up
watching them.

As the leftmost plot in the second row of Figure 2 shows, this also pays off in the case of
watch-based propagation for PB constraints. Note that, since we only wanted to evaluate the
impact of this modification in the propagation of PB constraints, it has not been incorporated
to the specialized propagation procedures for clauses or cardinality constraints.

A summary on the impact of all these improvements can be seen in the center scatter plot
in the second row of Figure 2, where quite a consistent improvement can be observed. We want
to remark that these are important speedups. We have to consider that we did not change
the algorithmic nature of the propagation algorithms, but rather modified implementation
details of them. Since we execute all systems on the same log, the search space is the same
and we cannot expect exponential improvements in time.

Once we have developed our improved version of counter and watch-based propagation,
it is worth comparing them and analyze whether one of them dominates the other. This is
done in the last row of Figure 2 where, in the leftmost plot, we compare the performance
of the two original methods in RoundingSat. It is clear that watch-based propagation
outperformed counters. This was already mentioned in [14], but our more precise evaluation
methodology allows us to conclude that the difference is probably larger than what it was
reported in that paper. The analysis for the improved versions, in the rightmost plot of the
same figure, reveals that they are quite similar. Since we now have two methods that are
comparable, it makes even more sense to try to combine them in a hybrid procedure that
determines which propagation method to use for each constraint.
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Figure 2 First two rows show the impact of several improvements on watch-based propagation.
Last row compares, for the original and the improved versions, the performance of counter with
respect to watched-based propagation.

6 A Hybrid Pseudo-Boolean Propagation Approach

The idea of using a hybrid approach where the propagation method is decided per constraint
is not a new one. Already in [11] it was mentioned that “Another experiment assessed the
performance of a hybrid BCP scheme. [...] The hybrid scheme was not found to be superior
to the simple counter scheme.”. Unfortunately, the results of that experiment are not reported
in the paper. In [14] this possibility is left as future work.

However, RoundingSat indeed incorporates a hybrid propagation mechanism: whenever
a constraint is added to the database, it is first sorted from largest to smallest coefficient.
After that, the smallest prefix of the constraint whose watchslack is larger than the maximum
coefficient is computed. If the percentage of literals not in this prefix (the literals that will
not be watched) is larger than a predefined threshold, watches are used. Hence, the larger
the threshold, the larger the number of constraints for which counter-based propagation will
be used. The rationale is that watches are preferred over counters when a sufficiently small
percentage of the literals are watched.

The default version in RoundingSat uses watch-based propagation. However, one can
instruct the solver to use the hybrid propagation mechanism, but a concrete percentage
threshold has to be given. An extensive evaluation allowed us to conclude that 0.8 was
the best threshold when using this hybrid method on top of the original RoundingSat
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Figure 3 Comparison between different hybrid methods. Leftmost plot uses the original counter
and watch-based propagation routines, whereas the center plot uses the improved ones. Rightmost
plot compares a hybrid method on top of them.

propagation routines. The leftmost plot in Figure 3 compares this method with a Virtual Best
Solver (VBS) that, for each benchmark, selects the best possibility between using counters
or watches for all constraints. When using the hybrid approach on top of our improved
propagation routines, 0.9 was the best threshold and a comparison with the improved VBS
is in the center plot. We want to remark that improving upon a VBS is always a challenging
task.

It might seem that 0.8 and 0.9 are very large values that leave no possibility for constraints
to be watched. This is definitely not the case. In the original system with threshold 0.8 the
median of the percentage of constraints that are watched was 72%, whereas it was 56% in
the improved version with threshold 0.9. Since our improvements had a larger impact on
counter-based propagation, it is not a surprise that the best improved hybrid version uses
counter-based propagation more often than the best original hybrid version.

Finally, we compare in the rightmost plot of Figure 3 the best hybrid methods that use
the original and the improved propagation mechanisms, respectively. We can see that, not
surprisingly, our improvements on these procedures also result in an improvement on the
corresponding hybrid methods.

The last contribution of this paper is to determine whether the improvements we have
shown in propagation speed translate into improvements on the overall runtime of Round-
ingSat. That is, we now run RoundingSat without reading the logs, but rather as a
complete PB solver that performs conflict analysis, cleanups, restarts, etc., in an autonomous
way, without relying on an external oracle. In Figure 4 we compare the best system using
the improved propagation routines, which is the hybrid approach with threshold 0.9 with
the best system using the original propagation routines, which is the hybrid approach with
threshold 0.8. Results are on all 1600 benchmarks in the category OPT-SMALLINT-LIN
with a time limit of 3600 seconds. We believe that the plot is very clear and leaves no doubt
that remarkable speedups are obtained thanks to the research presented in this paper.

Figure 4 Hybrid method on original and improved propagation. No logs are used.
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7 Conclusions and Future Work

We have presented a novel methodology to evaluate propagation procedures and applied it
to improve the implementation of these routines inside RoundingSat, currently the fastest
CDCL-based PB solver. This has resulted in important speedups in performance.

As future work, we plan to precisely analyze the impact of maintaining (an upper bound
on) the maximum coefficient of undefined literals in order to have a more precise filter
for propagation. Also, computing slacks with respect to the whole assignment, instead of
only considering the propagated literals is part of our future work. Additionally, we want
to develop hybrid methods that choose between counter or watched-based propagation by
dynamically evaluating how active the literals in a constraint are, as opposed to only focusing
on their coefficients.
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1 Introduction

Modern integrated circuits have grown increasingly large and complex, making their design
and optimization a significant challenge. Automation has become indispensable for the
process of circuit design, including logic optimization and logic synthesis, which collectively
lead to substantial reductions in the number of gates and circuit depth [6, 10].

Applying exact methods for computing provably minimum size circuits is computationally
intractable. Recently, it was shown that for a (multi-output) Boolean function given as a
truth table, the task of finding a minimum size circuit consisting of and, or and not gates is
NP-complete [17]. This is reflected by the observation that in practice, we can generally not
compute minimum size circuits with many more than 10 fanin-2 gates [9, 21]. To deal with
larger circuits, one can first partition them into smaller subcircuits, and then minimize these
using exact techniques [39].
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In practice, this approach is typically restricted to single-output subcircuits [25, 31].
Although efficient, this does not fully exploit the implementation flexibility of multi-output
subcircuits. Recently, we proposed a high-effort method for resynthesizing multi-output
subcircuits based on Quantified Boolean Formulas (QBFs) [30]. Our prototype CIOPS
has shown success in minimizing circuits from the IWLS’22 competition and the EPFL
combinational benchmark suite. Specifically due to increasing prices of silicon wafers in
recent years [15] such high-effort methods are gaining importance.

In this paper, we describe two improvements for this approach, which we implemented
in the new tool eSLIM. First, we present a workflow purely based on SAT instead of QBF.
The new SAT workflow relies on computing an input-output relation that yields permissible
output assignments for each input assignment. These relations allow representing don’t cares
– input/output combinations of the subcircuit where the outputs can be modified without
altering the function computed by the encompassing circuit. In contrast, the QBF encoding
captures don’t cares implicitly. Our rationale is that the ability to use a SAT solver instead
of a QBF solver will more than make up for this extra step when the relation is reasonably
small. Second, we incorporate windowing to handle very large circuits. For such circuits,
the QBFs encoding the existence of replacements for subcircuits become too hard for QBF
solvers, and computing the input-output relation needed for the new SAT encoding takes
too much time. To address this, we adapt a strategy from prior work on computing don’t
cares of single-output subcircuits [25]. Instead of ensuring that a resynthesized subcircuit
preserves the Boolean function computed by the full circuit, we only require that it preserves
the function computed by a “window” containing the subcircuit to be replaced. In theory,
this means don’t cares of a subcircuit are no longer fully captured. In practice, with windows
containing hundreds of gates, we expect that generally don’t cares within the window still
allow substantial improvements.

We performed an experimental evaluation of these improvements. The SAT-based work-
flow proved to be substantially faster for small circuits, showing a significant performance
increase for instances from the IWLS’23 competition. For circuits from the EPFL com-
binational benchmark suite, the SAT and the QBF-based approach showed comparable
performance. Using windowing, we were able to scale both approaches to the largest circuits
in this set, which had previously been unmanageable.

1.1 Related Work
Methods that fully capture the properties of Boolean functions implemented by circuits
(rather than considering them as polynomials, for instance) are deemed the most effective in
logic synthesis [39]. However, these methods are also the most computationally expensive, and
their application to large circuits is limited to resynthesizing small subcircuits. SAT-based
exact synthesis [16, 21] and SAT-based resubstitution [26, 32], which aim to represent the
function implemented by a specific gate as a function of a few existing gates in the circuit, are
examples of this approach. Many of these methods are implemented in the industrial-strength
tool ABC [7].

A SAT-based method for capturing don’t cares close to ours has been previously considered
for single-output subcircuits, including the use of windowing to improve scalability [25].
Boolean relations have been proposed as a means of representing don’t cares of multi-output
subcircuits [23]. The corresponding optimization workflow relies on a simulation-based
under-approximation of don’t cares in combination with a divide-and-conquer algorithm for
resynthesis, whereas we use a SAT solver for both don’t care computation and resynthesis.
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Exact resynthesis of subcircuits has also been explored for finding optimal circuits
for symmetric functions in circuit complexity research, but without incorporating don’t
cares [22]. This is an instance of the SAT-based Local Improvement Method (SLIM), a general
optimization framework that has been applied to various AI problems [11, 24, 27, 34, 35, 36].

In the realm of logic synthesis, QBFs have been employed for bi-decomposition [8],
reversible quantum circuit synthesis [41], and lookup table (LUT) synthesis [12, 13, 14]. The
latter two problems impose more constraints than the setting considered in this work, as they
maintain a fixed circuit topology. In contrast, our synthesis tasks also involve determining a
suitable topology.

2 Preliminaries

A Boolean circuit is a directed acyclic graph. We denote the set of source nodes of a circuit C
as the set of primary inputs in(C) and the non-source nodes as gates. The set of primary
outputs out(C) is a subset of the set of nodes in C. If there is a directed edge from node n to
node m then n is an input of m. Each gate corresponds to a Boolean function on its inputs.
This means that each Boolean circuit naturally induces a Boolean function. Let x be a node
in C. Then the transitive fanin cone of x, TFI (x) is the set of all nodes in C from which x

is reachable. Similarly, the transitive fanout cone of x TFO(x) is the set of all nodes in C
which can be reached from x. A node x depends on a node y if y ∈ TFI (x). Two circuits C
and D are logically equivalent (C ≡ D) if they compute the same Boolean function. Don’t
cares of a subcircuit S of a circuit C are certain patterns of its inputs or outputs that do
not have an effect on the function computed by the encompassing circuit C. We distinguish
between two types of don’t cares. Controllability don’t cares are patterns of the inputs of S
which cannot be attained within C, and observability don’t cares are patterns of the inputs
of S for which its outputs do not have an effect on C [10].

A Quantified Boolean formula (QBF) is of the form ∀X1∃X2 . . . ∀Xk−1∃Xk.φ, where
the Xi are pairwise disjoint sets of variables, and φ is a propositional formula called the
matrix. The quantifiers range over the Boolean domain B = {0, 1}, so that existential (∃)
quantifiers can be understood as abbreviating a disjunction (∃x.φ ≡ φ[x← 0] ∨ φ[x← 1]),
and universal (∀) quantifiers as encoding a conjunction (∀x.φ ≡ φ[x ← 0] ∧ φ[x ← 1]).
Evaluating QBFs is a PSPACE-complete task, and QBFs can succinctly encode problems
arising in many areas [37]. For an overview of QBF, including solving techniques and proof
complexity, see [2].

3 Exact Synthesis of Subcircuits

Our approach involves replacing a subcircuit with a smaller one, ensuring that the function
computed by the encompassing circuit remains unchanged. For a fixed value ℓ, we use a
SAT or QBF solver to determine whether there is a replacement circuit of size ℓ. To find a
smallest possible circuit, the value ℓ is decremented until the encoding becomes unsatisfiable.

Throughout this section, let C denote the encompassing circuit, S one of its subcircuits,
and T the replacement circuit. Further, n is the number of inputs of the subcircuit S and m

the number of outputs. Moreover, we assume that C is k-regular, i.e., each gate in C has k

inputs. Let C[S ← T ] denote the result of substituting the circuit T for the subcircuit S
in C. Our goal is to find a circuit T of size ℓ with n inputs and m outputs such that C and
C[S ← T ] are logically equivalent. This means that T and S do not necessarily need to be
equivalent. In particular this also means that the solver can assign an arbitrary behavior
to T for input/output combinations of the subcircuit that do not have an influence on the
entire circuits – i.e., we can make use of don’t cares implicitly.

SAT 2024



23:4 eSLIM: Circuit Minimization with SAT Based Local Improvement

We initially set ℓ = |S| and then decrement ℓ until the solver determines that no such
circuit T exists, at which point we can conclude that the circuit T must have at least ℓ + 1
gates. A circuit T of this size can be constructed from a model of the last satisfiable encoding,
and used to replace S. It may seem unnecessary to initially ask the solver to come up with
a circuit of size ℓ = |S|, since we already know such a circuit exists. However, the new
circuit is typically not equivalent to S, and replacing S by T is often beneficial in the overall
minimization process even though it does not immediately decrease size [30].

Subsequently, we will describe both the QBF and the SAT encoding. Both are closely
related to and inspired by the multi selection variable SAT encoding for exact synthesis [16].

3.1 The QBF Encoding
The main advantage of a QBF encoding is that one can universally quantify over assignments
of primary inputs and encode the value computed by each gate using a single variable, rather
than introducing a variable for each line in the truth table representation of C. In addition
to these gate variables and primary inputs, the encoding contains the following groups of
existentially quantified variables that determine the structure of the circuit:
Selection variables Si = {sit | 1 ≤ t < i + n}. This set of variables determines the inputs of

the ith gate. If sit is true then the tth node is an input of the ith gate1.
Function variables Fi = {f i

a1...ak
| (a1, . . . , bk) ∈ Bk}. This set of variables describes the

Boolean function f at the ith gate, i.e., the assignment of f i
a1...ak

determines the value of
f(a1, . . . , ak).2

Output variables Oj = {otj | 0 ≤ t ≤ n + ℓ}. This set of variables fixes the output gates of
the circuit. If otj is true then the jth output is given by the constant value false if t = 0
and otherwise by the tth node.2

The matrix of the QBF encodes the following constraints:
Each gate must have exactly k inputs, i.e., at each gate i exactly k selection variables
must be true. This can be enforced by using a sequential counter [38]. We denote this
constraint by Count(Si, k).
Each output must correspond to a single gate, i.e., for each output j exactly one output
variable is true. We denote this constraint by Count(Oj , 1).
For each gate i the assignment of the gate variable must be compatible with the function
determined by the function variables. Assume that the assignment for the function
variables describes the function F and that the values of the inputs of i are given by
i1, . . . , ik. This constraint ensures that the gate variable for i is assigned to F (i1, . . . , ik).
We denote this constraint by Compi.
Replacing S by T must preserve the function computed by C. To express this, one can use
Tseitin transformation and two sets of gate variables to encode both the specification C
and the circuit C′ = C[S ← T ]. For an output gate o, let vo and v′

o denote the gate
variable in the encoding of C and C′, respectively. We add a constraint vo ⇔ v′

o and
denote their conjunction over all outputs by Corr .

1 We index gates from 1 to ℓ, and we index nodes from 1 to n + ℓ. The nodes with indices from 1 to n
correspond to the primary inputs. For n < i ≤ n + ℓ the ith node corresponds to the (i − n)th gate.

2 A Boolean function is normal if f(0, . . . , 0) = 0, and a circuit is normal if each of its gates corresponds
to a normal function. In a normal circuit, we can find minimum size normal replacement circuits [20].
We can always normalize a given circuit, reduce the size of the normalized circuit, and finally we can
reconstruct the original circuit by flipping output gates if necessary. Thus, f i

0...0 can be set to false, and
outputs yielding the constant value true don’t need to be considered.
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x1 x2 x3

∧

∧

∧S

i1 i3i2

o

i1 i2 i3 o

0 0 0 {0}
0 0 1 {0}
0 1 0 {0, 1}
0 1 1 {0}
1 0 0 {0}
1 0 1 {0}
1 1 0 {0, 1}
1 1 1 {1}

Figure 1 The table on the right gives a Boolean relation for the subcircuit S. One can see that
the input pattern i2 = 1, i3 = 0 is not possible within the entire circuit. The relation given in the
table makes use of this controllability don’t care by assigning {0, 1} to the corresponding assignments
of the inputs.

Let S =
⋃

1≤i≤k Si denote the set of selection variables, F the set of gate definition variables, O

the set of output variables, I the set of input variables, and G, G′ the two sets of gate variables.
The complete QBF encoding has the following form:

∃S, F, O ∀I ∃G, G′. Corr ∧
∧

1≤j≤m

Count(Oj , 1) ∧
∧

1≤i≤ℓ

(Count(Si, k) ∧ Compi)

In practice, we use the circuit-based QCIR format for the encoding. Thus, we can directly
define auxiliary variables by QCIR-gates and so we do not need to add these variables to
the prefix.

3.2 The SAT Encoding

While the QBF encoding handles don’t cares implicitly, the SAT-based approach outlined in
this subsection separates the tasks of computing don’t cares and synthesizing a subcircuit.
More specifically, it first computes a Boolean relation [6, 33] representing the input-output
behavior of the subcircuit S on the care set (the complement of don’t cares), and then uses
the multi selection variable SAT-encoding [16] to obtain a circuit.

A Boolean relation R for S maps each input assignment to a set of permissible output
assignments, formally R : Bin(S) → (P(Bout(S)) \ ∅). A circuit C implements the relation R

if C(σ) ∈ R(σ) for each σ ∈ Bin(C). In Figure 1 we illustrate a Boolean relation representing
a subcircuit S of a circuit C that takes the don’t cares of S into account.

The core idea for computing the relation is to determine the set Φ ⊂ Bin(S) × Bout(S)

of conflicting input/output behaviors. A conflicting input/output behavior is a pair of
assignments (σ, ρ), where σ is an assignment of Bin(S) and ρ is an assignment of Bout(S).
For each such pair we require that for any circuit D with inputs in(S), outputs out(S) and
D(σ) = ρ, we have C[S ← D] ̸≡ C. This means Φ describes all modifications of S that would
change the function computed by C. The relation R is then given by R(σ) = {ρ ∈ Bout(S) |
(σ, ρ) /∈ Φ}. One can easily verify that replacing S by any circuit implementing this relation
preserves the function computed by the entire circuit.

SAT 2024
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In order to obtain Φ, we first compute a circuit C′ by removing S from C.3 Due to the
removal of gates, C′ contains an additional primary input for each output of S. We denote
the set of these new inputs by I. Next, we compute every assignment σ for in(C) and ρ for I
such that C(σ) ̸= C′(σ ∪ ρ). Now let σ′ be the assignment of the inputs of S (in(S)), which
is attained by C under σ. Then Φ is the set of all pairs (σ′, ρ).

To realize this idea we first compute clausal encodings φ1 for C and φ2 for C′ by Tseitin
transformation, introducing a propositional variable for each node. For each node x in C we
denote the corresponding variable by v(x) and for each node x in C′ by v′(x). Similarly, we
define v / v′ for sets of nodes. Next we introduce for each common primary output o the
constraint v(o)⇔ v′(o), denoting the set consisting of all these clauses by equiv.

This encoding can now be used to compute the relation with incremental SAT solving.
The algorithm maintains a set B of blocking clauses, which is empty initially. We now ask
the SAT solver for an assignment σ that satisfies φ1 ∧ φ2 ∧B and falsifies equiv. Instead of
directly adding ¬σ|v(in(S)) ∨ ¬σ|v′(I) to the clausal representation of the relation, we first
try to reduce this clause. For this purpose, we apply a similar approach as it was used by
Ravi and Somenzi [28] for reducing the size of assignments. The formula φ1 ∧ φ2 ∧ equiv is
unsatisfiable under the assumption σ|v(in(C)) ∧σ|v′(I). Using the SAT solver, we can compute
a subset σ̂ of failed assumptions. As σ̂ suffices to make φ1 ∧ φ2 ∧ equiv unsatisfiable it is
rather easy to conclude that for each assignment µ with σ̂|v′(I) ⊆ µ, the pair (σ|v(in(S)), µ)
must not be contained in the relation. Thus, we can add ¬σ|v(in(S)) ∨ ¬σ̂|v′(I) to the clausal
representation of the relation. Moreover, to avoid the same inconsistency in subsequent
iterations, we add the blocking clause ¬σ|v(in(S)) ∨ ¬σ̂|v′(I) to B.

As mentioned above, a circuit implementing the relation R can be synthesized using a
slight adaptation of the SAT encoding for exact synthesis by Haaswijk et al. [16].

4 Minimization by Subcircuit Resynthesis

We use exact synthesis of subcircuits as a subroutine in a circuit minimization algorithm
that repeatedly selects subcircuits for resynthesis. To obtain a subcircuit for resynthesis, we
start from a root gate, and then expand by incorporating successors of previously chosen
gates until reaching a predetermined size. Root gates are chosen randomly from the circuit.
To expand the root gate, we visit gates that use previously selected gates as inputs in a
breadth-first-search manner. We then randomly decide whether to include this gate in the
subcircuit. Unlike previous work [30], we use a fixed bound for the size of subcircuits. This
bound is decreased in case individual checks timeout.

5 Window Selection

Both the SAT and the QBF-based rewriting approach do not only depend on the selected
subcircuits but also on the entire circuit. This is necessary to make use of don’t cares. Thus,
in general, rewriting subcircuits gets harder for larger circuits. To overcome this issue, we
only consider don’t cares with respect to a window (a subcircuit) [25]. The window is chosen
such that the size is still manageable for our QBF/SAT-based approach. In this manner,
we can minimize windows, and since the functions computed by windows are preserved, the
optimized implementation can be used to replace the original window.

3 Actually, it suffices to consider TFO(S) instead of a copy of the entire circuit
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Additionally, using windows allows us to rewrite subcircuits simultaneously. For this
purpose, we compute pairwise disjoint windows and rewrite them separately. In the end, we
then combine the optimized windows to obtain a new implementation for the original circuit.

6 Implementation

We implemented eSLIM mainly in Python and some parts in C++. For using C++ subroutines
in Python, we used pybind114. As backend solvers, we used QFUN [18] for QBF and
CaDiCaL [4] for SAT. To read and write files in the AIGER format, we used the AIGER
library [5]. To represent arrays of Boolean values, we used the python library bitarray5.
eSLIM is freely available6 under an MIT license.

Input/Output Formats

eSLIM can process circuits given in the Berkeley Logic Interchange Format (BLIF) [40] and
in the AIGER format [3]. The given circuits have to be purely combinational and thus must
not contain any sequential components. Circuits in the BLIF format are required to be
sorted topologically, i.e., fanins of a gate must be specified before the gate itself. For the
AIGER format, both the ASCII and the binary AIGER format are supported. Similar as
for circuits given in the BLIF format, also ASCII AIGER circuits are expected to be sorted
topologically. The main output format of eSLIM is BLIF. In case an AIG shall be reduced,
also the binary and ASCII AIGER format are supported.

Parameters of eSLIM

Our tool can be applied as follows.

eSLIM <circuit > <result > <budget > [ options ]

We first describe the mandatory arguments:
circuit The circuit to be processed in one of the supported formats.
result The destination for the minimized circuit (given in the BLIF format).
budget The available time in seconds.
Additionally, eSLIM accepts several optional arguments. We only list the most important
ones, and we refer to the help information provided by eSLIM for the remaining options.
--gs The number of fanins of the synthesized gates.
--size The upper bound for considered subcircuit sizes.
--aig Synthesize an AIG. This option requires that the fanin size is set to two.
--aig-out Write the minimized circuit to a binary or ASCII AIGER file.
--restarts Specify the number of applications of our method. Each application can use

budget seconds.
--abc Use ABC for inprocessing after each application of our method.
--syn-mode Specify whether the QBF- or the SAT-based approach shall be used.
--windows Specify the number of windows that shall be processed concurrently and the

reference size for each considered windows.

4 https://github.com/pybind/pybind11
5 https://pypi.org/project/bitarray/
6 https://github.com/fxreichl/eSLIM
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Types of Logic Gates

In its default configuration, eSLIM computes replacement circuits composed of arbitrary
k-fanin gates – where k is specified by --gs. The set of available functions for each gate
can be constrained by restricting the assignments for the function variables. This, for
example, means that if the option --aig is used, then XOR gates are ruled out by requiring
¬f i

01 ∨ ¬f i
10 ∨ f i

11 for each 1 ≤ i ≤ ℓ, where ℓ denotes the considered circuit size. In addition
to computing AIGs, we also used eSLIM to compute XAIGs – AIGs that may contain XOR
gates. By adding appropriate constraints for the function variables, additional restrictions
can be placed on the set of available functions.

7 Experiments

We evaluated our tool on the instances from the IWLS’23 programming contest7 and the
instances from the EPFL benchmark suite [1]. All experiments were conducted on a cluster
with AMD EPYC 7402 processors at 2.8 GHz running 64-bit Linux. We used a memory
limit of 4 GB. For the parallelized minimization we used a memory limit of 4 GB per thread.

7.1 IWLS Instances
The IWLS’23 instances consist of 100 instances, given as truth tables. The goal is to compute
an And-Inverter Graph (AIG) with as few gates as possible. A preliminary version of eSLIM
participated in the competition and took the second place.

Since the instances are given as truth tables, and our tool requires that specifications are
given as circuits, we had to preprocess the instances using ABC [7]. As a naive transformation
of truth tables to circuits by using ABC results in relatively large circuits, we used ABC to
reduce the size of the initial circuit. For this purpose, we used the ABC command deepsyn
with a timeout of one hour8. We chose deepsyn as it is one of the most effective optimization
strategies for computing compact AIGs [9]. Additionally, unlike many other optimization
strategies in ABC, deepsyn allows any-time optimization.

In our evaluation setup, we considered our tool both in the QBF-based and the SAT-
based configuration. As only very few of the IWLS instances are sufficiently large for a
reasonable application of windowing, we did not evaluate it here. We compared eSLIM with
the prototype of the purely QBF-based approach CIOPS [30] and the deepsyn procedure9.

In our experiments, we alternated between 27-minute runs of eSLIM and 3-minute runs
of deepsyn for inprocessing. Similarly, we alternated between 30-minute runs of CIOPS
and exhaustive heuristic minimization with ABC. Here exhaustive minimization means that
the application of ABC is repeated until no further reductions can be found. We wanted
to compare eSLIM with the original version of CIOPS, thus we used different setups for
inprocessing in eSLIM and CIOPS. These combinations were applied eight times. We used
30-minute runs of CIOPS as the time needed for inprocessing cannot be controlled. As
inprocessing usually only takes a few seconds, still in total roughly 4 hours were available
per instance. Finally, deepsyn was run for four hours. In general, all tools benefited from

7 https://github.com/alanminko/iwls2023-ls-contest
8 To run deepsyn we used &deepsyn -T 3600. By using -T 3600 we enforced the timeout.
9 We could not compare our tool against the first and third ranked entry to the IWLS 2023 competition –

our tool ranked second – as they were not available to us.

https://github.com/alanminko/iwls2023-ls-contest
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Table 1 Average reduction (%) of gates compared to the preprocessed IWLS’23 instances, by
configuration and initial size and standard deviations of the average reductions per configuration.
The best results are marked in boldface.

CIOPS Deepsyn QBF SAT

#Gates mean stdev mean stdev mean stdev mean stdev

10-39 2.8 0.28 0.59 0.4 3.11 0.19 2.93 0.28
40-100 3.64 0.19 0.68 0.18 8.34 0.43 8.7 0.26
131-492 6.12 0.22 9.32 0.44 15.75 0.57 19.76 0.59
505-7839 4.79 0.13 12.64 0.47 10.85 0.39 15.61 0.52
Overall 4.34 0.11 5.82 0.22 9.51 0.25 11.75 0.17

10 – 39 40 – 100 131 – 492 505 – 7839 Overall
Instance class
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(b) Reductions over time.

Figure 2 The left figure (a) visualizes the average reductions of gates per instance class and
configuration. The right figure (b) visualizes the average reductions among all instances for the SAT
and the QBF configuration over time. The areas marked in gray correspond to the application of
ABC.

longer runtimes. Nevertheless, we limited the runs to roughly four hours due to constraints
on the available computational infrastructure. Additionally, we set the initial bound for the
subcircuit size to 6 both for our tool and CIOPS (cf. Section 4).

Instances were grouped into four subsets of 25 based on the initial number of gates. For
each configuration and instance group, we determined the average size reduction (in %) for
circuits in that group. We performed 5 independent runs for each configuration. First, we
calculated the average reduction per run for each subset and for the entire set of instances.
Based on these values, we computed average reductions and standard deviations among the
individual runs of each configuration for each class of instances. Results are given in Table 1.
A visualization of the results is given in Figure 2a.

The experiments show that eSLIM with the QBF configuration clearly outperformed
CIOPS. This was mainly due to two simple but apparently effective changes. First, eSLIM
uses fixed bounds for the sizes of selected subcircuits, while CIOPS tries to increase the
initially given bounds as far as possible. Since larger circuits are usually harder to analyze,
this indicates that, in general, it is advantageous to consider more but simpler (smaller)
circuits. Second, eSLIM computes subcircuits by expanding root gates in a randomized
breadth-first-search manner, while CIOPS applies an expansion strategy that aims at keeping
the number of outputs low.

SAT 2024
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Moreover, the SAT-based strategy outperformed the QBF-based strategy. This was
possible as in general the SAT-based approach allowed a faster analysis of subcircuits. Thus,
more subcircuits could be analyzed in total. Furthermore, eSLIM could outperform deepsyn.
This indicates that the combination of deepsyn for preprocessing/inprocessing with eSLIM
is viable alternative to just applying deepsyn alone.

Furthermore, to illustrate the achieved reductions over time we give Figure 2b. The
figure shows the average reduction among all instances for the QBF- and the SAT-based
configuration over time. We can see that the achieved improvements diminish the longer the
tool ran, still on average both approaches could find new improvements until the end. For
the QBF- and the SAT-based configuration the deepsyn inprocessing steps were responsible
for 26%, respectively 18% of the total reductions.

Additionally, if we consider the best implementations for each instance among the 5 SAT
runs, we can observe an average reduction of about 14%. This indicates that it may be
advantageous to consider multiple runs of eSLIM. As our tool makes use of a randomized
subcircuit selection, different runs result in different sequences of replaced subcircuits. Thus,
a run might get stuck in a local minimum, which is difficult to escape.

7.2 EPFL Instances
To evaluate our tool for circuits with non-binary gates, we considered the EPFL Combinational
Benchmark Suite [1]. This benchmark set consists of twenty circuits.10 The goal is to find
6-input lookup table (LUT-6) implementations of the specifications with small size. In
addition to a specification given as a circuit with binary gates, the benchmark suite also
provides the best known LUT-6 realizations so far. We used the best known realizations as
of 2022 (commit 42c1f31 ) as initial specifications for our tool.11

We ran our reduction tool for 12 hours both with the SAT and the QBF configuration.
After each hour we applied the ABC command &mfs as an inprocessing step – we used
&mfs as it allows us to directly optimize an LUT-6 circuit. Additionally, we also applied
our tool with windowing enabled. Here, we recombined the windows for the inprocessing
step and computed new windows afterwards. We compared our tool with CIOPS. We want
to point out that the initial realizations have already been highly optimized by different
methods, so any improvement can be considered a success.

In addition to a bound on the size of subcircuits, we also used a limit of 10 on the number
of inputs of the subcircuits considered for resynthesis. Preliminary tests showed that such a
limit is required to reliably generate the Boolean relation for the SAT-based approach within
time and memory limits. Additionally, we always set the initial bound for the subcircuit
size to 4. In the experiments with windowing, we used two different window sizes, 500 and
1000. First we minimized single windows and second up to 8 windows concurrently. We only
applied windowing for instances with at least 1000 gates.

Results for instances with less than 1000 gates are given in Table 2a and results for
instances with at least 1000 gates are given in Table 2b. For the results with windowing we
selected the best results among the two different window sizes.

Since the initial circuits are already highly optimized by state-of-the-art methods, the
relative improvements for the EPFL instances were small compared to the IWLS instances,
and it is difficult to draw any definitive conclusion about the superiority of any configuration

10 We did not consider the MtM instances as the EPFL repository does not contain the best implementations
for these circuits.

11 We did not consider the best results of 2023 as half of them were provided by us. As it is difficult for our
tool to further reduce these circuits, we think the circuits from 2022 are better suited for the evaluation.
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Table 2 The table gives for each instance the number of LUT-6 gates of the initial circuit and of
the improved circuits per configuration. The best results are marked in boldface.

(a) Results for EPFL instances with less than 1000 gates.

Instance Initial CIOPS QBF SAT

Lookahead XY router 19 19 19 19
int to float converter 20 20 18 19
Alu control unit 25 25 25 25
Coding-cavlc 54 52 49 53
Priority encoder 94 94 93 92
Adder 129 129 129 129
I2c controller 182 178 179 177
Decoder 264 264 264 264
Round-robin arbiter 273 273 272 267
Max 511 511 511 511
Barrel shifter 512 512 512 512

(b) Results for EPFL instances with fewer than 1000 gates.

No Windowing Single Window Up to 8 Windows

Instance Initial CIOPS QBF SAT QBF SAT QBF SAT

Sine 1114 1111 1095 1085 1076 1069 1057 1036
Voter 1217 1217 1217 1179 1184 1166 1177 1172
Memory controller 1735 1731 1722 1727 1731 1730 1724 1731
Square-root 2994 2994 2994 2994 2991 2985 2992 2980
Square 3018 3018 3014 2997 2992 2994 2942 2943
Divisor 3096 3096 3096 3096 3096 3095 3096 3095
Multiplier 4360 4360 4358 4346 4346 4346 4326 4317
Log2 6133 6133 6132 6109 6127 6129 6078 6063
Hypotenuse 39452 39452 39452 39452 39230 39251 38459 38781

from these results. Nevertheless, the results suggest that parallel optimization was able to
beat single-threaded optimization. Similarly, the results indicate that both configurations of
our tool outperformed CIOPS. Moreover, our tool could improve on the best implementation
for the majority of instances.

8 Conclusion

The experimental analysis shows that eSLIM significantly improves upon CIOPS and that
eSLIM is a viable alternative to deepsyn. Additionally, the experiments show that the
SAT-based approach outperforms the QBF-based version for instances from the IWLS’23
programming contest. For circuits from the EPFL suite, the two variants perform very
similarly, with either approach having a slight edge in some instances. Moreover, the
experiments show that using windowing allows us to further reduce the largest circuits from
the EPFL suite.

The respectable performance of the QBF-based approach on larger circuits hints at
the potential of adopting techniques from QBF solving, such as counterexample-guided
expansion [19]. Computing the entire Boolean relation upfront can be prohibitive, and
generating constraints during the substitution process could be more efficient. Specifically,
constraints could be added on-the-fly when the substitution of a synthesized circuit alters
the function.

SAT 2024
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Abstract
Motivated by the application of quality assessment of logic locking we introduce Hierarchical
Stochastic SAT (HSSAT) which generalizes Stochastic SAT (SSAT). We look into the complexity
of HSSAT and for solving HSSAT formulas we provide a prototype solver which computes exact
evaluation results (i.e., without any approximation and without any imprecision caused by numerical
rounding errors). Finally, we perform an intensive experimental evaluation of our HSSAT solver in
the context of quality assessment of logic locking.
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1 Introduction

Introducing Hierarchical Stochastic SAT (HSSAT) in this paper is motivated by the logic
locking technique. Logic locking has been proposed to protect Integrated Circuits (ICs) from
unauthorized usage. Such protection techniques have become necessary as the globalization
of manufacturing of ICs may lead to trust issues between the various parties involved in
the manufacturing process. Logic locking is a technique to prevent counterfeiting and
overproduction by an untrusted foundry. Logic locking introduces additional logic to the
IC which is connected to gates in the original IC as well as to a set of newly introduced
inputs, the so-called key inputs, see Fig. 1 for an overview. The key inputs are stored in a
tamper-proof memory and – at least ideally – the modified IC (i.e. “locked” IC) produces
correct outputs only if the key inputs are set correctly. The correct key is not revealed to the
foundry. The foundry just manufactures the ICs according to the mask data provided by the
design house and delivers them to the design house. The design house loads a tamper-proof
memory which is connected to the key inputs with the correct key value, thus it “activates”
or “unlocks” the IC and delivers the activated IC to the end-users [31].

Numerous methods have been proposed for implementing logic locking schemes, see e.g.
[23, 1, 21, 9, 22, 38, 37, 36, 40, 39]. Attacks against logic locking assume both an attacker
model and an attack model. For the attacker, we assume that the design house is trusted,
but the foundry and the end-user may be untrusted. This includes that the design house
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Circuit Tamper-proof memory

Figure 1 Logic locking.

keeps the unlocking key secret. If the workflow involves transferring the secret key, then the
key is secured using cryptographic methods [23, 7] which is an orthogonal problem and is
not considered in this paper. For the attack model, most attacks described in the literature
assume that the locked netlist is known to the attacker and that the attacker either also has
access to the original netlist [23] or at least to an unlocked device [21, 31, 38]. However, an
untrusted foundry usually has only access to the mask data and not to the locked netlist.
Thus, for such an attack it has to re-build the netlist from the mask data which is difficult
and very expensive. Reverse engineering of the netlist based on a physical device is even
harder or almost impossible for complex designs with small feature sizes and a non-trivial
number of design layers. Therefore we assume here that the attacker does not have access
to the locked netlist and we ask for the security of logic locking techniques against attacks
without knowing the locked netlist. (Nevertheless, our attack model may assume that the
attacker has an unlocked working device to check whether key guesses for the locked device
have been successful.) Possible weaknesses of logic locking techniques could be: The IC may
be unlocked not only with the original (intended) key, but also with other keys, or there may
be many keys which “almost unlock” the IC which means that the IC produces for “almost
all” input combinations the correct output combinations such that the IC can be used in
practice with incorrect keys as well. This danger is real, since current logic locking methods
like the one proposed by Yasin et al. [37] achieve resistance against SAT-based attacks [31] by
keeping the fraction of input combinations with erroneous output combinations intentionally
minimal for each incorrect key.

The goal of this paper is to provide formally precise methods for the quality assessment of
logic locking without resorting to imprecise estimations based on simulation like in [19]. This
is achieved by reducing the problem to known formalisms like Quantified Boolean Formulas
(QBF), (Weighted) Model Counting, Projected (Weighted) Model Counting or Stochastic
SAT (SSAT). However it turns out that answering certain interesting questions for quality
assessment cannot be expressed naturally by those existing formalisms. For this, we introduce
Hierarchical Stochastic SAT (HSSAT) which generalizes Stochastic SAT (SSAT). Note that
a similar formalism called SSAT(Θ) has been developed by Fan and Jiang [11] in parallel to
and independently from our work. Their motivation did not come from an application such
as the quality assessment of logic locking, but from the theoretical question of generalizing
counting formulas (CFs) that characterize the Counting Hierarchy [34] (as QBFs characterize
the Polynomial Hierarchy [30]). We define syntax and semantics of HSSAT, we show that it is
PSPACE complete (like QBF and SSAT), and we provide a prototype solver HSSATSolve
for HSSAT which is based on ROBDDs [5] and is both algorithmically and numerically exact.
In our experimental evaluation we apply our solver to several quality assessment problems.
In cases where only (Weighted) Model Counting, Projected (Weighted) Model Counting, or
SSAT is needed, we compared it to existing solvers like SharpSAT-TD [15], d4 [17], gpmc [32],
arjun-ganak [26, 29], DC-SSAT [18], ClauSSat [6], ElimSSAT [35], and SharpSSAT [10]. The
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experiments show that HSSATSolve is capable of answering interesting questions that arise
in quality assessment of logic locking and could not be mapped to already existing formalisms;
for other questions it often outperforms existing solvers in our application domain.

The paper is structured as follows: We start with basic notations in Sect. 2. In Sect. 3
we introduce details on logic locking, quality assessment of logic locking and mapping it to
known problems, whereas in Sect. 4 we discuss Hierarchical Stochastic SAT (HSSAT). We
present experimental results in Sect. 5 and conclude with a summary and future research
directions in Sect. 6.

2 Preliminaries and Notations

As usual a Boolean formula over the variable set X is either 0, 1, some variable x ∈ X, the
negation ¬ϕ of a Boolean formula ϕ over X, the conjunction ϕ1 ∧ ϕ2, or the disjunction
ϕ1 ∨ ϕ2 of two Boolean formulas ϕ1 and ϕ2 over X. A literal is a variable or its negation. A
clause is a disjunction of literals, a cube is a conjunction of literals. A conjunctive normal
form (CNF) is a conjunction of clauses. An assignment α over X ′ ⊆ X is a mapping from
X ′ to B = {0, 1} which is called partial, if X ′ ⊂ X, and full, if X ′ = X. Sometimes we
represent an assignment like α(x) = 0, α(y) = 1 by the corresponding cube ¬xy. The set of
all assignments over X is denoted as [[X]]. Given a formula ϕ and an assignment α over X, let
ϕ[α] denote the result of substituting every occurrence of variables x ∈ X in ϕ with α(x) and
evaluating the obtained boolean expression using the standard rules for the operators ¬, ∧,
and ∨. The Boolean formula ϕ represents a Boolean function fϕ : [[X]] → B by fϕ(α) = ϕ[α]
for α ∈ [[X]]. 0 (resp. 1) represents the constant 0 (resp. 1) function. The cofactor ϕ|α of
a Boolean formula ϕ wrt. some (full or partial) assignment α over X ′ ⊆ X is a formula
resulting from substituting every x ∈ X ′ in ϕ with α(x).

Boolean functions can also be represented by Reduced Ordered Binary Decision Diagrams
(ROBDDs) [5], see Fig. 5 for an example of an ROBDD. An ROBDD R over a set X of
variables is a directed, acyclic graph G = (V,E) having exactly one root R.root with the
following properties: V consists of terminal nodes (represented by squares in Fig. 5) and non-
terminal (decision) nodes (represented by circles). The set of terminal nodes is a non-empty
subset of { 0 , 1 }. The remaining non-terminal nodes n ∈ V are labeled with variables
n.var := x ∈ X and they have exactly two outgoing edges, whose targets are denoted by
n.low resp. n.high ∈ V . The edge to n.low is called the low edge (represented by a dashed
line in Fig. 5), the edge to n.high is called the high edge (represented by a solid line in Fig. 5).
An ROBDD R is ordered which means that there is a global order π : {1, . . . , |X|} → X

such that on each path from the root R.root to a terminal the variable labels of the non-
terminal nodes occur in the order π(1), . . . , π(n). An ROBDD is reduced, i.e., it satisfies the
following conditions: There is no pair of non-terminal nodes n ≠ m ∈ V with n.var = m.var,
n.low = m.low, and n.high = m.high (“isomorphism reduction”). For each non-terminal
node n ∈ V it holds n.low ≠ n.high (“Shannon reduction”). The reduction property
makes ROBDD representations more compact and together with the ordering property it
turns ROBDDs into canonical representations for given Boolean functions [5]. The Boolean
function eval(R.root) : [[X]] → B defined by an ROBDD R can be computed recursively:
eval( 0 ) = 0, eval( 1 ) = 1, and eval(n) = (¬n.var∧eval(n.low))∨(n.var∧eval(n.high))
for a non-terminal node n. It easily follows from this rule that the function value of
eval(R.root) for a full assignment α can be computed by following a path through the
ROBDD starting from R.root: At each node n on the path one follows the edge to n.low iff
α(n.var) = 0 and the edge to n.high iff α(n.var) = 1. The function value of eval(R.root)
for assignment α is then given by the reached terminal.
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A Stochastic Boolean Satisfiability (SSAT) formula Φ in prenex form over variable set X
is expressed by

Φ = Q1x1, . . . , Qnxn : ϕ, (1)

where ϕ is a Boolean formula over X = {x1, . . . , xn}, for 1 ≤ i ≤ n Qi is either an existential
quantifier ∃ or a random quantifier

Rpi with pi ∈ [0, 1]. Q1x1, . . . , Qnxn is called the prefix
and ϕ is called the matrix of Φ. The random quantifier

Rpi on variable xi indicates that
xi = 1 with probability pi ∈ [0, 1] (resp. xi = 0 with probability 1 − pi). The semantics of
an SSAT formula Φ in the optimization version is a satisfying probability Pr[Φ] recursively
computed as follows:
1. Pr[Φ] = 0, if the matrix of Φ represents the 0 function,
2. Pr[Φ] = 1, if the matrix of Φ represents the 1 function,
3. Pr[Φ] = max(Pr[Φ′|¬xi ],Pr[Φ′|xi ]), if Φ = ∃xiΦ′,
4. Pr[Φ] = (1 − pi) · Pr[Φ′|¬xi

] + pi · Pr[Φ′|xi
], if Φ =

RpixiΦ′.
Note that by the notion Φ′|α above we mean the SSAT formula where the prefix of Φ′ is
unchanged and its matrix ϕ′ is replaced by the cofactor ϕ′|α.

The decision version of an SSAT formula Φ = Q1x1, . . . , Qnxn : ϕ has the form Φ op q
with op ∈ {<,≤, >,≥,=, ̸=}, q ∈ [0, 1] and it evaluates to 1 (true), if Pr[Φ] op q holds, and
to 0 (false) otherwise.

If all quantifiers are random quantifiers, then SSAT corresponds to (weighted) model
counting with weight(xi) = pi, weight(¬xi) = 1 − pi.

The syntax of Quantified Boolean Formulas (QBFs) is as given by Eqn. (1) with the
difference that in contrast to SSAT formulas Qi is either an existential quantifier ∃ or a
universal quantifier ∀. For the semantics of QBF, the item 4. from the semantics definition
above has to be replaced by Pr[Φ] = min(Pr[Φ′|¬xi

],Pr[Φ′|xi
]), if Φ = ∀xiΦ′.

3 Logic Locking

As already mentioned in Sect. 1, logic locking changes an existing netlist by adding extra
gates and extra key inputs, see Fig. 1. The circuit should only work correctly, if the correct
key is applied to the key inputs. In the literature numerous logic locking schemes have
been presented, see [23, 1, 21, 9, 22, 38, 37, 36, 40, 39], e.g.. The logic locking methods
either modify the whole IC or only critical modules. Here we consider logic locking for
combinational circuits without memory elements. For sequential circuits, we assume that
logic locking modifies the combinational part.

▶ Example 1. Let us consider the very simple example of an original (non-locked) circuit
in Fig. 2. Here we assume a simple logic locking method which randomly selects internal
signals of the circuit and modifies them with logic locking. In the example the outputs of G1
and G2 are selected. An exor gate with key input k1 is inserted at the output of G1 and an
exnor gate with key input k2 is inserted at the output of G2, see Fig. 3. It is easy to see that
the key value (k1, k2) = (0, 1) unlocks the circuit, since the Boolean functions implemented
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ted miter circuit.

by the original circuit and the locked circuit with (k1, k2) = (0, 1) are the same. In contrast,
(k1, k2) = (1, 0) does not unlock the circuit, since e.g. for input (x1, x2, x3) = (1, 1, 1) the
output of the original circuit is (y1, y2) = (1, 1), but the output of the locked circuit is
(y′

1, y
′
2) = (0, 0).

Now we are interested in a quality assessment of logic lockings for combinational circuits.
For such a quality assessment we consider an inverted miter circuit for the original and
the locked circuit. As usual, an inverted miter circuit connects the primary inputs of two
circuits (in our case of the original and the locked circuit), connects the pairs of corresponding
primary outputs of the two circuits with exnor (equivalence) gates, and connects the outputs
of all exnor gates at the primary outputs with an and gate. I.e., the inverted miter circuit
between the original and the locked circuit outputs a 1 for some assignment to the primary
inputs (and key inputs) iff the corresponding outputs of the original and the locked circuit
are identical. Fig. 4 shows the inverted miter circuit for the circuits of Figs. 2 and 3. Note
that an assessment of logic locking quality is done by the (trusted) design house which owns
both the original and the locked netlist. In this section we reduce several quality metrics
to problems which are known in the formal reasoning community. The last metric then
motivates the definition of a new problem called Hierarchical SSAT.

Key Existence

A very basic question is the question of key existence. If fIM is the Boolean function at the
output of the inverted miter, X⃗ is the input vector and K⃗ the key bit vector, then there
exists an unlocking key iff the QBF

∃K⃗∀X⃗ : fIM (2)

is satisfied (as already observed in [23]). Of course, the QBF should be satisfied, if logic
locking was done correctly.

Key Uniqueness

The key existence does not imply security of logic locking however. It could be the case that
the existing unlocking key is not the only unlocking key, but there are several unlocking keys.
Therefore the uniqueness of the unlocking key is of interest as well. Let K⃗orig be the original
(intended) unlocking key. Key uniqueness can simply be reduced to the QBF

∃K⃗∀X⃗ : (fIM ∧ (K⃗ ̸= K⃗orig)). (3)
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Fraction of Unlocking Keys

We cannot assume that logic locking methods always produce unique keys. Nevertheless,
they may be appropriate in practice, if the number of unlocking keys is not too high. In
this case the probability of guessing an unlocking key would be so low that an attack that
randomly guesses keys will not have a high chance of success, especially if the size |K⃗| is
large enough. Thus, we are interested in the fraction of keys which are unlocking. This
question can easily be reduced to the formula

R0.5K⃗∀X⃗ : fIM . (4)

Since existing SSAT solvers often do not support universal quantification, we have to
transform Eqn. (4) into a version which removes ∀-quantification. This is not a trivial task
for arbitrary SSAT formulas containing both ∃- and ∀-quantifiers, but in our special case it
is easy. It is clear that a given fixed key K⃗fix does not unlock the locked circuit iff there is
an input assignment which produces a 1 at the output of the non-inverted miter circuit, i.e.,
iff ∃X⃗¬fIM |K⃗=K⃗fix

holds. Thus, the fraction of keys which do not unlock the circuit is given
by

R0.5K⃗∃X⃗ : ¬fIM . (5)

If this fraction is given by pw, then the fraction of unlocking keys is pc = 1 − pw. After
multiplying the result by 2|K⃗| we obtain the number of unlocking keys. If the original key is
unlocking and we are interested in the fraction of unlocking keys among the remaining keys,
then we simply have to correct pc by computing pc·2|K⃗|−1

2|K⃗|−1
.

Existence of Keys with High Criticality

The existence of (many) keys different from the original key which completely unlock the
circuit is of course a security issue. However, from an application perspective it is also critical,
if there is a key which is different from the original key and “almost” unlocks the circuit.
This is captured by the notion of “criticality” of a key.

▶ Definition 2. The criticality of a key is defined as the quotient of the number of input
assignments for which the key produces a correct output and the total number of input
assignments.

Given a criticality bound c ∈ [0, 1], we are interested in the question whether there exists
a key different from the original key K⃗orig with criticality > c. Keys with an extremely
high criticality are considered to be dangerous, because with such a key an IC may possibly
be operated for a long time without observing an error. Note that there are (as already
mentioned in Sect. 1) logic locking methods [37] tailored towards resistance against SAT-based
attacks [31] (which make the assumption that the locked netlist is at the attacker’s disposal)
where all keys have almost maximal criticality. This is of course undesirable from a practical
point of view and therefore we consider it to be necessary to include criticality as a metric
for assessing the quality of logic locking. For a fixed key K⃗fix,

R0.5X⃗ : fIM |K⃗=K⃗fix
computes

the criticality of K⃗fix and thus the existence of a key (different from the original one) with
criticality > c can be checked by the SSAT formula(

∃K⃗

R0.5X⃗ : (fIM ∧ (K⃗ ̸= K⃗orig))
)
> c. (6)
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According to the semantics definition reviewed in Sect. 2 the existential quantifier ∃K⃗
performs a maximization over all criticality values

R0.5X⃗ : fIM |K⃗=K⃗fix
for different fixed

keys K⃗fix (the evaluation for the original key is forced to 0 by the additional constraint
“K⃗ ̸= K⃗orig”). This maximal value is finally compared to the criticality bound c.

Average Criticality of Keys

Again, it is not very dangerous, if there are only a few keys with high criticality, since the
probability is not high that an attacker guesses a critical key. So we are also interested in
the average criticality of all possible keys. This can be computed by the SSAT formula

R0.5K⃗

R0.5X⃗ : fIM , (7)

since the quantification

R0.5K⃗ just averages over all possible criticalities of the key values.
Eqn. (7) may be interpreted as a model counting problem.

Fraction of Keys with High Criticality

A high average criticality may be regarded as a security problem at first sight. Unfortunately,
it is not a perfect metric for assessing the quality of logic locking, since there may be several
reasons for a high average criticality. Let us look into two extreme cases: In case 1 all keys
(except the original one) have criticality 0.5. This leads to a (rather high) average criticality
of (about) 0.5 (the original key contributes 1, all other keys 0.5 to the average). In case 2,
one half of the keys have criticality 1, the other half have criticality 0. Here the average
criticality is again 0.5. Case 1 is not really critical, since the user most probably cannot
work with a key with criticality 0.5, since half of the input assignments produce erroneous
values. The probability of guessing a key with criticality > 0.5 is as low as possible ( 1

2|K⃗| ).
On the other hand, case 2 with almost the same average criticality is highly critical from
an application point of view. On average, every second guessed key completely unlocks the
circuit.

This observation shows that we should look for a different criticality-based metric. We
would like to ensure that the number of keys (or the fraction of keys) with a criticality larger
than a given criticality bound c ∈ [0, 1] is as low as possible. If we choose the criticality
bound c in a way that the circuit is supposed to be of no use, if it is operated with a key
with criticality ≤ c, then this fraction immediately gives the probability of guessing a key
which can be used in practice. From a conceptional point of view, the task is to compute for
each fixed key K⃗fix the probability

R0.5X⃗ : fIM |K⃗=K⃗fix
(i.e. the criticality of K⃗fix), evaluate

“

R0.5X⃗ : fIM |K⃗=K⃗fix
> c” for the given criticality bound c, and then just to compute the

fraction of keys for which this evaluation returns “true”. In the end we have to compare
this fraction again with a bound which specifies how large the computed fraction is allowed
to be. However, this approach does not seem to be feasible, since it leads to a number of
SSAT (or model counting) problems which is exponential in the number of key bits K⃗. The
problem cannot naturally be reduced to an SSAT formula, since the comparison with the
criticality bound c has to be performed for each key value individually instead of a single
comparison as in Eqn. (6). This situation leads us to the definition of a new generalization of
SSAT called Hierarchical Stochastic SAT (HSSAT). HSSAT allows to hierarchically include
several comparison operators within the formula instead of only one at the end as in the
decision version of SSAT.
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4 Hierarchical Stochastic SAT

4.1 Definition of HSSAT
Here we define our new formalism of HSSAT which has been motivated in the previous
section. In contrast to usual definitions of SSAT we also allow universal quantifiers in HSSAT,
since (1) allowing them does not change the complexity class of HSSAT and (2) we can easily
process universal quantifiers in our solver as well, so there is no reason to forbid universal
quantifiers.

▶ Definition 3 (Syntax of HSSAT formulas). A Boolean Formula ϕ over variable set X is
also an HSSAT formula Φ with matrix matrix(Φ) = ϕ, the set FV(Φ) = X of free variables,
the set BV(Φ) = ∅ of bound variables, the quantifier order π(Φ) : {1, . . . , |BV(Φ)|} → BV(Φ),
and hierarchy level hlevel(Φ) = 0.

Now let Φ be an arbitrary HSSAT formula with matrix matrix(Φ), the set FV(Φ) of free
variables, the set BV(Φ) of bound variables, the quantifier order π(Φ) : {1, . . . , |BV (Φ)|} →
BV (Φ), and hierarchy level hlevel(Φ). Let x ∈ FV(Φ), p, q ∈ [0, 1], op ∈ {<,≤, >,≥,=, ̸=}.
Then the following formulas are HSSAT formulas as well:
(a) Φ′ = (∃xΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},

hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) = ∃.
(b) Φ′ = (∀xΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},

hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) = ∀.
(c) Φ′ = (

RpxΦ) is an HSSAT formula with FV(Φ′) = FV(Φ) \ {x}, BV(Φ′) = BV(Φ) ∪ {x},
hlevel(Φ′) = hlevel(Φ), hlevel(x) = hlevel(Φ), quantor(x) =

Rp.
(d) Φ′ = (Φ op q) is an HSSAT formula with FV(Φ′) = FV(Φ), BV(Φ′) = BV(Φ), hlevel(Φ′) =

hlevel(Φ) + 1, op(hlevel(Φ) + 1) = op, prob(hlevel(Φ) + 1) = q.
In all cases (a) - (d) we have matrix(Φ′) = matrix(Φ). In cases (a) - (c) the quantifier
order is π(Φ′) : {1, . . . , |BV (Φ′)|} → BV (Φ′) with π(Φ′)(1) = x, π(Φ′)(i) = π(Φ)(i− 1) for
all 2 ≤ i ≤ |BV (Φ′)|. In case (d) π(Φ′) = π(Φ).

An HSSAT formula Φ is called closed, if FV(Φ) = ∅.

In a closed HSSAT formula all variables in the matrix are bound by ∃, ∀, or

R

quantifiers.
We define the semantics only for closed HSSAT formulas and assume that non-closed formulas
are made closed by using leading existential quantifiers.

Note that SAT formulas can be seen as closed HSSAT formulas of hierarchy level 0
with ∃-quantifiers only, QBFs as closed HSSAT formulas of hierarchy level 0 with only ∃-
and ∀-quantifiers, SSAT formulas in the optimization version as closed HSSAT formulas of
hierarchy level 0 with only ∃- and

R

-quantifiers, and SSAT formulas in the decision version
as closed HSSAT formulas of hierarchy level 1 with only ∃- and

R

-quantifiers.
Before we look into the semantics of HSSAT, we consider how to express the motivating

example from the last section with an HSSAT formula.

Fraction of Keys with High Criticality

The problem of deciding whether the fraction of keys with criticality > c, c ∈ [0, 1] is larger
than d ∈ [0, 1] (see Sect. 3) can be reduced to the following closed HSSAT formula:

((

R0.5K⃗((

R0.5X⃗ : fIM ) > c)) > d). (8)

▶ Example 4. For Example 1 (see Figs. 2, 3, 4) the corresponding closed HSSAT formula is

Φ :=
[( R0.5k1

R0.5k2
[( R0.5x1

R0.5x2

R0.5x3 : fIM
)
> c

])
> d

]
.1 (9)
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Φ is a closed formula with an empty set FV(Φ) of free variables, the bound variables are
BV(Φ) = {k1, k2, x1, x2, x3}. For all variables x ∈ BV(Φ) quantor(x) =

R0.5. The quantifier
order is given by π(Φ)(1) = k1, π(Φ)(2) = k2, . . ., π(Φ)(5) = x3. The hierarchy level
hlevel(Φ) is 2, hlevel(x1) = hlevel(x2) = hlevel(x3) = 0, hlevel(k1) = hlevel(k2) = 1.
The probability value for comparison at hierarchy level 1 is prob(1) = c and at hierarchy
level 2 it is prob(2) = d. The operands at hierarchy levels 1 and 2 are >: op(1) = op(2) = >.

The formula checks whether the fraction of keys with criticality greater than c is greater
than d.

The semantics of HSSAT formulas can be formally defined using an evaluation function
Eval(·). The result is a value from [0, 1] which may be interpreted as a probability value or
– if the HSSAT formula is a comparison with some number from [0, 1], i.e., if we are in case
(d) of Def. 3 – as a logical value 0 (false) or 1 (true).

▶ Definition 5 (Semantics of HSSAT formulas). Let Φ′ be a closed HSSAT formula. Φ′ is
evaluated by a function Eval(·).
(1) If BV(Φ′) = ∅, hlevel(Φ′) = 0, and fΦ′ = 0, then Eval(Φ′) = 0.
(2) If BV(Φ′) = ∅, hlevel(Φ′) = 0, and fΦ′ = 1, then Eval(Φ′) = 1.
(3) If Φ′ = ∃xΦ, then Eval(Φ′) = max(Eval(Φ|¬x),Eval(Φ|x)).
(4) If Φ′ = ∀xΦ, then Eval(Φ′) = min(Eval(Φ|¬x),Eval(Φ|x)).
(5) If Φ′ =

RpxΦ, then Eval(Φ′) = (1 − p) · Eval(Φ|¬x) + p · Eval(Φ|x).
(6) If Φ′ = (Φ op q), then Eval(Φ′) = 1 in case Eval(Φ) op q holds, Eval(Φ′) = 0

otherwise.
The notion Φ|α above means that the matrix of Φ is replaced with its cofactor (matrix(Φ))|α.

4.2 Complexity of HSSAT
Now we come to the complexity of the HSSAT problem. It is pretty easy to see that HSSAT
is PSPACE complete – just as SSAT.

▶ Lemma 6. HSSAT is PSPACE hard.

Proof. Since we allow ∀-quantifiers in HSSAT, each QBF is a closed HSSAT formula of
hierarchy level 0 with ∃- and ∀-quantifiers only. Thus the hardness proof easily follows from
the PSPACE hardness of QBF. If ∀-quantifiers would not be allowed in HSSAT, a polynomial
time reduction from QBF would replace in a QBF Φ all ∀-quantifiers by

Rp-quantifiers with
arbitrary p ∈ (0, 1), leading to some Φ′, and it would consider “Φ′ = 1”. The QBF Φ is
satisfied iff Φ′ = 1 evaluates to 1 (true). (This is just as in the reduction for SSAT [18].) ◀

▶ Lemma 7. HSSAT is in PSPACE.

Proof (Sketch). Similar to the SSAT case, Def. 5 immediately suggests an evaluation of
a closed HSSAT formula Φ with quantified variables from X by an “implicit depth-first
traversal of the decision tree” of all assignments over X. The decision tree considers the
variables in the order they occur in the prefix of Φ. Of course, it is not necessary to store
the decision tree explicitly, but it is only necessary to store the currently considered path.
Whenever a node has been evaluated, it is not necessary anymore to store the evaluation
values for its successors. Thus, it is never needed to store more than O(|X|) values during the
depth-first traversal. Moreover, it is easy to see that the size of the number representations
occurring during the evaluation is polynomially restricted by the input size of the problem
instance. Thus, HSSAT is in PSPACE. ◀

1 Parentheses according to Def. 3 which are clear from the context are omitted.
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Algorithm 1 evalHSSAT.
Input: HSSAT formula Φ with matrix(Φ) = ROBDD R, FV(Φ) = ∅
Output: rational number evaluating Φ

1: return evalEdge(evalNode(R.root), hlevel(Φ), hlevel(R.root));

Algorithm 2 evalNode.
Input: ROBDD node n
Output: rational number evaluating n

1: if n = 0 then return 0;
2: if n = 1 then return 1;
3: if n.value ̸= undefined then return n.value;
4: plow := evalEdge(evalNode(n.low), hlevel(n), hlevel(n.low));
5: phigh := evalEdge(evalNode(n.high), hlevel(n), hlevel(n.high));
6: if quantor(n.var) = ∃ then p := max(plow, phigh);
7: if quantor(n.var) = ∀ then p := min(plow, phigh);
8: if quantor(n.var) =

Rq then p := (1 − q) · plow + q · phigh;
9: n.value := p;

10: return p;

Lemma 6 and Lemma 7 imply Theorem 8.

▶ Theorem 8. HSSAT is PSPACE complete.

4.3 Solving HSSAT
Here we present a prototype algorithm for solving HSSAT which is based on the computation
of ROBDDs for the matrix of the formula. The prototype algorithm also gives an indication
of how to design a generalization of DPLL-based SSAT algorithms like DC-SSAT [18], Prime
[24], or SharpSSAT [10] to HSSAT.

We will start with an algorithm which first builds for an HSSAT formula Φ an ROBDD
R = (V,E) for matrix(Φ) with the variable order π := π(Φ). Then the evaluation of Φ
is reduced to an evaluation of the ROBDD R by Algs. 1, 2, and 3. Alg. 2 is a recursive
algorithm computing the evaluation values at the different ROBDD nodes and Alg. 3 takes
care of edges in the ROBDD, especially long edges crossing several levels in the variable order.
Alg. 1 just reads out the correct value from the root of the ROBDD. To simplify notations
in the definition of Algs. 1 and 2 we define for n ∈ V : hlevel(n) = 0, if n ∈ { 0 , 1 },
hlevel(n) = hlevel(n.var) otherwise. We will consider the correctness of the algorithms
first and we will show an example afterwards.

For the time being, we assume that the HSSAT formula does not contain hierarchical
comparisons with values p ∈ [0, 1], i.e., we first neglect case (d) of Def. 3. This means that
the hierarchy level of Φ as well as of all variables is 0. It is easy to check that in this case
Alg. 3 does not have any effect, i.e., it returns its input probability without any change.

I.e., with our initial assumption the algorithm works like an ROBDD-based algorithm
for SSAT. We briefly discuss its correctness. First we assume that the “Shannon reductions
are reverted” in the ROBDD. This means the following: As long as there exists a “long”
edge from a node n to node m = n.dir, dir ∈ {low, high}, with either m ∈ { 0 , 1 } and
π−1(n.var) < |X| or π−1(m.var) > π−1(n.var) + 1, we introduce a new successor n′ of n
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Algorithm 3 evalEdge.
Input: rational number ptarget evaluating the target node of an edge, hierarchy level hlsource

of source node, hierarchy level hltarget of target node of the edge
Output: rational number evaluating the edge between source and target node

1: p := ptarget; hl := hltarget;
2: while hl < hlsource do
3: if p op(hl + 1) prob(hl + 1) then p := 1 else p := 0;
4: hl := hl + 1;
5: return p;

with n.dir = n′, n′.low = m, n′.high = m. We perform a similar transformation for the
root of R, if π−1(R.root) > 1. The resulting ROBBD is then essentially a decision tree with
variable order π (with the only difference that there are shared nodes in the ROBDD due
to “isomorphism reduction”). Now it is clear that Alg. 2 does exactly the same evaluation
steps as given in Def. 5, since following an edge from some node n labelled with n.var in
the ROBDD exactly corresponds to a cofactor computation (remember that Alg. 3 does
not have an effect for now). Alg. 2 additionally caches values which have already been
computed in the variable n.value. It only remains to show that re-introducing Shannon
reductions does not change the evaluation. Consider a node n with n.low = n.high. From
v = max(v, v) = min(v, v) = (1 − p) · v + p · v it easily follows by case distinction with
the cases quantor(n.var) = ∃, ∀,

Rp that the evaluation of n gives the same value as the
evaluation of n.low = n.high, i.e., removing n does not change the evaluation.

Now that it is clear that the algorithm is correct, if Φ does not contain hierarchical
comparisons according to case (d) of Def. 3, we only have to consider what changes, if we
re-introduce case (d). Intuitively, Rule (6) of Def. 5 with Φ′ = (Φ op q) and hierarchy level
hlevel(Φ′) = hl says the following: If we are at a node n with hierarchy level hlevel(n) = hl

and read a value v from a node m with hierarchy level hlevel(m) = hl−1, then we should not
take v itself, but we have to replace v with the outcome of the comparison v op q which is 0
or 1. The while loop in Alg. 3 just accounts for the case that there may be “long edges” from
a node n with hlevel(n) = hln to node m with hlevel(m) = hlm and hln ≥ hlm + 1 in the
ROBDD, crossing several hierarchy levels. Then several evaluations are needed, comparing
with op(hlm + 1) prob(hlm + 1) first, and finally with op(hln) prob(hln). In a similar way,
the call to evalEdge in Alg. 1 considers the case that hlevel(Φ) > hlevel(R.root), i.e.,
the outer formula contains comparisons according to case (d) of Def. 3.

▶ Theorem 9. Algorithm 1 correctly evaluates an HSSAT formula Φ according to Def. 5.

▶ Example 10. Consider the ROBDD in Fig. 5 for the inverted miter circuit in Fig. 4.
Let us consider the HSSAT formula

[( R0.5k1

R0.5k2
[( R0.5x1

R0.5x3

R0.5x3 : fIM
)

≥ c
])

≥ 0.3
]
,

see also Example 4. Let us first assume c = 1
2 . The nodes in the ROBDD are annotated

with their evaluation values. The evaluation for the xi-nodes just uses the formula 1
2 ·

evalNode(n.low) + 1
2 · evalNode(n.high). However, the evaluation of the right k2-node,

e.g., has to consider the comparison with c = 1
2 . For the low–successor we have 1

8 <
1
2 , thus

we have to replace its value by 0. For the high–successor we have 1
2 ≥ 1

2 , thus we have to
replace its value by 1. This leads to 1

2 · 0 + 1
2 · 1 = 1

2 at the right k2-node. The upper (red)
annotations at the ki-nodes give the node values for c = 1

2 with the final value of 1
2 at the

root, leading to 1 in the final comparison with 0.3. The lower (green) annotations at the
ki-nodes give the node values for c = 0.99 with the final value of 1

4 at the root, leading to 0
in the final comparison with 0.3.
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Improvements

Here we consider two improvements to the basic algorithm.
The first improvement concerns the variable order in the ROBDD. For this improvement

we define quantifier blocks for HSSAT, similar to SSAT or QBF. For an HSSAT formula
Φ with bound variables BV(Φ) = X, we define a partition P = {X1, . . . , Xk} on X by
the following rule: P is the (unique) partition where for all 1 ≤ i ≤ |X| − 1 π(Φ)(i)
and π(Φ)(i + 1) are in the same set Xj iff quantor(π(Φ)(i)) = quantor(π(Φ)(i + 1)) and
hlevel(π(Φ)(i)) = hlevel(π(Φ)(i+ 1)) (random quantors

Rp and

Rq are considered to be
equal even if p ̸= q). Thus P partitions the variables in the prefix into groups of consecutive
variables with the same quantor and the additional condition that comparisons according to
case (d) of Def. 3 introduce cuts into those groups. It is easy to see by a simple computation
that the value of an HSSAT Φ does not change, if neighboring variables π(Φ)(i) and π(Φ)(i+1)
belonging to the same group Xj are exchanged in Φ. Thus, all variables within some group
Xj can be arbitrarily exchanged without changing the value of Φ. This also means that for
the ROBDD-based evaluation we do not need to choose exactly the variable order π(Φ), but
we can choose a variable order which is “compatible with π(Φ)”. “Compatible” means here
that variables within groups Xj of {X1, . . . , Xk} can be arbitrarily exchanged in the variable
order of the ROBDD without affecting the value of the evaluation. In our implementation we
choose π(Φ) as the initial order when we build the ROBDD for matrix(Φ), but we activate
the dynamic reordering technique of “group sifting” [20] which dynamically tries to change
the variable order within the blocks with the goal of minimizing the number of needed
ROBDD nodes to represent matrix(Φ).

The second improvement comes into play when the matrix of the HSSAT formula Φ is given
in CNF, especially when it was produced from a circuit representation by a transformation
like Tseitin transformation [33]. In our implementation we use the “interpolation-based
gate extraction” by Slivovsky [27] which is based on the replacement of so-called “defined
variables” by their “definition”.

▶ Definition 11 ([27]). Let ϕ be a Boolean formula over X, X ′ ⊆ X. x ∈ X is defined in
terms of X ′ in ϕ iff α(x) = β(x) for any two full assignments α and β that satisfy ϕ and
agree on X ′. A definition of x by X ′ in ϕ is a formula ψ over X ′ with α(x) = ψ[α] for any
assignment α that satisfies ϕ.

Slivovsky [27] looks into QBF and considers existential defined variables and universal
defining variables. We adjust the approach of [27] to HSSAT by the following lemma:

▶ Lemma 12. Let x be an existential variable of a closed HSSAT formula Φ and for all hl
with 1 ≤ hl ≤ hlevel(x) the equation “0 op(hl) prob(hl)” does not hold. Let x be defined
in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in matrix(Φ) and let ψ be a corresponding
definition. Then Eval(Φ) = Eval(Φ[x := ψ]) where Φ[x := ψ] results from Φ by replacing x
with ψ in the matrix and omitting ∃x in the prefix.

On the one hand, Lemma 12 does not only allow universal variables to the left of existential
variables as defining variables, but all variables to the left. (A similar approach has been
already proposed in [27] as an improvement for the restricted case of QBFs.) On the other
hand, we need an additional restriction on the choice of defined existential variables that is
specific to Hierarchical Stochastic SAT. We prove the correctness of Lemma 12 in Appendix A.

The transformation of Lemma 12 is useful, since the replaced variables do not occur as
input variables in the ROBDD later on and the computed ROBDDs are smaller in most
cases. Semantic gate extraction has already been used in the context of SSAT solving [35].
Similar ideas have also been used in [16, 14] for model counting.
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5 Experiments

We implemented our prototype solver HSSATSolve with the ROBDD package CUDD
[28] using dynamic group sifting [20] for optimizing the variable orders. For all number
representations we use rational numbers from the GNU Multiple Precision Arithmetic Library
(GMP) [12]. All experiments were performed on one core of an Intel Xeon CPU E5-2650v2
CPU with 2.6 GHz using 16 GB of memory with a timeout of 30 CPU minutes. All
benchmarks and the code of our tool can be found at [25].

For our experiments we added logic locking to the combinational ISCAS’85 benchmarks [4]
and to the combinational parts of the ITC’99 benchmarks [8]. For logic locking we used the
method from [23] which randomly selects signals in the circuit and replaces them randomly
either with exor or exnor gates having a key bit as a side input (see also Figs. 2 and 3). We
considered key bit lengths of 4, 8, 16, 32, and 64. We generated the inverted miters of the
original and the locked circuits and generated HSSAT formulas of types

R

∃,

R

, ∃

R

, and H.
Formulas of type

R

∃ compute the fraction of unlocking keys (Eqn. (5)), formulas of typeR

the average criticality of keys (Eqn. (7)), formulas of type ∃

R

the existence of keys with
high criticality (Eqn. (6)), and formulas of type H the fraction of keys with high criticality
(Eqn. (8)). For all random quantifiers we considered input probabilities of 0.5.

To be able to evaluate the general quality of our prototype solver we first compared it
with existing tools. For this we translated the formulas of types

R

∃,

R

, and ∃

R

into CNFs by
Tseitin transformation [33]. Formulas of type

R

are Model Counting problems, formulas of
type

R

∃ are Projected Model Counting problems. For their comparisons, we considered the
best exact solvers of the Model Counting Competition 2023 [13]. We used SharpSAT-TD [15],
d4 [17], gpmc [32], and arjun-ganak [26, 29]. Formulas of type ∃

R

are SSAT formulas. Here
we compared with DC-SSAT [18], ClauSSat [6], ElimSSAT [35], and SharpSSAT [10].

For formulas with matrix in CNF we use a version HSSATSolvecnf of our tool. Here we
first apply the tool UNIQUE [27] which was adapted according to Lemma 12 to transform
the CNF into a circuit format, then we optimize the circuit using ABC [2, 3], and finally we
build ROBDDs for the matrix using CUDD with dynamic group sifting activated. Then we
evaluate the ROBDDs using Alg. 1. For formulas with matrix in circuit format we use a
version HSSATSolvecirc of our tool where the application of UNIQUE is of course omitted.

Fig. 6 shows a cactus plot for the comparisons using formulas of type

R

∃, Fig. 7 a cactus
plot for the comparisons using formulas of type

R

, and Fig. 8 a cactus plot for the comparisons
using formulas of type ∃

R

.
Overall, it turns out that our prototype solver competes well with the already existing

tools on formulas from our application domain of logic locking. Comparing HSSATSolvecnf

and HSSATSolvecirc the results show that HSSATSolvecirc clearly outperforms HS-
SATSolvecnf. The gap between HSSATSolvecnf and HSSATSolvecirc proves that the
semantic gate extraction procedure of UNIQUE is apparently not able to reconstruct the
original circuit structure from the CNF – although for our benchmarks this is easily possible
with a simple syntactic gate extraction method. Based on those observations we believe that
it will be possible to extend UNIQUE with certain improvements, but this will be the subject
of future work.

There are apparent differences between the results of Figs. 6 and 7, e.g.. Whereas gpmc
and arjun-ganak solve more formulas than HSSATSolvecirc on formulas of type

R

∃ (Fig. 6),
the situation is the other way round for SharpSAT-td and d4 on formulas of type

R

(Fig. 7).
In particular, HSSATSolvecirc solves more formulas of type

R

than formulas of type

R

∃.
To analyze the reason for this, we added an experiment with HSSATSolvecirc,ns which is a
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.

version of HSSATSolvecirc where group sifting during ROBDD construction is deactivated.
One can see that the cactus plots for HSSATSolvecirc,ns are pretty similar in Figs. 6, 7, and
8. This can be easily explained: The variables in the formulas of types

R

∃,

R

, and ∃

R

occur
in the same order, see Eqns. (5), (7), and (6), they only differ from their quantifier types.
The matrices of the formulas are (almost) identical (¬fIM for Eqn. (5), fIM for Eqn. (7),
fIM ∧ (K⃗ ̸= K⃗orig) for Eqn. (6)). Thus, HSSATSolvecirc,ns builds similar ROBDDs with
the same variable order which is not changed during the construction. Since the run times
of our approach are dominated by the ROBDD construction and evaluation is very fast in
comparison, the differences between the results of HSSATSolvecirc in Figs. 6 and 7 can be
explained by the fact that group sifting with a single group of variables in formulas of typeR

(Fig. 7) has more degrees of freedom than with two groups of variables for formulas of
type

R

∃ (Fig. 6).
For our formulas of type ∃

R

, HSSATSolvecirc outperforms the existing solvers, see
Fig. 8. Among the other solvers ElimSSAT performs best. ElimSSAT is well suited for our
formulas with input probabilities of 0.5. In general, it is only suited for input probabilities
which are a sum of negative powers of two [35]. If we have other probabilities for the inputs
X⃗ in Eqn. (6), then the input probabilities have to be rounded and ElimSSAT produces
errors of unknown and uncontrollable size. HSSATSolve can work with arbitrary rational
numbers as input probabilities and it works with unlimited precision.

Formulas of type H compute the fraction of keys with high criticality, see Eqn. (8). Here
we first investigate the effect of group sifting and of using logic synthesis by ABC before
building ROBDDs. In HSSATSolvecirc,nABC ABC is omitted, in HSSATSolvecirc,ns group
sifting is omitted, and in HSSATSolvecirc,nsnABC both techniques are omitted. For this
evaluation we fixed the criticality bound c to 0.999. (Note that there is basically no run time
difference for our method with different criticality bounds. Different values of c do change
the value of the result, of course, but not the evaluation steps which have to be performed
by Alg. 1.) Results for formulas of type H can be found in Fig. 9. The results show that the
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effect of ABC is less significant than the effect of group sifting. Whereas ABC apparently
accelerates the overall run times of the tool, it does not change the number of benchmarks
which are solved before the timeout. Group sifting helps on the other hand, as already shown
in the other experiments. Formulas of type H also lie in the class SSAT(Θ) recently proposed
by Fan and Jiang [11]. They presented the prototype tool ClauSSat(Θ) for solving SSAT(Θ)
formulas. However, Fig. 9 shows that ClauSSat(Θ) is currently not well suited for formulas
from our application domain.

In Figs. 10 and 11 we demonstrate how our tool can be used for quality assessment in
logic locking.

In a first experiment the criticality bound c of the keys is again fixed to 0.999 (which
would mean for an application that we consider a key only as highly critical, if it produces
correct outputs for at least 99,9% of the possible input combinations). We investigate how
increasing the key lengths influences the average fraction of keys with high criticality. Fig. 10
shows results for benchmark circuits b01, b03, b05, b06, and b13. For the chosen logic
locking method and the considered circuits the fraction of keys with high criticality rapidly
decreases with increasing key lengths (chosen in steps from 4 to 32). Since there is at least
one unlocking key, the fraction of highly critical keys can of course not be lower than 1

2kl with
key length kl. The results show e.g. that for circuit b05 the logic locking is not absolutely
perfect, since for key length 16 there is not only one, but there are 4 critical keys (out of
216 = 65536 possible keys), for key length 32 there are 32 critical keys (out of 232 possible
keys).

Fig. 11 shows (for a fixed key length of 16) how the fraction of keys with high criticality
changes, if we change our notion of “high criticality”. If we choose a criticality bound c = 80%,
then circuit c3540, e.g., still has 1138 keys (a fraction of approximately 1.7%) with high
criticality. Nevertheless, all of the considered circuits reach the lowest possible fraction of

1
216 for key length 16, if we consider a key only as critical, if it unlocks the circuit completely
(c = 1.0).
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6 Conclusions and Future Work

We introduced the problem of Hierarchical Stochastic SAT, we presented a prototype solver
for HSSAT, and we used the solver to investigate interesting questions in quality assessment
for logic locking methods. For some subclasses of HSSAT formulas for which solvers already
exist, the new solver compares favorably with the existing solvers. In the future, we plan to
use our new tool to compare the quality of different existing logic locking schemes. We also
plan to develop HSSAT algorithms going beyond ROBDD construction. Finally, we plan to
add certification to the solver.
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A Proof of Lemma 12

Proof. Let Φ be a closed HSSAT formula with matrix matrix(Φ) = ϕ which is recursively
evaluated according to Def. 5 and let x be an existential variable in its prefix.

Let α be an assignment over {y ∈ BV(Φ) | π−1(y) < π−1(x)}. Here we use the notation
Φ|α for the closed HSSAT formula which replaces matrix(Φ) by its cofactor matrix(Φ)|α,
removes all comparisons according to case (d) of Def. 3 at hierarchy levels > hlevel(x), and
removes all variables yi ∈ {y ∈ BV(Φ) | π−1(y) < π−1(x)} together with their quantifiers
Qi ∈ {∃, ∀,

Rpi} from the prefix of Φ.
Φ|α = (∃xΦ′) is a subproblem occurring during the recursive evaluation of Φ according

to Def. 5 with matrix(Φ|α) = ϕ|α.
Let x be defined in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ and for all hl with

1 ≤ hl ≤ hlevel(x) the equation “0 op(hl) prob(hl)” does not hold.
We make a case distinction wrt. the cofactors (ϕ|α)|x and (ϕ|α)|¬x of ϕ|α:
Case 1: Both (ϕ|α)|¬x and (ϕ|α)|x do not represent the constant 0 function.
This means that there are two full assignments β : BV(Φ) → {0, 1} and β′ : BV(Φ) → {0, 1}
with β(y) = β′(y) = α(y) for all y ∈ BV(Φ) with π−1(y) < π−1(x), β(x) = 1, β′(x) = 0,
and β[ϕ] = β′[ϕ] = 1. This is a contradiction to the assumption that x is defined in
terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ, since β and β′ both satisfy ϕ and agree
on {y ∈ BV(Φ) | π−1(y) < π−1(x)}, but β(x) ̸= β′(x). Thus, the case assumption cannot
hold, if x is defined in terms of {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ.
Case 2: (ϕ|α)|¬x represents the constant 0 function, (ϕ|α)|x not.
Since matrix(Φ′|¬x) = (ϕ|α)|¬x represents the constant 0 function and for all hl with 1 ≤
hl ≤ hlevel(x) the equation 0 op(hl) prob(hl) does not hold, we obtain Eval(Φ′|¬x) = 0.
We show Eval(Φ′|¬x) = 0 by proving Eval(Ψ) = 0 for all subproblems Ψ of Φ′|¬x

occurring during the recursive evaluation of Φ′|¬x according to Def. 5. We show this
by induction over the sum s := hlevel(Ψ) + |BV(Ψ)|. If s = 0, then either case (1) or
case (2) of Def. 5 applies to Ψ. Since f(ϕ|α)|¬x

= 0 by case assumption, case (2) of Def. 5
cannot occur. We are in case (1) and Eval(Ψ) = 0.
For cases (3), (4), and (5) of Def. 5 we have Ψ = ∃zΨ′, Ψ = ∀zΨ′, or Ψ =

RpzΨ′. We can
assume Eval(Ψ|¬z) = Eval(Ψ|z) = 0 by induction hypothesis and thus Eval(Ψ) = 0.
For case (6) we consider Ψ = (Ψ′ op(hlevel(Ψ)) prob(hlevel(Ψ)). We can assume by
induction hypothesis that Eval(Ψ′) = 0. Now we need our additional restriction on the
choice of defined existential variables to ensure that the comparison according to Def. 5,
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case (6), is not able to change the value 0 of Eval(Ψ′) into a different value. We have
1 ≤ hlevel(Ψ) ≤ hlevel(x), therefore 0 op(hlevel(Ψ)) prob(hlevel(Ψ)) does not hold
and thus Eval(Ψ) = 0 .
Now we have Eval(Φ′|¬x) = 0. According to Def. 5

Eval(∃xΦ′) = max(Eval(Φ′|¬x),Eval(Φ′|x)) = max(0,Eval(Φ′|x)) = Eval(Φ′|x).

Altogether we have

Eval(Φ|α) = Eval(∃xΦ′) = Eval(Φ′|x). (10)

Consider a definition ψ of x by {y ∈ BV(Φ) | π−1(y) < π−1(x)} in ϕ and a full assignment
β : BV(Φ) → {0, 1} with β(y) = α(y) for all y ∈ BV(Φ) with π−1(y) < π−1(x), β(x) = 1
and β[ϕ] = 1. Such an assignment β exists, since (ϕ|α)|x does not represent the constant
0 function. Since ψ is a definition, we have ψ[β] = β(x) = 1. Since ψ only depends on
variables from {y ∈ BV(Φ) | π−1(y) < π−1(x)}, we also have ψ[α] = β(x) = 1. Thus, we
have

Eval(Φ[x := ψ]|α) = Eval(Φ′[x := ψ[α]]) = Eval(Φ′|x). (11)

From Eqns. (10) and (11) we conclude

Eval(Φ|α) = Eval(Φ[x := ψ]|α). (12)

Case 3: (ϕ|α)|x represents the constant 0 function, (ϕ|α)|¬x not.
We conclude Eval(Φ|α) = Eval(Φ[x := ψ]|α) similar to Case 2.
Case 4: Both (ϕ|α)|¬x and (ϕ|α)|x represent the constant 0 function.
Similar to Case 2 we obtain Eval(Φ′|¬x) = 0 and Eval(Φ′|x) = 0. This leads to

Eval(Φ|α) = Eval(∃xΦ′) = 0. (13)

We have

Eval(Φ[x := ψ]|α) = Eval(Φ′[x := ψ[α]]) = 0 (14)

for arbitrary formulas ψ over {y ∈ BV(Φ) | π−1(y) < π−1(x)} and thus also for each
definition of x.

Case 1 cannot occur and in the remaining cases we have Eval(Φ|α) = Eval(Φ[x := ψ]|α)
for arbitrary assignments α over {y ∈ BV(Φ) | π−1(y) < π−1(x)}. This proves Eval(Φ) =
Eval(Φ[x := ψ]). ◀
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Abstract
Recent advances have enabled powerful distributed SAT solvers to emit proofs of unsatisfiability,
which renders them as trustworthy as sequential solvers. However, this mode of operation is still
lacking behind conventional distributed solving in terms of scalability. We argue that the core limiting
factor of such approaches is the requirement of a single, persistent artifact at the end of solving that is
then checked independently (and sequentially). As an alternative, we propose a bottleneck-free setup
that exploits recent advancements in producing and processing LRAT information to immediately
check all solvers’ reasoning on-the-fly during solving. In terms of clause sharing, our approach
transfers the guarantee of a derived clause’s soundness from the sending to the receiving side via
cryptographic signatures. Experiments with up to 2432 cores (32 nodes) indicate that our approach
reduces the running time overhead incurred by proof checking by an order of magnitude, down to a
median overhead of ≤ 42% over non trusted solving.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Theory of
computation → Automated reasoning; Computing methodologies → Distributed algorithms

Keywords and phrases SAT solving, distributed algorithms, proofs

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.25

Supplementary Material Collection (Experimental data and links to software): https://github.
com/domschrei/mallob-impcheck-data

archived at swh:1:dir:d1ea41171e7e9f185b5930797c61a5be40dc0f6b

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

Acknowledgements The author thanks Marijn J. H. Heule, who inspired and encouraged this work;
Florian Pollitt, Mathias Fleury, and Armin Biere who enabled this work with their enhancements to
CaDiCaL [39]; Peter Sanders for helpful discussions and valuable remarks; Patrick Hegemann for
double-checking cryptographic details; and all anonymous reviewers for their valuable feedback.

1 Introduction

The Boolean Satisfiability (SAT) problem, i.e., to satisfy a given Boolean expression or to
report its unsatisfiability, is an essential building block at the core of automated reasoning,
symbolic AI, and formal verification [18]. Due to its high practical relevance, increasingly
efficient SAT solving approaches have emerged over the last decades, prompting a plethora of
applications [11, 34, 35, 41, 42, 49, 52] to use SAT solvers as efficient blackbox engines. Today,
researchers and industrial users increasingly aim to exploit distributed environments [9, 13, 20]
to push the frontier of problems that are feasible to solve.

An important topic in SAT research is the reliability and trustworthiness of solvers [6, 8,
33, 36]. In particular, sequential solvers have been able for many years to output proofs of
unsatisfiability – witnesses for a formula’s unsatisfiability that can be verified by independent
and even formally verified proof checkers [30]. For the longest time, the best performing
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parallel and distributed solvers have been missing this crucial feature (cf. [26]). Only recently,
Michaelson et al. proposed a feasible approach to produce proofs with parallel and distributed
clause-sharing SAT solving [36]. The technology enabling this approach is a clausal proof
format called LRAT [14], where each clause derivation has a unique ID and explicitly
references the prior clauses required to check the derivation. This information allows to
feasibly reconstruct a single proof from many LRAT-producing SAT solvers that run in
parallel and periodically exchange clauses in an all-to-all fashion [36].

Even after these advances, the scalability of trustworthy parallel and distributed solving
remains lacking. In Michaelson et al.’s procedure, all relevant proof information is funneled
into a single process and then output sequentially. As such, the production and checking of a
combined proof is invariably throttled by the (I/O) bandwidth at the final process. Likewise,
to our knowledge all LRAT checkers so far are sequential. Note that proof size increases both
with solving time and, to a lesser degree, the number of solvers [36]. Maintaining the active
clauses in huge proofs may further slow down the proof checker or even cause main memory
shortage at some point. For all these reasons put together, we argue that the production
and checking of proofs currently poses a distinct bottleneck for trusted distributed solving.

To address this conceptual problem, we believe that it is sensible to slightly relax the
task at hand. Even if trusting a solver’s result is crucial, a witness for this result in the
shape of a persistent artifact may often be expendable – for instance, in continuous software
verification [10]. Dropping this requirement, we are able to replace Michaelson et al.’s
three-stage procedure with a single-stage procedure that finishes whenever solving finishes
(see Fig. 1). We build upon a suggestion by Marijn Heule to check proofs during solving
via inter-process communication and raise this idea to a scalable level: Each solver thread
now forwards each derivation to a checker process, which checks the derivation at once. To
transfer the guarantee of a clause’s soundness from one checker to another, each checker
outputs a cryptographic signature for each clause it checked. The receiving solver’s checker
then validates the signature by recomputing it. Given a secret key shared among all checkers,
we show this procedure to be as trustworthy as post mortem proof checking: Any bug or error
that happens to create an unsound clause with a valid signature is substantially less likely
than a trusted checker program is to “hallucinate” unsatisfiability due to a hardware-side
memory error. Our critical code is a small, isolated, and simple C99 codebase whose formal
verification we believe to be a distinct possibility in the near future.

We implemented our approach using the LRAT-producing solver CaDiCaL [39] and the
distributed system MallobSat [44, 45]. For a fair comparison, we applied a number of
updates to MallobSat with proof production [36]. Experiments on up to 2432 cores (32
nodes) indicate that our approach incurs a median slowdown of 40% (at 76 cores) to 42% (at
2432 cores) over conventional, non trusted solving. In comparison, the median slowdown of
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Figure 1 Schematic overview on a prior approach [36] (left) and our new approach (right) to
trusted parallel solving. Each line, very roughly speaking, corresponds to an execution thread.
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producing and checking a combined proof surpasses 330% at 76 cores and 750% at 1216 cores.
As such, our approach’s overhead is smaller by an order of magnitude and can enable trusted
solving in cases where explicit proof production is infeasible. We anticipate a number of use
cases for this technology, ranging from debugging parallel solvers over distributed solving
with error-prone or insecure communication to formally verified scalable SAT solving.

In Section 2, we introduce preliminaries and prior work on the subject. We describe our
approach in Section 3 and present an experimental evaluation in Section 4. In Section 5, we
discuss the possible ramifications of our contributions. Section 6 concludes our work.

2 Preliminaries

We discuss some relevant preliminaries to the work at hand with a focus on proofs of
unsatisfiability in sequential, parallel, and distributed SAT solving.

2.1 SAT Solving
We consider formulas in conjunctive normal form (CNF), i.e., of the form F =

∧k
i=1

∨ni

j=1 lij ,
where each of the k disjunctions is called a clause of length ni and each literal lij is a Boolean
variable or its negation. The Boolean satisfiability (SAT) problem is to assign a value to all
Boolean variables in F such that F evaluates to true or to recognize that this is impossible.
F is called satisfiable if such an assignment exists and unsatisfiable otherwise. We say that
a clause c is sound (w.r.t. F ) if and only if c is a logical consequence of F , i.e., F ∧ ¬c is
unsatisfiable. As a special case, F is unsatisfiable if and only if clause c = ∅ is sound w.r.t. F .

Today’s most popular and most efficient sequential SAT solvers build upon the Conflict-
Driven Clause Learning (CDCL) paradigm: The solver searches the space of partial variable
assignments and derives a redundant conflict clause whenever it encounters a conflict with
the current assignment [15]. These redundant clauses are crucial for pruning search space and
for eventually deriving the empty clause, i.e., the contradiction in an unsatisfiable formula.

The currently most scalable parallel and distributed SAT solvers are clause-sharing
portfolio solvers, where many (mostly CDCL) solver threads run in parallel on the original
formula and, crucially, periodically exchange promising learned conflict clauses [2]. We
recently confirmed that clause sharing is in fact the main driver of the scalability of the
state-of-the-art distributed solver MallobSat and can achieve decent performance even
if running identical, i.e., non diversified solver threads [45]. There are other parallelization
approaches to SAT with explicit search space splitting [25, 48], which we do not cover here.

We refer to the author’s dissertation [43] for a more detailed introduction to sequential,
parallel, and distributed SAT solving in the context of the work at hand.

2.2 Proofs of Unsatisfiability
If a formula F is satisfiable, any found satisfying assignment can be verified in linear time
by evaluating F under the assigned values. Since today’s solvers commonly output such a
satisfying assignment when reporting satisfiability, we do not consider their trustworthiness to
be a notable issue for satisfiable problems. By contrast, if F is unsatisfiable and a justification
for the claimed result is desired, the solver must produce a proof of unsatisfiability. Such a
proof contains the solver’s chain of reasoning that lead to the empty clause. Proofs can be
checked by independent and sometimes formally verified proof checkers [30]. They can also be
useful for reasons beyond trust, e.g., for Minimally Unsatisfiable Subset (MUS) extraction [3]
or for analyzing the efficiency [47] or scalability [28] of solving approaches.
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In this work we focus on the LRAT (Linear Reverse Asymmetric Tautology) clausal proof
format [14]. Simply put, LRAT proof information output by a solver reflects the solver’s
changes to its clause set: If a new clause is derived, a clause addition (or derivation) is
appended to the proof, and if a clause is discarded, a corresponding deletion statement is
appended to the proof. The LRAT format requires each derivation of a clause c to be labeled
with a unique ID, id(c), and to explicitly include the required dependencies for this derivation,
often called hints, in the form of a sequence Dc of clause IDs. A deletion statement features
a sequence of IDs that refer to the clauses to delete.

LRAT proof checkers traverse the proof information at hand in a single linear pass.
A checker first receives all original problem clauses F and initializes its own clause set
C := F . It then successively applies the proof’s individual clause additions and deletions to
C. Clause deletions are strictly speaking not required but are important in practice since
they significantly reduce the memory footprint of proof checking [23]. Each clause addition is
checked using the LRAT criterion or, in many cases, a simpler special case named the LRUP
criterion. While the former corresponds to the most powerful proof format known [29], the
latter currently covers most solvers’ reasoning, including CaDiCaL’s (which we use for our
study) [39]. For a derivation of clause c with dependencies Dc, LRUP requires that the clause
set {{l̄} : l ∈ c} ∪ {c′ : id(c′) ∈ Dc, c′ ∈ C} results in an efficiently computable conflict:
Asserting the negated literals of c, the sequence of clauses referenced by Dc must break down
into unit clauses and, finally, the empty clause. As such, the checker confirms that C ∧ ¬c

results in unsatisfiability. Therefore, c is sound w.r.t. C. The derivation of the empty clause
c̃ := ∅ poses a special case where the unsatisfiability of C, and hence F , is testified.

Few parallel solvers support proof production. One of them is Gimsatul [19], an
integrated shared-memory solver written from scratch. Its architecture allows for outputting
a single consistent DRAT proof from all solver threads. Unlike LRAT, the earlier DRAT
format [22] does not feature any explicit dependency information, which renders DRAT proofs
easier to produce but substantially more expensive to check [14]. Gimsatul’s approach is
limited to shared memory, and combining multiple DRAT proofs into a single proof has, so
far, largely resulted in proofs that are infeasible to check [26, 36].

Michaelson et al. [36] recently proposed a more general approach to proof production
that is viable in distributed environments. It features the following stages:
1. Solving: All solver threads write their LRAT proof information to individual partial

proof files. Clause IDs are assigned in a globally unique manner: All clause IDs produced
by a certain solver are pairwise congruent modulo the total number of solvers.

2. Combination: As soon as a solver finds the empty clause, the solving procedure is
rewound. All solver threads read their respective partial proofs in reverse and trace all
transitive dependencies of the found empty clause. Each clause sharing operation is
reversed by redistributing the IDs of required remote clauses back to their origin. All
clause derivations identified as required are funneled into a single process, which writes
the combined and dependency-ordered LRAT proof information to a single file. Note
that this information cannot be streamed to a checker directly since it is still reversed.

3. Checking: The combined proof is read from back to front, which amounts to the correct
chronological order, and is validated by a sequential LRAT checker.

In its original form, this proof production approach featured additional pre– and postpro-
cessing stages (such as exhaustive unit propagation prior to solving), which were required due
to limitations of the used solver backend [36]. Since then, Pollitt et al. published a version
of CaDiCaL with full LRAT support [39] that renders these steps obsolete. We outline
according updates of Michealson et al.’s approach in some more detail in Section 4.2.1.
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Figure 2 Information flow in a solver process with our approach. Each SAT solver thread emits
LRAT proof information, which is streamed to the solver thread’s corresponding checker instance
(red pipe downwards). A checker produces signatures for checked clauses (green pipe upwards).
Some of the signed clauses are exported and exchanged across processes. Incoming shared clauses are
forwarded to the corresponding solvers. Successfully imported clauses, together with their signatures,
are as well streamed to the respective checker.

3 Trusted Solving Approach

We now present our approach to trusted parallel and distributed solving.

3.1 Overview

Our approach exploits a suggestion by Marijn Heule for the setting of sequential SAT solving:
Given a SAT solver that “natively” produces LRAT information [39], its proof output can
be redirected to a concurrently running LRAT checking process that checks the solver’s
reasoning on-the-fly.1 This can be achieved with inter-process communication (e.g., UNIX
pipes) and hence without writing proof information to disk. Note that this method is not
necessarily viable for the earlier and still more widely used DRAT proof format [22] since
DRAT checking is substantially more expensive and therefore likely to stall solving.

Our distributed solver employs p solver threads distributed across m processes, with
t = p/m solver threads per process. Each solver thread produces a stream of LRAT proof
information, assigning globally unique clause IDs just like in Michaelson et al.’s approach
(Section 2.2). We suggest to perform the on-the-fly checking outlined above for each solver
thread, running one associated checker instance (i.e., LRAT checking process) each.

An important observation for our approach is that a sound clause is sound globally: Once
established to be implied by the input formula, a clause can safely be used regardless of its
particular dependencies or a checker’s internal state. As such, once a derived clause has
been checked by some checker instance, other checker instances can add the clause without
checking, i.e., as if it were an axiom or an original problem clause. The clause can then be
referenced in subsequent derivations just like locally produced clauses.

Fig. 2 illustrates the resulting solving and checking setup. All produced clause derivations
are first redirected to the solver’s associated checker instance. Clauses can only be exported
and shared after they have been checked. (This is ensured not only by the proposed
architecture but also by a signing mechanism that we explain in detail further below.)

1 https://github.com/marijnheule/coch-demo
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By checking each clause before exporting it to other solvers, it appears obvious that each
clause used in the distributed solving procedure has been checked at some point, and one
may argue that this is sufficient to render distributed solving trustworthy. However, we do
not want to rely on the correctness of distributed clause sharing and its underlying buffering
and communication mechanisms. For instance, a single flipped bit in a clause sharing buffer
can result in an allegedly sound clause that in fact induces a wrong result. Perhaps a more
realistic scenario, a programming error that (under rare circumstances) causes reading of a
buffer beyond its limit can result in “garbage clauses”. As an example, the distributed solver
MallobSat [45] features multithreading, multi-processing, inter-process communication
with UNIX pipes and shared memory, and distributed asynchronous message passing. All
of these mechanisms are involved in clause sharing. Programming such systems can be
challenging, and formally verifying distributed programs is laborious and only covers selected
aspects of the used technology stack [32, 51]. Even if application code is provably correct,
implementations of the Message Passing Interface (MPI) are known to suffer from bugs [16].
For these reasons put together, we suggest to not make any assumptions on the behavior nor
the correctness of a distributed solver and its underlying communication mechanisms.

Our aim is to transfer the guarantee of a clause’s soundness from one checker instance to
another without relying on correct transmission of clauses. To this end, we have each checker
module emit a signature S(c) for a checked produced clause c. Just like its LRAT clause
ID [36], this signature is considered part of the clause during sharing. At the receiving side,
the checker module validates the incoming clause’s signature upon its import. Under the
guarantee that only trusted modules are able to compute clause signatures, we show that
this method grants full confidence in the soundness of all clauses leaving a solver-checker
unit. We also use the same signing mechanism for a second purpose, namely to ensure that
all solvers indeed operate on the same, intended input formula.

3.2 Interface
Our solving procedure features three kinds of trusted modules: one parser at one particular
process; p checkers I1, . . . , Ip (t per process, i.e., one per solver thread); and, optionally, a
confirmer at some process. We assume that our distributed solving procedure has a private
input to these p+2 modules, namely a 128-bit key K that will be used to compute signatures.2
K is handed to our trusted modules directly and must be inaccessible otherwise.

First, a parser takes a path to the input formula F . It parses F , computes the signature
S(F ) for F , and returns the pair (F , S(F )), which can then be distributed to all processes.

Next, we describe the interface of each checker I, shown in Fig. 3. Note that this interface
generalizes the LRAT proof format: load corresponds to specifying the formula, produce
corresponds to adding clause derivations, and delete corresponds to deleting clauses.

The first call a checker expects is init, where the caller commits to the formula’s
signature S(F ) in advance. I then receives F via load. Our interface supports multiple
subsequent calls to load, which allows reading large formulas in chunks. Loading F must be
concluded with end_load, at which point I recomputes the signature on the loaded literals
to support that the loaded formula is indeed the one parsed before. The remaining methods
are used during solving to process LRAT proof information. At each call to produce, the
flag share indicates whether the produced clause c is intended to be shared. If this flag

2 We do not consider the problem of secure key distribution (e.g., [53]). This problem heavily depends on
choosing a specific attacker model, which is not the focus of our work.
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Requires UNINITIALIZED - Ensures INITIALIZING
init(sig: Signature) → void

Requires INITIALIZING - Ensures INITIALIZING
load(formula: ClauseSet) → void

Requires INITIALIZING - Ensures VALID or INVALID according to output
end_load() → bool

Requires VALID - Ensures VALID or INVALID according to output
produce(id: ID, lits: Clause, hints: IDList, share: bool) → (bool, Signature?)

Requires VALID - Ensures VALID or INVALID according to output
import(id: ID, lits: Clause, sig: Signature) → bool

Requires VALID - Ensures VALID or INVALID according to output
delete(ids: IDList) → bool

Requires VALID - Ensures VALID or INVALID according to output
validate_unsat() → (bool, Signature?)

Terminates checker module from any state
terminate() → void

INITIALIZING VALID

INVALID TERMINATED

init

load

end load

end load

validate unsat
delete
import
produce

validate unsat

terminate

terminate

produce
import
delete

terminate

*

Figure 3 Checker interface with basic contracts (top) and corresponding state machine (bottom).
Some directives can cause a VALID or INVALID state based on the operation’s success. Transitions
that violate a contract, e.g., calling load from VALID, all lead to INVALID and are omitted.

is true, the call returns signature S(c) on success. Each incoming clause c, before being
referenced in subsequent derivations, must be introduced via import together with S(c),
which the receiving checker validates by recomputing S(c). Deletion of clauses (delete)
works exactly as in usual LRAT proofs. Finally, if a solver thread returns from solving and
reports unsatisfiability, validate_unsat can be queried to confirm that the empty clause has
indeed been found and validated through load/endload, produce, or import. On success, a
special signature ŝ based on S(F ) is output, certifying the unsatisfiability of F .

All methods that allow for a failure state return a truth value indicating whether the
respective operation was successful. A checker instance I that returned false at any point
from any call will never return true from subsequent calls, in particular to validate_unsat.

Lastly, the confirmer can be invoked after solving to validate an alleged unsatisfiability
signature ŝ. It takes ŝ and the path to F , parses F and computes S(F ), internally re-computes
ŝ based on S(F ), and outputs whether it found ŝ to be sound. We consider this step of
confirmation a necessity only if the output obtained from a parallel solver cannot be trusted.

SAT 2024



25:8 Trusted Scalable SAT Solving with On-The-Fly LRAT Checking

3.3 Signatures
We now describe how we define the signature function S in such a way that only our trusted
modules can compute it – effectively ensuring that only checked clauses can be imported.

Our signature function S(·) := SK(·) is parametrized with secret key K and evaluated in
three different contexts: on a formula F , on a single clause c, or to certify unsatisfiability
(“⊥”). We define SK based on cryptographic Message Authentification Codes (MACs) [21],
where a sender and a receiver uphold a message’s authenticity by computing a signature
based on a shared secret key. Specifically, we use SipHash [1], a fast and popular keyed
pseudo-random function (PRF) that only uses addition, rotation, and XOR (“ARX”). For
highest confidence, we use the SipHash variant that produces 128-bit signatures.

Let HK : {0, 1}∗ → {0, 1}128 be the SipHash-2-4-128 function with key K and let “||”
denote concatenation of data. We define SK for the three above contexts as follows:

SK(F ) := HK( F ), SK(c) := HK( id(c) || c || SK(F )), SK(⊥) := HK( 20 || SK(F )).

Defining SK(c) relative to SK(F ) is optional hardening to ensure that interacting checkers
indeed operate on the same key and the same formula. We define SK(⊥) rather arbitrarily
to sign the customary return code “20” for unsatisfiability. Adding SK(F ) to an input does
not weaken the MAC – since HK(x) is a PRF, HK(x ||α) is also a PRF for any α that does
not leak information on K.3 We also ensure that all inputs are unambiguous and that our
definitions have disjoint inputs: F is encoded as 4-byte integers ending with a 2-byte zero,
20 || SK(F ) is 1 + 16 = 17 bytes long, and clause signatures are based on 8 + 4|c|+ 16 bytes.

3.4 Correctness
We now establish the correctness of our approach given idealized signature guarantees.

▶ Theorem 1. Consider our trusted solving setup for formula F . Assume that each string s

that constitutes a valid signature for object x with key k indeed originates from computing
s← Sk(x) within our trusted code. If the solving setup outputs SK(⊥), then F is unsatisfiable.

Proof. We assume the above prerequisites. First, since only checkers can output SK(⊥),
there is a checker Î that answered to a query validate_unsat with SK(⊥). This implies
that Î received the empty clause ĉ := ∅ (a) via load/end_load, (b) via produce_clause, or
(c) via import_clause.4 Case (a) directly implies the unsatisfiability of F : end_load must
have been called after all load calls but before validate_unsat, and end_load checks via
S(F ) that all loaded clauses, and ĉ in particular, belong to F . In case (b), Î checked ĉ, and
in case (c), another checker I ′ signed ĉ and therefore checked ĉ. In both cases (b) and (c), ĉ

was checked, which renders ĉ sound if the clauses Dĉ in the derivation of ĉ are sound. For
each clause in Dĉ that is not an original problem clause, we recurse on the argument we just
made for ĉ itself. Since each derived clause c relies on |Dc| > 0 prior clauses and is added to
a checker only after its checking, the dependencies across clauses must form a DAG whose
source nodes are clauses added without checking nor dependencies, i.e., via load. As such,
the derivation of ĉ is sound if all clauses added via load by any contributing checker are
original clauses of F . Since any contribution by a checker requires a prior call to end_load
(see case (a)), which validates the loaded formula, all contributing checkers indeed operate
on the intended F . The derivation of ĉ is thus sound and F is in fact unsatisfiable. ◀

3 By contradiction: Any strategy distinguishing g(x) := HK(x || α) from true randomness can be modified
into a distinguisher for f(x) := HK(x) just by replacing each call g(x) with a call f(x || α).

4 The empty clause is usually not shared since its derivation renders any further sharing obsolete.
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For the reverse direction, our approach can preserve a sequential solver’s completeness:

▶ Theorem 2. Consider an error-free execution of the described trusted solving setup for
formula F where one solver thread is complete. If F is unsatisfiable, then SK(⊥) is output.

Proof. Consider the checker instance Î of a complete sequential solver S. Î functionally
subsumes a plain LRAT checker that mirrors the reasoning of S. Assuming sound proof
logging, Î will thus receive and validate the empty clause ĉ, which S derives eventually. S then
terminates with unsatisfiability, which our setup confirms by querying validate_unsat in
Î. The added capabilities of our checker over plain LRAT checking cannot obstruct any of
these operations. In particular, error-free clause imports can only accelerate the progress
towards unsatisfiability. As such, Î will indeed output SK(⊥). ◀

Note that any call to import with an incorrect signature functionally disables the checker,
which makes it impossible to export further clauses or report unsatisfiability from the
respective solver. Our underlying design decision is that we aim to notice every error and
hence interrupt solving globally even if the solving procedure is in principle recoverable. In
other settings, perhaps when faced with error-prone communication or exascale computing,
it may be sensible to let checkers continue normally after rejecting a particular import.

3.5 Confidence
Let us now discuss the conditions causing the above assumptions to break in such a way that
our trusted code reports unsatisfiability for a certain satisfiable formula F . We still assume
that our p + 2 trusted processes are sound, uncompromised, and the only actors knowing K.
Under these assumptions, we can discern the following attack vectors:
1. An unsatisfiability certificate SK(⊥) is obtained for F (although F is satisfiable).
2. A checker imports a clause-signature pair (c, s) where c is unsound w.r.t. F but SK(c) = s,

which can lead to incorrect results and hence enable attack 1 (in particular if c = ∅).
3. A formula F ′ ̸= F results in a collision SK(F ) = SK(F ′), which allows to re-use signed

outputs related to F ′ for F . This enables attacks 1 (if F ′ is unsatisfiable) and 2.
4. The secret key K is recovered, which in particular trivially enables attack 1.

All of the outlined attacks involve either to obtain K or to otherwise forge a pair (o,SK(o))
for an object o chosen by the attacker. (For attack 3, finding the desired second preimage
F ′ for SK(F ) implies such a forgery for o := F ′.) MAC schemes such as SipHash claim
protection against both forgery and key recovery. Specifically, if an attacker is able to guess
and test 2x 128-bit SipHash signatures for an object o of their choosing, they can find a
valid signature for o with probability 2−128+x. Likewise, if an attacker can guess and test
2x values of K, they succeed at obtaining K with probability 2−128+x [1]. This presumably
holds even if the attacker can query signatures for objects o′ ≠ o at will. Assuming that a
single invalid signature aborts the solving procedure and that a different key K is used for
each solving attempt, we have x = 1, which yields a success probability of around 10−38. As
such, successful forgery or key recovery can be ruled out for all practical purposes.5

We argue that the deliberate attacks outlined above cannot be outdone by inadvertent
bugs or errors during distributed solving. In particular, data corruption that happens to
result in a forged signature must be by pure chance (2−128) as long as K is not accessed.

5 Schroeder et al. [46] estimate that around 104 to 105 DRAM errors occur per 109 device hours, translating
to roughly 10−8 memory errors per second. Even if only a byte out of a terabyte (10−12) in a device’s
main memory was critical to a checker’s correctness, a memory error leading to an incorrect result
would be a quintillion times more likely (10−8 · 10−12 = 10−20) than 10−38.
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Accidental reading of K, in turn, is ruled out since K is available only within the confined
address spaces of our trusted modules. For practical purposes, if no protection against
malicious intent is required, we consider the use of one fixed K for all solving attempts to be
sufficient for highest confidence in the produced results.

3.6 The Road To Verified Distributed Solving
We now briefly discuss how our work relates to potential efforts towards formally verified
and, in particular, provably correct parallel and distributed SAT solving.

As of yet, neither our on-the-fly checking approach nor its particular implementation are
formally verified. We do consider such an undertaking a distinct possibility for future work.
In particular, we believe that formal verification efforts for prior LRAT checkers [24, 50] are
extensible to the additional interface methods in our trusted modules – under the assumption
that our signing scheme guarantees perfect authenticity – with modest effort. Such prior
works used verified toolchains like ACL2 or CakeML to produce verified code down to the
machine instruction level [24, 50]. Alternatively, we may pursue direct verification of our
critical code (see Section 4.1), combined with the use of a verified compiler [31].

Verified SAT solving usually encompasses the aspects of correctness (separable into the
correctness of SAT and UNSAT results) and termination [6]. Verifying the correctness of our
approach would equate to obtaining a verified distributed SAT solver in terms of UNSAT
correctness. This can easily be extended to SAT correctness by checking the found satisfying
assignment in the corresponding checker instance.6 We consider verification in terms of
termination to be of less practical interest for parallel solvers. That being said, verified
termination could be achieved by running an isolated verified SAT solver, e.g., IsaSAT [6],
next to the portfolio and terminating globally when that solver exits.

4 Evaluation

We now present the evaluation of our approach, beginning with a discussion of our imple-
mentation, then outlining our experimental setup and the changes we made to Michaelson et
al.’s proof production approach, and finally presenting results. Our experimental data and
all our code can be found via https://github.com/domschrei/mallob-impcheck-data.

4.1 Implementation
Our implementation bases on MallobSat [44, 45], the state of the art in distributed SAT
solving, with LRAT-producing CaDiCaL [39] as a solver backend. We connected CaDiCaL’s
LRAT proof tracer interface, where each derivation and deletion arrives, to an interface that
connects to the solver thread’s checker sub-process. The solver thread itself writes each
emitted LRAT directive to a single-producer, single-consumer ring buffer R and is then free
to continue solving. A dedicated thread polls directives from R and forwards them to the
sub-process; another thread reads responses from the sub-process and reacts accordingly,
e.g., by exporting a derived clause with the returned signature. As such, a solver thread
only needs to wait for its checker sub-process if the solver produces proof information faster
than can be processed (in which case the solver thread blocks waiting for free space in R).
No unsound derivation nor UNSAT result can ever leave a solver-checker unit; both cases
require a valid signature and thus an explicit confirmation from the checker.

6 We have in fact integrated such a mechanism into our checker interface (see Section 4.1), with the caveat
that (at least) one checker per SAT process is required to preserve all original problem clauses, which
are needed to check an assignment. Our experimental evaluation does not yet include this feature.

https://github.com/domschrei/mallob-impcheck-data
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Our trusted modules are written in pure C99, which is well supported for future efforts on
verification [4] and verified compilation [31]. We kept this trusted codebase isolated, small,
and simple. We only use few standard library features such as memory allocation and file
I/O. In terms of program instructions, our inter-process communication via named pipes is
indistinguishable from plain, linear file I/O and thus does not expose any private memory
segments. Our implementation amounts to around 1000 effective lines of code (ELOC). In
comparison, we counted around 40k ELOC in CaDiCaL, 60k ELOC in Mallob [40], and
over 300k ELOC in Open MPI (ompi and opal). As such, our approach may reduce the
code critical for a distributed solver’s correctness by two orders of magnitude.

We tested our code with small random manipulations during a solving procedure (e.g.,
inserting a superfluous dependency in a derivation or tampering with a clause literal during
clause sharing), confirming that an appropriate error is output and that solving aborts.

4.2 Experimental Setup
We run all experiments on a high-performance cluster called HoreKa located in Karlsruhe,
Germany. Each used compute node has access to 256 GB of main memory and features two
Intel Xeon Platinum 8368 sockets with 38 cores each. Each core consists of two hardware
threads, leading to a total of 152 hardware threads per compute node. Nodes can communicate
via an InfiniBand 4X HDR interconnect.7 We made sure that high-bandwidth output, such
as proofs, is written to local disks (960 GB NVMe SSD) rather than a network file system.

We consider two solver systems in their latest version: the shared-memory solver Gim-
satul [19] and the distributed solver MallobSat. Since we are unsure how well Gimsatul
handles 76 cores across two sockets, we run this solver in two modes: on all 76 cores of
a node, and on one socket (38 cores) only. Regarding MallobSat, we use 1–32 compute
nodes (76–2432 cores) at once, thus covering the range from moderate parallelism up to a
massively parallel scale. We spawn two processes per node (one per socket), run up to 38
solvers per process, and leave the remaining hardware threads to other concurrent tasks such
as LRAT checking and clause sharing. This is in line with MallobSat’s deployment in most
earlier works [40, 44, 45], the only difference being that hardware threads not occupied with
SAT solving now need to perform more work, which may in turn slow down solver threads.

Regarding MallobSat, we focus on a CaDiCaL portfolio, which proved to perform
competitively in recent experiments [36, 45]. We refer to our approach as M-ImpChk
(“MallobSat with immediate massively parallel propositional proof checking”), to
MallobSat with explicit proof production as M-Proof, and to MallobSat without
any proof processing as M-nt (“non trusted”). Our version and configuration of Mal-
lobSat is similar to the one described recently [45] apart from the updated CaDiCaL
backend (Section 4.1). Since M-ImpChk requires more RAM due to concurrent checking, we
halved M-ImpChk’s memory threshold per solver, which implies that the largest instances
(hundreds of megabytes) are solved with fewer solvers than in M-nt or M-Proof.

We use the 400 benchmark instances from SAT Competition 2023. Note that these
benchmarks contain some crafted instances that are designed to be difficult to solve with
general resolution [7, 12]. MallobSat can solve some of them when using its Lingeling
backend, which features some non-standard reasoning techniques without proof support [5, 27].
Since we use CaDiCaL without any extended resolution features, we ignore the according
offset in performance and leave trusted solving with such advanced reasoning for future work.

7 https://www.nhr.kit.edu/userdocs/horeka/hardware/
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We allow up to 300 s of wallclock time for solving and up to 1500 s of wallclock time each for
combining and for checking a proof. For M-Proof we consider three timings: the solving
time (ST), which is the time span from program start to a solver reporting a result; the “time
until proof ” (TuP), which is the time span from program start to the presence of a single
proof artifact that is checkable in a single linear pass; and the “time until validation” (TuV),
which corresponds to the TuP plus the time required to check the proof. For M-ImpChk,
there is no TuP; its TuV corresponds to its ST, since we stop the ST at the point where an
unsatisfiability result is confirmed by a checker instance. We primarily assess an approach in
terms of its ST / TuP / TuV overhead, which is the ratio between its ST / TuP / TuV and
the ST of M-nt, minus one.

4.2.1 Updates to Proof Production
We now outline the changes we made to M-Proof in order to make its running times more
competitive and to render proof production and checking more feasible in our experiments.
Note that these changes will shortly be published separately and in more detail [37].

The updated CaDiCaL backend allowed us to remove a previously required sequential
preprocessing step that exhaustively performed unit propagation on the input. We corres-
pondingly do not need to produce and prepend a proof for this preprocessing. Moreover, the
original setup featured postprocessing where the inverted combined proof is un-inverted and
syntactically transformed to feature a compact domain of IDs. This step was a necessity
because of relatively poor tool support for the kind of LRAT proofs M-Proof emits (albeit
perfectly valid in principle). Specifically, lrat-check from the drat-trim toolbox is not
able to gracefully handle large gaps between subsequent clause IDs. The more recent checker
lrat-trim [39] operates on 32-bit IDs and is hence not suitable either. In our setup, we use
a standalone, fast LRAT checker crafted from MallobSat code that can operate directly
on the compressed and inverted proof. As such, we measure the TuP up to the point where
the combined, compressed, and reversed proof has been written. The TuV then adds a single
linear read of the proof file,8 thus minimizing I/O operations.

4.3 Results
We first compare the solving times (ST) of all considered approaches. Fig. 4 provides an
overview, with exact values provided in Tab. 1. Note again that this does not include the
time required by M-Proof to combine and check proofs nor the DRAT proof checking time
for Gimsatul. All approaches consistently show improved performance when increasing the
computational resources. Gimsatul did not reach the performance of MallobSat. As a
side note, we consider it notable that running Gimsatul across both sockets does perform
better than only using a single socket. M-Proof now performs very similarly to M-nt
following our updates (cf. [36]). The overhead of M-ImpChk, which we analyze below, is
more noticeable. Still, M-ImpChk at 16 (4) nodes is able to outperform all approaches at 4
(1) nodes, and M-ImpChk at 32 nodes is on par with M-nt at 16 nodes.

Fig. 5 provides a detailed comparison of M-nt vs. M-ImpChk solving times at the
smallest and largest scale considered. The incurred overhead is consistent, stable, and does
not correlate with M-nt’s solving times (Pearson’s r: -0.11 at 1 node, -0.16 at 32 nodes).

Fig. 6 (leftmost plot) shows the per-instance overhead of M-ImpChk. At all scales, the
observed overhead is below 70% (i.e., slowdown 1.7) for three out of four instances and at
most 42% for the median instance. Specifically, the median overhead ranges from 37.1%

8 Our reverse file parser uses buffering to reverse-read roughly as fast as usual forward reading.
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Figure 4 Pure solving times of M-nt, M-Proof (excluding proof combination and checking),
M-ImpChk, and Gimsatul (excluding proof checking), on 1–32 nodes. Colors delineate the ap-
proaches, line styles indicate the scale of solving. “16×76 proof” is omitted to reduce clutter; the
corresponding curve is closely aligned with “16×76 nt”.

(at four nodes) to 42.1% (at 32 nodes), with the geometric mean ranging from 37.7% (at
16 nodes) to 45.6% (at one node). In addition, we averaged the checker processes’ CPU
utilization during a solving attempt to analyze how much time the checkers spend on actual
processing vs. waiting for the next directive. We arrived at a median utilization from 11.2%
at one node to 12.4% at 32 nodes (geometric mean 10.4%–11.0%), which indicates that our
checkers are mostly idle9 and, in turn, have no difficulties with processing the produced
proof information and computing signatures on-the-fly. The increased communication volume

9 The low CPU ratio is not a consequence of over-subscribed hardware threads. All non-solver, non-checker
threads use little CPU time and thus leave plenty of CPU time for the checkers.

Table 1 Solved instances (“#”) and PAR-2 scores (“PAR”) of each run, only considering pure
solving times (excluding proof combination/checking for M-Proof and Gimsatul).

all satisf. unsat.
# nodes # PAR # PAR # PAR

M-nt
1 257 241.5 120 248.7 137 234.3
4 275 211.5 124 233.9 151 189.1

16 283 196.2 126 229.2 157 163.3
32 293 184.2 128 222.6 165 145.7

M-Proof
1 253 250.0 119 254.1 134 245.9
4 272 216.7 122 239.1 150 194.3

16 282 197.4 126 228.5 156 166.4

M-ImpChk
1 257 251.5 122 250.2 135 252.7
4 271 222.3 124 235.0 147 209.6

16 283 201.0 128 225.8 155 176.3
32 285 195.3 129 221.5 156 169.1

Gimsatul
1/2 226 286.3 120 250.5 106 322.1

1 234 279.1 122 246.7 112 311.6
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Figure 5 Solving times of M-nt vs. M-ImpChk on one (left) and 32 nodes (right). Points on the
central diagonal denote instances solved equally fast; the dotted diagonal shows where M-ImpChk
takes twice as long. Blue “+” denote satisfiable, orange “×” unsatisfiable instances.

(with each clause now carrying 192 bits of metadata) appears to be unproblematic as well,
which is unsurprising considering that MallobSat does not even remotely exhaust the
communication bandwidth of HPC interconnects [45]. All of these observations support that
our approach to trusted solving is scalable and bottleneck-free.

Fig. 6 (right) shows the overhead incurred by M-Proof. The median ST overhead is
below 11% at all scales, which indicates that producing and writing LRAT proof information
is inexpensive in and of itself. The TuP overhead, by contrast, is substantial and increases
with the scale of solving; even at a single node (median 104%), it surpasses the TuV overhead
of our approach at any scale. Going from 4 to 16 nodes, the growing TuP overhead (median
196% to 275%) even causes a decreasing number of successfully produced proofs (146 to 141).
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Figure 6 ST overhead (= TuV overhead) of M-ImpChk; and ST, TuP, and TuV overhead (the
latter two for unsatisfiable instances only) of M-Proof. Numbers at the top show the number
of considered data points. ∗Some data surpasses the displayed interval and has been cut off.
†TuV overheads at 4 and 16 nodes are not real measurements but estimated based on the checker’s
proof traversal time at one node scaled by the obtained proof size at 4 and 16 nodes respectively.
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Across the 127 instances where M-Proof produced a proof at all three tested scales, the
mean proof size increases from 7.33 GiB at one node to 10.73 GiB (+46%) at four nodes and
finally to 14.46 GiB (another +35%) at 16 nodes. As such, it became increasingly challenging
to store and/or check all produced proofs, which exceed 4.5 TiB for the 16-node run alone.
Therefore, for all runs beyond a single node, we only retained the size (in bytes) of a proof
and then deleted it without checking. To still gain an impression on the TuV at 4 and
16 nodes, we extrapolated estimates based on the assumption that, for a fixed instance, a
proof’s checking time grows linear in the proof’s file size. We estimated an instance’s TuV
at 4 (16) nodes by its TuP plus its one-node proof checking time, scaling the time needed
to traverse the proof by the obtained proof size at 4 (16) nodes. This extrapolation only
covers instances where already the single-node run produced and checked a proof, and the
estimates can exceed our actual proof checking time limit of 1500 s. The estimated median
TuV overhead increases steeply with the scale of solving – from 233% at one node to 416%
at four nodes and to 657% at 16 nodes. Overall, our experiments and analysis have fully
confirmed our concerns with respect to the scalability of M-Proof.

The complete DRAT proofs output by Gimsatul average 2.36 GiB for the 38-core variant
and 3.10 GiB for the 76-core variant. Out of 97 38-core proofs that drat-trim deemed
complete and sound, only 65 proofs were checked successfully, at a median overhead of 475%
(geometric mean 629%), while 32 checking attempts timed out. This confirms that checking
DRAT proofs from parallel solvers can at times border on infeasible [19, 26].

Lastly, we tracked MallobSat’s peak global RAM usage (measured once a second).
For the median instance at 32 nodes, M-ImpChk increased the RAM usage over M-nt by
around 60%. Note that we reduced M-ImpChk’s per-solver memory threshold (Section 4.2),
which however was only triggered in four cases. By contrast, M-Proof incurs virtually no
RAM overhead (median < 3% at all scales) since all proof information is written to disk and
processed with external-memory data structures [43, Sect. 5.5].

5 Discussion

In the following, we discuss the merits and the limitations of the proposed approach.
We believe that our approach can be applied to many other clause-sharing solvers. Its

requirements are that each solver thread outputs LRAT information and that each clause
is shared with its LRAT ID and its signature. Unlike M-Proof, whose proof combination
is based on periodic all-to-all clause sharing, our checking can be used with any clause
sharing, including exchanges along rings [54] or communication graphs [17]. On a pragmatic
level, we release our trusted modules (Section 4.1) together with introductory examples and
documentation on how developers can integrate them into a parallel solver.

Our approach does not rely on I/O speed nor large amounts of disk space. While not yet
implemented, it is also entirely possible to perform on-the-fly checking while additionally
writing partial proofs to later serve as witnesses. Moreover, on-the-fly checking easily allows
for malleable setups, where solvers may be added or removed during solving. This is useful
for scheduling and solving many SAT instances at once [40] and for reacting to main memory
shortages [45]. In addition, we anticipate our approach to be useful for solver development.
Pollitt et al. found on-the-fly checking to be “dramatically reducing the implementation effort
(particularly for debugging)” [39], which is now possible at a distributed level.

A limitation of our approach in its current form is its relatively high RAM usage. While
the asymptotic memory usage of solving remains the same, an increase by a constant factor
is to be expected since we now maintain two clause databases per solver thread – one within
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the solver and one in the LRAT checker. A possible measure to make RAM usage less of
an issue would be to let the solver threads within a process share data structures, as in
Gimsatul [19]. Similarly, our t checker sub-processes per SAT process could be combined
into a single checker process. This process may need to be multi-threaded in order to achieve
the required throughput. Still, memory usage could be reduced significantly by storing
equivalent clauses only once while reference-counting them for safe deletion (cf. [26]). To
further reduce our approach’s memory footprint, it may also be worthwhile to compress the
checkers’ clause databases in some inexpensive manner (cf. [38]).

All in all, our impression is that, in a few years, on-the-fly proof checking may be
sufficiently advanced and widely supported that the International SAT Competition is in
a position to require verified results across all principal tracks (sequential, parallel, cloud).
We would consider this a significant advancement in terms of reliable and trustworthy SAT
solving that can be used even for critical matters in a carefree manner.

6 Conclusion

Motivated by the insufficient scalability of producing proofs in distributed systems, we
have presented a novel approach to trusted distributed clause-sharing solving where LRAT
information is checked on-the-fly. The critical code is small, simple, and kept separate from
solver code, and the solver’s clause sharing does not need to be trusted. We confirmed our
approach to be bottleneck-free and to scale drastically better than prior trusted approaches
with explicit proof combination. To the best of our knowledge, this is the first instance of a
trustworthy parallel solver whose running times are dominated by solving, not checking.

Regarding future work, we aim to formally verify our approach in order to obtain a
provably correct SAT solver (see Section 3.6). In addition, we are interested in adding LRAT
support to further solvers, in particular Gimsatul and Kissat, to make our approach more
broadly applicable, boost its performance, and reduce its main memory requirements. Lastly,
we intend to add full LRAT (rather than LRUP) checking to our approach, which may help
with integrating solvers with advanced reasoning into parallel and distributed solvers.
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Abstract
Layout synthesis is mapping a quantum circuit to a quantum processor. SWAP gate insertions are
needed for scheduling 2-qubit gates only on connected physical qubits. With the ever-increasing
number of qubits in NISQ processors, scalable layout synthesis is of utmost importance. With large
optimality gaps observed in heuristic approaches, scalable exact methods are needed. While recent
exact and near-optimal approaches scale to moderate circuits, large deep circuits are still out of
scope. In this work, we propose a SAT encoding based on parallel plans that apply 1 SWAP and
a group of CNOTs at each time step. Using domain-specific information, we maintain optimality
in parallel plans while scaling to large and deep circuits. From our results, we show the scalability
of our approach which significantly outperforms leading exact and near-optimal approaches (up
to 100x). For the first time, we can optimally map several 8, 14, and 16 qubit circuits onto 54,
80, and 127 qubit platforms with up to 17 SWAPs. While adding optimal SWAPs, we also report
near-optimal depth in our mapped circuits.
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1 Introduction

The Quantum Layout Mapping problem takes as input a quantum circuit (logical design)
and a coupling map (connectedness between physical qubits). The result is an “equivalent”
quantum circuit mapped to the physical qubits, such that any binary operation only happens
on connected qubits. Besides an initial mapping of logical qubits to physical qubits, this also
involves the insertion of SWAP gates. Noise is inherent to qubits in Noisy Intermediate-Scale
Quantum (NISQ) processors. Additional SWAP gates increase both the 2-qubit gate count
and the circuit depth. In the current NISQ era, minimizing error is of utmost importance
for any practical quantum computing. The error rate depends on the number of gates, the
fidelity of gates, and the depth of the circuit. The Optimal Quantum Layout Synthesis is to
synthesize a mapping that optimizes one of the above metrics.

Optimal Layout Synthesis has been studied before. A nice overview is provided in [29].
Several heuristic approaches exist which optimize various metrics. The classical algorithm
for heuristic mapping is SABRE (in Qiskit) [15]. [27] use the MQT benchmarks for mapping
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and swapping, using a heuristic search space reduction with an O(n log n) algorithm. Other
approaches used include A* with cost metrics [32], MAXSAT [19], temporal planning [30],
and constraint programming [3] (minimizing circuit depth).

While heuristic approaches are fast and scalable, their suboptimal mappings may result
in high error rates [31, 29]. Optimizing fidelity with exact approaches can result in circuits
with the lowest error rate. However, as shown in [28], optimizing fidelity is extremely hard
and does not scale beyond small circuits. Circuit depth and 2-qubit gate count optimization
are better alternatives for scalability. The OLSQ tool1 optimizes circuit depth and is built
on [28]. A scalable variant OLSQ2 based on Z3 appeared in [16]. The QMAP tool2 optimizes
the number of SWAP gates and is based on [33, 31]. The same authors introduced the use of
subarchitectures [22]. Other ideas to improve quantum layout use quantum teleportation [10].
In [4], measurements are placed early so qubits can be reused.

In [26], we proposed a tool, Q-Synth v13, for SWAP gate optimization which outperformed
both QMAP and OLSQ tools. Q-Synth v1 reduces optimal quantum layout synthesis to
classical planning. For maintaining the optimality of the SWAP gates added, Q-Synth v1
adds exactly 1 CNOT or 1 SWAP gate at each time step. In such an approach, the hardness
increases with the plan length i.e., the number of CNOTs + SWAPs. Despite the recent
progress in Q-Synth v1 and OLSQ2, deep circuits that require many SWAPs are still out of
reach.

Contribution

In this paper, we provide a SAT encoding based on parallel plans with domain-specific
information. In particular, at each time step, we map one SWAP gate and a group of CNOT
gates. This reduces the make-span, and using domain-specific information we maintain the
optimality. We propose two-way constraints for CNOT dependencies for better dependency
propagation. In addition, we also provide variations of our encoding with bridges and relaxed
dependencies (via commutation). In all variations, we only add provably optimal number of
bridges+SWAPs.

For experimental evaluation, we consider two benchmark sets: 1) Standard benchmarks
from previous papers; and 2) Deep VQE benchmarks. For comparison, we consider leading
near-optimal tool TB-OLSQ2 [16] and heuristic SABRE [15]. For mapping, we consider
4 NISQ processors Melbourne (14 qubits), Sycamore (54 qubits), Rigetti (80 qubits), and
Eagle (127 qubits). We propose three experiments: in the first two experiments we map
both benchmark sets to the Sycamore, Rigetti, and Eagle platforms. In the first experiment,
we compare the number of SWAPs added by all three tools. In the second experiment, we
compare SWAP additions and circuit depth of the mapped circuits with TB-OLSQ2. In the
third experiment, we compare the effectiveness of bridges and relaxed dependencies in our
tool by mapping onto the Melbourne platform. Here we report the additional number of
(optimal) SWAPs+bridges.

We demonstrate that our encoding can optimally map deep circuits onto large platforms
with up to 127 qubits. Our tool outperforms the leading near-optimal tool TB-OLSQ2 up
to 100x while always adding the optimal number of SWAPs. We show that while adding
optimal SWAPs, we also report near-optimal depth in the mapped circuits. We also confirm
that heuristic approaches like SABRE add too many SWAPs.

1 OLSQ tool https://github.com/tbcdebug/OLSQ
2 Munich Quantum Toolkit QMAP https://github.com/cda-tum/qmap
3 Q-Synth v1 tool https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v1.0-ICCAD23

https://github.com/tbcdebug/OLSQ
https://github.com/cda-tum/qmap
https://github.com/irfansha/Q-Synth/releases/tag/Q-Synth-v1.0-ICCAD23
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2 Preliminaries

2.1 Layout Synthesis for Quantum Circuits
A quantum circuit consists of a fixed number of (logical) qubits, and a number of quantum
gates (operations) that are applied to some qubits in a particular order. If the output qubit of
gate g1 is used as an input qubit of gate g2, we say g2 depends on g1. The dependencies form
a DAG (directed acyclic graph) between the gates. Gates that are (transitively) independent
are called parallel, and can be applied in any order.

Any quantum circuit can be decomposed to an intermediate representation with only
single-qubit gates and CNOT gates [7]. Viewed classically, the binary CNOT gate (controlled-
NOT, also known as CX) takes two qubits (a, b) as input and transforms them into (a, a ⊕ b),
i.e., the control qubit a determines whether the data qubit b is negated. We will also use the
SWAP gate, which transforms a qubit pair (a, b) into (b, a). A SWAP gate can be expressed
as a sequence of 3 CNOT gates.

The single-qubit gates will be treated as black-boxes in this paper; they are distinguished
by their name (X, Z, H, S, T, etc.) but we don’t make assumptions on their semantics
(except in an extension of our method in Section 3.1). We refer the interested reader to [21]
for a detailed introduction to quantum gates and quantum circuits in general.

Most physical quantum platforms have limited connectivity, in which the CNOT operations
can only be applied on physical qubits that are neighbors in the so-called coupling graph.
Given such a circuit and a coupling graph, Layout Synthesis consists of two phases: Initial
Mapping and Qubit Routing. In Initial Mapping, the logical qubits of the given circuit are
mapped to some physical qubits of the platform bijectively. In Qubit Routing, the following
constraints must be satisfied:

Every gate must be scheduled in an order that respects all dependencies;
Every gate must be applied to the correct qubits (taken the mapping into account);
The 2-qubit CNOT gates can only be mapped on connected physical qubits.

Additional SWAP gates may be required, to swap the values of connected physical qubits to
ensure all CNOT gates can be mapped. In this paper, we use gate count as an optimization
metric. In Layout Synthesis, the number of single-qubit gates and CNOT gates remain
unchanged. Optimal Layout Synthesis is thus minimizing the additional SWAP gates.

c2 c6
l0 : X T† • T •
l1 : T† T T T†

l2 : H • T† S† • • • H
c1 c3 c4 c5

Figure 1 3-qubit Or circuit with 6 CNOT gates.

For example, Figure 1 shows an Or-circuit with 3 logical qubits (horizontal lines {l0, l1, l2}).
The circuit has 11 single-qubit gates (boxes with names) and 6 CNOT gates (the dot indicates
the control qubit, while the ⊕ indicates the data qubit). Let us suppose we want to map
this circuit onto the linear 3-qubit platform as in Figure 2b. Regardless of physical qubit
connections, single-qubit gates can always be scheduled. Only the 2-qubit CNOT gates are
relevant for our optimal synthesis problem. Thus, we first remove the single-qubit gates
and only consider CNOT gates for the mapping. After finding the optimal mapping, the
single-qubit gates will be reinserted. Figure 2a shows the CNOT gates in the Or-circuit.

SAT 2024
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c2 c6
l0 : • •
l1 :
l2 : • • • •

c1 c3 c4 c5
(a) Or-circuit with only CNOT gates.

p0

p1

p2

(b) Coupling graph.

Figure 2 Reduced Or circuit and a 3-qubit linear platform.

In any valid mapping, the dependencies must be respected, for example, gates c1 and c3
can only be mapped before and after gate c2, respectively. In this example, the dependency
graph is a total order, but note that with 4 qubits, parallel CNOT gates are possible, which
can be scheduled in any order. One can observe that the connections of the CNOT gates
c1, c2 and c3 form a triangle (l0, l1), (l1, l2), (l2, l0). Since the coupling graph does not have a
triangle, one cannot map our example circuit to the linear platform. At least two SWAP
gates are needed for any valid mapping.

Figure 3 shows such a mapped Or-circuit where l0, l1, l2 are mapped to p0, p1, p2 respect-
ively. Intuitively, the SWAP gates slice the circuit such that the sub-circuits do not have any
triangles by CNOT connections.

t0
c2 c3

t1
c5

t2

l0 → p0 : • × l2

l1 → p1 : × • • • × • l0

l2 → p2 : • × l1

c1 c4 c6

Figure 3 Mapped Or-circuit with 2 additional SWAPs (optimal).

Finally, single-qubit gates can be inserted back respecting original DAG dependencies.
Figure 4 shows the final mapped circuit with optimal SWAP gates. Note that the number of
physical qubits can be more than logical qubits. In such cases, one can use so-called ancillary
qubits to avoid unnecessary swaps. Similar to Q-Synth v1, we allow ancillary swapping i.e.,
a mapped physical qubit can be swapped with an empty physical qubit.

c2 c3 c5
l0 → p0 : X T† • T × H l2

l1 → p1 : T† T × T† S† • • • × • l0

l2 → p2 : H • × T T† l1
c1 c4 c6

Figure 4 Final Mapped Or-circuit after inserting back single-qubit gates.

2.2 Optimal Layout Synthesis as Planning
In Q-Synth v1, we encoded optimal layout synthesis as a planning problem in the Planning
Domain Definition (PDDL) Specification. As discussed above, the reduced circuit with only
CNOT gates is mapped using additional SWAPs. Later single-qubit gates are inserted back
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to reconstruct the final mapped circuit. In such a planning problem, either exactly one
CNOT gate or one SWAP gate is scheduled at each time step. A plan with the optimal
number of actions corresponds to the optimal number of SWAP additions.

Planning as SAT

Given a boolean formula, a Satisfiability (SAT) problem is finding an assignment to the
boolean variables that makes it a true formula. A planning problem can be encoded as a
bounded reachability problem. Sequential encoding [14] is a standard SAT encoding where
each time step encodes a single action. Using a sequential encoding, one can obtain optimal
plans by incrementing the plan length by 1. For instance, one could use Q-Synth v1 with
Madagascar (a SAT-based planner) to find an optimal mapping. Since the optimal plan
length for the example, Or-circuit is 8 (6 CNOTs + 2 SWAPs), the SAT instance has a
make-span of 8. As shown in [26], sequential encoding scales well for moderate circuits
however deep circuits are still out of reach. It is consensus that a long optimal plan length
can severely impact the performance of SAT-based planners.

Parallel Plans

In literature, alternative parallel plan encodings like ∀-step [13] and ∃-step [23] were proposed
for scaling heuristic SAT-based planning. The key idea in a parallel plan is to group two or
more actions whose preconditions and effects do not conflict. While encodings like ∃-step
scale well, the optimality is not guaranteed. For a scalable optimal layout synthesis, one
needs a way to group CNOTs while still maintaining the optimality.

2.3 Parallel Plans in Optimal Layout Synthesis
Madagascar implements both ∀-step and ∃-step parallel plans. Directly using Q-Synth v1
with parallel plan encodings in Madagascar does not preserve optimality. In particular, there
are three main challenges:

More than one SWAP gate can be applied at each parallel step;
Planner needs to find a partial order in each parallel step satisfying dependencies;
Relaxing CNOT dependencies within a parallel step is not trivial in a PDDL specification.

In this paper, we directly encode Layout Synthesis as a SAT problem to circumvent the
encoding challenges in a PDDL specification. In our encoding, we allow exactly one SWAP
gate at each parallel step. Thus, the number of parallel steps corresponds to the optimal
SWAP additions. Further, we use domain-specific information from Layout Synthesis to
relax CNOT dependencies within a parallel step. In particular, we make two observations:

The qubit mappings do not change between two consecutive SWAP gates;
Given a set of CNOTs, one can always reconstruct a partial order with DAG dependencies.

We take advantage of the partial order reconstruction and drop dependency constraints
within a parallel step. The SAT solver can now choose exactly one SWAP and a group of
CNOTs in each parallel step. CNOT gates in different time steps still need to respect the
original DAG dependencies. The full SAT encoding is later discussed in detail in Section 3.

For our example, a parallel plan with a make-span of 3 is sufficient (see Figure 3) instead
of 8. At time step 0, along with the initial mapping, a group of CNOT gates are also mapped.
From time step 1, exactly one SWAP gate and a group of CNOT gates are mapped. Note
that the satisfying assignment returned by a SAT solver only specifies that:

Logical qubits l0, l1, l2 are mapped to p0, p1, p2, respectively;
SWAP gates on p1, p2 and p0, p1 are applied at time steps t1, t2 respectively;

SAT 2024
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c1, c2 gates are applied at t0;
c3, c4, c5 gates are applied at t1;
c6 gate is applied at t2;

In mapped circuit reconstruction, we use the DAG dependencies to order the group of CNOTs
in each time step. In the literature, an SMT based encoding is applied in TB-OLSQ(2) [28, 16]
which also groups CNOT gates between consecutive SWAP gates. They optimize make-span
of their defined problem. However, longer make-span may result in better SWAP count and
circuit depth. In our experiments, we indeed observe suboptimal solutions by TB-OLSQ2 in
both metrics.

2.4 Incremental SAT Solving

Conflict Driven Clause Learning (CDCL) [18] is a key part of state-of-the-art SAT solving.
When solving similar instances, one can reuse the learned clauses. Incremental SAT solving
allows solving a SAT instance given an assumption of a partial assignment. Essentially
by using different assumptions, multiple instances can be solved while reusing the learned
clauses. In problems like planning, one needs to refute up to k-1 plan length for optimal
plans. By adding assumptions encoding that the goal is reached in the current iteration, one
can solve a planning instance incrementally.

3 Two-Way Parallel SAT encoding

In this section, we implement the ideas discussed above. We provide an incremental SAT
encoding that applies the idea of parallel plans in Layout Synthesis. Table 1 describes the
main variables used in the encoding. Algorithm 1 describes the structure of our encoding. In
every time step, a group of CNOTs are applied. From time step 1, each incremental step
adds one extra SWAP. We generate a set of variables for CNOT and SWAP constraints at
each time step.

Table 1 Encoding variables and descriptions.

Variable Description
mt

l,p mapping var for logical l and physical p qubits at time step t

mpt
p if physical qubit p is mapped to some logical qubit at time step t

st
p,p′ SWAP variable for physical qubits p, p′ at time step t

stt
p SWAP-touched variable for physical qubit p at time step t

ct
i / act

i / dct
i current/advanced/delayed CNOT var for ith CNOT at time step t

lpt
l,l′ logic qubit pair variables for logical qubits l, l′ at time step t

In addition to specifying which CNOT gates are chosen in each time step, we also need
to specify the CNOT dependencies. We use the DAG generated from the original circuit
for computing the CNOT dependencies. We adapt the CNOT dependency constraints by
specifying that for every CNOT gate in time step t its predecessors (successors) can be
applied at time step t′, where t′ ≤ t (t′ ≥ t). We use two extra CNOT blocks, advanced and
delayed CNOTs, which specify if a CNOT gate is mapped in an earlier or later time step.
We call this Two-way SAT encoding to emphasize the bidirectional propagation of CNOT
dependencies. In the following paragraphs, we describe the main parts of the Algorithm and
provide the constraints.
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Algorithm 1 Incremental SAT Solving, starting with t=0.

1: for all l ∈ [1 . . . nl] do
2: ExactlyOne(mt

l,1, . . . , mt
l,np)

3: for all p ∈ [1 . . . np] do
4: AtmostOne(mt

1,p, . . . , mt
nl,p)

5: MappedPQubits
6: if t != 0 then
7: SwapConstraints and Ancillaries
8: CNOTConnections and CNOTDependencies
9: Assumptions

10: Solve instance with assumption asmt

11: if Instance not satisfied then
12: repeat from step 1 with t = t + 1

Initial Mapping

Let L (P) be a set of logical (physical) qubits in the circuit. Let nl (np) be the number of
logical (physical) qubits. In time step 0, we add requirements on the Initial Mapping for
logical and physical qubits. Lines 1 to 4 in the Pseudo code add constraints for mapping every
logical qubit to a unique physical qubit. We use one-hot encoding for specifying the mapping.
We apply ExactlyOne (AtmostOne) constraints for logical (physical) qubit mapping variables.
Adding these constraints only at the 0th time step is sufficient for correctness. However,
adding these constraints at every time step significantly improved the performance of SAT
solvers.

SwapConstraints

From time step 1, we use the same mapping variables for handling SWAPs. Adding a
SWAP gate changes the mapping between logical and physical qubits. Let CP be the set
of all connected physical qubit pairs. The following constraints must ensure that a SWAP
gate is only applied on a connected physical qubit pair. The logical qubits mapped on the
physical qubit pair must be swapped in the next time step. The qubit mappings for the
untouched physical qubits must be propagated. We define two sets of variables to satisfy such
constraints. For choosing a SWAP, we define one SWAP variable sp,p′ for each connected
physical qubit pair (p, p′). For propagation, we define SWAP-touch variables stp to specify if
the physical qubit p is touched by the SWAP. We specify that 1) Each SWAP variable forces
the SWAP-touched physical variables to True; 2) Exactly one of the SWAP variables is set
to True; 3) Every SWAP forces exactly two SWAP-touched variables to True. Let S be the
set of all SWAP variables. The corresponding boolean constraints are:∧

(p,p′)∈CP

(st
p,p′ → stt

p ∧ stt
p′) ∧ ExactlyOne(St) ∧ ExactlyTwo(stt

1, . . . , stt
np)

Based on the chosen SWAP variables, we update the mapping variables. For each SWAP
variable sp,p′ , we swap the p and p′ mapped variables from the previous to the current step.∧

(p,p′)∈CP

∧
l∈L

st
p,p′ → ((mt−1

l,p ↔ mt
l,p′) ∧ (mt−1

l,p′ ↔ mt
l,p))

If a SWAP-touch variable is False, we propagate the corresponding mapping variables.∧
p∈P

∧
l∈L

¬ stt
p → (mt−1

l,p ↔ mt
l,p)

SAT 2024
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MappedPQubits and Ancillaries

Using additional qubits, traditionally called ancillaries, can reduce the total number of
SWAPs needed. An ancillary SWAP exchanges a mapped qubit with an unmapped qubit.
To specify this, we need to keep track of mapped qubits (including at time step 0). We
specify that a physical qubit p is mapped to some logical qubit if and only if its mapped
variable mpp is True.∧

p∈P
mpt

p ↔ (
∨
l∈L

mt
l,p)

We restrict that at least one of the swapped physical qubits is a mapped qubit. With similar
constraints, we also provide an option for only non-ancillary SWAPs.∧

(p,p′)∈CP

st
p,p′ → (mpt

p ∨ mpt
p′)

CNOTConnections

Let CL be the set of all connected logical qubit pairs dervied from the CNOT connections
in the input circuit. We require CNOT gates to be applied only on connected physical
qubits. Since CNOT gates must be applied to specific logical qubits, we require that the
corresponding logical qubits be mapped to connected physical qubits. First, we specify that
logical qubit pair variables are true if and only if the physical qubits they are mapped are
connected.∧

(l,l′)∈CL

( ∧
(p,p′)∈CP

((mt
l,p ∧ mt

l′,p′) ∨ (mt
l,p′ ∧ mt

l′,p)) → lpt
l,l′ ∧

∧
(p,p′)∈CP

((mt
l,p ∧ mt

l′,p′) ∨ (mt
l,p′ ∧ mt

l′,p)) → ¬ lpt
l,l′

)
Using logical qubit pair variables, we specify that if a CNOT is mapped then its corresponding
logical qubits are connected. We define D as a dictionary of CNOT indices to logical qubit
pairs. Let nc be the number of CNOT gates. The corresponding boolean constraint is:

i=1∧
nc

ct
i → lpt

D[i]

CNOTDependencies

For a correct mapping, we need to respect the DAG dependencies of the CNOT gates in a
circuit. As discussed earlier, we use advanced and delayed CNOT blocks in each time step
to propagate local information globally. Every CNOT is mapped, advanced, or delayed in
all time steps, depending on the status of its predecessors (pre) and successors (suc) in the
dependency DAG. If at time step t a CNOT is:

Mapped: Its predecessors (successors) are either advanced (delayed) or mapped in the
same time step.
Advanced: 1) It is applied or advanced in t − 1; 2) Its predecessors are also advanced in t.
Delayed: 1) It is either applied or delayed in t + 1; 2) Its successors are also delayed in t;
3) In t, either its logical qubits are not connected or one of its predecessors is delayed.
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The corresponding boolean constraints are:
i=1∧
nc

(
ExactlyOne(ct

i, act
i, dct

i)∧∧
j∈pre(i)

ct
i → (act

j ∨ ct
j) ∧

∧
j∈suc(i)

ct
i → (ct

j ∨ dct
j)∧

act
i → (ct−1

i ∨ act−1
i ) ∧

∧
j∈pre(i)

act
i → act

j ∧

dct−1
i → (ct

i ∨ dct
i) ∧

∧
j∈suc(i)

dct
i → dct

j ∧ dct
i → (¬ lpt

D[i] ∨
∨

j∈pre(i)

dct
i)

)
Assumptions for Incremental solving

We specify that CNOT gates cannot be advanced at time step 0 i.e.,
∧i=1

nc ¬ ac0
i . For using

incremental solving in SAT, we use an assumption variable asmt. At every time step, if the
assumption variable is true then CNOT gates cannot be delayed i.e., asmt ↔

∧i=1
nc ¬ dct

i. For
each time step, we call the SAT solver with the assumption variable asmt as True.

Encoding Size

Let l be the number of logical qubits, p be the number of physical qubits, pe be the number
of edges in the physical coupling graph, le be the number of edges in the logical graph (from
CNOT gates), c be the number of CNOTs, and finally, let k be the make-span. The encoding
requires O(k(lp + pe + le + c)) variables. Usually, the physical coupling graphs are planar, so
the variables required is O(k(lp + le + c)). Note that, we use the sequential counter encoding
for exactly-one constraints, so it can add extra O(p) auxiliary variables. In total, the number
of variables is O(k(lp + le + c)). The encoding requires O(k(lp + lpe + lep2 + c)) clauses.
Again, for a planar physical coupling graph this is bounded by O(k(lp + lep2 + c)) clauses.

3.1 Additional Functionality
So far, we have not used the semantics of the unary or binary gates (except the SWAP gates).
The previous encoding could also be used to map circuits with for instance binary CZ gates
instead of CNOT gates. If we take the semantics of the gates into account, there are more
opportunities to optimize the circuits. While a complete re-synthesis of the circuit is beyond
the scope of this paper, we want to illustrate some known techniques that can further reduce
the number of SWAP gates. We emphasize that we now change the optimization problem
(by allowing more solutions), and that the extensions are specific for CNOT gates. Our main
purpose is to show that our proposed encoding can be easily extended to incorporate these
techniques, known as “bridges” and “relaxed dependencies”. We also note that the encoding
can be easily restricted to disallow the use of “ancillary qubits”.

Bridges

Using a bridge, one can apply a CNOT on disconnected physical qubits. For instance, the
bridge b1-b4 in Fig. 5 together implements a CNOT between p0 and p2 (which implements c4
after the preceding SWAP). We limit ourselves to bridges of distance 2. Observe that the
bridge introduces 3 extra CNOT gates, so the cost is the same as a SWAP gate. However,
the result is different, since a bridge does not swap the qubits. This might be an advantage,
depending on the rest of the circuit. In [11], it was shown that using bridges can reduce the
overall CNOT count.

SAT 2024
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c3 c5
l0 → p0 : • •
l2 → p1 : • • • •
l1 → p2 :

c1 c2 c4 c6
(a) CNOT gates after initial mapping.

t0 t1
c3 b1 b3

t2
c5

l0 → p0 : × • • • • l2

l2 → p1 : • × • • • • l0

l1 → p2 : l1

c1 c2 b2 b4 c6
(b) CNOT gates after adding a SWAP and a bridge gate.

Figure 5 Mapping reduced circuit using a SWAP and a bridge gate.

We adapted our optimal Two-Way SAT encoding, by allowing to add either a single
bridge or a single SWAP gate at each time step. If a bridge was added, the corresponding
CNOT gate is regarded as scheduled. So both options cost exactly 3 CNOT gates. The SAT
solver will find a solution with the minimal sum of bridge or SWAP gates. Our experiments
will show that we indeed find better solutions with bridges.

Relaxed Dependencies

c1 c3 c4 c5
l2 → p0 : • • • •
l1 → p1 :
l0 → p2 : • •

c2 c6
(a) CNOT gates after initial mapping.

t0
c4 c3 c5

t1

l2 → p0 : • • • • l2

l1 → p1 : × • l0

l0 → p2 : • × l1

c1 c2 c6
(b) CNOT gates after adding a SWAP with commutation.

Figure 6 Mapping reduced circuit using a SWAP and relaxed dependencies.

The authors of [12] consider gate commutation rules for quantum layout mapping.
Commutation and cancellation rules on RZ and CNOT gates are also used in [20], to reduce
the number of H-gates. For instance, two subsequent CNOT gates on the same control qubit,
or on the same data qubit, can be commuted without changing the semantics. Also, single
Z-like gates (like the Z-, S-, T- and RZ-gates) commute with the control bit of a CNOT,
while X-like gates (like the X- and RX -gates) commute with its data bit.

This added freedom can be exploited: by permuting the CNOT gates, they can be grouped
in a convenient manner, so less SWAP gates are needed. For instance, in Fig. 6a, c3 and c4
can be commuted, since they share their control bit. As a result, we can now find a solution
that requires only 1 SWAP gate (Fig. 6b), while still respecting the linear coupling graph.

The gate commutation rules can be incorporated in our optimal Two-way SAT encoding
by computing a “relaxed” dependency graph. In the example above, we consider c2 as a
dependency for c3 and c4, but c3 and c4 are considered independent. We stress that the
relaxed dependencies must also take the unary gates into account (for instance c2 and c4
cannot be commuted, since there is a T-gate in between, cf. Fig. 1).

In our tool, we compute the relaxed dependency graph before removing the unary gates.
We then generate the encoding as presented before, replacing the dependency graph with the
relaxed dependency graph. This guarantees an optimal Layout Mapping (minimal number
of SWAPS) given the specified commutation rules. Our experiments show that relaxed
dependencies can indeed provide better solutions.
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Non-Ancillary Mapping

The actual cost of ancillary qubits in practical quantum computing depends on the context.
We provide optimal layout synthesis without any ancillary SWAPs as an option. Note that
the resulting encoding may require more SWAP gates than when allowing ancillary qubits.
This option can be encoded in our Two-Way SAT encoding, by simply restricting the SWAP
gates to cases where both the physical qubits are already mapped.

3.2 Design Choices
Redundant Cardinality Constraints for Mapping Variables

Specifying Exactly-One constraints (EO) on logical qubits and At-Most-One constraints
(AO) on physical qubits in the initial time step would be sufficient for correctness. Note that
once the mapping variables are set in the initial time step, the information on bijectivity
is propagated to next time steps, based on the chosen SWAP variables. However, observe
that unrelated to the choice of SWAP variables, some invariants apply to mapping variables
in all time steps. Essentially, the EO and AO constraints are orthogonal to the SWAP
variable assignment. We observed that adding such redundant constraints at each time step
significantly improved solving times. Apparently, this local information can be exploited by
the SAT solver during clause learning or unit propagation. Since we added mostly binary
clauses, we conjecture that the improved solving time is due to improved unit propagation.

Two-Way Encoding vs Explicit CNOT Constraints

In this paper, we encoded CNOT constraints using a Two-Way encoding instead of explicit
CNOT constraints. We chose Two-Way encoding for two main reasons. First, we encode
transitive closure for predecessors/successors of CNOT gates. Explicit constraints for CNOT
dependencies result in two challenges:

Specifying that the predecessors (successors) of a CNOT gate can not be scheduled in
later (earlier) time steps results in a quadratic blow-up in the CNOT gates.
Specifying that the predecessors (successors) of a CNOT gate must be scheduled in earlier
(later) time steps results in long clauses.

On the other hand, the Two-Way encoding expresses this bidirectional propagation implicitly
using clauses linear in the number of CNOT gates. Second, in incremental solving, in each
iteration, we need to specify that the goal is reached in the final time step. Using the
Two-Way encoding, we can simply specify that no CNOTs are delayed in the final step. If
we encoded the CNOT constraints explicitly, we would need to specify that every CNOT is
scheduled at some time step. To avoid large clauses, one would need to use auxiliary variables
similar to advanced/delayed variables to keep track of the scheduled CNOTs across time
steps. In our tool, we provide the encoding with explicit CNOT constraints as an option.

4 Experimental Evaluation

4.1 Experiment Design
We have extended our tool Q-Synth v1 (Quantum Synthesizer) to include the Two-Way
Parallel SAT encoding. We provide an open-source tool Q-Synth24 that implements the
SAT encoding and the additional options. For any option chosen, our tool synthesizes

4 Q-Synth v2 tool with source code, benchmarks, and scripts https://github.com/irfansha/Q-Synth

SAT 2024
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a mapped circuit with the (provably) optimal number of additional SWAP+bridge gates.
We use pysat [9] for generating and solving SAT instances incrementally. For cardinality
constraints, we use the sequential counter from pysat. As a backend for our experiments, we
use Cadical-1.53 [2], a state-of-the-art SAT solver. One can easily experiment with other
SAT solvers in our tool using the pysat interface. When optimizing the SWAP count, our
tool refutes all k − 1 SWAP+bridge additions if k is optimal. We report a timeout if an
optimal solution is not found within the time limit. We check equivalence between the
original circuits and our mapped circuits with QCEC5 [5] for correctness.

We design 3 experiments. Our goal is to investigate the effectiveness of our SAT encoding
compared to the current leading tools. We also compare various additional techniques
discussed in 3.1. For comparison, we consider state-of-the-art tools TB-OLSQ2 (near-
optimal) [16] and Qiskit’s SABRE (heuristic). For TB-OLSQ2, we enable the best options
i.e., SWAP optimization and upper bound computation by SABRE, with z3 (v4.12.1.0) [8]
as the backend. TB-OLSQ2 can provide intermediate non-optimal results. We only report
the final (near-optimal) solution when it terminates. If the tool does not terminate within
the time limit, we report it as a timeout. For SABRE, we use the first 1000 seeds for the
SABRE layout and take the minimum SWAPs generated by any seed. We also compare our
results with other leading tools in Section 1.

Experiment 1: Standard Benchmarks on Large Platforms

We consider the standard benchmarks from papers [16, 26, 28] with 23 instances in total.
The benchmark set contains circuits of up to 54 qubits and 270 CNOT gates. The circuits
are mapped to the current NISQ processors, Sycamore with 54 qubits [1], Rigetti with 80
qubits6 and Eagle with 127 qubits [6]. We compare with the tools TB-OLSQ2 and SABRE,
with a time limit of 12000 seconds (3hr 20 minutes) for each instance and an 8 GB memory
limit.

Experiment 2: Deep VQE Benchmarks on Large Platforms

From our experiments and also consistent with the literature [16], most of the benchmarks
from Experiment 1 need at most 10 SWAPs on standard platforms. To investigate the
performance on deep circuits that need many SWAPs, we use a set of 10 random circuits
composed using operators from the Variational Quantum Eigensolver (VQE) algorithm
presented in [17]. Our second benchmark set consists of 10 (8 qubit) circuits with up to 79
CNOT gates. Due to many interactions between the qubits, the number of SWAPs needed
to map onto the standard quantum platforms is high. We use the same time and memory
limits as in Experiment 1. In both Experiments 1 and 2, we denote a timeout with TO. Here
we focus on comparison with TB-OLSQ2 and report both SWAP count and circuit depth.

Experiment 3: Effectiveness of Additional Functionality

In this experiment, we compare 4 combinations of SWAPs (S), bridges (B), and relaxed
dependencies (R): 1) S 2) S+B 3) S+R 4) S+B+R. From our two benchmark sets, we consider
all the circuits with 14 or fewer qubits and map them onto the standard Melbourne platform
of 14 qubits. We give a time limit of 600 seconds (or 10 minutes) and an 8 GB of memory.

5 Munich Quantum Toolkit QCEC https://github.com/cda-tum/mqt-qcec
6 Rigetti Computing https://www.rigetti.com

https://github.com/cda-tum/mqt-qcec
https://www.rigetti.com
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Of the 24 instances generated, we drop qft_8 which times out in all 4 combinations. For the
rest of the 23 instances, we report SWAPs+bridges for each combination. Note that every
additional SWAP or bridge adds exactly 3 extra CNOTs to the mapped circuit.

4.2 Results

Table 2 Experiment 1: Number of SWAPs required for mapping circuits with QS2: Q-Synth2
(SWAP-optimal), TO2: TB-OLSQ2 (near optimal), and SB: SABRE (heuristic) tools on different
platforms. Syc: Sycamore (54), Rig: Rigetti (80), Eagle (127) and label or(3/6) represents a circuit
“or” with 3 qubits and 6 CNOT gates.

platform (qubits): Sycamore (54) Rigetti (80) Eagle (127)

Circuit(q/cx) / Tool QS2 TO2 SB QS2 TO2 SB QS2 TO2 SB
or(3/6) 2 2 3 2 2 2 2 2 2
adder(4/10) 0 0 0 0 0 0 2 2 2
qaoa5(5/8) 0 0 1 0 0 0 0 0 1
4mod5-v1_22(5/11) 3 3 4 3 3 5 3 3 6
mod5mils_65(5/16) 6 6 7 6 6 7 6 6 8
4gt13_92(5/30) 10 10 15 10 10 15 13 TO 15
tof_4(7/22) 1 1 3 1 1 11 3 3 5
barenco_tof4(7/34) 5 5 18 6 6 17 8 8 17
qft_8(8/56) 9 TO 15 TO TO 12 TO TO 23
tof_5(9/30) 1 1 3 1 1 5 3 3 12
mod_mult55(9/40) 6 6 9 7 8 16 12 TO 20
barenco_tof5(9/50) 6 6 10 8 8 19 12 TO 20
vbe_adder3(10/50) 7 7 8 8 8 14 10 10 33
rc_adder6(14/71) TO 8 16 8 8 35 TO TO 51
ising_model10(16/90) 0 0 0 0 0 0 0 0 0
queko(16/15) 0 0 1 0 0 2 0 0 0
queko(16/29) 0 0 5 0 1 12 2 2 14
queko(16/44) 0 0 7 0 1 25 2 2 37
queko(16/58) 0 0 12 0 1 20 4 TO 41
queko(16/87) 0 1 10 0 1 30 4 TO 36
queko(16/101) 0 0 18 0 1 43 TO TO 36
queko(54/54) 0 1 12 1 1 31 TO TO 47
queko(54/270) 0 1 183 TO TO 302 TO TO 428
Total solved of 23 22 22 23 21 21 23 18 13 23

Experiment 1

Table 2 reports the number of SWAPs added. Both on Sycamore and Rigetti, TB-OLSQ2
mostly reports optimal SWAP count (while not proving optimality). There are 10 instances
where it reports near-optimal solutions i.e., only 1 extra SWAP gate or times out. The
difference is more significant on the larger 127-qubit Eagle platform. Q-Synth2 solved 5 more
instances optimally where TB-OLSQ2 times out. Figure 7a provides the scatter plot of the
time taken by Q-Synth2 and TB-OLSQ2. Except for two instances with rcadder6 (14 qubits)
on Sycamore and Rigetti, we significantly outperform TB-OLSQ2 on all three platforms. In

SAT 2024
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several instances, Q-Synth2 is one or two orders of magnitude faster while proving optimality.
In the case of two instances with rcadder6, being a 14 qubit circuit, our tool takes time to
refute the k-1 number of optimal SWAPs. While the heuristic tool SABRE always returns a
mapping within 2 minutes, it also adds too many additional SWAPs. This observation is
consistent with the literature [16].

Table 3 Experiment 2: Additional SWAPs (s.) and Depth (d.) of mapped VQE circuits on
different platforms with QS2: Q-Synth2 (SWAP-optimal) and TO2: TB-OLSQ2 (near optimal).

platform Syc (54) Rig (80) Eagle (127)

QS2 TO2 QS2 TO2 QS2 TO2

Circuit(q/cx) s. d. s. d. s. d. s. d. s. d. s. d.

vqe(8/18) 2 34 2 33 2 36 2 33 3 38 3 35
vqe(8/39) 4 65 5 62 6 68 7 63 7 65 9 64
vqe(8/40) 6 70 7 67 7 67 7 69 10 76 12 68
vqe(8/47) 8 85 10 83 10 84 10 83 14 92 17 86
vqe(8/48) 6 90 6 84 8 94 8 89 12 94 TO TO
vqe(8/52) 9 90 11 87 11 90 TO TO TO TO TO TO
vqe(8/63) 10 101 11 99 13 102 13 102 TO TO TO TO
vqe(8/71) TO TO 16 111 15 112 18 113 TO TO TO TO
vqe(8/78) 14 129 TO TO 17 136 TO TO TO TO TO TO
vqe(8/79) 11 149 11 146 16 151 TO TO TO TO TO TO

Solved (10) 9 9 10 7 5 4
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(b) Experiment 2.

Figure 7 Scatter plots of time taken by TB-OLSQ2 and Q-Synth2.

Experiment 2

Table 3 reports the number of SWAPs added and circuit depth for the mapped VQE circuits.
On all platforms, Q-Synth2 solves 15 more instances SWAP-optimally out of the 24 instances
solved by either of the tools. TB-OLSQ2 in general reports better circuit depth compared to
Q-Synth2. Interestingly in two instances, vqe(8/40) and vqe(8/71), Q-Synth2 reports better
circuit depth. This shows that TB-OLSQ2 is near optimal in both SWAP additions and
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circuit depth. Overall Q-Synth2 also reports near-optimal depth while optimizing additional
SWAPs. Figure 7b shows the scatter plot of time for Experiment 2. Except for two instances
with vqe(8/71) on Sycamore and Rigetti, Q-Synth2 significantly outperforms TB-OLSQ2.

Table 4 Experiment 3: Number of SWAPs+bridges required for mapping deep VQE circuits on
Melbourne platform (14-qubits) in 600 seconds with Q-Synth2 with combinations of S: Swaps, B:
bridges, and R: relaxed dependencies.

Circuit(q/cx) S SB SR SBR

or(3/6) 2 2 1 1
adder(4/10) 0 0 0 0
qaoa5(5/8) 0 0 0 0
4mod5_22(5/11) 3 2 2 2
mod5mils65(5/16) 6 4 4 4
4gt13_92(5/30) 10 8 8 8
tof_4(7/22) 1 1 1 1
barencof4(7/34) 5 5 5 5
tof_5(9/30) 1 1 1 1
modmult55(9/40) 7 7 7 7
barencof5(9/50) 6 6 6 6
vbe_adder(10/50) 8 8 6 6
rcadder6(14/71) 9 8 9 8

Circuit(q/cx) S SB SR SBR

vqe(8/18) 2 2 2 2
vqe(8/39) 6 6 6 6
vqe(8/40) 7 7 7 6
vqe(8/47) 8 8 8 8
vqe(8/48) 7 6 7 6
vqe(8/52) 10 10 10 10
vqe(8/63) 12 12 12 12
vqe(8/71) 13 12 13 12
vqe(8/78) 17 15 16 14
vqe(8/79) 15 13 14 13

Experiment 3

Table 4 reports the number of SWAPs+bridges on the Melbourne platform, with a time out
of 10 minutes. Both bridges and relaxed dependencies can reduce the optimal SWAP+bridge
additions. We observe that both techniques together can reduce CNOT count further. For
instance, vqe(8/78) only needs 14 SWAPs+bridges i.e., 9 fewer CNOTs compared to only
adding SWAPs. If we drop any of the options, the optimal CNOT count is higher.

4.3 Discussion
Comparison to OLSQ, OLSQ2 and TB-OLSQ2

In [16], authors showed that TB-OLSQ2 significantly outperforms both OLSQ and OLSQ2.
Because of the lack of grouping in OLSQ and OLSQ2, the make-span of SMT instances
generated is very large. Since our tool outperforms TB-OLSQ2, we do not report results
from the other two directly. TB-OLSQ2 optimization routines can also be used in our tool
to avoid hard unsatisfiable instances when optimality is not needed.

Comparison to Q-Synth v1 with Classical Planning

In [26], we showed that Q-Synth v1 based on Classical Planning outperformed both OLSQ
and QMAP. While the approach scales well for mapping circuits up to 9 qubits onto 14
qubits platforms, larger circuits are out of reach. For instance, Q-Synth v1 timed out on
rcadder6 (Table 4) with 3 hours. Q-Synth2 maps the same instance optimally within 5
minutes onto the 14-qubit Melbourne platform. Q-Synth v1 does not scale well to the other
larger quantum platforms. Mapping individual CNOTs in Q-Synth v1 results in long plan
length. As discussed in the same paper, long plan lengths increase the difficulty of planning.

SAT 2024
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Comparison to QMAP and SATMAP

QMAP [33, 31] employs an SMT encoding that grows exponentially with the number of
physical qubits. Even using subarchitectures, QMAP is unable to map circuits greater than
7 qubits. SATMAP [19] on the other hand, encodes the Layout Synthesis as a MAXSAT
problem to minimize the number of SWAPs. It allows the addition of one SWAP before every
CNOT and uses MAXSAT solvers to minimize the number of SWAPS. As shown in [16], it
produces suboptimal solutions and runs out of time even for moderate circuits.

Comparison with Dynamic Programming Approach

In [11], the authors provided an exact and a heuristic approach for adding SWAPs and
bridge gates. With commutation rules, they showed that using bridges can further reduce
the optimal CNOT additions. Our experiments are consistent with the authors’ observations.
Their exact approach already takes 12 minutes to map a 6-qubit circuit to 6-qubit platforms
and grows exponentially with the number of qubits.

Comparison to SABRE

As observed in Experiment 1, it is clear that heuristic approaches such as SABRE add too
many SWAPs. Adding many SWAPs not only increases the 2-qubit gate count but also
increases circuit depth. However, heuristic approaches have their place in the quantum
compilation pipeline. As the number of qubits on quantum processors increases, it is necessary
to employ a hybrid strategy with heuristic and exact approaches. For instance, one could
use SABRE to quickly find a reasonable initial mapping. Given such a mapping, one can
synthesize a SWAP-optimal mapped circuit using Q-Synth2. As in TB-OLSQ2, we could use
heuristic approaches to get quick upper bounds for near-optimal solving.

5 Conclusion

In this paper, we showed that parallel plans can be adapted to preserve SWAP optimality in
layout synthesis. We have encoded the parallel planning problem directly in SAT. We propose
a Two-Way encoding, in which information is propagated both forward and backward, for
efficiency. We also demonstrated that our Two-Way SAT encoding is compatible with other
techniques, like bridges and gate commutation rules.

The technique is implemented in the open-source tool Q-Synth2 for scalable and optimal
layout synthesis of deep circuits. We can optimally map 8-qubit circuits that require up to
14 SWAPs onto a 127-qubit platform. We significantly outperform leading near-optimal tools
while still guaranteeing that the resulting mapping is optimal.
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Boolean satisfiability (SAT) is an N P-complete problem with important applications, notably in
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1 Introduction

The Boolean satisfiability problem (SAT) is an important problem in computer science from
both theoretical and practical viewpoints. Common usages of SAT include hardware and
software verification, cryptography, and more. However, as SAT is N P-complete, it takes
substantial time and computing power to solve it, which becomes prohibitively expensive as
formulas become larger. In order to deepen our understanding of SAT itself and develop
better SAT solvers, it is of crucial importance to be able to describe SAT instances via an
informative set of features.

Some of the most widely adopted such features are the SATZilla features [13, 7]. These
are a fixed set of features that are calculated from the DIMACS CNF representation of
a SAT instance. The SATZilla features consist of multiple groups, ranging from basic
syntactic features describing the formula, such as its number of variables and clauses, to
more complicated features, such as probing features derived from short runs of SAT solvers.
Another type of features are based on statistics of graph representations of a given formula.
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The SATZilla features have been successfully used in various domains, such as empirical
performance models (EPMs; also known as performance or running time prediction) and
algorithm selection [17, 18], algorithm configuration [6], and benchmark generation [8]. The
features are also used for caching in CDCL-based model counting solvers [14] and in a variety
of SAT solvers that incorporate machine learning techniques [4] However, the SATZilla
features in their latest version date back to 2012. Since then, the SAT community has
undergone various changes. Most notably, SAT instances that we typically encounter today
have a larger number of variables and clauses, thus taking significantly more time and memory
to preprocess. Currently, the existing SATZilla feature extraction tool is unable to compute
many of these features because of time and memory limitations.

In this paper, we revisit the SATZilla features and introduce a new version of the feature
extraction tool. First, we replace the underlying solvers and the preprocessor with their
most up-to-date versions. We then fix compilation errors and other memory errors related
to dealing with larger formulas. Finally, we allow the user to set the time limits for feature
computation. We compare the performance of our new tool with the old one in two SAT
competitions. We measure the running times and the number of extracted features to check
for performance gains of our new tool. We then evaluate the extracted features on three
downstream tasks: satisfiability prediction, performance prediction and algorithm selection.
We show that our new tool yields an important advantage in performance compared to the
old tool across all three tasks.

The rest of the paper is organised as follows. We give a historical overview of the
development and applications of the SATZilla features in Section 2. We then introduce the
technical definitions, as well as the standard methodological pipeline in Section 3, wrapping
it up with the contributions of this study. The results are presented in Section 4, and
conclusions drawn in Section 5.

2 Related work

The SATZilla features were first introduced by Nudelman et al. [13] to construct EPMs, i.e.,
machine learning models that predict the running time of various SAT solvers given the
features representing SAT instances. The authors identified key features that contribute
the most towards having a good EPM prediction. Consequently, they used the EPMs as a
basis for algorithm selection, in which the algorithm that is selected corresponds to the one
with the lowest predicted running time. They leveraged the performance complementarity
phenomenon of SAT solvers, where no SAT solver dominates all others over all instances.
Therefore, selecting the best solver for each instance results in substantially better performance
compared to choosing any standalone solver for all instances. The SATZilla features were
also successfully used for the satisfiability prediction task for SAT instances from various
distributions [2].

Further developments in algorithm selection led to the 2007 version of the SATZilla
algorithm selector [17], which combined running time and satisfiability prediction with
other improvements. It won multiple medals in the SAT competition. This shows that
extracting features from SAT instances can also speed up the solving process, and not only
help understanding SAT. A newer version of the SATZilla algorithm selector was introduced
in 2012 [18], winning multiple awards as well. It used a random forest as a predictor, and
introduced an ensemble of pairwise classifiers to establish a ranking of the solvers, instead
of predicting the running times directly. Additional features were introduced thereafter,
revealing further important information about SAT instances.
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Another common usage of the SATZilla features is (model-based) algorithm configuration.
To this end, the hyperparameters of SAT solvers are optimised such that their performance
is as good as possible on all instances. As running SAT solvers is computationally expensive,
a surrogate model is employed; it takes as an input a configuration of hyperparameters and
instance features and predicts the performance of the SAT solver using a given configuration
on a given instance. The instance features boost the accuracy of the surrogate model. An
example of that is SMAC [6], which successfully used the SATZilla features to optimise the
performance of a wide range of SAT solvers on various benchmarks.

Last but not least, feature-based EPMs are proven to be useful for benchmark genera-
tion [8]. In this context, given a new instance, we compute the features, which is usually
cheaper than running a SAT solver, and use the EPM to predict whether the instance is
hard (or not) for the solvers at hand.

3 SATZilla features

The SATZilla features describe the SAT formula using various representations and statistics.
We briefly introduce three graph representations of a SAT formula, as undirected graphs are
a meaningful representation of SAT, maintaining the permutation invariance: a) variable
graph: nodes are variables, an edge exists if variables appear in the same clause; b) clause
graph: nodes are clauses, an edge exists when two clauses share a negated literal; and c)
variable-clause graph: nodes are variables and clauses, an edge exists between a variable
node and a clause node if the variable appears in the clause.

Feature computation starts with the preprocessing of the formula. This step, performed
before solving an instance, renders the formula more accessible for SAT solvers. This means
that the features are also computed on the version of the formula that is close to the one
seen by the solvers. We believe that all these aspects can be boosted by using a modern
preprocessor. Features are classically computed using the SATElite preprocessor. We
instead use the SBVA preprocessor, suggested by the winning solver from the 2023 SAT
Competition. SBVA is also able to terminate after a set cutoff time, allowing for partial
preprocessing, while SATElite does not include this functionality. The preprocessed formula
can then be directly used by a SAT solver without additional preprocessing within the solver,
which improves the performance of algorithm selection.

Following the preprocessing, the feature extraction begins. There are ten feature groups
that can be extracted. We note that we describe the feature groups according to their
implementation in the SATZilla feature extraction tool, not according to their definitions
from the corresponding paper [7]. We point out that all feature groups include the time
required to compute the features in the group.
Preliminary features include the number of variables and clauses before/after preprocessing.
The running time of this feature group includes the preprocessing time and the time required
to read the formula. This group contains 7 features.
Basic features are cheap features that provide a basic description of the formula. They
consist of the variable-clause ratio, the ratio between positive and negative literals in each
clause, the number of unary, binary and ternary clauses, as well as statistics on clause nodes
in the variable-clause graph. This group contains 15 features.
KLB are expensive features that include the node degree statistics of the variable nodes in
the variable-clause graph, and the ratio of positive to negative occurrences of each variable.
They also include measures for the proximity to Horn formula, such as the fraction of Horn
clauses and statistics on the number of times each variable appears in a Horn clause. This
group contains 21 features.

SAT 2024
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Clause graph (CG) features are expensive features that contain statistics on the degree of
the nodes in the clause graph, as well as the clustering coefficient. This group contains 11
features.
Diameter features contain information on the diameter of the variable graph, which is the
shortest path between each pair of nodes in the graph. This group contains 6 features.
DPLL probing (or unit propagation) features are computed by running the DPLL algorithm
for various depths and measuring the number of unit propagations at each depth. This group
contains 6 features.
Lobjois features are an estimation of the size of the search space. They are computed by
running the DPLL algorithm multiple times until a contradiction is found. Then, the average
depth of the contradictions is the log-estimation of the search space. This group contains 3
features, which are all based on the work of Lobjois and Lemaître [11].
Survey propagation features are based on computing statistics on the following probabilities
returned by the VARSAT [5] solver: a probability of each variable to be assigned to True, to
False, and to be unconstrained. This group contains 19 features.
Clause learning (CL) features are based on running a CDCL solver (ZChaff rand [12] in
the 2012 version, CadiCal [1] in our new version) for two seconds. We measure the number
and length of learned clauses for every 1000 decisions, and compute the statistics of those
values. This group contains 19 features.
Local search (LS) features are obtained by running two local search solvers many times,
each time up to 10000 steps, and computing statistics on those runs. In the 2012 version,
the local search solvers are GSAT and SAPS. We instead use GSAT and Sparrow 2011 in
our new version. This group contains 24 features.
Linear programming (LP) features are based on solving a relaxed version of the SAT
formula, where C1 ∧ C2 ∧ · · · ∧ CN is a Boolean formula with N CNF clauses C1 . . . CN

over Boolean variables xj . We now consider linear programming variables xj and solve the
following linear programming problem: Maximise

∑N
i=1

∑
l∈Ci

v(l), where the value v(l) of
literal l is defined as v(xj) = xj , v(¬xj) = 1 − xj , while keeping

∑
l∈Ci

v(l) ≥ 0 for each Ci

and 0 ≤ xj ≤ 1 for each xj . This means that every variable has a value between 0 and 1, each
clause has a value which is the sum of values of all literals, and the value of the formula is the
sum of values of all clauses. The goal is to maximise the value of the formula, while keeping
the value of every clause positive. Finally, statistics on the linear programming solution are
extracted. In the new version, we upgrade the linear programming solver package, lp solve.
This group contains 7 features.

We note that the basic, KLB and clause graph features are computed sequentially, with
each feature group being dependent on the successful computation of the previous groups;
e.g., if the computation of the basic features fails, the KLB and clause graph features will
not be computed at all.

Another change we applied to the feature extraction tool is allowing a more precise
timeout setting. In the 2012 version, the time limits were hard-coded and set to high values
(for example, 1200 seconds for preprocessing). This can cause many feature computations to
simply terminate without computing any features at all. To this end, we adjust the code in
the new version to allow the user to set the time limits through a command line argument.

4 Experiments

We evaluate our new SATZilla feature extraction tool on the formulas stemming from two
latest (2022 and 2023) SAT Competitions. We first look at the feature extraction times and
then evaluate the features on three downstream tasks: satisfiability prediction, running time
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prediction, and algorithm selection. To assess the advantage of using the new version of the
extraction tool, we extract the features using both our new version and the 2012 version of
the tool, with a time limit of 180 seconds per feature group.

We use a cluster of 18 nodes, each equipped with 2 AMD EPYC 7543 32-core CPUs with
256 MB L3 cache. Each node also has 1TB of memory. The cluster is running on a Rocky
Linux 9.4 operating system. We measure running times using the runsolver tool [15].

4.1 Feature computation time
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Figure 1 Percentage of features computed by the old tool (SATZilla 2012; in red) and the new
tool (SATZilla 2024; in blue) over the available time budget for each feature group on the 2022 SAT
Competition. For most feature groups, the new tool extracts features from more instances than the
old one.

Figure 1 and Figure 2 show the percentage of features computed over the available time
budget using the old (depicted in red) and new (depicted in blue) SATZilla tool on the 2022
and 2023 SAT Competition data, respectively. For simplicity, due to the similarity of the
overall results between the two competitions, we draw more detailed insights based on plots
from the 2023 edition (Figure 2).

We first observe that the new tool is able to extract more features than the old one for
most feature groups. In particular, we highlight the performance gains on the preliminary
feature group (Figure 2a), for which the new tool can extract the features for all formulas,
compared to less than 80% of the formulas when using the the old tool. We note that for
some feature groups, like graph learning (Figure 2d), the old tool is able to extract more
features compared to the preliminary feature group. This is due to the fact that the old tool
extracts the preliminary, basic, KLB and CG feature groups together. Therefore, in case
computing one of those groups takes a long time, the whole feature extraction fails.

SAT 2024
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Figure 2 Percentage of features computed by the old tool (SATZilla 2012; in red) and the new
tool (SATZilla 2024; in blue) over the available time budget for each feature group on the 2023 SAT
Competition. For most feature groups, the new tool extracts features from more instances than the
old one.

We also note that for KLB and CG features there is an advantage for the old version,
due to the new SBVA preprocessing method yielding larger formulas than its predecessor
SATElite (as in many cases smaller formulas are not always easier to solve). Similarly, the
expensive graph-based features (e.g., Figure 2d and Figure 2i) require more time to extract
than smaller formulas. This is more apparent in the 2022 SAT Competition, where larger
instances were used than in the 2023 SAT Competition.

4.2 Satisfiability prediction
The first downstream task is satisfiability prediction, for which we measure the performance
when using features extracted by our tool. We use the random forest (RF) classifier from the
scikit-learn package to learn the mapping between features (representing SAT instances) and
outputs (satisfiable or unsatisfiable). We optimise the hyperparameters of the RF for one
hour using SMAC3 [9] on 10-fold cross-validation of the training data. We consider instances
from the 2022 and 2023 SAT Competitions for which we know the satisfiability result (put
differently, we omit instances for which the solution is unknown). On each competition, we
evaluate the performance of the RF model using 10-fold cross-validation. This results in
having outer cross-validation (for evaluation) and inner cross-validation (for training). Such
techniques have been previously used by AutoFolio [10].
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We present the satisfiability prediction accuracy scores in Figure 3. We see that, by
using features extracted via the new tool, we achieve better performance across all instances
on both SAT competitions. Furthermore, we notice that the new tool leads to a higher
accuracy gain for satisfiable instances than for unsatisfiable instances. For the latter, the
accuracy remains very similar to the one achieved by using the old tool in the 2023 SAT
Competition and slightly dropped for the 2022 SAT Competition. This might be due to
the fact that the unsatisfiable instances are larger on average, thus being more prone to
timeouts even when using our new tool, which goes along with the worse performance in
the 2022 SAT Competition, where the unsatisfiable instances were larger than in the 2023
SAT Competition. We point out that such high accuracy was already achieved before for
industrial SAT instances [2].
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Figure 3 Accuracy of the satisfiability prediction task using a random forest with features
extracted by the old (SATZilla 2012) and the new tool (SATZilla 2024). We see an overall higher
accuracy for the new tool, which results from higher accuracy on satisfiable instances. On unsatisfiable
ones, the accuracy remains the same.

4.3 Performance prediction
The second downstream task we investigate is performance prediction, which has important
applications in algorithm selection, configuration and benchmark generation. We refer to the
methodology described in [7] and use a RF regressor as the EPM. It is important to note that
for an accurate running time prediction we need to perform a log10 transformation of running
times prior to training the model, as done by Hutter et al. [7]. This transformation allows to
capture the order of magnitude rather than small variations in the running time. The EPM
then maps instance features to the log-transformed running times, and we aim to minimise
the root mean squared error (RMSE) of the model, which is defined as

√
1
n ·

∑n
i=1(ŷi − yi)2

for n predicted running times ŷi and ground truth running times yi. Lower RMSE scores are
better and 0 is the optimal value. In line with the previous task, we perform inner and outer
cross-validation and optimise the RF’s hyperparameters for one hour using SMAC3.

We look into the performance of the EPM for running time prediction on all solvers from
the 2022 and 2023 SAT Competitions. Here, we do not actually run solvers on instances to
record their running times, but rather use the running times reported by the competitions.
We display the results for the 10 best solvers from each competition in Figure 4 (the results
for all solvers can be found in the supplementary material). We see that using the features
extracted by the new tool leads to the lower RMSE for all solvers, compared to using those
extracted by the old tool. For some solvers, we observe a significantly lower RMSE, like

SAT 2024
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Kissat_MAB_prop-no_sym, where using the new tool decreases the RMSE from 0.84 to
0.69. Figure 5 shows the histogram of the error percentage for all solvers in the 2022 and 2023
SAT Competitions. We see that for the 2022 competition, the new tool has more instances
with error rate lower than 10% compared to the old version. For the 2023 competition, using
the features extracted with the new version, more instances are predicted with less than 1%
error. Histograms per solver are available in Appendix B.
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Figure 4 Root mean square error (RMSE) of (log-transformed) running time prediction using a
random forest with features extracted by the old (SATZilla 2012; in red) and the new tool (SATZilla
2024; in blue), on SAT solvers from the 2022 and 2023 SAT Competitions. The new tool achieves
lower RMSE for all solvers.

4.4 Algorithm selection
The third and final downstream task we consider is algorithm selection. In algorithm selection,
given a set of instances I, a set of solvers (i.e., algorithm portfolio) A and a performance
metric m : A × I → R, we build an algorithm selector S : I → A such that its performance
is optimal on the instance set I according to the metric m. We compare the performance
of algorithm selection to two standard baselines, the single best solver (SBS; i.e, the solver
with the lowest overall running time) and the virtual best solver (VBS; i.e., the theoretical
oracle which for each instance selects the actual best solver on it).

We measure the performance of algorithm selection using closed gap, which is computed
as mSBS−mS

mSBS−mV BS
, (i.e., the closed gap stands for how much of the gap between the SBS and the

VBS is closed by using the algorithm selector). We then use AutoFolio [10] as an algorithm
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(a) 2022 SAT Competition.
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(b) 2023 SAT Competition.

Figure 5 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. The new tool achieves lower error percentages.

selector, which consists of multiple algorithm selection approaches, from which the best one
is suggested by using algorithm configuration. As algorithm portfolio for the selection, we
use the 10 best solvers from each SAT competition. We train the selector for 8 hours.

Figure 6 shows the closed gap results on the 2022 and 2023 SAT Competitions. Positive
closed gap values on both scenarios using both the old and the new tool indicate that, in
general, SATZilla features are useful for the algorithm selection task. Importantly, features
extracted with the new tool lead to better closed gap values on both scenarios. In Figure 7,
we provide ECDF plots showing the fraction of instances solved over time. In the 2022 SAT
Competition scenario, the old version of the tool performs worse than the SBS until a budget
of approximately 1000 seconds, while the new version of the tool performs similarly to the
SBS. After 1000 seconds, both versions of the SATZilla features perform similarly. In the
2023 SAT Competition scenario, the new tool performs better than the old one for budgets
between 100 and 1000 seconds. With a budget of less than 10 seconds, the old tool solves
more instances. Overall, the ECDF plots reflect well what is shown in Figure 6, where we
see that the new tool exhibits a few percents higher closed gap value.
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Figure 6 Closed gap values for the algorithm selection task using the old (SATZilla 2012; in red)
and the new tool (SATZilla 2024; in blue) on the 2022 and 2023 SAT Competitions; higher is better.
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Figure 7 ECDF plots for the algorithm selection task using the old (SATZilla 2012) and the new
tool (SATZilla 2024) on the 2022 and 2023 SAT Competitions.

5 Conclusions

In this paper, we introduced an improved version of the well-known SATZilla feature extraction
tool, motivated by the need to facilitate the feature extraction process by incorporating better
user infrastructure and bug fixing. Our new version uses most up-to-date preprocessing
techniques and SAT solvers, which allow for better representation of SAT formulas. Our
experiments showed that, by using the new tool, we achieve a more accurate satisfiability
prediction, a lower error for running time prediction, and a better closed gap for algorithm
selection.

Our new SATZilla 2024 extraction tool aims to facilitate and promote the usage of SAT
features even beyond their current scope. It is easily extensible and thus encourages building
atop, e.g., by looking into features based on the recent developments in the explainability of
SAT solvers [3], or other advancements in SAT.
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A Running time prediction results

In this appendix, we present the full results of running time prediction for all solvers from
the 2022 and 2023 SAT Competitions. In Table 1 and Table 2 we show the results for the
2022 SAT Competition, where we see that our new tool constantly outperforms the old one.
Similarly, in Table 3 we show the results for the 2023 SAT Competition, where using the
features extracted by our new tool leads to lower RMSE than with the old one.

Table 1 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2022 SAT Competition using the old and new SATZilla features.

Solver SATZilla 2012 SATZilla 2024
CaDiCaL-watchsat-lto 0.70 0.63
CaDiCaL_DVDL_V1 0.73 0.65
CaDiCaL_DVDL_V2 0.75 0.65

CadicalReorder 0.75 0.66
Cadical_ESA 0.75 0.66

IsaSAT 0.73 0.64
Kissat-MAB-rephasing 0.74 0.67
Kissat_MAB-HyWalk 0.77 0.68

Kissat_MAB_ESA 0.80 0.72
Kissat_MAB_MOSS 0.79 0.69
Kissat_MAB_UCB 0.78 0.70

Kissat_adaptive_restart 0.72 0.68
Kissat_cfexp 0.79 0.71

LSTech_CaDiCaL 0.77 0.63
LSTech_Maple 0.74 0.66
LSTech_kissat 0.76 0.67

LStech-Maple-BandSAT 0.67 0.62
LStech-Maple-FPS 0.74 0.65

LStech-Maple-HyWalk 0.72 0.64
MapleLCMDistChrBt-DL-v3 0.61 0.58

MergeSat 4.0-rc-rc3 0.65 0.61
SLIME SC-2022 0.70 0.65

SLIME SC-2022-alpha 0.70 0.66
SLIME SC-2022-beta 0.71 0.66

SLIME SC-2022-gamma 0.73 0.69
SeqFROST-ERE-All 0.76 0.68

SeqFROST-NoExtend 0.77 0.67
cadical-hack-gb 0.73 0.62

cadical_rel_Scavel 0.71 0.61
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Table 2 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2022 SAT Competition using the old and new SATZilla features (contd.).

Solver SATZilla 2012 SATZilla 2024
ekissat-mab-db-v1 0.78 0.69
ekissat-mab-db-v2 0.78 0.70
ekissat-mab-gb-db 0.76 0.65

glucose-reboot 0.78 0.68
hCaD_V1-psids 0.69 0.63

hCaD_V2 0.68 0.64
hKis-psids 0.69 0.59
hKis-sat 0.79 0.69

hKis-unsat 0.74 0.66
kissat-els-v1 0.76 0.67
kissat-els-v2 0.74 0.67
kissat-els-v3 0.78 0.67
kissat-els-v4 0.77 0.66

kissat-mab-gb 0.78 0.70
kissat-sc2022-bulky 0.76 0.69
kissat-sc2022-hyper 0.76 0.70
kissat-sc2022-light 0.75 0.69
kissat-watchsat-lto 0.73 0.67

kissat_inc 0.76 0.66
kissat_pre 0.76 0.67

kissat_relaxed 0.72 0.67
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Table 3 RMSE of random forest for predicting log-transformed running times of SAT solvers
from the 2023 SAT Competition using the old and new SATZilla features.

Solver SATZilla 2012 SATZilla 2024
AMSAT_ 0.80 0.77

BreakID-kissat-low.sh 0.92 0.83
CaDiCaL_vivinst 0.84 0.73

Cadical_ESA 0.85 0.74
Cadical_rel_1.5.3.Scavel 0.80 0.74

IsaSAT 0.90 0.82
Kissat_Inc_ESA 0.88 0.73

Kissat_MAB_Binary 0.89 0.72
Kissat_MAB_Conflict 0.87 0.72

Kissat_MAB_Conflict+ 0.88 0.75
Kissat_MAB_DeepWalk+ 0.87 0.73

Kissat_MAB_ESA 0.91 0.74
Kissat_MAB_Rephases 0.84 0.71

Kissat_MAB_prop 0.89 0.71
Kissat_MAB_prop-no_sym 0.93 0.72

Kissat_MAB_prop_pr-no_sym 0.83 0.68
MapleCaDiCaL_LBD-990_275 0.81 0.71
MapleCaDiCaL_LBD-990_500 0.84 0.72
MapleCaDiCaL_PPD-500_500 0.82 0.71
MapleCaDiCaL_PPD-950_950 0.84 0.73

MergeSat-bve_gates 0.75 0.71
MergeSat-bve_semgates 0.74 0.73

MergeSat-thread1 0.68 0.67
MiniSat+XorEngine 0.79 0.77

PReLearn-kissat-PReLearn-kissat.sh 0.66 0.54
PReLearn-kissat-PReLearn-tern-kissat.sh 0.55 0.46
ReEncode-kissat-ReEncode-pair-kissat.sh 0.75 0.68

SBVA-sbva_cadical 0.74 0.55
SBVA-sbva_kissat 0.78 0.65

SeqFROST 0.81 0.73
SeqFROST-ERE-All 0.81 0.71

SeqFROST-NoExtend 0.79 0.74
hKis-psids 0.81 0.72

hKis-sat_psids 0.80 0.79
hKis-unsat 0.86 0.69

hKissatInc-unsat 0.85 0.77
kissat-3.1.0 0.88 0.76

kissat-hywalk-exp 0.85 0.70
kissat-hywalk-exp-gb 0.89 0.74

kissat-hywalk-gb 0.88 0.72
kissat_incsp 0.95 0.80

tabularasat-1.0.0 0.88 0.76
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B Running time prediction histograms

We present the histograms for the RMSE values per solver for running time prediction in
Figures 8–19.
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(a) 2022 Comp. CaDiCaL-watchsat-lto.
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(b) 2022 Comp. CaDiCaL_DVDL_V1.
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(c) 2022 Comp. CaDiCaL_DVDL_V2.
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(d) 2022 Comp. CadicalReorder.
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(e) 2022 Comp. Cadical_ESA.
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(f) 2022 Comp. IsaSAT.
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(g) 2022 Comp. Kissat-MAB-rephasing.
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(h) 2022 Comp. Kissat_MAB-HyWalk.

Figure 8 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver.
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(a) 2022 Comp. Kissat_MAB_ESA.
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(b) 2022 Comp. Kissat_MAB_MOSS.

0%
-1%

1%
-2%

2%
-5%

5%
-10%

10%
-20%

20%
-30%

30%
-40%

40%
-50%

50%
-60%

60%
-70%

70%
-80%

80%
-90%

90%
-100%

100%
-1000%

0

50

100

C
ou
nt

(c) 2022 Comp. Kissat_MAB_UCB.
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(d) 2022 Comp. Kissat_adaptive_restart.
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(e) 2022 Comp. Kissat_cfexp.
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(f) 2022 Comp. LSTech_CaDiCaL.
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(g) 2022 Comp. LSTech_Maple.
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(h) 2022 Comp. LSTech_kissat.

Figure 9 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2022 Comp. LStech-Maple-BandSAT.
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(b) 2022 Comp. LStech-Maple-FPS.
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(c) 2022 Comp. LStech-Maple-HyWalk.
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(d) 2022 Comp. MapleLCMDistChrBt-DL-v3.
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(e) 2022 Comp. MergeSat 4.0-rc-rc3.
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(f) 2022 Comp. SLIME SC-2022.
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(g) 2022 Comp. SLIME SC-2022-alpha.
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(h) 2022 Comp. SLIME SC-2022-beta.

Figure 10 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2022 Comp. SLIME SC-2022-gamma.
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(b) 2022 Comp. SeqFROST-ERE-All.
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(c) 2022 Comp. SeqFROST-NoExtend.
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(d) 2022 Comp. cadical-hack-gb.
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(e) 2022 Comp. cadical_rel_Scavel.
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(f) 2022 Comp. ekissat-mab-db-v1.
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(g) 2022 Comp. ekissat-mab-db-v2.
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(h) 2022 Comp. ekissat-mab-gb-db.

Figure 11 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2022 Comp. glucose-reboot.
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(b) 2022 Comp. hCaD_V1-psids.
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(c) 2022 Comp. hCaD_V2.
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(d) 2022 Comp. hKis-psids.
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(e) 2022 Comp. hKis-sat.
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(f) 2022 Comp. hKis-unsat.
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(g) 2022 Comp. kissat-els-v1.
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(h) 2022 Comp. kissat-els-v2.

Figure 12 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2022 Comp. kissat-els-v3.
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(b) 2022 Comp. kissat-els-v4.
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(c) 2022 Comp. kissat-mab-gb.
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(d) 2022 Comp. kissat-sc2022-bulky.
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(e) 2022 Comp. kissat-sc2022-hyper.
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(f) 2022 Comp. kissat-sc2022-light.
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(g) 2022 Comp. kissat-watchsat-lto.
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(h) 2022 Comp. kissat_inc.

Figure 13 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2022 Comp. kissat_pre.
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(b) 2022 Comp. kissat_relaxed.
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(c) 2023 Comp. AMSAT_.
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(d) 2023 Comp. BreakID-kissat-low.sh
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(e) 2023 Comp. CaDiCaL_vivinst.
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(f) 2023 Comp. Cadical_ESA.
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(g) 2023 Comp. Cadical_rel_1.5.3.Scavel.
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(h) 2023 Comp. IsaSAT.

Figure 14 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2023 Comp. Kissat_Inc_ESA.
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(b) 2023 Comp. Kissat_MAB_Binary.
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(c) 2023 Comp. Kissat_MAB_Conflict.
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(d) 2023 Comp. Kissat_MAB_Conflict+.
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(e) 2023 Comp. Kissat_MAB_DeepWalk+.
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(f) 2023 Comp. Kissat_MAB_ESA.
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(g) 2023 Comp. Kissat_MAB_Rephases.

0%
-1%

1%
-2%

2%
-5%

5%
-10%

10%
-20%

20%
-30%

30%
-40%

40%
-50%

50%
-60%

60%
-70%

70%
-80%

80%
-90%

90%
-100%

100%
-1000%

0

20

40

60

C
ou
nt

(h) 2023 Comp. Kissat_MAB_prop.

Figure 15 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2023 Comp. Kissat_MAB_prop-no_sym.
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(b) 2023 Comp. Kissat_MAB_prop_pr-no_sym.
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(c) 2023 Comp. MapleCaDiCaL_LBD-990_275.

0%
-1%

1%
-2%

2%
-5%

5%
-10%

10%
-20%

20%
-30%

30%
-40%

40%
-50%

50%
-60%

60%
-70%

70%
-80%

80%
-90%

90%
-100%

100%
-1000%

0

20

40

60

80

C
ou
nt

(d) 2023 Comp. MapleCaDiCaL_LBD-990_500.
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(e) 2023 Comp. MapleCaDiCaL_PPD-500_500.
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(f) 2023 Comp. MapleCaDiCaL_PPD-950_950.
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(g) 2023 Comp. MergeSat-bve_gates.
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(h) 2023 Comp. MergeSat-bve_semgates.

Figure 16 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2023 Comp. MergeSat-thread1.
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(b) 2023 Comp. MiniSat+XorEngine.
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(c) 2023 Comp. PReLearn-kissat-PReLearn-
kissat.sh.
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(d) 2023 Comp. PReLearn-kissat-PReLearn-tern-
kissat.sh.
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(e) 2023 Comp. ReEncode-kissat-ReEncode-pair-
kissat.sh.
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(f) 2023 Comp. SBVA-sbva_cadical.
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(g) 2023 Comp. SBVA-sbva_kissat.
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(h) 2023 Comp. SeqFROST.

Figure 17 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2023 Comp. SeqFROST-ERE-All.
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(b) 2023 Comp. SeqFROST-NoExtend.

0%
-1%

1%
-2%

2%
-5%

5%
-10%

10%
-20%

20%
-30%

30%
-40%

40%
-50%

50%
-60%

60%
-70%

70%
-80%

80%
-90%

90%
-100%

100%
-1000%

0

50

100

C
ou
nt

(c) 2023 Comp. hKis-psids.
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(d) 2023 Comp. hKis-sat_psids.
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(e) 2023 Comp. hKis-unsat.
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(f) 2023 Comp. hKissatInc-unsat.
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(g) 2023 Comp. kissat-3.1.0.
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(h) 2023 Comp. kissat-hywalk-exp.

Figure 18 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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(a) 2023 Comp. kissat-hywalk-exp-gb.
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(b) 2023 Comp. kissat-hywalk-gb.
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(c) 2023 Comp. kissat_incsp.
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(d) 2023 Comp. tabularasat-1.0.0.

Figure 19 Histogram of the error percentage of the root mean square error (RMSE) of (log-
transformed) running time prediction using a random forest with features extracted by the old
(SATZilla 2012; in red) and the new tool (SATZilla 2024; in blue), on SAT solvers from the 2022
and 2023 SAT Competitions. Results are presented per solver (contd.).
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Abstract
In applications, QBF solvers are often required to generate strategies. This typically involves a
process known as strategy extraction, where a Boolean circuit encoding a strategy is computed from
a proof. It has previously been observed that Craig interpolation in propositional logic can be seen
as a special case of QBF strategy extraction. In this paper we explore this connection further and
show that, conversely, any strategy for a false QBF corresponds to a sequence of interpolants in
its complete (Herbrand) expansion. Inspired by this correspondence, we present a new strategy
extraction algorithm for the expansion-based proof system Exp+Res. Its asymptotic running time
matches the best known bound of O(mn) for a proof with m lines and n universally quantified
variables. We report on experiments comparing this algorithm with a strategy extraction algorithm
based on combining partial strategies, as well as with round-based strategy extraction.
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1 Introduction

Due to continuous performance improvements over the last 30 years [8], SAT solvers have
become a standard tool in formal methods and electronic design automation [16, 39]. However,
the increasing complexity of specifications in these areas can lead to prohibitively large
encodings that are unmanageable even for the most efficient SAT solvers. This problem has
prompted research into more succinct logics, such as Quantified Boolean Formulas (QBF),
that can naturally encode a wide range of synthesis tasks [10, 11, 35, 37].

In many of these applications, QBF solvers cannot just answer “true” or “false”, they
are expected to provide a winning strategy as a solution. This typically involves strategy
extraction, where a Boolean circuit encoding a strategy is computed from a proof generated by
the solver. Determining whether a QBF proof system has efficient strategy extraction is thus
important for practical concerns. But improved strategy extraction can also serve a tighter
characterisation of proof systems. A seminal result in this context is linear-time strategy
extraction for Q-resolution [2]: one can show that the extracted strategies are decision lists,
and this leads to strong lower bounds against Q-resolution [4, 5].

Q-resolution is the proof system underpinning quantified CDCL, one of the main paradigms
in QBF solving. Another main paradigm is counter-example guided expansion [23], with
Exp+Res as its underlying proof system [24]. It has been shown that an Exp+Res refutation
of a QBF can guide the universal player to win the evaluation game, and since all operations
can be implemented in polynomial time, it follows that Exp+Res has polynomial-time
strategy extraction [5].

However, the simulation of player moves in the resulting round-based strategy extraction
algorithm incurs a significant overhead. In experiments, an implementation of this idea
struggled to generate strategies for many QBFs that could be solved quickly [19]. An

© Friedrich Slivovsky;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.slivovsky@liverpool.ac.uk
https://orcid.org/0000-0003-1784-2346
https://doi.org/10.4230/LIPIcs.SAT.2024.28
https://github.com/fslivovsky/ferpmodels
https://archive.softwareheritage.org/swh:1:dir:ecf767c252fb45b1fbd12ebf83088d07c9025697;origin=https://github.com/fslivovsky/ferpmodels;visit=swh:1:snp:2653030d083f6e99c96baec23706fb3996ed9025;anchor=swh:1:rev:8d64f81af8b5923ab370b07f1a9e898f8c3a7e6b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Strategy Extraction by Interpolation

alternative is to simulate an operation for combining partial strategies [38] using circuits,
which leads to strategy extraction in time O(mn) for a proof with m lines and n universally
quantified variables [34]. But because this approach constructs a strategy tree for all universal
variables at once, the Herbrand functions for individual universal variables have no clear
interpretation.

This paper presents a new strategy extraction algorithm for Exp+Res based on Craig
interpolation [14]. An interpolant between two formulas φ and ψ such that φ∧ψ is unsatisfiable
is a formula (or circuit) I in the shared variables var(φ) ∩ var(ψ) such that φ |= I and
ψ |= ¬I. Interpolation is an important and well studied concept in logic and automated
reasoning [15, 28]. For example, interpolants can be used to over-approximate the set of
reachable states in model checking [29]. In proof complexity, showing that an interpolant
can be efficiently extracted from a refutation of φ ∧ ψ can lead to strong lower bounds [27].

This technique, called feasible interpolation, can also be used to establish lower bounds
against QBF proof systems such as Exp+Res when the shared variables are existentially
quantified [6]. In this context, it was noted that, for certain formulas, any winning strategy
for a single universal variable corresponds to an interpolant. However, extending this idea to
multiple universal variables is challenging. In particular, simply computing the interpolants
between parts resulting from expansion with ui and parts resulting from expansion with
¬ui, for each universal variable ui, does not work for arbitrary Exp+Res proofs (cf. [20], see
Section 4.1). This approach only works for local-first proofs [20], and bringing a proof into
this form generally requires rewriting that can lead to an exponential blowup [1, 22].

This paper presents a different solution that takes the order u1, . . . , un of universal
variables in the quantifier prefix into account. For each universal variable ui, it computes
an interpolant between parts of the complete (Herbrand) expansion that are identified by
positive and negative occurrences of ui along with an assignment σ of the preceding universal
variables. For u1, we simply compute the interpolant between the part resulting from
expansion with ¬u1 and the part resulting from expansion with u1. For ui with 1 < i ≤ n,
we compute an interpolant between the expansion with σ,¬ui and the expansion with σ, ui.
This not only leads to strategies, it characterises them: every universal winning strategy
corresponds to such a sequence of interpolants in the complete expansion.

Following this idea, strategy extraction for Exp+Res can by implemented by generalising
a standard interpolation system for resolution [21, 27, 33]: interpolants for axioms become
functions in universal variables, since their assignment to a part depends on the values of
these variables; similarly, whether a variable is shared, or local to a specific part, depends
on the assignment of universal variables. The main technical difficulty is showing that an
interpolant for a bipartition of the complete expansion can be used as an interpolant between
specific parts of the expansion under a partial assignment. This step of the argument is only
proved for a specific interpolation system.

The interpolants can be computed in time O(mn) from an Exp+Res proof with m

lines and n universal variables, matching the bound of the algorithm that combines partial
strategies [34]. We implemented both algorithms within Ferpmodels [19], a certification
framework for Exp+Res proofs that uses round-based strategy extraction, and present an
experimental comparison of all three algorithms.

The rest of the paper is structured as follows. Section 2 introduces standard concepts
and notation. Section 3 offers a brief introduction to interpolation in propositional logic.
In Section 4, we establish the link between universal winning strategies and interpolants in
the complete expansion, and present the new strategy extraction algorithm for Exp+Res.
Section 5 provides experimental results for an implementation of this algorithm. We discuss
related work in Section 6 and conclude in Section 7.
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2 Preliminaries

An assignment of a set V of propositional variables is a function σ : V → {0, 1}. A partial
assignment of V is an assignment of U ⊆ V . Given an assignment σ : V → {0, 1} and a
subset U ⊆ V of its domain, we write σ|U for the restriction of σ to U . We consider (Boolean)
circuits and formulas built up from variables, the constants 0 and 1, as well as the connectives
∨, ∧, ¬. Sometimes, we think of if-then-else expressions ite(c, A,B), which can be expressed
as (c∧A) ∨ (¬c∧B), as atomic gates. We write var(φ) for the set of input gates or variables
occurring in a circuit or formula φ. If φ is a circuit and σ : V → {0, 1} an assignment such
that var(φ) ⊆ V , we write φ(σ) for the output of φ under the assignment. Note that σ may
assign variables that are not input gates of φ – these are simply ignored in the evaluation.
Given a circuit (or formula) φ and variable assignment σ : V → {0, 1}, we write φ[σ] for
the circuit (or formula) obtained by replacing each input gate (or variable) v ∈ var(φ) ∩ V

by the constant σ(v). A literal is a variable v or a negated variable ¬v, and a clause is a
disjunction of literals. A CNF formula is a formula is a conjunction of clauses. We think of
clauses as sets of literals and formulas as sets of clauses whenever convenient. Similarly, we
may identify a variable assignment with a set, sequence, or conjunction of literals. If v is a
variable, φ a circuit, and τ : V → {0, 1} an assignment such that var(φ) ⊆ V , then v = φ(τ)
denotes the assignment {v 7→ φ(τ)}.

We consider Quantified Boolean Formulas (QBFs) Φ = Q.φ in prenex conjunctive normal
form, where Q = Q1v1, . . . , Qnvn is a sequence of quantifiers Qi ∈ {∀, ∃} and pairwise
distinct variables vi, called the (quantifier) prefix of Φ, and φ is a CNF formula, called
the matrix of Φ. We assume that the set var(φ) of variables in the matrix is a subset
of the variables {v1, . . . , vn} in the prefix. The prefix induces a linear ordering <Q on its
variables {v1, . . . , vn} where vi <Q vj if i < j. We omit the prefix Q when it is understood.
Given a partial assignment τ of the variables of Φ, we write Φ[τ ] = Q′.φ[τ ], where Q′ is
obtained from Q by omitting variables assigned by τ and their associated quantifiers. We
write UΦ = {vi |Qi = ∀} for the set of universal variables of Φ, and EΦ = {vi |Qi = ∃} for
the set of existential variables, dropping the subscript if the QBF Φ is understood. The set
of variables preceding variable vi in the prefix is denoted D(vi) = {v1, . . . , vi−1}. Given a
sequence u1, . . . , uk of universal variables, we may write Di = D(ui). In such cases, we define
D0 = ∅. Let ψ = (ψ1, . . . , ψk) be a sequence of circuits, one for each universal variable ui,
such that var(ψi) ⊆ E ∪ U . We say that assignments σ of the universal variables and τ

of the existential variables are consistent with ψ if σ(ui) = ψi(σ ∪ τ), for each 1 ≤ i ≤ k.
The sequence ψ is a universal winning strategy if var(ψ) ⊆ Di for each 1 ≤ i ≤ k, and
φ(σ∪ τ) = 0 for any assignments σ of the universal variables and τ of the existential variables
that are consistent with ψ. The QBF Φ is false if there is a universal winning strategy, and
true otherwise.

2.1 QBF Expansion Proofs
QBF evaluation can be reduced to propositional satisfiability by repeatedly applying Shannon
expansion to get rid of universally quantified variables. The resulting propositional formula,
called the complete (Herbrand) expansion, is satisfiable if, and only if, the QBF is true. The
complete expansion can be obtained as a conjunction, taken over all assignments of universal
variables, of copies of the matrix instantiated with these assignments. Formally, let Φ = Q.φ
be a QBF, let C ∈ φ be a clause, and let σ : U → {0, 1} an assignment that does not
satisfy C. We write C [σ] = {ℓ[σ] | ℓ ∈ C, var(ℓ) ∈ E} for the annotated clause obtained by
instantiating clause C with the assignment σ, where ℓ[σ] = ℓσ|D(var(ℓ)) is ℓ annotated with the
restriction of σ to universal variables preceding var(ℓ) in the prefix. Otherwise, if σ satisfies
C, then C [σ] = ⊤.
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(Axiom)
C [σ]

C1 ∨ eτ ¬eτ ∨ C2 (Resolution)
C1 ∨ C2

In the axiom rule (left), C ∈ φ is a clause and σ an assignment of universal variables not
satisfying C. In the resolution rule (right), both C1 and C2 are annotated clauses and eτ

is an annotated variable.

Figure 1 The proof rules of Exp+Res for a QBF with matrix φ.

The complete expansion is defined as

exp(Φ) =
∧

σ:U→{0,1}

∧
C∈φ

C [σ].

The complete expansion is satisfiable if, and only if, the QBF Φ is true. Given a partial
assignment µ of universal variables, we write φσ = {C [θ] ∈ exp(Φ) | σ ⊆ θ} for the subset
of clauses in the complete expansion whose annotation is compatible with σ. Given an
assignment τ of existential variables and σ of universal variables, let τ [σ] =

∧
ℓ∈τ ℓ

[σ]. For a
partial assignment α, the expansion of the simplified QBF Φ[α] essentially corresponds to
a subset of the complete expansion of exp(Φ) with a particular annotation. This is stated
formally in the following lemma (the proof is given in Appendix A).

▶ Lemma 1. Let Φ = Q1v1 . . . Qnvn.φ be a QBF, and let α : {v1, . . . , vi} → {0, 1} be a
partial assignment of its variables. Then exp(Φ[α]) and φσ ∧ τ [σ] are equisatisfiable, where
σ = α|U and τ = α|E.

The proof system Exp+Res formally captures resolution refutations from a subset of
clauses in the complete expansion [24]. Its proof rules are shown in Figure 1. An Exp+Res
proof (or refutation) of a QBF Φ is a sequence of clauses ending with the empty clause ⊥
such that each clause is either an axiom or derived by resolution from clauses appearing
earlier in the sequence.

3 Interpolation in Propositional Logic

The Craig interpolation theorem states that if Φ |= Ψ holds for first-order sentences Φ and Ψ,
then there exists a first order sentence I, called an interpolant, such that Φ |= I, I |= Ψ, with
the non-logical symbols in I shared by Φ and Ψ [14]. Craig interpolation is an important
concept in logic and automated reasoning [28]. Given a propositional formula φ and a
clause C, we write C|φ for the restriction of C to variables occurring in φ. In the remainder
of this paper, we will adopt the following definition of an interpolant, commonly used in
model checking and verification [29] and sometimes referred to as a reverse interpolant [26].

▶ Definition 2 (Partial Interpolant). Let φ and ψ be formulas and C a clause such that
φ ∧ ψ |= C. A partial interpolant between φ and ψ for C is a Boolean circuit I such that
var(I) ⊆ var(φ) ∩ var(ψ), φ |= C|φ ∨ I, and ψ |= C|ψ ∨ ¬I. If C = ∅ then I is called an
interpolant between φ and ψ.

Equivalently, an interpolant between φ and ψ is a circuit that decides which of φ and ψ is
unsatisfiable given an assignment of the shared variables.

▶ Proposition 3. Let φ and ψ be formulas such that φ ∧ ψ is unsatisfiable. A circuit I
with var(I) ⊆ var(φ) ∩ var(ψ) is an interpolant between φ and ψ if, and only if, φ ∧ τ

is unsatisfiable whenever I(τ) = 0, and ψ ∧ τ is unsatisfiable whenever I(τ) = 1, for any
assignment τ : var(φ) ∩ var(ψ) → {0, 1}.
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C ∈ φ
C [0]

C ∈ ψ
C [1]

C1 ∨ x [I1] ¬x ∨ C2 [I2]
x ∈ var(φ) \ var(ψ)

C1 ∨ C2 [I1 ∨ I2]

C1 ∨ x [I1] ¬x ∨ C2 [I2]
x ∈ var(ψ) \ var(φ)

C1 ∨ C2 [I1 ∧ I2]

C1 ∨ x [I1] ¬x ∨ C2 [I2]
x ∈ var(ψ) ∩ var(φ)

C1 ∨ C2 [ite(¬x, I1, I2)]

Figure 2 Symmetric interpolation system for resolution proofs [21, 27, 33].

Proof. Let I be an interpolant between φ and ψ. If I(τ) = 0, since φ |= I the formula φ ∧ τ
must be unsatisfiable. Otherwise, if I(τ) = 1, since ψ |= ¬I, the formula ψ ∧ τ must be
unsatisfiable. The proves the “only if” direction.

For the converse, let I be a circuit defined on var(φ) ∩ var(ψ) such that φ ∧ τ is
unsatisfiable whenever I(τ) = 0, and ψ ∧ τ is unsatisfiable whenever I(τ) = 1, for any
assignment τ : var(φ) ∩ var(ψ) → {0, 1}. Consider a satisfying assignment τ of φ. Since
var(I) ⊆ var(φ), the output I(τ) of I under τ is defined, and it must be 1, since φ ∧ τ is
satisfied by τ . We conclude that φ |= I. A symmetric argument shows that ψ |= ¬I. ◀

An interpolation system computes circuits representing partial interpolants for each clause in
a proof. For the purposes of this paper, we will use the interpolation system for resolution
proofs shown in Figure 2 [21, 27, 33]. This interpolation system assigns 0 to initial clauses in
φ, and 1 to initial clauses in ψ. For derived clauses, it distinguishes three cases, depending
on whether the pivot variable x is local to φ, that is, if it may appear in φ but not in ψ, or
local to ψ, or shared between φ and ψ. We write IC(φ,ψ) for the circuit computed by the
system at a clause C of a resolution refutation, and I(φ,ψ) = I∅(φ,ψ) for the circuit at the
empty clause. This circuit is an interpolant, as stated in the following theorem [21, 27, 33].

▶ Theorem 4. Let φ and ψ be formulas such that φ ∧ ψ is unsatisfiable. For any resolution
refutation of φ and ψ, the circuit I(φ,ψ) is an interpolant between φ and ψ.

Further, the interpolation system is symmetric in the following sense [21].

▶ Lemma 5. Let I ′(φ,ψ) = I(ψ,φ) be the circuit computed by the system in Figure 2 where
the roles of φ and ψ are reversed. Then I(φ,ψ) ↔ ¬I ′(φ,ψ).

4 Strategy Extraction by Interpolation

It is well known that the interpolant between two jointly unsatisfiable formulas identifies
which of these formulas is unsatisfiable given an assignment of their shared variables. In
particular, that applies to bipartitions of a QBF’s expansion induced by individual universal
variables, as stated in the following proposition.

▶ Proposition 6. Let Φ = Q.φ be a false QBF and let u be one of its universal variables.
Then φ¬u ∧ φu is unsatisfiable, and for any assignment τ : var(φ¬u) ∩ var(φu) → {0, 1}, the
formula φu=I(τ) ∧ τ is unsatisfiable, where I is an interpolant between φ¬u and φu.
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C
[u1,¬u2]
1

(a) [⊤,⊥]
C

[u1,u2]
3

(¬a ∨ lu1,u2) [⊤,⊤]
(lu1,u2) [⊤, a]

C
[¬u1,u2]
2

(b) [⊥,⊤]
C

[u1,u2]
4

(¬b ∨ ¬lu1,u2) [⊤,⊤]
(¬lu1,u2) [b,⊤]

⊥ [b, a]

Figure 3 Exp+Res refutation of the QBF Ψ in the running example. Each clause C is annotated
with partial interpolants [IC(ψ¬u1 , ψu1 ), IC(ψ¬u2 , ψu2 )].

Proof. The formula φ¬u ∧ φu corresponds to the complete expansion, so it must be unsatis-
fiable because Φ is false. By Proposition 3, for any assignment τ : var(φ¬u)∩var(φu) → {0, 1},
if I(τ) = 0, then φ¬u ∧ τ is unsatisfiable, and if I(τ) = 1, then φu ∧ τ is unsatisfiable. ◀

For the first universal variable u in the quantifier prefix, the variables shared between φ¬u

and φu are existential variables preceding u, every interpolant is a function in a winning
strategy, and vice versa [6]. However, generalising this correspondence between strategies
and interpolants to formulas with multiple universal variables is non-trivial. We first consider
a natural but unsuccessful approach in Section 4.1 before presenting a solution in Section 4.2.

4.1 A Naive Approach
An initially plausible idea for obtaining a winning strategy is to separately compute the
interpolant between φ¬ui and φui for each universal variable ui. Unfortunately, that does
not work in general because functions obtained in this way lack coordination, as illustrated
by the following example [20].

▶ Example. Consider the QBF Ψ = ∃a∃b∀u1, ∀u2∃l.ψ, where

ψ = (a ∨ ¬u1 ∨ u2)︸ ︷︷ ︸
C1

∧ (b ∨ u1 ∨ ¬u2)︸ ︷︷ ︸
C2

∧ (¬a ∨ ¬u1 ∨ ¬u2 ∨ l)︸ ︷︷ ︸
C3

∧ (¬b ∨ ¬u1 ∨ ¬u2 ∨ ¬l)︸ ︷︷ ︸
C4

.

The QBF Ψ is false, as witnessed by the Exp+Res refutation shown in Figure 3. Taking this
proof as a resolution refutation of the expansion exp(Ψ), we can apply the interpolation system
in Figure 2 to compute the interpolants I (ψ¬u1 , ψu1) = b and I (ψ¬u2 , ψu2) = a. However,
(b, a) is not a universal winning strategy, since the satisfying assignment ¬a,¬b,¬u1,¬u2, l

of ψ is consistent with this strategy.
This issue can be circumvented by working with resolution refutations of the expansion

that are local-first, where resolution on shared pivot variables may occur only after local
variables have been removed by resolution [20]. However, imposing this kind of proof structure
may require rewriting and can lead to an exponential increase in proof size [1, 22].

4.2 Coordinated Interpolants are Strategies
To achieve coordination between interpolants, we will take the ordering of universal variables
in the quantifier prefix into account. To simplify notation, for the rest of this section, let
Φ = Q.φ be an arbitrary but fixed, false QBF with n universal variables u1, . . . , un, in their
left-to-right order in the quantifier prefix.

For the first variable u1, we compute an interpolant I1 between φ¬u1 and φu1 , as
suggested above. Given an assignment τ : var(φ¬u1) ∩ var(φu1) → {0, 1} of the shared
variables, the interpolant computes an assignment I1(τ) such that φu1=I1(τ)∧τ is unsatisfiable.
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We generalise this to an inductive invariant for 1 < i ≤ n by requiring that the partial
assignment σ : {u1, . . . , ui−1} → {0, 1} of universal variables identifies a part φσ of the
complete expansion that is unsatisfiable under the partial assignment τ : Di−1 ∩ E → {0, 1}
of existential variables. Technically, φσ speaks about annotated existential variables, rather
than the original existential variables. Since their annotations are all consistent with σ (by
definition of φσ), this is not really an issue, but just to be formally precise, we add the
annotation to the assignment τ and require that φσ ∧ τ [σ] is unsatisfiable.

To obtain a strategy function for ui, we now compute an interpolant within φσ. Since
φσ is the union of φσ,¬ui and φσ,ui , and φσ ∧ τ [σ] is unsatisfiable, there is an interpolant
between φσ,¬ui ∧ τ [σ] and φσ,ui ∧ τ [σ]. We will call such an interpolant a σ, τ -interpolant.

▶ Definition 7 (σ, τ -Interpolant). Let 1 ≤ i ≤ n, let σ : {u1, . . . , ui−1} → {0, 1} be a partial
assignment of universal variables and τ : Di−1 ∩E → {0, 1} a partial assignment of existential
variables such that φσ ∧ τ [σ] is unsatisfiable. A σ, τ -interpolant is an interpolant between
φσ,¬ui ∧ τ [σ] and φσ,ui ∧ τ [σ].

Given an assignment of their shared variables, a σ, τ -interpolant will determine which of
the two formulas φσ,¬ui ∧ τ [σ] and φσ,ui ∧ τ [σ] is unsatisfiable, and maintain our invariant.
But it will only do that for the specific assignments σ and τ . To obtain a strategy, we
need functions that compute σ, τ -interpolants given assignments σ, τ . Just like the formula
φσ, a σ, τ -interpolant is defined on annotated existential variables. However, since the
interpolant can only use variables shared between φσ,¬ui and φσ,ui , for each existential
variable e, the only annotated variable that can appear in the interpolant is e[σ]. That allows
us to use circuits defined on the original variables to compute σ, τ -interpolants by renaming
(annotating) the input variables. Extending our notation C [σ] for annotated clauses, we write
I [σ] for the circuit obtained from I by replacing universal input gates u in the domain of σ by
the constant gate σ(u), and replacing each existential input gate e by the annotated gate e[σ].
Following Hofferek et al. [20], we call a sequence of circuits computing σ, τ -interpolants an
n-interpolant.

▶ Definition 8 (n-Interpolant). An n-interpolant is a sequence I = (I1, . . . , In) of circuits
with the following properties:
(a) Each Ii is defined on variables Di, for 1 ≤ i ≤ n.
(b) For any pair of assignments σ : U → {0, 1} and τ : E → {0, 1} consistent with I, the

circuit I [σi−1]
i is a σi−1, τi−1-interpolant whenever φ[σi−1] ∧ τ

[σi−1]
i−1 is unsatisfiable, for

each 1 ≤ i ≤ n.
Here, σi = σ|{u1,...,ui} and τi = τ |Di .

We first prove that an n-interpolant of a false QBF is a universal winning strategy.

▶ Proposition 9. An n-interpolant is a universal winning strategy.

Proof. Let I = (I1, . . . , In) be an n-interpolant, and let σ : U → {0, 1} and τ : E → {0, 1}
be assignments consistent with I, formally Ii(σ ∪ τ) = σ(ui) for 1 ≤ i ≤ n. Further, for
1 ≤ i ≤ n, let σi = σ|{u1,...,ui} and τi = τ |Di denote restrictions of these assignments as in
Definition 8.

We show that φσi ∧ τ
[σi]
i is unsatisfiable for 0 ≤ i ≤ n. For σn = σ, since σ is a complete

assignment of universal variables, the annotated formula φσ is syntactically equivalent to
the restriction φ[σ] when annotations are dropped. So if φ[σ] ∧ τ [σ] is unsatisfiable, the
matrix φ must be falsified by σ ∪ τ . Since τ was chosen arbitrarily, this would prove that
the n-interpolant is a universal winning strategy.
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We proceed by induction on i. For i = 0, the assignments σ0 and τ0 are empty, and
φσ0 ∧ τ [σ0]

0 coincides with the Herbrand expansion exp(Φ), which is unsatisfiable because the
QBF Φ is assumed to be false. Suppose the statement holds up to i− 1 < n. By definition,
I

[σi−1]
i is a σi−1, τi−1-interpolant, and since φσi−1 ∧ τ

[σi−1]
i−1 is unsatisfiable by induction

hypothesis, I [σi−1]
i is an interpolant between φσi−1,¬ui ∧ τ

[σi−1]
i−1 and φσi−1,ui ∧ τ

[σi−1]
i−1 . Since

Ii is defined on variables Di, the assignment τ [σi−1]
i assigns all variables of I [σi−1]

i , and
I

[σi−1]
i (τ [σi−1]

i ) = Ii(σi−1 ∪ τi) = σ(ui). By Proposition 3, φσi ∧ τ [σi−1]
i−1 ∧ τ [σi]

i is unsatisfiable,
and since τ [σi−1]

i−1 ⊆ τ
[σi]
i , that is the same as saying that φσi ∧ τ

[σi]
i is unsatisfiable. ◀

The converse is true as well: every universal winning strategy is an n-interpolant. In
combination, we get the following result.

▶ Theorem 10. A sequence of circuits is a universal winning strategy if, and only if, it is
an n-interpolant.

Proof. The “if” direction follows from Proposition 9. For the “only if” direction, consider a
universal winning strategy S = (S1, . . . Sn), and let σ : U → {0, 1} and τ : E → {0, 1} be
assignments consistent with S. As before, let σi = σ|{u1,...,ui} and τi = τ |Di

for 0 ≤ i ≤ n.
Any strategy trivially satisfies property (a). To prove that S is an n-interpolant, we
additionally have to show (b) that for each 1 ≤ i ≤ n, the circuit S[σi−1]

i is an σi−1, τi−1-
interpolant – that is, an interpolant between φσi−1,¬ui ∧τ [σi−1]

i−1 and φσi−1,ui ∧τ [σi−1]
i−1 . Suppose

φσi−1 ∧ τ [σi−1]
i−1 is unsatisfiable. We will prove that S[σi−1]

i correctly identifies an unsatisfiable
formula among φσi−1,¬ui ∧ τ

[σi−1]
i−1 and φσi−1,ui ∧ τ

[σi−1]
i−1 , given an assignment of the shared

variables. These are variables in τ
[σi−1]
i−1 , as well as variables shared between φσi−1,¬ui and

φσi−1,ui , which are variables e[σi−1] for some e ∈ Di ∩ E. Since τi−1 is an assignment
of Di−1 ∩ E, and Di−1 ⊆ Di, every shared variable is an annotated variable e[σi−1] for
e ∈ Di ∩ E. Now consider an arbitrary assignment ν : Di ∩ E → {0, 1}, and its annotated
version ν[σi−1]. If ν[σi−1] is inconsistent with τ

[σi−1]
i−1 , then both formulas φσi−1,¬ui ∧ τ

[σi−1]
i−1

and φσi−1,ui ∧ τ
[σi−1]
i−1 are unsatisfiable under this assignment, so we can assume that ν[σi−1]

extends τ [σi−1]
i−1 . It follows that the responses of strategy S must coincide with assignment σ

for universal variables preceding ui, formally Sj(ν) = σ(uj) for each 1 ≤ j < i. Let σ′ denote
the assignment σi−1 extended by assigning σ′(ui) = Si(ν). The assignments σ′ and ν are
consistent with S, so like above, we can conclude that φσ′ ∧ ν[σ′] is unsatisfiable. Assume
first that σ′(ui) = 0. Since ν only assigns variables to the left of ui, variable ui does not
show up in annotations and ν[σ′] = ν[σi−1]. Further, recall that ν[σi−1] extends τ [σi−1]

i−1 . Thus
φσ

′ ∧ ν[σ′] = φσ,¬ui ∧ τ
[σi−1]
i−1 ∧ ν[σ′] = φσ,¬ui ∧ τ

[σi−1]
i−1 ∧ ν[σi−1] is unsatisfiable. Similarly,

if σ′(ui) = 1, then φσ,ui ∧ τ
[σi−1]
i−1 ∧ ν[σi−1] is unsatisfiable. By Proposition 3, S[σi−1]

i is an
interpolant between φσi−1,¬ui ∧ τ

[σi−1]
i−1 and φσi−1,ui ∧ τ

[σi−1]
i−1 , as claimed. ◀

4.3 Computing Coordinated Interpolants from Exp+Res Proofs
Theorem 10 does not refer to a proof system or interpolation algorithm. In this section, we
will show that an n-interpolant representing a universal winning strategy can be computed
from an Exp+Res refutation in time O(mn), where m is the number of clauses in the
refutation.

We use the interpolation system shown above in Figure 2, in combination with a function
that assigns clauses and variables to parts depending on a partial assignment of universal
variables. Let ui be a universal variable and σ : {u1, . . . , ui−1} → {0, 1} an assignment
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of universal variables that precede it in the prefix, and let p ∈ {0, 1} be a truth value
for variable ui. We will compute an interpolant between φσ,ui=p and its complement
exp(Φ) \ φσ,ui=p in the complete expansion. Such an interpolant must exist because the
complete expansion is unsatisfiable. Each clause C is assigned a partial interpolant IC as
follows:

If C is an initial clause, then IC = 0 if C ∈ φσ,ui=p and IC = 1 otherwise.1
If C is derived by resolution from clauses C1 ∨ eµ and ¬eµ ∨ C2 with partial interpolants
I1 and I2, we distinguish two cases:

(I) If e < ui, then ui does not appear in the annotation µ, and there are two options:
(a) If σ is consistent with µ, then eµ is a shared variable, and IC = ite(¬eµ, I1, I2).
(b) Otherwise, if µ is not consistent with σ, then eµ is local to exp(Φ) \ φσ,ui=p and

IC = I1 ∧ I2.
(II) If e > ui, then the annotation µ contains a ui-literal, and again there are two cases:

(a) If µ is consistent with σ ∧ (ui = p), then eµ is local to φσ,ui=p, and IC = I1 ∨ I2.
(b) Otherwise, if µ is inconsistent with σ ∧ (ui = p), then eµ is local to exp(Φ) \φσ,ui=p,

and IC = I1 ∧ I2.

Construction of Interpolant Circuits

The above definition lets us compute an interpolant between φσ,ui=p and exp(Φ) \ φσ,ui=p

for a fixed assignment σ of universal variables. By instead considering the universal variables
u1, . . . , ui−1 as inputs, we can construct circuits ICi that take this assignment σ as an input
and compute partial interpolants between φσ,ui=p and exp(Φ) \ φσ,ui=p for each clause C.

For a given annotation µ and index i with 0 ≤ i ≤ n, let Hi
µ denote a circuit that

compares µ and with its input σ : {u1, . . . , ui} → {0, 1} and outputs 1 if µ(uj) = σ(uj) for
all 1 ≤ j ≤ n:

Hi
µ :=

i∧
j=1

µ(uj) ↔ uj

With this, we define circuits ICi for each index 1 ≤ i ≤ n and clause C in the refutation,
where p ∈ {0, 1} is a constant as above:

If C [µ] is an axiom, then ICi := ¬
(
Hi−1
µ ∧ µ(ui) ↔ p

)
.

Otherwise, if C is derived by resolution from clauses C1 ∨ eµ and ¬eµ ∨ C2 with partial
interpolants I1

i and I2
i , then we let ICi be one of the following two circuits, depending on

the order of e and ui (which is independent of the assignment σ):
(I) If e < ui, let k be the maximum index such that uk < e, and

ICi := ite(Hk
µ , ite(¬e, I1

i , I
2
i ), I1

i ∧ I2
i ).

(II) Otherwise, if e > ui, let G := Hi−1
µ ∧ µ(ui) ↔ p, and

ICi := ite(G, I1
i ∨ I2

i , I
1
i ∧ I2

i ).

We write Ii := I∅
i for the circuits constructed at the empty clause.

1 Here, we assume that the complete assignment of universal variables used in the axiom rule is given. In
the implementation, where this full assignment is not part of the proof, we can assume that all universal
variables missing from annotations were assigned 0. A minor optimisation is to leave their assignments
open, and only fix them once we see a resolution step where the other premise has a partial interpolant
for such a variable.
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C
[u1,¬u2]
1

(a) [⊤,¬u1]
C

[u1,u2]
3

(¬a ∨ lu1,u2) [⊤,⊤]
(lu1,u2) [⊤, a ∨ ¬u1]

C
[¬u1,u2]
2

(b) [⊥,⊤]
C

[u1,u2]
4

(¬b ∨ ¬lu1,u2) [⊤,⊤]
(¬lu1,u2) [b,⊤]

⊥ [b, a ∨ ¬u1]

Figure 4 Exp+Res refutation of Figure 3, but each clause C is annotated with coordinated
interpolants [IC

1 , I
C
2 ].

▶ Example (continued). Figure 4 shows the circuits IC1 , IC2 for each clause C of the Exp+Res re-
futation from Figure 3. The circuits IC1 are identical to the partial interpolants IC(ψ¬u1 , ψu1)
computed before, but the circuits IC2 compute partial interpolants between ψσ,¬u2 and
exp(Ψ) \ ψσ,¬u2 , where σ is an unknown assignment of u1. For instance, whether the ax-
iom C

[u1,¬u2]
1 is in ψσ,¬u2 or not depends on the assignment σ(u1): if σ(u1) = 1, then

clause C [u1,¬u2]
1 is in ψσ,¬u2 and should receive the label ⊥; otherwise, the label should be ⊤.

Accordingly, its partial interpolant is simply ¬u1. On the other hand, clause C [u1,u2]
3 cannot

be in ψσ,¬u2 simply because it was instantiated with literal u2, so we can immediately set
its partial interpolant to ⊤. The same is true of both axioms on the right side of the proof
tree. Similarly, the final resolution step on pivot lu1,u2 is local to exp(Ψ) \ψσ,¬u2 , and so the
partial interpolant for the resolvent is computed as (a ∨ ¬u1) ∧ ⊤ ≡ a ∨ ¬u1.

It is readily verified that the interpolants (b, a∨ ¬u1) are a universal winning strategy. In
particular, for the existential assignment ¬a∧¬b, which led to a counterexample for the naive
approach, it computes the assignment ¬u1 ∧ u2, and the joint assignment falsifies clause C2.

▶ Lemma 11. Let p ∈ {0, 1} be a constant. For every assignment σ : {u1, . . . , ui−1} → {0, 1}
and 1 ≤ i ≤ n, the circuit I [σ]

i is an interpolant between φσ,ui=p and exp(Φ) \ φσ,ui=p.

Proof. For each circuit ICi , applying the assignment σ yields a circuit ICi
[σ] that is equivalent

to the circuit IC computed by the symmetric interpolation system for clause C and assign-
ment σ, and this circuit IC is a partial interpolant between φσ,ui=p and exp(Φ) \ φσ,ui=p

for C. ◀

By sharing subcircuits, a circuit with one output for each Ii can be computed from an
Exp+Res refutation in a single pass.

▶ Proposition 12. Let p ∈ {0, 1} be a constant. A circuit with n outputs computing Ii for
each 1 ≤ i ≤ n can be constructed in time O(mn).

Proof. For each annotation µ, a circuit computing Hi
µ for each 1 ≤ i ≤ n can be constructed

in time O(n) by using the fact that Hi+1
µ ↔ Hi

µ ∧ (µ(ui+1) ↔ ui+1) for 0 ≤ i < n. For each
clause C, the circuit ICi can be constructed in constant time from Hj

µ with 1 ≤ j ≤ i and
circuits IBi for clauses B preceding C in the refutation. So computing a circuit with outputs
representing ICi for a clause C takes time O(n), and there are m clauses in the refutation, so
it takes time O(mn) to construct a circuit with outputs representing Ii for 1 ≤ i ≤ n. ◀

Unless otherwise stated, we we let p = 0, and compute interpolants Ii between φσ,¬ui

and exp(Φ) \ φσ,¬ui . It remains to show that these can be used as interpolants between
φσ,¬ui ∧ τ [σ] and φσ,ui ∧ τ [σ]. That is not trivial, because an interpolant between φσ,¬ui and
exp(Φ) \ φσ,¬ui may output 1 if exp(Φ) \ φσ,¬ui is unsatisfiable even when φσ,ui is satisfiable.
However, we can rule out this case for interpolants computed by the symmetric interpolation
system and prove the following result.
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▶ Proposition 13. The sequence I = (I1, . . . , In) is an n-interpolant.

Proof. Each circuit Ii takes variables from Di as inputs, thus satisfying Part (a) of Defin-
ition 8. For Part (b), let τ : E → {0, 1} be an assignment of existential variables and
σ : {u1, . . . , un} → {0, 1} an assignment of universal variables consistent with I. We have to
show that I [σi−1]

i is a σi−1, τi−1-interpolant for each 1 ≤ i ≤ n, where σi = σ|{u1,...,ui}

and τi = τ |Di
. That is, we must demonstrate that I

[σi−1]
i is an interpolant between

φσi−1,¬ui ∧ τ
[σi−1]
i−1 and φσi−1,ui ∧ τ

[σi−1]
i−1 whenever φσi−1 ∧ τ

[σi−1]
i−1 is unsatisfiable.

Let J = (J1, . . . , Jn) be the sequence of “dual” interpolants for p = 1 between φσ,ui

and exp(Φ) \ φσ,ui . By Lemma 11 and Proposition 3 in combination with unsatisfiability of
exp(Φ), if I [σi−1]

i outputs 0, then φσ,¬ui ∧ τ
[σi]
i is unsatisfiable, and if J [σi−1]

i outputs 0, then
φσ,ui ∧ τ [σi]

i is unsatisfiable. By induction on i, we will show that whenever the circuit I [σi−1]
i

outputs 1, circuit J [σi−1]
i outputs 0. Proposition 3 then tells us that I [σi−1]

i is an interpolant
between φσi−1,¬ui ∧ τ

[σi−1]
i−1 and φσi−1,ui ∧ τ

[σi−1]
i−1 , as required.

For i = 1, this follows from the symmetry of the interpolation system as stated in Lemma 5
and the fact that exp(Φ) \ φ¬ui = φui . Let 1 < i ≤ n and assume without loss of generality
that σ(ui−1) = Ii−1(σ ∪ τ) = 0 (if σ(ui−1) = 1, we simply apply the induction hypothesis to
obtain Ji−1(σ ∪ τ) = 0 and work with Ji−1 instead). We now claim that I [σi−1]

i (τ [σi−1]
i ) = 1

and J [σi−1]
i (τ [σi−1]

i ) = 1 imply I [σi−2]
i−1 (τ [σi−2]

i−1 ) = 1. Since Ii−1(σ ∪ τ) = I
[σi−2]
i−1 (τ [σi−2]

i−1 ) = 0, it
would follow that whenever Ii outputs 1, Ji must output 0.

To prove this claim, we compare the circuits I [σi−1]
i , J [σi−1]

i , and I
[σi−2]
i−1 . Since they all

come from the same Exp+Res proof, they share its structure, and there is a one-to-one
correspondence between their gates. More specifically, we obtain gates in I

[σi−1]
i and J

[σi−1]
i

from gates in I
[σi−2]
i−1 as follows:

1. 0-gates coming from initial clauses in φσi−1,ui become 1-gates in I [σi−1]
i and remain 0-gates

in J [σi−1]
i . Symmetrically, 0-gates coming from initial clauses in φσi−1,¬ui become 1-gates

in J
[σi−1]
i but remain 0-gates in I

[σi−1]
i .

2. 1-gates coming from initial clauses in exp(Φ) \ φσi−1 remain 1-gates in both I
[σi−1]
i and

J
[σi−1]
i , since exp(Φ) \ φσi−1 ⊆ exp(Φ) \ φσi−1,ℓ for ℓ ∈ {ui,¬ui}.

3. ∨-gates from resolution steps with pivots eσi−1,ui local to φσi−1,ui become ∧-gates in
I

[σi−1]
i , and ∨-gates from resolution steps with pivots eσi−1,¬ui local to φσi−1,¬ui become

∧-gates in J
[σi−1]
i .

4. ∨-gates from resolution steps with pivots eσi−1 shared between φσi−1,¬ui and φσi−1,ui ,
but local to φσi−1 , become ite-gates in I

[σi−1]
i and J

[σi−1]
i .

5. ∧-gates coming from resolution steps local to exp(Φ) \ φσi−1 remain ∧-gates.
6. ite-gates coming from resolution steps on variables shared between φσi−1 and exp(Φ)\φσi−1

remain ite-gates. That is because any such shared variable must be of the form eσk for
some k < i − 1, and so it will also be shared between φσi−1,ℓ and exp(Φ) \ φσi−1,ℓ for
ℓ ∈ {ui,¬ui}.

We now show, by induction on the position of a clause in the proof, that whenever its
corresponding gate outputs 1 under assignment τ [σi−1] in both I

[σi−1]
i and J

[σi−1]
i , then the

gate must output 1 in I
[σi−2]
i−1 as well. We argue separately for each of the above cases:

1. If the clause is an axiom in φσi−1 , then we get contradicting constant gates in I
[σi−1]
i and

J
[σi−1]
i , and the statement holds trivially.

2. For axioms in exp(Φ) \ φσi−1 , we get 1-gates in all three circuits, so the statement again
holds trivially.

SAT 2024
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3. For a clause derived by resolution on a pivot variable local to φσ,¬ui or φσ,ui , we get
an ∨-gate in I

[σi−1]
i and an ∧-gate in J

[σi−1]
i , or vice versa. In either case, if both the

∧-gate and the ∨-gate output 1, then there has to be an input that is 1 in both I
[σi−1]
i

and J
[σi−1]
i . By induction hypothesis, this input must also be 1 in I

[σi−2]
i−1 , and because

we have an ∨-gate for this clause in I
[σi−2]
i−1 , its output must be 1 as well.

4. If the pivot is shared between φσi−1,¬ui and φσi−1,ui , but local to φσi−1 , then we get
ite-gates in I [σi−1]

i and J [σi−1]
i that take their values from the same input under assignment

τ [σi−1]. If the output of the gate in both circuits is 1, that input must be 1 in both
circuits, and thus also in I

[σi−2]
i−1 by induction hypothesis. Since we get an ∨-gate for this

clause in I
[σi−2]
i−1 , its output must be 1.

5. If the pivot is local to exp(Φ) \ φσi−1 , then we get an ∧-gate in all three circuits, and if
the gates in I

[σi−1]
i and J [σi−1]

i output 1, we can again apply the induction hypothesis to
the inputs to conclude that the gate’s output has to be 1 in I

[σi−2]
i−1 as well.

6. Finally, if the pivot is shared between φσi−1 and exp(Φ) \ φσi−1 , we get ite-gates in all
circuits, taking their values from the same input under the assignment τ [σi−1]. We can
once again apply the induction hypothesis to this input to conclude that the output of
the gate in I

[σi−2]
i−1 has to be 1.

This completes the induction argument. In particular, whenever the circuits I [σi−1]
i and

J
[σi−1]
i both output 1, then I

[σi−2]
i−1 must output 1 as well, proving the claim. ◀

5 Experiments

We implemented the algorithm described in Section 4.2 within FERPModels,2 a framework
for strategy extraction from Exp+Res proofs that supports round-based strategy extrac-
tion [19]. For reference, we also implemented strategy extraction based on combination of
partial strategies [34]. The modified version of FERPModels is available on GitHub.3

5.1 Setup

The pipeline for extracting and validating strategies for a false QBF in FERPModels
includes the following steps:
1. Solving the QBF with the expansion solver Ijtihad [9].
2. Using the SAT solver PicoSAT [7] to generate a proof of unsatisfiability of the final

expansion in the TraceCheck format [36].
3. Generating and validating a FERP proof, which maps variables in the unsatisfiability

proof to annotated variables, and initial clauses to Exp+Res axioms.
4. Extracting the strategy as an AND-Inverter Graph (AIG) from the FERP proof.
5. Validating the strategy by conjoining its CNF encoding with the matrix of the QBF

using QBFCert [30], and proving unsatisfiability of the resulting (propositional) formula.
Since these SAT calls are frequently a bottleneck, we decided to use CaDiCaL4 here
instead of the default PicoSAT.

2 https://github.com/SFMV/ferp-models
3 https://github.com/fslivovsky/ferpmodels
4 https://github.com/arminbiere/cadical

https://github.com/SFMV/ferp-models
https://github.com/fslivovsky/ferpmodels
https://github.com/arminbiere/cadical
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The only step that varies between different versions used in our experiments is Step 4, so we
get an apples-to-apples comparison of strategy extraction algorithms. We refer to the three
versions as interpolant, combine, and round-based.

For our experiments, we used a cluster with AMD EPYC 7402 CPUs running 64-bit
Linux. We first identified 135 instances from the PCNF track of QBFEval 2020 that could
be solved by Ijtihad within 15 minutes and with a memory limit of 8 GB. Of these, 92 are
false and were considered further for strategy extraction. For each of these formulas and
each strategy extraction algorithm, we ran the entire pipeline described above (including
QBF solving) once, using a time limit of 30 minutes and a memory limit of 32 GB.

5.2 Results
For 4 out of 92 instances, the strategy extraction step was not reached:

For 3 instances, the proof generation in Step 2 failed. More specifically, for 2 instances,
PicoSAT was unable to solve the expansion (again) within the timeout. For 1 instance,
checking the UNSAT proof timed out.
For 1 instance, the FERP trace generation in Step 3 ran out of memory.5

The numbers of extracted and verified strategies for the remaining 88 instances are shown in
Figure 5.
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Figure 5 Number of extracted and verified strategies, by algorithm.

Strategies could be extracted by both interpolant and combine for 87 out of 88 instances
(for the remaining instance, Steps 1-3 take about 26 minutes, not leaving enough time
for strategy extraction), compared to 42 instances with round-based.6 The numbers for
verified strategies follow a similar trend, with combine and interpolant seeing 80 and 82
verified strategies respectively, compared to 41 for round-based. Notably, the instances where

5 This could perhaps be addressed by switching from a binary resolution proof generated by TraceCheck
to a more succinct proof format, but such optimisations are beyond of the scope of this work.

6 This number is slightly lower than the one reported in the original paper [19], probably because of a
more restrictive memory limit in our experiments (32 instead of 50 GB).
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strategies could be extracted by interpolant and combine are the same, and these include
all instances where strategies could be extracted by round-based. Similarly, if a strategy for
an instance could be verified with round-based, it could be verified with combine, and every
instance verified with combine could be verified with interpolant.

As in previous experiments on strategy extraction [19, 30, 31], the validation step takes
up a significant fraction of the overall running time.

0-10s 10-100s 100-1800s

Solving TraceCheck Generation FERP Generation Strategy Extraction Validation

Figure 6 Average fraction of running time spent on each step of the strategy extraction and
validation pipeline, grouped by overall running time.

Figure 6 shows that the longer the overall running time, the more time is spent on validation.
Figure 7 shows the number of instances for which strategies could be extracted within a
given time budget, for each algorithm. The running times for combine and interpolant are
very similar, and both algorithms can extract strategies for all but one instance within 250
seconds.

Figure 8 compares the number of nodes between AIGs for strategies extracted by the three
algorithms. As one would expect given the gap in running times, the strategies extracted by
round-based generally require much bigger AIGs than the strategies extracted by interpolant.
On average (geometric mean), the AIGs for round-based are about 30 times larger than for
interpolant. The biggest difference we saw was an instance where interpolant (and combine)
extract a strategy with 160 nodes, while the AIG for round-based required more than 100
million nodes. However, there was also an instance where the round-based strategy required
only about 600 nodes, compared to 20000 for interpolant. As the figure shows, the AIG
sizes are much more similar between interpolant and combine. On average, the strategies for
interpolant are larger by a factor of 1.6. There is an instance where the AIG for combine has
only about 2000 nodes, while the AIG for interpolant has 45000 nodes. Conversely, there is a
QBF where the strategy for interpolant requires 26000 nodes, while the strategy for combine
requires 48000 nodes. Finally, the strategy size achieved with combine was never larger than
the strategy size with round-based.
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Figure 7 Number of strategies extracted within a given time, by algorithm.
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5.3 Discussion
The gap between round-based and the other two strategy extraction algorithms seen in our
results was expected. While the former performs multiple passes of the proof, one for each
quantifier block, the other two only require a single pass. However, given that the three
approaches are very different, it is surprising that combine and interpolant were consistently
better: there was no instance where strategies could be extracted with round-based, but not
with the other two algorithms, and the same is true for strategy verification. Even in terms
of AIG size, there was no example where round-based resulted in smaller strategies than
combine (there were a few instances where the AIGs were smaller with round-based compared
to interpolant, however).

Another surprise was the performance of combine compared to interpolant. While both
underlying algorithms have a running time of O(mn) for a proof with m lines and n universal
variables, a closer inspection shows that the hidden constant in this bound is about twice as
large for combine. In spite of that, combine closely matched interpolant, frequently leading
to smaller AIG sizes for strategies. One possible explanation for its good performance is that
combine works with local strategies that are immediately substituted for universal variables,
which in combination with hashing of AIG nodes may help compress strategies. By contrast,
during the construction of circuit Ii for interpolant, universal variables uj with j < i are kept
as inputs. Only at the very end, the interpolant Ii can be substituted for variable ui.

6 Related Work

Goultiaeva et al. first observed that winning moves for the universal player in the QBF
evaluation game can be efficiently extracted from Q-resolution refutations [18]. This result was
generalised to long-distance Q-resolution by Egly et al. [17], and to IRM-calc by Beyersdorff
et al. [5]. Efficient move extraction implies polynomial-time strategy extraction for proof
systems that are closed under restriction. Peitl et al. gave an explicit construction for
Q-resolution with a dependency scheme [32]. Balabanov and Jiang present a linear-time
strategy extraction algorithm for Q-resolution [2] that was adapted to long-distance Q-
resolution by Balabanov et al. [3]. Suda and Gleiss gave a local soundness argument for
many resolution-based QBF proof systems, including Exp+Res [38]. They interpret clauses
derived in these systems as abstractions of partial strategies, and show that resolution can
be understood as an operation for combining partial strategies. Schlaipfer et al. used this
interpretation of clauses as partial strategies, optimised for Exp+Res, to obtain an O(mn)
strategy extraction algorithm for a proof with m lines and n universal variables [34]. Chew
and Slivovsky generalised this approach to prove simulations of many clausal QBF proof
systems by extended QBF Frege [13].

Beyersdorff et al. lifted feasible interpolation as lower bound technique from propositional
logic to QBF proof systems [6]. They also observed that interpolants and winning strategies
coincide for the first universal variable in the quantifier prefix. Chew and Clymo extended
this observation by proving that feasible interpolation of the underlying propositional proof
system is necessary for polynomial-time strategy extraction in QBF expansion systems,
and that interpolation is sufficient for polynomial-time strategy extraction whenever the
propositional proof system is closed under restrictions [12].

Jiang et al. showed how to synthesise Boolean functions with a single output using
interpolation [25]. Their approach can handle multiple outputs (i.e., multiple universal
variables when applied to QBF strategy extraction) only by substituting functions and
computing interpolants one at a time. Hofferek et al. extended their approach to multiple
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outputs and described an interpolation system that simultaneously extracts n interpolants
from a single proof [20]. However, unlike the approach presented here, their interpolation
system only works with ordered (so-called local-first) proofs, and transforming a proof into
this shape may cause an exponential blowup.

7 Conclusion

This paper establishes a correspondence between strategy extraction, a key concept in QBF
solving and proof complexity, and interpolation, a well studied technique in logic: every
universal winning strategy of a QBF corresponds to a sequence of interpolants in its complete
expansion, and vice versa. This observation inspired a new strategy extraction algorithm for
QBF expansion proofs that performed well in our experiments. Correctness of this algorithm
is proved here only for a specific (symmetric) interpolation system [33]. To assess the
robustness of the correspondence between strategies and interpolants, it would be interesting
to know whether the algorithm also works with other interpolation systems. Another followup
question is whether it can be adapted to proof systems with partial annotations, such as IR-
calc [5]. Finally, and perhaps most importantly, we conjecture that the main idea presented
in this paper generalises beyond QBF to quantified SMT and instantiation-based first-order
theorem proving, where it might find applications in complex synthesis tasks [20].
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A Proof of Lemma 1

▶ Lemma 1. Let Φ = Q1v1 . . . Qnvn.φ be a QBF, and let α : {v1, . . . , vi} → {0, 1} be a
partial assignment of its variables. Then exp(Φ[α]) and φσ ∧ τ [σ] are equisatisfiable, where
σ = α|U and τ = α|E.

Proof. Let Ei = {v1, . . . , vi} ∩ E and Ui = {v1, . . . , vi} ∩ U . By definition, we have
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∧
C∈φ[α]

C [ρ].
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∧
C∈φ[α]

C [σ∪ρ].
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∧
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∧
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∧
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∧
C∈φ

C[τ ][θ].
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∧
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C[τ ][θ] =
∧

θ:U→{0,1}
σ⊆θ

∧
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Abstract
Quantum Computing (QC) is a new computational paradigm that promises significant speedup
over classical computing in various domains. However, near-term QC faces numerous challenges,
including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity
constraint, circuit mapping is required for executing quantum circuits on quantum computers. This
process involves performing initial qubit placement and using the quantum SWAP operations to
relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit
mapping is essential for improving the success rate of quantum circuit execution as SWAPs are
costly and error-prone. In this work, we introduce a novel circuit mapping method by combining
incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT
encoding for circuit mapping problems, which significantly improves solver-based mapping methods
and provides a smooth trade-off between compilation quality and compilation time. Through
comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum
computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based
methods, reducing the compilation time from hours to minutes for important quantum applications.
Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.
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1 Introduction

There is compelling evidence that Quantum Computing (QC) can solve certain computational
problems exponentially more efficiently than classical computers [33, 39]. As a result,
transformative applications are expected to emerge in fields such as optimization [1, 11,
32], machine learning [8, 38], finance [10, 18, 21, 34], pharmaceuticals [13, 16, 24], and
cryptography [17, 39, 40].
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However, the practical realization of QC still faces numerous challenges, including limited
qubit connectivity on quantum computers and noisy quantum operations. Limited qubit
connectivity decreases the ability of quantum devices to execute arbitrary quantum circuits,
and noisy operations restrict the sizes of executable quantum circuits. Fortunately, these
hardware challenges can be mitigated at the software level by compiler optimizations.

Quantum compilers perform numerous transformations and optimizations to produce
compact and optimized circuit executables. The specific transformation we are concerned
with in this paper is circuit mapping. Circuit mapping involves the insertion of a special
quantum operation called the SWAP gate to map arbitrary quantum circuits to devices.
Since SWAP gates are costly and error-prone, the compiler must minimize the SWAP count.
Currently, there are two primary approaches to the circuit mapping problem: solver-based
algorithms [28, 44] and heuristics-based algorithms [26, 41]. Both approaches have their
drawbacks: solver-based algorithms achieve optimal SWAP count but suffer from long
compilation time; heuristic algorithms are fast, but the SWAP counts are usually suboptimal.

We propose a novel circuit mapping method based on incremental and parallel solving for
Boolean Satisfiability (SAT). Our approach aims to find a minimum number of SWAP gates
that accommodate the circuit mapping requirement by iteratively decreasing the SWAP-gate
count and checking feasibility with SAT solving. We use a dedicated SAT encoding that
enables incremental solving and we combine incremental and parallel solving techniques.
Compared to current solver-based algorithms, our method is 26x faster on average. Compared
to current heuristic algorithms, our method reduces the SWAP count by 26% on average.

In summary, our contributions are:
1. We design a novel SAT encoding for determining the satisfiability of mapping a circuit

with a given SWAP count.
2. By combining the novel SAT encoding and parameter search developed, we develop a new

circuit mapping method that achieves a smooth trade-off between compilation quality (in
terms of SWAP count) and compilation time.

3. By exploiting the problem structure, we develop an efficient implementation of the
proposed mapping method that combines incremental and parallel techniques.

4. We perform an extensive evaluation to show that the resulting approach is 26× faster
than the state-of-the-art solver-based method and outperforms the heuristic approaches
in 76% of the instances.

In the rest of this paper, Section 2 introduces the background on quantum circuit mapping
and preliminaries on SAT solving. We then present our SAT-based quantum circuit mapper
in Section 3 and give details on the full encoding in Section 4. Finally, we present our
experimental evaluation in Section 5 and conclude in Section 6.

2 Background

2.1 Quantum Circuit Mapping
We first illustrate the problem of quantum circuit mapping with an example. Subsequently,
we delve into the existing approaches addressing this problem.

2.1.1 An Illustrative Example
Figure 1a shows the qubit connectivity of (part of) the Aspen M-3 quantum computer,
manufactured by Rigetti Computing [36]. Figure 1b shows the circuit diagram of a 3-qubit
quantum circuit for the famous Quantum Fourier Transform (QFT) algorithm [14, 33]. The
QFT circuit has a 2-qubit gate between each pair of the three qubits.
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(a) Qubit connectivity graph of (part of) the
Rigetti Aspen M-3 quantum computer. Circles are
physical qubits and lines are physical links that
allow 2-qubit gates to be performed on.

|q1⟩ • • H

|q2⟩ • H Rπ/2

|q3⟩ H Rπ/2 Rπ/4

(b) An example 3-qubit QFT circuit. The 3 hor-
izontal lines represent the time schedules of the
quantum gates on the 3 algorithmic qubits q1, q2,
and q3. This circuit consists of 1-qubit Hadamard
gates (boxes labeled H) and 2-qubit controlled ro-
tation gates (solid dot and box labeled R that are
connected by a vertical line). In our problem set-
ting, the two qubits in controlled rotation gates can
be treated equally.

Figure 1 The mismatch between qubit connectivity of the Rigetti Aspen M-3 hardware and that
of the QFT circuit. On the Aspen M-3 device in Figure 1a, no three qubits are connected to each
other. In the QFT circuit in Figure 1b, each qubit is connected to the other two by a 2-qubit gate.

To execute the QFT circuit on the Aspen M-3 device, a circuit mapping procedure must
be performed by a quantum compiler. Circuit mapping involves two steps: initial qubit
placement and qubit routing. During initial qubit placement, the quantum compiler maps
each algorithmic qubit in the circuit to a physical qubit on the device, as shown in Figure 2a.

The QFT circuit requires each algorithmic qubit to interact with the other two. However,
on the qubit connectivity graph of Aspen M-3, no subgraph forms a three-qubit ring that
would allow pairwise qubit interaction. As a result, after initial qubit placement, the QFT
circuit still cannot be directly executed since it requires a non-local 2-qubit interaction that
is not supported by the device (see Figure 2a for a specific initial assignment). This gap
necessitates the second step in circuit mapping – qubit routing. When two (algorithmic)
qubit operands in a 2-qubit gate are mapped to non-adjacent physical qubits, the compiler
performs qubit routing to remap the two qubit operands to adjacent physical qubits before
scheduling the 2-qubit gate.

(a) The initial qubit placement step associates each
algorithmic qubit in the QFT circuit with a phys-
ical qubit on the Aspen M-3 device. Black lines
are connections required by the QFT circuit in Fig-
ure 1b. The line with red cross is not available on
the device.

|q1⟩ • • H

|q2⟩ • H ×
|q3⟩ H Rπ/2 Rπ/4 × Rπ/2

(b) The qubit routing step inserts a SWAP gate
(denoted as two crosses connected by a vertical line)
in the QFT circuit. After the SWAP insertion, the
last 2-qubit gate is now between q1 and q3 (it was
between q1 and q2, as shown in Figure 1b).

Figure 2 Mapping the 3-qubit QFT circuit in Figure 1b onto the Aspen M-3 device in Figure 1a.
First, algorithmic qubits are placed onto the device (Figure 2a). The last 2-qubit gate between
q1 and q2 cannot be scheduled as there is no link between them on the device.. After the SWAP
insertion (Figure 2b), the last 2-qubit gate is re-targeted to q1 and q3, which then can be scheduled.

SAT 2024
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Qubit routing is performed by inserting quantum SWAP gates [33]. A SWAP gate
is a special 2-qubit quantum gate that is not responsible for entangling qubit states for
computation, but for exchanging the qubit states for routing. Since a SWAP gate exchanges
qubit states, it affects the quantum gates scheduled behind it. After a SWAP insertion, the
gates scheduled after the SWAP gate that use one of the swapped qubits must be re-targeted
to the other qubit that it swaps to. Figure 2b gives an example of SWAP insertion for the
3-qubit QFT circuit from Figure 1b. From the example, we can see that SWAP gates can
alter the connectivity requirements of the quantum circuits to match them with the qubit
connectivity of the underlying quantum hardware.

2.1.2 Current Circuit Mapping Approaches
Currently, there are two main-stream approaches to the circuit mapping problem:

Heuristic Algorithms. Heuristic mapping algorithms usually optimize metrics designed by
humans and calculable within a bounded search depth. Examples of these metrics include
the total 2-qubit gate distance of the 2-qubit gates that remain t to be scheduled (the gate
distance of a 2-qubit gate measures how far away the two qubit operands are on the device
given the current mapping). In industrial quantum compilers, heuristic algorithms are among
the most popular choices because they provide fast compilation time. Notable examples
include the SABRE (SWAP-based BidiREctional heuristic search) algorithm [26] used in the
Qiskit compiler [2] and the architecture-aware mapping algorithm in the TKET compiler [41].
Optimality studies have shown that heuristic algorithms are far from the theoretical optimal
in terms of the output SWAP count [43].

Solver-based Algorithms. Alternatives to the heuristic methods rely on complete algorithms
to search for the minimal SWAP count. Existing work employs different types of solvers
for this purpose. The state-of-the-art solver-based algorithm is the TB-OLSQ2 mapper [28],
which translates the mapping problem to a satisfiability problem that can be solved by the
Z3 [15] SMT solver. SATMap [31] is another solver-based algorithm that is based on MaxSAT
solving but SATMap is not as efficient as TB-OLSQ2 due to a different choice of encoding.

2.2 Modern SAT Solving
Let {x1, x2, ..., xn} be a set of Boolean variables. A literal l is a variable x or its negation ¬x.
A clause C of size k is a disjunction of k literals, i.e., C = (l1 ∨ l2 ∨ ... ∨ lk). A formula φ in
Conjunctive Normal Formal (CNF) is a conjunction of clauses, i.e., φ = (C1 ∧ C2 ∧ ... ∧ Cm)
for some m > 0. An assignment of truth values to the variables in φ is called a solution if it
makes φ evaluate to true. We call φ satisfiable if there exists a solution and unsatisfiable
otherwise. Given a formula φ, modern SAT solvers can effectively find a solution or prove
that it is unsatisfiable by using the Conflict Driven Clause Learning (CDCL) scheme [29].
Many efficient solver implementations have emerged in recent years, including but not limited
to Kissat, CaDiCaL [9], CryptoMiniSat [42], MapleSAT [27], and Glucose [5].

Incremental Solving. Incremental solving is an effective technique supported by most
modern SAT solvers for solving a series of similar formulas. Incremental solving supports
the addition of new clauses and assumptions between SAT calls. A key benefit is that the
solver can keep and reuse internal states and clauses learned in previous SAT calls to speed
up solving for the new formula.
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Parallel Solving. Parallel solving seeks to distribute the computational workload of solving a
formula across multiple processors. There are primarily two categories of work. The partition
approaches try to split the formula equally into many sub-problems using heuristics and
solve them in parallel [4, 20, 23, 45]. Recent work in this line includes cube-and-conquer [23],
AmPharoS [4], and Paracooba [20]. Another line of work, called theportfolio approach, runs
multiple SAT solvers with different configurations in parallel to solve the original formula
and share information, such as, learned clauses between solvers. These approaches mainly
leverage the solver diversity to improve the overall solving speed. Portfolio approaches
are implemented by competition-winning solvers such as ManySAT [19], Mallob [37], and
ParKissat-RS [7].

2.3 Helper Functions
In this section, we introduce some of the helper functions that we use in our approach.

2.3.1 Linear Encoding of At-Most-One Constraints
Several constraints in our SAT formulation are At-Most-One (AMO) constraints. We leverage
a recursive scheme (also used in other works [22]), as a general helper function for encoding
AMO constraints in our SAT formulation. Each step of the recursion introduces a new
Boolean variable y. To encode the AMO constraint for a general set of Boolean variables
B = {b1, ..., bi, ..., bn}, we have,

AMO(b1, . . . , bn) =
{∧

1≤i<j≤n(¬bi ∨ ¬bj) n ≤ 4
AMO(b1, b2, b3, y) ∧AMO(¬y, b4, . . . , bn) otherwise

For a constraint with n variables, this encoding introduces n−3
2 auxiliary variables and

3(n− 2) clauses compared to n2−n
2 clauses using a naive pairwise encoding.

2.3.2 Totalizer Encoding
Our approach utilizes a cardinality constraint with an iteratively decreasing cardinality bound.
We hence describe the Totalizer encoding [6, 30] for cardinality constraints with varying
bounds. Below we present an example to encode the AtMostK constraint (l1+l2+l3+l4+l5 ≤
k). Figure 3 illustrates the encoding structure where every node is represented by a node
name and a list of variables. The leaf node indicates an input variable, e.g., node C with a
variable l1. The root node includes the indicator variables for the sum of input variables.
For example, assigning variable o2 in node O indicates that at least two variables of l1, ..., l5
are true, while a false assignment to o2 indicates that at most one input variable is assigned
to true. Every internal node represents an intermediate sum over its two children. For
example, node A represents the sum of variables from nodes C and D. The variables a1 and
a2 indicate whether the sum is at least one and two, respectively.

Following the structure, we can derive the encoding below. For any non-leaf node
P : p1, ..., pnp

with two children denoted by Q : q1, ..., qnq
and R : r1, ..., rnr

, we require at
least α + β variables of P to be true when node Q implies α many variables assigned to true
and node R indicates β many variables to be true, i.e.,

(qα ∧ rβ)→ pγ

⇐⇒ ¬qα ∨ ¬rβ ∨ pγ for α + β = γ, 0 ≤ α ≤ nq, 0 ≤ β ≤ nr, 0 ≤ γ ≤ np
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O : o1, o2, o3, o4, o5

A : a1, a2

C : l1 D : l2

B : b1, b2, b3

E : l3 F : f1, f2

G : l4 H : l5

Figure 3 Totalizer encoding for l1 + l2 + l3 + l4 + l5 ≤ k.

where q0 = r0 = p0 = true. For the cardinality bound, we simply add a unit clause

¬ok+1

for AtMostK constraint or add ok for AtLeastK constraint. In our application, we are
interested in AtMostK constraints with iteratively decreasing bounds. Since ¬ok1 implies
¬ok2 for k1 < k2, we can add the unit clause for a smaller bound without deleting the
previous one, which is called incremental strengthening in the literature [3].

For a cardinality constraint with n variables and bound k, the Totalizer encoding requires
O(n log n) auxiliary variables and O(nk) clauses after simplification [12, 25].

3 SAT-based Circuit Mapping

Our novel quantum circuit mapper is called SATmapper. It is depicted in Figure 4. SATmapper
seeks to find a minimum number of SWAP gates that accommodate the quantum circuit
mapping requirement by iteratively decreasing the SWAP-gate count (S) and checking
feasibility for S using a modern SAT solver. Section 3.1 provides an overview of the
SATmapper framework. We then discuss the encoding and decoding processes in Section 3.2.
We discuss the solving techniques used by SATmapper in Section 3.3.

3.1 Framework
Figure 4 presents the framework of SATmapper. For a given number of SWAP count S,
SATmapper reduces the mapping problem to a SAT encoding and utilizes a SAT solver to
compute the feasibility of using no mote than S SWAP gates. The workflow runs from left to
right. Given three inputs: a quantum circuit, a quantum device (QPU), and an initial SWAP
count (S), SATmapper encodes the quantum circuit mapping problem into a SAT formula
in conjunctive normal form (CNF). A SAT solver takes the CNF as input and checks its
satisfiability. A satisfiable (SAT) result indicates that there is a valid mapping that uses no
more than S SWAP gates. In this case, we reduce the SWAP count S and continue the loop
to search for a mapping with fewer SWAP gates. We exit the loop when the solver returns
UNSAT, which indicates that we cannot decrease the SWAP count. Finally, we decode a
mapped circuit from the best result we’ve obtained so far.

Pseudo-code for this procedure is given in Algorithm 1 . Given a quantum circuit and a
device. we initialize S with the value produced by the state-of-the-art heuristic approach,
TKET. If TKET generates a mapping without any SWAP gates, we terminate and return
the mapping at Line 3. In the common case, TKET provides a mapping with S(> 0) SWAP
gates. Then, we start our SAT-based optimization from this S at Lines 4-11.
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Circuit

QPU

SWAP≤ S

Encoder CNF SAT
Solver

Reduce S

Decoder Mapped
CircuitUNSAT

SAT

Figure 4 SATmapper framework.

Algorithm 1 SATmapper(circuit, qpu).

1: S ← TKET(circuit, qpu);
2: if S = 0 then
3: return mapped circuit from TKET; ▷ It’s already optimal.
4: repeat
5: S ← S − 1;
6: φ← Encode(circuit, qpu, S);
7: sat← Solve(φ);
8: if sat is True then
9: solution← GetSolution(φ); ▷ Store the best result so far.

10: S ← CountSWAP(solution); ▷ Calculate the SWAP count in the solution.
11: until (sat is False) or (S = 0) or Timeout;
12: if solution is NULL then
13: return mapped circuit from TKET; ▷ No better result from SATmapper.
14: else
15: mappedCircuit← Decode(solution, circuit, qpu);
16: return mappedCircuit; ▷ Retrieve the best result within the time limit.

In every iteration, we reduce the best-known S by one to explore the possibility of
producing a lower SWAP count. We encode the circuit mapping with an upper bound of
S SWAPs into a formula φ at Line 6 and invoke a SAT solver to solve φ at Line 7. If φ

is satisfiable, the circuit can be mapped with no more than S SWAP gates and we store
the solution at Line 9. The solution contains the best mapping up to this point and can
later be decoded into a mapped circuit. We calculate the actual SWAP count implied by the
solution as this SWAP count can be smaller than the current upper bound S. Therefore,
we update the best-known SWAP count S with the actual value implied by the solution at
Line 10. We repeat the loop until the solver can’t find a better mapping, or S is zero, or
we exceed the time limit. If we can’t find a single solution in the loop, we return the initial
mapping from TKET at Line 13. Otherwise, a solution was stored and we decode at Line 15
a mapped circuit from this solution, which represents the mapping with the smallest SWAP
count obtained within the time limit.

3.2 Encoding Sketch
This section presents the key encoding idea for mapping a quantum circuit to a target device
using a given number of SWAP gates. We introduce the core variables that encode the basic
information for mapping circuits in Section 3.2.1. Next, Section 3.2.2 presents the encoding of
SWAP constraints which has a crucial impact on our system design in the following sections.
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Other variables and constraints capture the mapping interaction between the circuit and
SWAP gates, and we defer the details of full encoding to Section 4. Finally, Section 3.2.3
illustrates how to decode the mapped circuit from a solution to our encoding.

3.2.1 Transition Step
We consider the circuit mapping in different temporal steps. Instead of the actual time step
in the circuit that increase gate by gate, we define a transition step that increases only after
SWAP gate insertion. The layout of a quantum device changes when the transition step
increases. Each layout update event is encoded as a new time step. Therefore, we start with
an initial layout at step 0 and move to step 1 after inserting SWAP gates to update the
layout. Given a qubit connectivity graph of a quantum device, we use a Boolean variable ct

k

for every positive step t and edge k to indicate whether the edge k is selected to perform a
SWAP at step t or not. ct

k is assigned to true if the edge is selected to perform a SWAP and
is assigned to false otherwise.

For every gate g and step t, we use a Boolean variable ot
g to indicate whether the gate g

has been scheduled by step t (including t) or not. If ot
g is assigned to true, gate g is scheduled

at step i with 0 ≤ i ≤ t and is assigned to false otherwise. For example, o1
g = True indicates

that the gate g has been scheduled by step 1, that is, scheduled at either step 0 or step 1.
Otherwise, o1

g is false and the gate g has to be scheduled at step t > 1.

3.2.2 SWAP Constraints
The constraint on SWAP count is crucial to our design of SATmapper as it is the only varying
constraint across iterations. Suppose we consider T transition steps and K edges of the
connectivity graph. During the transition, multiple SWAPs can be scheduled simultaneously
if there are no conflicts among them. For every step t > 0, adjacent edges can’t be selected
for SWAP at the same time because they share a common vertex, For any two edges k and
k′ sharing a common vertex, we assert then

¬ct
k ∨ ¬ct

k′ for t ∈ [1, T ]

The total number of SWAPs over T steps is at most S, i.e.,

T∑
t=1

K∑
k=1

ct
k ≤ S (1)

where ct
k indicates whether the edge k is selected to perform SWAP at step t. The cardinality

constraint (Equation 1) can be encoded into clauses using the Totalizer encoding detailed in
Section 2.3.2.

3.2.3 Mapped Circuit Decoding
Algorithm 2 describes how to decode a mapped circuit from a solution to our encoding. We
first decode an initial qubit placement from the solution, that is, the mapping from each
algorithmic qubit to a physical qubit at step 0. Then, we retrieve the number of transition
steps from the heuristic approach, TKET. Starting from Line 3, we decode the mapped
circuit step by step. We use a list l initialized at Line 4 to store the gates to be scheduled
in sequence. Except for the initial step (t = 0), we retrieve all SWAP gates at step t and
schedule them at Line 8 to update the layout. Since there is no conflict between the SWAP
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Algorithm 2 Decode(solution, circuit, qpu).

1: mappedCircuit← GetInitPlacement(solution);
2: T ← TKETstep(circuit, qpu);
3: for t← 0 to T do
4: l← an empty list;
5: if t > 0 then
6: for ct

k from solution do
7: if ct

k is True then
8: mappedCircuit adds a SWAP gate on edge k;
9: for ot

g from solution do
10: if ot

g is True then
11: for g′ ← the last to the first of l do
12: if g depends on g′ in circuit then
13: l inserts g after g′;
14: break
15: if g ̸∈ l then
16: l inserts g at the beginning;
17: for g ∈ l do
18: mappedCircuit adds g;
19: return mappedCircuit;

gates at the same step, they can be scheduled in any order. Following that, we retrieve other
gates scheduled at step t one by one starting from Line 9. For a gate g, we traverse the list l

in a reverse order (Line 11) to insert g after the last gate g′ that g depends on at Line 13,
which ensures g is scheduled after all dependent gates. If g has no dependent gates in l, we
insert g at the beginning of l at Line 16. After that, l contains a sequence of gates where
∀gi, gj ∈ l with i < j, gi doesn’t depend on gj and can be safely scheduled before gj . Finally,
we schedule every gate in l in sequence at Line 18 and return the mapped circuit at Line 19.

3.3 Solving Techniques
Any modern SAT solver can serve to solve the encoded CNF in Figure 4, such as Kissat,
CaDiCaL [9], and the like. To embrace the recent advance in parallel (cloud) SAT solving, we
can use a competition-winning parallel SAT solver instead like Mallob [37] or ParKissat-RS [7].
Furthermore, Section 3.3.1 presents the application of incremental solving techniques to
SATmapper. Finally, we introduce the combination of incremental and parallel solving in
Section 3.3.2 to benefit SATmapper from the best of both worlds.

3.3.1 Incremental Solving
Incremental solving is beneficial in solving a series of similar input formulas. For SATmapper,
only the AtMostK cardinality constraint on the SWAP count (Equation 1) varies over
iterations. According to Section 2.3.2, the Totalizer encoding of the AtMostK constraint
allows us to use a list of variables oi to indicate different upper bounds for the same encoding.
In every iteration of SATmapper, we can run an incremental SAT solver, for example, CaDiCaL,
with a different assumption. For example, we can impose Equation 1 in our encoding by
adding the assumption of ¬oS+1 to the SAT solver, where ¬oS+1 indicates that there won’t
be S + 1 input variables to be true, that is, at most S SWAP gates are allowed in the
mapping. When SATmapper moves to a lower SWAP count S′ with S′ < S, we add another
assumption ¬oS′+1 to indicate the new bound of no more than S′ SWAPs.
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As a consequence, we can avoid encoding and reading the whole CNF at every iteration on
line 6 and 7 of Algorithm 1. Instead, the solver uses a new assumption literal and continues
to solve the formula. This incremental solving allows the solver to start from the previous
internal state and reuse learned clauses from previous iterations, which effectively reduces
the overall runtime across iterations.

3.3.2 Incremental Parallel Solving
Given the application of incremental or parallel solving to SATmapper individually, one would
wonder whether SATmapper can benefit from the best of both worlds. This section gives an
affirmative answer to this question by presenting an incremental and parallel SAT solver,
IncParKissat.

We have extended the state-of-the-art parallel SAT solver ParKissat-RS to support in-
cremental solving. Figure 5 depicts the framework of IncParKissat. IncParKissat takes an
original CNF as input and initially forks multiple Kissat with different configurations to run
in parallel. Each Kissat keeps an individual copy of the input CNF and maintains its clause
database throughout running. During the solving process, different solvers communicate with
each other by sending and receiving important learned clauses to facilitate the global solving.
When a solver finds a solution, a global termination signal is sent to the other solvers, and
all solver threads join the main thread. Alternatively, if a solver proves that the input CNF
is UNSAT, it terminates and joins the main thread. In either case, we output the result
into the main thread and continue the incremental solving by forking multiple solver threads
again. Every solver adds additional clauses φ to their database and continues to solve the
input formula from the previous internal state.

Solver 2

Clauses

Input

Solver 1

Clauses

Solver 3

Clauses

Output

fork

add ϕ add ϕ add ϕ

fork

join

clauses clauses

Figure 5 Framework of incremental and parallel SAT solver, IncParKissat.

The underlying solver Kissat used by IncParKissat does not currently support solving with
assumptions, but our application, assumptions are not required. Our implementation allows
IncParKissat to add extra clauses across incremental iterations. Because SATmapper only
requires a cardinality constraint with a decreasing upper bound across iterations, the ability
to add a unit clause across iterations is sufficient. This is because ¬ok1 implies ¬ok2 for
k1 < k2 in the Totalizer encoding, so we can add the unit clause for a smaller bound without
deleting the previous one, as described in Section 2.3.2. IncParKissat could be extended
to support solving with assumptions by replacing the underlying SAT solver Kissat with
CaDiCaL.
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4 Full SAT Encoding

We present the full SAT encoding for the quantum circuit mapping problem in this section.
Our encoding uses a transition-based step instead of the actual time steps in the circuit.
After SWAP insertion, the layout of the quantum device is updated and we call the layout
update a transition. Each layout transition event will be encoded as a new time step. The
decision of whether a gate has been scheduled by a layout transition or not is encoded as a
Boolean variable.

As follows, Section 4.1 introduces the formal definition for input and Section 4.2 discusses
the pre-processing steps. We define the encoding variables in Section 4.3 and constraints in
Section 4.4. We analyze the asymptotic encoding size in Section 4.5.

4.1 Problem Input
There are three inputs to the SAT formulation: (1) The quantum circuit to be mapped,
which is represented as an ordered list of n 2-qubit1 quantum gates G = {g1, ..., gi, ..., gn}
and V algorithmic qubits; (2) The qubit connectivity graph of the quantum device, including
P physical qubits and K connecting edges eij for i, j ∈ [1, P ] and i ̸= j; (3) the desired
physical SWAP gate number S.

4.2 Pre-processing
We perform two simple initialization steps as pre-processing of the SAT encoding:

Initialization of the input qubit connectivity graph. We initialize an ordered list
E = {d1, ..., dk, ..., dK} of edges, where each dk uniquely corresponds to an edge eikjk

in
the input qubit connectivity graph, and K is the total number of edges in the connectivity
graph. The order of edges eij in E can be chosen arbitrarily. For each dk, we denote the
larger qubit index it connects as dk.opmax and the smaller qubit index as dk.opmin.
Initialization of gate dependency list. For gi in G, we denote the larger gate operand
as gi.opmax and the smaller operand as gi.opmin and initialize them in an array. Both
gi.opmax and gi.opmin are fixed for i ∈ [1, n]. Further, we initialize the gate dependency
list lg = {(g1

1 , g1
2), ..., (gi

1, gi
2), ...}, each pair of gates denotes that gi

2 is dependent on gi
1

and thus gi
2 cannot be scheduled before gi

1. lg can be generated by enumerating the gates
on each qubit.

4.3 Encoding Variables
Schedule ot

gi
: if gate gi has been scheduled in step t, t ∈ [0, T ], then ot

gi
= True, otherwise,

ot
gi

= False. 2-qubit gates can only be scheduled after their algorithmic qubit operands
are mapped to connected physical qubits on the connectivity graph. We set the number
of transition steps T to be the same as the output of the heuristic approach, TKET.
Layout πt

ij : After step t (and before step t + 1 if t < T ), if qubit i is mapped to qubit j,
then πt

ij = True, else πt
ij = False. Here i ∈ [1, V ], j ∈ [1, P ], t ∈ [0, T ].

SWAP operand selection ct
k: if edge k ∈ [1, K] is selected for performing a SWAP at step

t ∈ [1, T ], then ct
k = True, otherwise, ct

k = False. There are no SWAPs in the initial step,
when t = 0.

1 We don’t consider 1-qubit gates because they can always be scheduled.

SAT 2024



29:12 Quantum Circuit Mapping Based on Incremental and Parallel SAT Solving

4.4 Constraints
Gate schedule initialization. For step t ∈ [0, T ) and gate gi ∈ G, it’s impossible that
gi is scheduled after step t, but not scheduled after step t + 1, i.e.,

¬(ot
gi
∧ ¬ot+1

gi
)

⇐⇒¬ot
gi
∨ ot+1

gi
for i ∈ [1, n], t ∈ [0, T )

by de Morgan’s law. Also, all gates should be scheduled after step T , i.e.,

oT
gi

= True for i ∈ [1, n]

Gate dependency. For (gi, gj) ∈ lg, gj cannot be scheduled before gi:

¬(¬ot
gi
∧ ot

gj
) for (gi, gj) ∈ lg, and t ∈ [0, T )

similarly, by de Morgan’s law, it can be re-written as

ot
gi
∨ ¬ot

gj
for (gi, gj) ∈ lg, and t ∈ [0, T )

Gate schedule continuation. For all i ∈ [1, n] and t ∈ [1, T ], if gate gi is not scheduled
after step t− 1 and its qubit operands are not mapped to connected physical qubits after
step t, then gi will not be scheduled after step t.¬ot−1

gi
∧

∧
(j,l)∈E

¬
(
(πt

gi.opmaxj ∧ πt
gi.opminl) ∨ (πt

gi.opmaxl ∧ πt
gi.opminj)

)→ ¬ot
gi

for i ∈ [1, n], and t ∈ [1, T ], which can be re-written as

ot−1
gi
∨ ¬ot

gi
∨

∨
(j,l)∈E

(πt
gi.opmaxj ∧ πt

gi.opminl) ∨ (πt
gi.opmaxl ∧ πt

gi.opminj)

where the big disjunction can be resolved by introducing auxiliary variables. For t = 0,

¬o0
gi
∨

∨
(j,l)∈E

(π0
gi.opmaxj ∧ π0

gi.opminl) ∨ (π0
gi.opmaxl ∧ π0

gi.opminj) for i ∈ [1, n]

Bounded SWAP selection. For every step t > 0, adjacent edges can’t be selected for
SWAP at the same time to avoid simultaneous SWAPs on the same qubit, i.e., for any
two edges dk and dk′ sharing a common vertex,

¬ct
k ∨ ¬ct

k′ for t ∈ [1, T ], k, k′ ∈ [1, K]

The total number of SWAPs over T steps is at most S, i.e.,
T∑

t=1

K∑
k=1

ct
k ≤ S (2)

where the cardinality constraint (Equation 2) can be encoded into clauses using the
Totalizer encoding detailed in Section 2.3.2.
Bijective layout mapping. The layout mapping πt

ij after each step t is required to be
injective, i.e.,

AMO({πt
ij}P

j=1) for i ∈ [1, V ], and t ∈ [0, T ]
AMO({πt

ij}V
i=1) for j ∈ [1, P ], and t ∈ [0, T ]
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Layout mapping update. After each step t > 0, πt−1
ij will be updated to πt

ij . If a
SWAP in step t is performed on the k-th edge dk in E (w.l.o.g., we assume dk stores edge
eij , i.e., the vertices i and j are endpoints of edge k.), then we have the following: (1) if
an algorithmic qubit m is mapped to physical qubit i after step t− 1 (i.e., πt−1

mi = True),
then πt

mj = True:

(ct
k ∧ πt−1

mi )→ πt
mj for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

⇒ ¬ct
k ∨ ¬πt−1

mi ∨ πt
mj for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

(2) similarly, if an algorithmic qubit m is mapped to physical qubit j after step t − 1,
then πt

mi =True,

¬ct
k ∨ ¬πt−1

mj ∨ πt
mi for m ∈ [1, V ], k ∈ [1, K], t ∈ [1, T ]

(3) if an algorithmic qubit m is not mapped to i, j, then the qubit mapping after step
t− 1 and after step t are the same,

¬ct
k ∨ ¬πt−1

ml ∨ πt
ml for m ∈ [1, V ], l ∈ [1, P ], l ̸= i, l ̸= j, k ∈ [1, K], t ∈ [1, T ]

4.5 Complexity Analysis
Theorem 1 states the asymptotic number of variables and clauses introduced by our encoding.
The encoding size increases approximately linearly with the number of transition steps.

▶ Theorem 1. Given a quantum circuit of n gates, a quantum device of k edges in its
connectivity graph, and t transition steps with s SWAP gates, the SATmapper encoding
requires O (tk(n + log tk)) variables and O

(
tk(k + s + n2)

)
clauses.

Proof. Assume the quantum circuit has v algorithmic qubits and the device has p physical
qubits. We first consider the number of variables. We have O(tn + tvp + tk) original
variables introduced in Section 4.3. The gate schedule continuation introduces O(tnk)
auxiliary variables for resolving the big disjunction. The bounded SWAP selection introduces
O(tk log tk) auxiliary variables for the cardinality constraint. The bijective layout mapping
introduces O(tpv) auxiliary variables for AMO constraints. As a result, we have O(tvp +
tnk + tk log tk) ⊆ O (tk(n + log tk)) variables in total, assuming, w.l.o.g., v ∈ O(n) and
p ∈ O(k).

For the number of clauses, the gate schedule initialization requires O(tn) clauses and
the gate dependency constraints produces O(tn2) clauses. The gate schedule continuation
has O(tnk) original clauses and O(tnk) auxiliary clauses introduced to resolve the big
disjunction. The bounded SWAP selection requires O(tk2) clauses for non-conflict selection
and O(tks) auxiliary clauses for encoding the cardinality constraint. Finally, the bijective
layout mapping introducesO(tvp) clauses to encode AMO constraints, and the layout mapping
update produces O(tkv2) clauses. In total, we have O(tn2 + tnk + tk2 + tks + tvp + tkv2) ⊆
O

(
tk(k + s + n2)

)
clauses assuming v ∈ O(n) and p ∈ O(k). ◀

5 Experimental Evaluation

To evaluate our approach, we have implemented a prototype of SATmapper and com-
pared it with the state-of-the-art solver-based method, TB-OLSQ2, and the best heuristic
approach,TKET. We have conducted a comprehensive evaluation on seventy-eight instances
ranging over two quantum computer devices, OQC Lucy [35] and Rigetti Aspen M-3 [36], and
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three quantum algorithms including QAOA ansatz for k-regular graphs, Quantum Fourier
Transform (QFT), and Quantum Volume (QV) circuits, with various numbers of algorithmic
qubits. All experiments were conducted on Amazon EC-2 instances c6a.48xlarge featuring
192 CPUs.

We used a time limit of 1800 seconds per instance. We set 16 CPUs and recorded
the wall-clock time for parallel solvers. We set the step number T to be the same as the
output of TKET. The runtime of TKET is less than one second on the given instances.
We don’t include this time since it is negligible compared to the solving time. The Rigetti
Aspen M-3 and OQC Lucy devices contain 32 and 8 physical qubits, respectively, and the
number of algorithmic qubits to be mapped cannot be more than the available number of
physical qubits. We define the following three metrics to measure the performance of SWAP
count optimization for SATmapper and TB-OLSQ2. Lower is better for all metrics and both
SATmapper and TB-OLSQ2 start with an initial upper bound obtained by TKET.

Failure Ratio. The ratio of instances where no improvement against TKET is observed.
SWAP Ratio. The ratio of the best SWAP count to that of TKET on average.
Median Runtime. The median runtime across all instances.

Particularly, we aim to address the following questions:
RQ1. Is SATmapper able to outperform TB-OLSQ2?
RQ2. What is the best underlying solver for SATmapper?

Summary. SATmapper outperformed TB-OLSQ2 on all three metrics, achieving a reduction
of 57 percent for failure ratio and six percent for SWAP ratio, and lowering the median
runtime from 237 to 9 seconds. Additionally, IncParKissat is the best-performing underlying
solver for SATmapper by combining incremental and parallel solving.

5.1 RQ1. SATmapper vs. TB-OLSQ2
Table 1 summarizes the comparison between TB-OLSQ2 and SATmapper (equipped with
IncParKissat) through the three metrics and note that the lower is better for all metrics. The
first row presents the failure ratio, where TB-OLSQ2 had no improvement on 81% instances
while SATmapper only failed on 24% instances achieving a reduction of 57 percent. In the
second row, TB-OLSQ2 attained a SWAP ratio of 0.80 on average while SATmapper lowered
the ratio to 0.74 by an improvement of six percent. Finally, the median runtime of TB-OLSQ2
is 237 seconds across all instances. As a comparison, SATmapper median runtime is only 9
seconds, which achieves a 26-fold reduction compared to TB-OLSQ2.

Table 1 Performance comparison between TB-OLSQ2 and SATmapper.

Metric TB-OLSQ2 SATmapper

Failure Ratio 0.81 0.24
SWAP Ratio 0.80 0.74
Median Runtime/s 237 9

Table 2 presents a detailed comparison on a subset of instances. The first column gives
the instance name in a format that lists device name, algorithm name, and number of
algorithmic qubits. The next three columns compare the number of SWAPs optimized by
TKET, TB-OLSQ2, and SATmapper. On easy instances with fewer than ten algorithmic qubits,
both TB-OLSQ2 and SATmapper can improve the results against TKET and SATmapper can
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Table 2 SWAP optimization comparison on a subset of instances.

SWAP Count Runtime/s
Instance TKET TB-OLSQ2 SATmapper TB-OLSQ2 SATmapper

Aspen-qaoa-3reg-n-8 5 3 3 1.97 3.32
Aspen-qaoa-3reg-n-10 6 4 4 1.67 2.37
Aspen-qaoa-3reg-n-12 19 8 7 116.85 1732.92
Aspen-qaoa-3reg-n-14 11 8 8 192.78 5.33
Aspen-qaoa-3reg-n-16 17 12 11 925.10 414.73
Aspen-qft-n-8 18 13 12 201.95 45.80
Aspen-qft-n-9 24 19 16 793.87 447.15
Aspen-qft-n-10 37 Failed 24 Failed 609.81
Aspen-qft-n-11 58 Failed 34 Failed 1335.53
Aspen-qft-n-12 55 Failed 40 Failed 1651.05
Aspen-qv-n-8 11 10 8 89.19 18.43
Aspen-qv-n-10 47 Failed 27 Failed 1640.08
Aspen-qv-n-12 56 Failed 50 Failed 513.64
OQC-qaoa-3reg-n-8 7 7 7 0.17 1.12
OQC-qft-n-8 28 23 23 14.15 4.44
OQC-qv-n-8 17 13 13 3.03 5.59

find lower SWAP counts than TB-OLSQ2. On hard instances of at least ten algorithmic
qubits, TB-OLSQ2 failed to produce any better result for the QFT and QV instances while
SATmapper still improved the results of TKET by around 15 SWAPs.

The last two columns of Table 2 compare the runtime. SATmapper is slightly slower
on easy instances that TB-OLSQ2 could solve within a few seconds because of a constant
overhead, but SATmapper is consistently faster than TB-OLSQ2 on harder instances. We still
observe that SATmapper spent a significantly larger time than TB-OLSQ2 on some instances,
for example, Aspen-qaoa-3reg-n-12. This is because SATmapper tried to find a lower SWAP
count than TB-OLSQ2, which considerably increases the difficulty. If SATmapper stopped
at eight SWAPs on this instance, the total runtime would be twenty seconds only, which
is lower than the runtime of TB-OLSQ2, but the effort to find a mapping of seven SWAPs
took the remaining 1712 seconds. The example also revealed the drastically increased
difficulty when lowering the SWAP count. It’s worth highlighting that SATmapper even
used less time to produce a lower SWAP count than TB-OLSQ2 on many instances such as
Aspen-qaoa-3reg-n-16, Aspen-qft-n-8, and Aspen-qv-n-8.

5.2 RQ2. Underlying Solver for SATmapper
Table 3 compares the performance of SATmapper when using different underlying SAT
solvers. Specifically, we aim to benchmark the performance of incremental and parallel-
solving techniques for SATmapper. Every column indicates SATmapper equipped with a
particular solver. Kissat [9] is a state-of-the-art sequential SAT solver without incremental
and parallel-solving techniques. CaDiCaL refers to using the CaDiCaL SAT solver [9] in
incremental mode. Pbop is a non-incremental, clause-sharing parallel SAT solver based on
Kissat. IncParKissat is the incremental and parallel SAT solver described in Section 3.3.2.
Table 3 indicates that SATmapper with IncParKissat achieved the best performance on all
three metrics. Particularly, both CaDiCaL and Pbop outperformed Kissat, which reveals the
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Table 3 Performance comparison for SATmapper with different underlying solvers.

Metric Kissat CaDiCaL Pbop IncParKissat

Failure Ratio 0.27 0.26 0.25 0.24
SWAP Ratio 0.78 0.78 0.76 0.74
Median Runtime/s 183 137 18 9

individual benefits gained from incremental and parallel solving, respectively. Finally, the
combination of incremental and parallel solving allows IncParKissat to benefit from the best
of both worlds.

6 Conclusion

SWAP count optimization during quantum circuit compilation is critical to deploying quantum
algorithms on current generation quantum devices. The existing solver-based method to
address this problem does not scale well, but the fast heuristic approach tends to produce
low-quality results. Our approach, based on SAT solving, outperforms the existing solver-
based approach. It scales better and can produced smaller SWAP counts. It also produce
higher-quality quantum circuits that the best heuristics methods. We implement the SWAP
count optimization as a series of calls to a SAT solver. We introduced a novel SAT encoding,
and developed an efficient implementation by combining incremental and parallel-solving
techniques. A comprehensive evaluation on real-world quantum algorithms and devices
demonstrates that our method is 26× faster than the existing solver-based approach and
produces better results. Our method also improved on the heuristic approach on 76% of
instances and achieved an average of 26% reduction in SWAP count.
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Widespread use of artificial intelligence (AI) algorithms and machine learning (ML) models on the
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intelligence (XAI). A key explainability question is: given this decision was made, what are the input
features which contributed to the decision? Although a range of XAI approaches exist to tackle this
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model of interest, computing an AXp requires finding a minimal unsatisfiable subset (MUS) of the
system. It is challenging to compute FFA using its definition because that involves counting over
all AXp’s (equivalently, counting over MUSes), although one can approximate it. Based on these
results, this paper makes several contributions. First, it gives compelling evidence that computing
FFA is intractable, even if the set of contrastive formal explanations (CXp’s), which correspond to
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explanation enumeration algorithm effectively approximating FFA in an anytime fashion. Finally,
experimental results obtained on a range of widely used datasets demonstrate the effectiveness of
the proposed FFA approximation approach in terms of the error of FFA approximation as well as
the number of explanations computed and their diversity given a fixed time limit.
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1 Introduction

The rise of the use of artificial intelligence (AI) and machine learning (ML) methods to help
interpret data and make decisions has exposed a keen need for these algorithms to be able
to explain their decisions/judgements. Lack of explanation of opaque and complex models
leads to lack of trust, and allows the models to encapsulate unfairness, discrimination and
other unwanted properties learnt from the data or through training.

For a classification problem, a key explainability question is: “given a decision was made
(a class was imputed to some data instance), what are the features that contributed to the
decision?”. A more complex question is: “given the decision was made, how important was
each feature in making that decision?”. There are many heuristic approaches to answering this
question, mostly based on sampling around the instance [49], and attempting to approximate
Shapley values [32]. But there is strong evidence that Shapley values do not really compute
the importance of a feature to a decision [16, 35].

By building on techniques for handling over-constrained systems and minimal unsatis-
fiability [2, 31, 3, 34, 29], formal approaches to explainability (formal explainable AI, FXAI)
are able to compute formal abductive explanations (AXp’s) for a decision, that is a minimal
set of features which are enough to ensure the same decision will be made [51, 21]. Namely,
an abductive explanation can be associated with a minimal unsatisfiable subset (MUS) of
a set of clauses logically representing the decision function of an ML classifier [20]. FXAI
approaches can also compute formal contrastive explanations (CXp’s), that is a minimal
set of features, which must change in order to change the decision [39, 20]. Similarly to
the case of AXps’s, these can be associated with minimal correction subsets (MCSes) of a
logical representation of the decision function [20]. Hence a wealth of algorithms originating
from minimal unsatisfiability and over-constrained systems [2, 31, 3, 45, 28, 26, 34, 29] are
directly applicable for the computation and enumeration of AXp’s and CXp’s [20, 36]. Here,
enumeration of formal explanations builds on the use of the minimal hitting set duality
between AXp’s and CXp’s [20] and the application of the well-known MARCO algorithm
originally proposed for implicit hitting set based enumeration of MUSes of unsatisfiable CNF
formulas [45, 27, 29]. Until recently there was no formal approach to ascribing importance
to features.

A recent and attractive approach to formal feature attribution, called FFA [56], is simple.
Compute all the abductive explanations for a decision, then the importance of a feature for
the decision is simply the proportion of abductive explanations in which it appears. FFA is
crisply defined, and easy to understand, but it is challenging to compute, as deciding if a
feature has a non-zero attribution is at least as hard as deciding feature relevancy [15, 56].

Yu et al. [56] show that FFA can be efficiently computed by making use of the hitting
set duality between AXp’s and CXp’s. By trying to enumerate CXp’s, a side effect of the
algorithm is to discover AXp’s. In fact, the algorithm will usually find many AXp’s before
finding the first CXp. The AXp’s are guaranteed to be diverse, since they need to be broad
in scope to ensure that the CXp is large enough to hit all AXp’s that apply to the decision.

Using AXp’s collected as a side effect of CXp enumeration is effective at the start of the
enumeration. But as we find more and more AXp’s as side effects we eventually get to a point
where many more CXp’s are generated than AXp’s. Experimentation shows that if we wish
to enumerate all AXp’s then indeed we should not rely on the side effect behavior, but simply
enumerate AXp’s directly. This leads to a quandary: to get fast accurate approximations of
FFA we wish to enumerate CXp’s and generate AXp’s as a side effect. But to compute the
final correct FFA we wish to compute all AXp’s, and we are better off directly enumerating
AXp’s.
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In this paper, we develop an anytime approach to computing approximate FFA, by
starting with CXp enumeration, and then dynamically switching to AXp enumeration when
the rate of AXp discovery by CXp enumeration drops. In doing so, we are able to quickly
get accurate approximations, but also arrive to the full set of AXp’s quicker than pure CXp
enumeration. As direct CXp enumeration is feasible to do without the need to resort to the
hitting set duality [36], one may want to estimate FFA by first enumerating CXp’s. The
second contribution of this paper is to investigate this alternative approach and to show
that even if a(n) (in)complete set of CXp’s is given, determining FFA is computationally
expensive being #P-hard even if all CXp’s are of size two.

The paper is organized as follows. The next section introduces the notation used through-
out the paper. The main results of the paper are given in Section 3, which (1) theoretically
argues that exact FFA computation is computationally hard and (2) it shows how to effi-
ciently approximate FFA during the entire explanation enumeration process, which is done
by switching from CXp enumeration to AXp enumeration on the fly. Section 4 provides
experimental evidence that the proposed switching scheme is beneficial in practice as it
helps us get to better quality approximations of FFA if compared to the standard setups of
MARCO. Finally, Section 5 concludes the paper.

2 Preliminaries

Here we introduce the required propositional satisfiability (SAT) related notation as well as
background on formal explainable AI in order to define formal feature attribution (FFA).

2.1 Satisfiability and Minimal Unsatisfiability
We assume standard definitions for propositional satisfiability (SAT) and maximum satis-
fiability (MaxSAT) solving [5]. A propositional formula is said to be in conjunctive normal
form (CNF) if it is a conjunction of clauses. A clause is a disjunction of literals. A literal is
either a Boolean variable or its negation. Whenever convenient, clauses are treated as sets of
literals while CNF formulas are treated as sets of clauses. A truth assignment maps each
variable of a formula to a value from {0, 1}. Given a truth assignment, a clause is said to
be satisfied if at least one of its literals is assigned value 1; otherwise, it is falsified by the
assignment. A formula is satisfied if all of its clauses are satisfied; otherwise, it is falsified. If
there exists no assignment that satisfies a CNF formula, then the formula is unsatisfiable.

In the context of unsatisfiable formulas, the maximum satisfiability (MaxSAT) problem is
to find a truth assignment that maximizes the number of satisfied clauses. While a number
of variants of MaxSAT exist [5, Chapters 23 and 24], hereinafter, we are interested in Partial
Unweighted MaxSAT, which can be formulated as follows. A formula ϕ is represented as a
conjunction of hard clauses H, which must be satisfied, and soft clauses S, which represent a
preference to satisfy those clauses, i.e. ϕ = H ∧ S (or ϕ = H ∪ S in the set theory notation).
The Partial Unweighted MaxSAT problem consists in finding an assignment that satisfies all
the hard clauses and maximizes the total number of satisfied soft clauses. In the analysis of
an unsatisfiable formula ϕ, one is also often interested in identifying minimal unsatisfiable
subsets (MUSes) and minimal correction subsets (MCSes) of ϕ, which can be defined as
follows1.

1 The problems we are tackling with these formalisms in this paper belong to decidable fragments of
first-order logic. While the definitions provided here are given for the propositional case, their extension
to the first-order case is straightforward.

SAT 2024
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T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1 Example boosted tree model [8] trained on the well-known adult classification dataset.

▶ Definition 1 (Minimal Unsatisfiable Subset (MUS)). Let ϕ = H ∪ S denote an unsatisfiable
set of clauses, i.e. ϕ⊨⊥. A subset of clauses µ ⊆ S is a Minimal Unsatisfiable Subset (MUS)
iff H ∪ µ⊨⊥ and ∀µ′ ⊊ µ it holds that H ∪ µ′ ⊭⊥.

Informally, an MUS can be seen as a minimal explanation of unsatisfiability for an unsatisfiable
formula ϕ as it provides the minimal information that needs to be added to the hard clauses
H to obtain unsatisfiability. Alternatively, one may be interested in correcting the formula
by removing some of the clauses in S to achieve satisfiability.

▶ Definition 2 (Minimal Correction Subset (MCS)). Let ϕ = H ∪ S denote an unsatisfiable
set of clauses, i.e. ϕ⊨⊥. A subset of clauses σ ⊆ S is a Minimal Correction Subset (MCS)
iff H ∪ S \ σ ⊭⊥ and ∀σ′ ⊊ σ it holds that H ∪ S \ σ′ ⊨⊥.

Informally, an MCS can be seen as a minimal way to “correct” unsatisfiability of an un-
satisfiable formula ϕ. A fundamental result in reasoning about unsatisfiable CNF formulas
is the minimal hitting set (MHS) duality relationship between MUSes and MCSes [48, 6].
That is if the sets of all MUSes and MCSes of formula ϕ are denoted as Uϕ and Cϕ then
Uϕ = MHS(Cϕ) and Cϕ = MHS(Uϕ) where MHS(S) returns the minimal hitting sets of
S, that is the minimal sets that share an element with each subset in S. More formally,
HS(S) = {t ⊆ (∪S) | ∀s ∈ S, t ∩ s ̸= ∅} and mins(S) = {s ∈ S | ∀t ⊊ s, t ̸∈ S} returns the
subset-minimal elements of a set of sets, and MHS(S) = mins(HS(S)). This result has been
extensively used in the development of algorithms for MUSes and MCSes [2, 31, 29], and
also applied in a number of different settings. Recent years have witnessed the emergence
of a large number of novel algorithms for the extraction and enumeration of MUSes and
MCSes [38, 1, 29, 37, 46, 13, 43, 4].

2.2 Classification Problems
We assume classification problems classify data instances into classes K where |K| = k ≥ 2.
We are given a set of m features F , where the value of feature i ∈ F comes from a domain
Di, which may be Boolean, (bounded) integer or (bounded) real. The complete feature space
is defined by F ≜

∏m
i=1 Di.

A data point in feature space is denoted v = (v1, . . . , vm) where vi ∈ Di, 1 ≤ i ≤ m. An
instance of the classification problem is a pair of feature vector and its corresponding class,
i.e. (v, c), where v ∈ F and c ∈ K.

We use the notation x = (x1, . . . , xm) to represent an arbitrary point in feature space,
where each xi will take a value from Di.

A classifier is a total function from feature space to class: κ : F→ K. Many approaches
exist to define classifiers including decision sets [9, 25], decision lists [50], decision trees [18],
random forests [11], boosted trees [8], and neural nets [42, 17].
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X 1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

(a) AXp’s X1.

X 2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(b) AXp’s X2.

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(c) FFA.

Figure 2 Examples of both AXp’s (no more AXp’s exist) followed by FFA for the instance v
shown in Example 3 as well as formal feature attribution (FFA).

▶ Example 3. Figure 1 shows a boosted tree (BT) model trained with the use of XGBoost [8]
for a simplified version of the adult dataset [23]. BT models comprise an ensemble of decision
trees; given an instance to classify, each decision tree in a BT model contributes a numeric
weight to a particular class and the class with the largest total weight is selected as the
model’s prediction. For a data instance v = {Education = Bachelors, Status = Separated,
Occupation = Sales, Relationship = Not-in-family, Sex = Male, Hours/w ≤ 40}, the model
predicts <50k because the sum of the weights in the 3 trees for this instance equals −0.4073 =
(−0.1089− 0.2404− 0.0580) < 0.

2.3 Formal Explainability
Given a data point v, classifier κ classifies it as class κ(v). A post-hoc explanation of the
behavior of κ on data point v tries to explain the behavior of κ on this instance. We consider
two forms of formal explanation answering why and why not (or how) questions.

An abductive explanation (AXp) is a minimal set of features X such that any data point
sharing the same feature values with v on these features is guaranteed to be assigned the
same class c = κ(v) [51, 21]. Formally, X is a subset-minimal set of features such that:

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

▶ Example 4. In the context of Figure 1, the two AXp’s for the instance v are shown in
Figure 2a and Figure 2b. AXp X1 indicates that specifying Education = Bachelors and
Hours/w ≤ 40 guarantees that any compatible instance is classified as < 50k independent of
the values of other features, e.g. Status and Relationship, since the maximal sum of weights
is 0.0770 − 0.0200 − 0.0580 = −0.0010 < 0 as long as the feature values above are used.
Observe that another AXp X1 for v is {Education, Status}, i.e. the model is guaranteed to
predict < 50k for any instance in the feature space where features Education and Status

have values Bachelors and Separated, respectively. Note that no more AXp’s exist for
instance v. Since both of the two AXp’s for v consist of two features, it is difficult to judge
which one is better without a formal feature importance assessment.

▶ Example 5. Consider again the ensemble shown in Figure 1. It contains only features
Status, Education, Relationship, and Hours/w, which can be denoted by integer variables s,
e, r, and h, respectively. Note that all the other features of this dataset do not take part
in the classification process and can be ignored. Let us map Status values married and
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never-married to value 1 and 2 of s while value 0 represents all other values. Similarly, we can
assign values dropout, doctorate and any other value of feature Education to values 1, 2, and
0 of variable e; values not-in-family, own-child, and any other value of feature Relationship
to values 1, 2, and 0 of variable r. This way Ds = De = Dr = {0, 1, 2}. Finally, according
to the tree ensemble, Dh = Z. As a result and assuming the values assigned by the trees
are represented by variables ti ∈ R, the classification process for instance v in Example 3
(predicted as < 50k) can be expressed as the following set of hard constraints, which are
simple to represent in clausal form:

H =



t1 = −0.1569 ↔ (s = 1 ∧ e = 1)
t1 = −0.0770 ↔ (s = 1 ∧ (e = 0 ∨ e = 2))
t1 = −0.1089 ↔ ((s = 0 ∨ s = 2) ∧ r = 1)

. . .

t2 = −0.2404 ↔ (h ≤ 40 ∧ (s = 0 ∨ s = 2))
. . .

t3 = −0.2892 ↔ ((e = 0 ∨ e = 1) ∧ r = 2)
t3 = −0.0580 ↔ ((e = 0 ∨ e = 1) ∧ (r = 0 ∨ r = 1))

t1 + t2 + t3 < 0

Observe that instance v can be specified as a set of soft unit clauses S = {(e = 0), (s =
0), (r = 1), (h ≤ 40)}. Observe that formula H ∧ S is unsatisfiable having two MUSes
{(e = 0), (h ≤ 40)} and {(e = 0), (s = 0)}, which correspond to the two AXp’s shown in
Example 4.

A dual concept of contrastive explanations (CXp’s) helps us understand how to reach
another prediction [39, 20, 36]. A contrastive explanation (CXp) for the classification of data
point v with class c = κ(v) is a minimal set of features that must change so that κ can
return a different class. Formally, a CXp is a subset minimal set of features Y such that

∃(x ∈ F).
[∧

i̸∈Y
(xi = vi)

]
∧ (κ(x) ̸= c) (2)

It is known [20] that formal abductive and contrastive explanations for ML predictions
are related with the concepts of MUSes and MCSes (defined earlier) of an unsatisfiable
formula encoding the ML classification process κ(v) = c, namely if one represents [κ(x) ̸= c]
as hard clauses and [

∧m
i=1 (xi = vi)] as soft clauses. For this reason, the set A of all AXp’s

X explaining classification κ(v) = c and the set C of all CXp’s Y explaining the same
classification enjoy a minimal hitting set duality [20], similarly to MUSes and MCSes. That
is A = MHS(C) and is C = MHS(A). This property can be made use of when computing or
enumerating AXp’s and/or CXp’s [20, 33, 36].
▶ Remark 6. Thanks to the relation between AXp’s (resp., CXp’s) for a given ML prediction
on the one hand and MUSes (resp., MCSes) of formula encoding the decision process on the
other hand, all the ideas and algorithms considered in this paper can be directly applied in
any context where MUSes and MCSes are of use.

▶ Example 7. Consider the BT model and instance v in Example 2. Observe that Y =
{Education} is a CXp for instance v since the prediction for this instance can be changed
if feature Education is allowed to take another value, e.g. changing the value of feature
Education to Doctorate triggers that the sum of the weights in the 3 trees becomes −0.1089−
0.2404 + 0.3890 = 0.0397 > 0. By further examining the model and v, more subsets of
features can be identified as CXp’s for v. The complete set of CXp’s for this instance
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is {{Education}, {Status, Hours/w}}, which minimally hits the set of AXp’s shown in
Example 4. Also observe that the set of CXp’s corresponds to the set of MCSes of formula
H ∧ S shown in Example 5: {(e = 0)} and {(h ≤ 40), (s = 0)}.

2.4 Formal Feature Attribution
Given the definition of AXp’s above, we can now illustrate the formal feature attribution (FFA)
function by Yu et al [56]. Denoted as ffaκ(i, (v, c)), it returns for a classification κ(v) = c

how important feature i ∈ F is in making this classification, defined as the proportion of
AXp’s for the classification Aκ(v, c), which include feature i, i.e.

ffaκ(i, (v, c)) = |{X | X ∈ Aκ(v, c), i ∈ X )|
|Aκ(v, c)| (3)

▶ Example 8. Recall Example 4. As there are 2 AXp’s for instance v, namely {Education,

Status} and {Education, Hours/w}, the prediction can be attributed to the 3 features with
non-zero FFA shown in Figure 2c. Namely, features Education, Status, and Hours/w have
the attribution values of 1, 0.5, and 0.5, respectively.

2.5 Computing FFA
Inspired by the implicit hitting set [7] based algorithm eMUS/MARCO [45, 26, 19] for
enumerating MUSes and MCSes of an unsatisfiable CNF formula, Yu et al [56] define an
anytime algorithm for computing FFA shown in Algorithm 1. The algorithm collects AXp’s
A and CXp’s C. They are initialized to empty. While we still have resources, we generate a
minimal hitting set Y ∈ MHS(A) of the current known AXp’s A and not already in C with
the call MinimalHS(A,C). If no (new) hitting set exists then we are finished and exit the
loop. Otherwise we check if (2) holds in which case we add the candidate to the set of CXp’s
C. Otherwise, we know that F \ Y is a correct (non-minimal) abductive explanation, i.e. it
satisfies (1). We use the call ExtractAXp to minimize the resulting explanation, returning
an AXp X which is added to the collection of AXp’s A. ExtractAXp tries to remove
features j from F \ Y one by one while still satisfying (1). When resources are exhausted,
the loop exits and we return the set of AXp’s and CXp’s currently discovered.

2.6 Graph-Related Notation
The paper uses some (undirected) graph-theoretic concepts. A graph is defined as a tuple,
G = (V, E), where V is a finite set of vertices and E is a finite set of unordered pairs of
vertices. For simplicity, uv denotes an edge {u, v} of E. Given a graph G = (V, E), a vertex
cover X ⊆ V is such that for each uv ∈ E, {u, v} ∩ X ̸= ∅. A minimal vertex cover is a
vertex cover that is minimal wrt. set inclusion.

2.7 The Complexity of Counting
The class #P consists of functions that count accepting computations of polynomial-time
non-deterministic Turing machines [53]. A problem is #P-hard if every problem in #P is
polynomial-time Turing reducible to it; if it also belongs to #P then it is #P-complete.

#P-hardness is usually regarded as stronger evidence of intractability than NP-hardness
or indeed hardness for any level of the Polynomial Hierarchy.
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Algorithm 1 Anytime Explanation Enumeration as defined by Yu et al [56].
1: procedure XpEnum(κ, v, c)
2: (A,C)← (∅, ∅)
3: while resources available do
4: Y ←MinimalHS(A,C)
5: if Y = ⊥ then break
6: if ∃(x ∈ F).

[∧
i̸∈Y(xi = vi)

]
∧ (κ(x) ̸= c) then

7: C← C ∪ {Y}
8: else
9: X ← ExtractAXp(F \ Y , κ, v, c)

10: A← A ∪ {X}
return A, C

11: procedure ExtractAXp(X , κ, v, c)
12: for j ∈ X do
13: if ∀(x ∈ F).

[∧
i∈X \{j}(xi = vi)

]
→(κ(x) = c) then

14: X ← X \ {j}
return X

3 Approximate Formal Feature Attribution

Facing the need to compute (exact or approximate) FFA values, one may think of a possibility
to first enumerate CXp’s and then apply the minimal hitting set duality between AXp’s
and CXp’s to determine FFA, without explicitly computing A = MHS(C). This looks
plausible given that CXp enumeration can be done directly, without the need to enumerate
AXp’s [20]. However, as Section 3.1 argues, computing FFA given a set of CXp’s turns out
to be computationally difficult, being (roughly) at least as hard as counting the minimal
hitting sets MHS(C). Hence, Section 3.2 approaches the problem from a different angle by
efficient exploitation of the eMUS- or MARCO-like setup [45, 27, 29, 20] and making the
algorithm switch from CXp enumeration to AXp enumeration on the fly.

3.1 Duality-Based Computation is Hard

We show that determining ffaκ(i, (v, c)) from C is #P-hard even when all CXp’s have size
two. In that special case, the CXp’s may be treated as the edges of a graph, which we denote
by G(F , κ, v, c), with vertex set F . The minimal hitting set duality between the CXp’s and
AXp’s then implies that the AXp’s X ∈ MHS(C) are precisely the minimal vertex covers of
G(F , κ, v, c). It is known that determining the number of minimal vertex covers in a graph is
#P-complete (even for bipartite graphs); this is implicit in [47], as noted for example in [52,
p. 400].

When all CXp’s have size 2, the formal feature attribution ffaκ(i, (v, c)) is just the
proportion of minimal vertex covers of G(F , κ, v, c) that contain the vertex i, i.e. the vertex
of G(F , κ, v, c) that represents the feature i ∈ F . To help express this in graph-theoretic
language, write #mvc(G) for the number of minimal vertex covers of G. Write #mvc(G, v)
and #mvc(G,¬v) for the numbers of minimal vertex covers of G that do and do not contain
vertex v ∈ V (G), respectively. Define

ffa(G, v) := #mvc(G, v)
#mvc(G) . (4)
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Then

ffaκ(i, (v, c)) = ffa(G(F , κ, v, c), i).

Observe that #mvc(G) = #mvc(G, v) + #mvc(G,¬v). Then we may rewrite (4) as

ffa(G, v) = #mvc(G, v)
#mvc(G, v) + #mvc(G,¬v) . (5)

▶ Theorem 9. Determining ffa(G, v) is #P-hard.

Proof. We give a polynomial-time Turing reduction from the #P-complete problem of
counting minimal vertex covers to the problem of determining ffa for a node in a graph.

Suppose we have an oracle that, when given a graph and a vertex, returns the ffa of the
vertex in one time-step.

Let G be a graph for which we want to count the minimal vertex covers. Let v be a
non-isolated vertex of G. (If none exists, the problem is trivial.) Put

x = #mvc(G,¬v),
y = #mvc(G, v),

so that #mvc(G) = x + y. It is routine to show that x, y > 0. Initially, x and y are unknown.
Our reduction will use an ffa-oracle to gain enough information to determine x and y. We
will then obtain #mvc(G) = x + y.

First, query the ffa-oracle with G and vertex v. It returns

p := y

x + y
,

by (5). We can then recover the ratio x/y = p−1 − 1.
Then we construct a new graph G

[2]
v from G as follows. Take two disjoint copies G1 and

G2 of G. Let v1 be the copy of vertex v in G1. For every w ∈ V (G2), add an edge v1w

between v1 and w. We query the ffa-oracle with G
[2]
v and vertex v1. Let q = ffa(G[2]

v , v1) be
the value it returns.

If a minimal vertex cover X of G
[2]
v contains v1 then all the edges from v1 to G2 are

covered. The restriction of X to G1 must be a minimal vertex cover of G1 that contains
v1, and the number of these is just #mvc(G, v) = y. The restriction of X to G2 must just
be a vertex cover of G2, without any further restriction, and the number of these is just
#mvc(G) = x + y. These two restrictions of X can be chosen independently to give all
possibilities for X. So

#mvc(G[2]
v , v1) = y(x + y).

If a minimal vertex cover X of G
[2]
v does not contain v1 then the edges v1w, w ∈ V (G2),

are not covered by v1. So each w ∈ V (G2) must be in X, which serves to cover not only
those edges but also all edges in G2. The restriction of X to G1 must just be a vertex cover
of G1 that does not contain v1, and there are #mvc(G,¬v) = x of these. Again, the two
restrictions of X are independent. So

#mvc(G[2]
v ,¬v1) = x.

Therefore

q = y(x + y)
x + y(x + y) ,
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by (5) (applied this time to G
[2]
v ), so

x + y = x/y

q−1 − 1 = p−1 − 1
q−1 − 1 .

We can therefore compute x + y from the values p and q returned by our two oracle calls.
We therefore obtain #mvc(G). The entire computation is polynomial-time. ◀

▶ Corollary 10. Determining ffaκ(i, (v, c)) from the set of CXp’s is #P-hard, even if all
CXp’s have size 2.

Unfortunately, Theorem 9 and Corollary 10 suggest that relying solely on the direct
enumeration of CXp’s in the fashion of the first phase of CAMUS-like algorithms [30, 31]
when computing formal feature attribution does not make the problem simple. One will still
need one to implicitly or explicitly enumerate AXp’s to be able to compute FFA.

3.2 Switching from CXp to AXp Enumeration
As discussed in Section 2, [56] proposed to apply implicit hitting set enumeration for
approximating FFA thanks to the duality between AXp’s and CXp’s. The approach builds
on the use of the MARCO algorithm [45, 27, 29] in the anytime fashion, i.e. collects the
sets of AXp’s and CXp’s and stops upon reaching a given resource limit. As MARCO can
be set to target enumerating either AXp’s or CXp’s depending on user’s preferences, the
dual explanations will be collected by the algorithm as a side effect. Quite surprisingly, the
findings of [56] show that for the purposes of practical FFA approximation it is beneficial to
target CXp enumeration and get AXp’s by duality. An explanation offered for this by [56] is
that MARCO has to collect a large number of dual explanations before the minimal hitting
sets it gets may realistically be the target explanations.

Our practical observations confirm the above. Also note that the AXp’s enumerated by
MARCO need to be diverse if we want to quickly get good FFA approximations. Due to
the incremental operation of the minimal hitting set enumeration algorithms, this is hard to
achieve if we target AXp enumeration. But if we aim for CXp’s then we can extract diverse
AXp’s by duality, which helps us get reasonable FFA approximations quickly converging to
the exact FFA values.

Nevertheless, our experiments with the setup of [56] suggest that AXp enumeration in
fact tends to finish much earlier than CXp enumeration despite “losing” at the beginning.
This makes one wonder what to opt for if good and quickly converging FFA approximation
is required: AXp enumeration or CXp enumeration. On the one hand, the latter quickly
gives a large set of diverse AXp’s and good initial FFA approximations. On the other hand,
complete AXp enumeration finishes much faster, i.e. exact FFA is better to compute by
targeting AXp’s.

Motivated by this, we propose to set up MARCO in a way that it starts with CXp
enumeration and then seamlessly switches to AXp enumeration using two simple heuristic
criteria. It should be first noted that to make efficient switching in the target explanations,
we employ pure SAT-based hitting set enumerator, where an incremental SAT solver is called
multiple times aiming for minimal or maximal models [12], depending on the phase. This
allows us to keep all the explanations found so far without ever restarting the hitting set
enumerator.

As we observe that AXp’s are normally larger than CXp’s, both criteria for switching
the target build on the use of the average size of the last w AXp’s and the last w CXp’s
enumerated in the most recent iterations of the MARCO algorithm. (Recall that our MARCO
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setup aims for subset-minimal explanations rather than cardinality-minimal explanations, i.e.
neither target nor dual explanations being enumerated are cardinality-minimal.) This can
be seen as inspecting “sliding windows” of size w for both AXp’s and CXp’s. In particular,
assume that the sets of the last w AXp’s and CXp’s are denoted as Aw and Cw, respectively.

First, switching can be done as soon as we observe that CXp’s on average are much
smaller than AXp’s, i.e. when∑

X ∈Aw |X |∑
Y∈Cw |Y|

≥ α, (6)

where α ∈ R is a predefined numeric parameter. The rationale for this heuristic is as follows.
Recall that extraction of a subset-minimal dual explanation is done by ExtractDualXp()
by means of deciding the validity of the corresponding predicate, either (1) or (2), while
iteratively removing features from the feature set completementary to the candicate set, i.e.
F \ µ (see Section 2.5). As such, if the vast majority of CXp’s are much smaller than their
AXp counterparts, which implies that |F \ µ| ≫ |µ|, then extracting these dual AXp’s from
F \ µ may be expensive as it leads to a large number of SAT oracle calls (namely |F \ µ|
calls) per dual AXp to extract. Hence, we prefer to switch the enumerator to the opposite
phase such that ExtractDualXp() deals with a smaller number of decision oracle calls on
average. Note that having small dual CXp’s will also result in the lion’s share of these oracle
calls being satisfiable, i.e. potentially cheap.

Second, we can switch when the average CXp size “stabilizes”. Here, let us denote a new
CXp being just computed as Ynew. Then the second criterion can be examined by checking
if the following holds:∣∣∣∣|Ynew| −

∑
Y∈Cw |Y|

w

∣∣∣∣ ≤ ε, (7)

with ε ∈ R being another numeric parameter. This condition is meant to signify the point
when the set of dual AXp’s we have already accumulated is diverse enough for all the CXp’s
to be of roughly equal size, which is crucial for good FFA approximations. Once we have
reached a high level of FFA approximation, it makes sense to switch the target phase to AXp
as it normally finishes exhaustive explanation enumeration earlier. Overall, the switching
can be performed when either of the two conditions (6)–(7) is satisfied.

Algorithm 2 shows the pseudo-code of the adaptive explanation enumeration algorithm.
Additionally to the classifier’s representation κ, instance v to explain and its class c, it
receives 3 numeric parameters: window size w ∈ N and switching-related constants α, ε ∈ R.
The set of CXp’s (resp. AXp’s) is represented by E0 (resp. E1) while the target phase of
the hitting set enumerator is denoted by ρ ∈ {0, 1}, i.e. at each iteration Algorithm 2 aims
for Eρ explanations. As initially ρ = 0, the algorithm targets CXp enumeration. Each of its
iterations starts by computing a minimal hitting set µ of the set E1−ρ subject to Eρ (see
line 5), i.e. we want µ to be a hitting set of E1−ρ different from all the target explanations in
Eρ found so far. If no hitting set exists, the process stops as we have enumerated all target
explanations. Otherwise, each new µ is checked for being a target explanation, which is done
by invoking a reasoning oracle to decide the validity either of (1) if we target AXp’s, or of (2)
if we target CXp’s. If the test is positive, the algorithm records the new explanation µ in Eρ.
Otherwise, using the standard apparatus of formal explanations, it extracts a subset-minimal
dual explanation ν from the complementary set F \ µ, which is then recorded in E1−ρ. Each
iteration is additionally augmented with a check whether we should switch to the opposite
phase 1− ρ of the enumeration. This is done in line 12 by testing whether at least one of the
conditions (6)–(7) is satisfied.
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Algorithm 2 Adaptive Explanation Enumeration.
1: procedure AdaptiveXpEnum(κ, v, c, w, α, ε)
2: (E0,E1)← (∅, ∅) ▷ CXp’s and AXp’s to collect
3: ρ← 0 ▷ Target phase of enumerator, initially CXp
4: while true do
5: µ←MinimalHS(E1−ρ,Eρ, ρ)
6: if µ = ⊥ then break
7: if IsTargetXp(µ, κ, v, c) then
8: Eρ ← Eρ ∪ {µ} ▷ Collect target explanation µ

9: else
10: ν ← ExtractDualXp(F \ µ, κ, v, c)
11: E1−ρ ← E1−ρ ∪ {ν} ▷ Collect dual explanation ν

12: if IsSwitchNeeded(Eρ,E1−ρ, w, α, ε) then
13: ρ← 1− ρ ▷ Flip phase of MinimalHS

return E1, E0 ▷ Result AXp’s and CXp’s

▶ Remark 11. Flipping enumeration phase ρ can be seamlessly done because we apply pure
SAT-based hitting enumeration [12] where both Eρ and E1−ρ are represented as sets of
negative and positive blocking clauses, respectively. As such, by instructing the SAT solver
to opt for minimal or maximal models,2 we can flip from computing hitting sets of E1−ρ

subject to Eρ to computing hitting sets of Eρ subject to E1−ρ, and vice versa. Importantly,
this can be done while incrementally keeping the internal state of the SAT solver, i.e. no
learnt information gets lost after the phase switch. Also, note that although the algorithm
allows us to apply phase switching multiple times, our practical implementation switches
once because AXp enumeration normally gets done much earlier than CXp enumeration, i.e.
there is no point in switching back.

4 Experimental Results

This section evaluates the proposed approach to anytime FFA approximation for the gradient
boosted tree (BT) ML models on various publicly available data using a range of metrics.
Here we report the results integrating all the experimental data averaged across all data
instances in Section 4.2. The results for individual datasets can be found in Section 4.3.

4.1 Experimental Setup
The experiments were performed on an Intel Xeon 8260 CPU running Ubuntu 20.04.2 LTS,
with the 8GByte memory limit.

Prototype Implementation. The proposed approach was prototyped as a set of Python
scripts, building on the approach of [56]. The proposed approach is referred to as MARCO-
S, where the MARCO algorithm switches from CXp to AXp enumeration based on the
conditions (6)–(7). The policy we use is to switch if either condition holds as we found

2 Recall that in SAT solving, a minimal model is a satisfying assignment that respects subset-minimality
wrt. the set of positive literals, i.e. where none of the 1’s can be replaced by a 0 such that the result is
still a satisfying assignment [5]. Maximal models can be defined similarly wrt. subset-minimality of
negative literals.
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Figure 3 FFA approximation error over time.

examples where each individual criterion was poor. For this, “sliding windows” of size w = 50
are used. Parameter α is set as α = 2 in (6) to signify the extent by which the size of AXp’s
should be larger than the size of CXp’s while parameter ε = 1 in (7) denoting the stability
of the average CXp size.

Datasets and Machine Learning Models. The experiments include five well-known image
and text datasets. We use the widely known MNIST [10, 44] dataset, which features hand-
written digits from 0 to 9, with two concrete binary classification problems created: 1 vs. 3
and 1 vs. 7. Note that we treat MNIST “1vs3” and MNIST “1vs7” as two different datasets.
Also, we consider the image dataset PneumoniaMNIST [55] differentiating normal X-ray
cases from the cases of pneumonia. Since extracting exact FFA values for aforementioned
image datasets turns out to be hard [56], we perform a size reduction, downscaling these
images from 28 × 28 × 1 to 10 × 10 × 1. Additionally, 2 text datasets are considered in
the experiments: Sarcasm [40, 41] and Disaster [14]. The Sarcasm dataset contains news
headlines collected from websites, along with binary labels indicating whether each headline
is sarcastic or non-sarcastic. The Disaster dataset consists of the contents of tweets with
labels about whether a user announces a real disaster or not. The five considered datasets are
randomly divided into 80% training and 20% test data. To evaluate the performance of the
proposed approach, 15 test instances in each test set are randomly selected. Therefore, the
total number of instances used in the experiments is 75. In the experiments, gradient boosted
trees (BTs) are trained by XGBoost [8], where each BT consists of 25 to 40 trees of depth
3 to 5 per class. Test accuracy for MNIST (both “1vs3” and “1vs7”), PneumoniaMNIST,
Sarcasm, and Disaster datasets is 0.99, 0.83, 0.69, and 0.74, respectively.

Competitors and Metrics. We compare the proposed approach (MARCO-S) against the
original MARCO algorithms targeting AXp (MARCO-A) or CXp (MARCO-C) enumeration.
We evaluate the FFA generated by these approaches by comparing it to the exact FFA through
a variety of metrics, including errors, Kendall’s Tau [22], rank-biased overlap (RBO) [54], and
Kullback–Leibler (KL) divergence [24]. The error is quantified using Manhattan distance, i.e.
the sum of absolute differences across all features in an instance. The comparison of feature
ranking is assessed by Kendall’s Tau and RBO, while feature distributions are compared

SAT 2024



30:14 Anytime Approximate Formal Feature Attribution

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
K

en
da

ll’
s

T
au

MARCO-A MARCO-C MARCO-S

0.00 0.01 0.02 0.03

0.00

0.25

0.50

0.75

(a) Mean.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

K
en

da
ll’

s
T

au

MARCO-A MARCO-C MARCO-S

0.000 0.005 0.010

0.2

0.4

0.6

0.8

(b) Median.

Figure 4 Kendall’s Tau over time.
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Figure 5 RBO over time.

by KL divergence.3 Kendall’s Tau and RBO produce values within the range of [−1, 1]
and [0, 1], respectively, where higher values in both metrics indicate stronger agreement or
similarity between the approximate FFA and the exact FFA. KL-divergence ranges from
0 to ∞, with the value approaching 0 reflecting better alignment between approximate
FFA distribution and the exact FFA distribution. Note that if a feature in the exact FFA
distribution holds a non-zero probability but is assigned a zero probability in the approximate
one, the KL value becomes ∞. Finally, we also compare the efficiency of generating AXp’s
in the aforementioned approaches.

3 Kendall’s Tau is a correlation coefficient metric that evaluates the ordinal association between two
ranked lists, providing a similarity measure for the order of values, while RBO quantifies similarity
between two ranked lists, considering both the order and depth of the overlap. KL-divergence measures
the statistical distance between two probability distributions.
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Figure 6 KL divergence over time.
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Figure 7 Number of AXp’s over time.

Table 1 The absolute numbers of MUSes (AXp’s) and MCSes (CXp’s) for different datasets.

(a) Numbers of MUSes/AXp’s.

Dataset Min Mean Max

MNIST1vs3 2916 15780.87 46576
MNIST1vs7 461 4028.27 10790
PneumoniaMNIST 21 8802.87 30996
Sarcasm 1056 12542.13 20024
Disaster 128 22853.20 35804

(b) Numbers of MCSes/CXp’s.

Dataset Min Mean Max

MNIST1vs3 992 17158.07 55108
MNIST1vs7 394 3558.80 9228
PneumoniaMNIST 30 6148.67 42308
Sarcasm 73 487.73 641
Disaster 88 4792.20 7028

4.2 Overview of Experimental Results
This section compares the proposed approach against the original MARCO algorithms for
both AXp enumeration and CXp enumeration within the examined datasets. Figures 3
to 7 illustrate the results of approximate FFA in terms of the five aforementioned metrics,
namely, errors, Kendall’s Tau, RBO, KL divergence, and the number of AXp’s. These results
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are obtained by averaging values across all instances. Note that since KL-divergence is ∞
when there exists a feature in the exact FFA distribution that holds a non-zero probability
but is assigned a zero probability in the approximate one, to address this issue we assign
0.5 as the KL-divergence value instead of ∞ in this case.4 The average runtime to extract
exact FFA is 3255.30s (from 2.15s to 29191.42s), 19311.87s (from 9.39s to 55951.57s), and
3509.50s (from 9.26s to 30881.55s) for MARCO-A, MARCO-C, and MARCO-S, respectively.
Switching from CXp to AXp enumeration in MARCO-S occurs on average at 106.77s. Note
that since MARCO-A and MARCO-S tend to finish the enumeration process much earlier
than MARCO-C, we also plot the median information because it better reflects the typical
performance of these approaches in practice (which may be hard to see on the average data).
Since the runtime required to get exact FFA varies, we normalized the runtime in each
instance into [0, 1], where the longest time across three compared approaches in each instance
is normalized to 1. Furthermore, we normalized the number of AXp’s in each instance into the
interval of [0, 1], as Table 1a shows that the numbers of AXp’s (MUSes) vary across different
instances and datasets. (Similarly, Table 1b indicates that the numbers of CXp’s (MCSes)
also differ across instances and datasets.) FFA approximation errors are also normalized into
[0, 1] for each instance. Finally, switching from CXp to AXp enumeration in MARCO-S
occurs at the time point of 0.0055 on the normalized scale (recall that it equals ≈106.77s).

Approximation Errors. Figure 3 displays the average and median errors of approximate
FFA across all instances over time. Observe that in the early period, MARCO-C obtains
more accurate approximate FFA regarding errors compared with MARCO-A, while beyond
the 0.02 time fraction, the latter surpasses the former and eventually achieves 0 error faster,
which also indicates that MARCO-A requires less time to acquire the exact FFA. Motivated
by the above observation, the proposed approach aims at replicating the “best of two worlds”
during the FFA approximation process. Observe that MARCO-S commences with CXp
enumeration and so replicates the superior behavior of MARCO-C during the initial stage.
Over time, MARCO-S triggers a switch criterion and transitions to targeting AXp’s, thus
emulating the behavior of the better competitor beyond the early stage, i.e. MARCO-A.
Finally, MARCO-S acquires FFA with 0 error (i.e. exact FFA) as efficiently as MARCO-A.

Feature Ranking. The results of Kendall’s Tau and RBO are depicted in Figures 4 and 5.
Initially, MARCO-C outperforms MARCO-A in terms of both feature ranking metrics. As
time progresses, MARCO-A starts to surpass MARCO-C since 0.01 time fraction until the
point of acquiring the exact FFA. Figures 4 and 5 demonstrate that initially MARCO-
S manages to keep close to the better performing MARCO-C. When MARCO-A starts
dominating, MARCO-S switches the target phase from CXp’s to AXp’s, replicating the
superior performance displayed by MARCO-A.

Distribution. Figure 6 depicts the average and median results of KL divergence over time.
Similar to feature ranking, MARCO-C is initially capable of computing an FFA distribution
closer to the exact FFA distribution. Beyond the initial stage, MARCO-A exhibits the ability
to generate closer FFA distribution. Once again, MARCO-S replicates the superior behavior
between MARCO-A and MARCO-C most of the time. During the initial stage, MARCO-S
reproduces the behavior of MARCO-C, and switch to target AXp’s directly when the switch
criterion is met. Surprisingly, MARCO-S outperforms both competitors throughout (almost)
the entire time interval.

4 According the experimental results we obtained, the maximum of non-infinity KL-divergence values is
not greater than 0.5.
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Table 2 Average runtime(s) in each dataset.

Approach MNIST-1vs3 MNIST-1vs7 Pneumoniamnist Sarcasm Disaster

MARCO-A 9350.79 2844.15 1972.41 669.91 1439.24
MARCO-C 14787.22 7412.40 8343.55 33391.29 32624.89
MARCO-S 9970.55 2959.15 2016.49 975.31 1626.01
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Figure 8 Mean RBO over time in each dataset.

Number of AXp’s. The average and median results of the normalized number of AXp’s are
illustrated in Figure 7. MARCO-A generates AXp’s faster and finishes earlier than MARCO-
C. Observe that the proposed approach MARCO-S is able to avoid the inferior performance
between MARCO-A and MARCO-C throughout the process. Initially, MARCO-S replicates
the behavior of MARCO-C and then switches to target AXp’s to replicate the performance
of MARCO-A.

Summary. MARCO-S can replicate the behavior of the superior competitor for most of the
computation duration, leading to efficient and good approximation of FFA. As illustrated
by Figures 3–6 in terms of FFA errors, Kendall’s Tau, RBO, and KL divergence, starting
from CXp enumeration and switching to AXp enumeration based on the criteria (6)–(7)
successfully replicates the behavior of the winning configuration of MARCO, thus getting
close to the virtual best solver. Although in terms of the number of AXp’s shown in Figure 7
MARCO-A consistently outperforms MARCO-C, those AXp’s are not diverse enough to allow
MARCO-A to beat MARCO-C in other relevant metrics. This is alleviated by MARCO-S,
which manages to get enough diverse AXp’s initially and then switches to target AXp’s to
catch up with the performance of MARCO-A.
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Figure 9 Mean KL-divergence over time in each dataset.
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Figure 10 Mean number of AXp’s over time in each dataset.
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Figure 11 Number of AXp’s over time in example instances.

4.3 Detailed Experimental Results
This section compares the proposed approach (MARCO-S against the original MARCO
algorithms for targeting AXp’s (MARCO-A) and CXp’s (MARCO-C) in each considered
dataset. Figures 8 to 10 depict the average results of the comparison between the approximate
FFA and the exact FFA using 3 metrics, namely, RBO, KL divergence, and the number
of AXp’s. The results show the mean values across 15 selected instances in a dataset.
The average runtime of the three methods to acquire the exact FFA in each datadset is
summarized in Table 2.

Feature Ranking. Figure 8 illustrates the results of RBO in each dataset. Observe that in
all datasets but Sarcasm, MARCO-C performs better initially than MARCO-A, except in the
Sarcasm dataset. Over time, MARCO-A gradually overtakes MARCO-C until reaching the
point of obtaining the exact FFA. This figure demonstrates that MARCO-S maintains close
to the superior performance exhibited by MARCO-C initially and then switches to targeting
AXp’s, replicating the superior performance demonstrated by MARCO-A. Nevertheless, in
the Sarcasm dataset, MARCO-A consistently displays the superior performance. In the
Sarcasm dataset, switching from CXp to AXp enumeration beyond the initial stage avoids
reproducing the inferior performance between MARCO-A and MARCO-C in most of time.

Distribution. The average results of KL divergence over time are depicted in Figure 9.
MARCO-C is initially capable of generating an FFA distribution more similar to the exact
FFA distribution in MNIST-1vs3 and MNIST-1vs7 datasets. Afterwards, MARCO-A exhibits
the ability to compute FFA distribution more similar to the exact FFA attribution. However,
MARCO-A consistently generate a closer FFA distribution than MARCO-C in the other
datasets. Once again, MARCO-S emulates the superior behavior between MARCO-A and
MARCO-C in most of time or avoids replicating the inferior performance for a long time
due to the switch mechanism. MARCO-S initially reproduces the behavior of MARCO-C,
and switches to target AXp’s when meeting the switch criterion. Surprisingly, MARCO-S
exhibits the best performance among the competitors in most of the entire time interval in
MNIST-1vs3 and MNIST-1vs7.

Number of AXp’s. Figure 10 shows the average results of the normalized number of
AXp’s in each dataset. Observe that compared with MARCO-A, MARCO-C is capable
of generating AXp’s more efficiently during the early stage in MNIST-1vs3 and MNIST-
1vs7 datasets, but MARCO-A starts to outperform MARCO-C as time progresses. In
the other three datasets, MARCO-A achieves similar or better performance in the entire
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process. As demonstrated by Figure 10, the proposed approach MARCO-S is able to avoid
the inferior performance between MARCO-A and MARCO-C for most of the duration.
Initially, MARCO-S emulates the behavior of MARCO-C, and transitions to target AXp’s to
replicate the performance of MARCO-A afterwards, preventing the reproduction of inferior
performance. Remarkably, in the MNIST-1vs7 dataset, MARCO-S emerges as the best-
performing approach for most of time. Figure 11 presents numbers of AXp’s over time in
three example instances, demonstrating that MARCO-S can avoid the inferior performance
between MARCO-A and MARCO-C for most of time in these three instances.

Summary. In alignment with the results presented in Section 4.2, MARCO-S is able to
replicate the behavior of the superior competitor between MARCO-A and MARCO-C
throughout most of the computation period, resulting in fast and good approximation of FFA.
Figures 8 and 9 display that switching from CXp to AXp enumeration based on criteria 6–7
can reproduce the performance of the top MARCO configuration, closely approaching their
virtual best solver. While MARCO-A consistently exhibits better than MARCO-C in some
datasets in terms of the number of AXp’s depicted in Figure 10, the lack of diversity among
these AXp’s prevents MARCO-A from outperforming MARCO-C in other relevant metrics.
MARCO-S addresses this diversity issue by initially obtaining a diverse set of AXp’s and
then transitioning to targeting them, thereby matching the performance of MARCO-A.

5 Conclusions

Formal feature attribution (FFA) defines a crisp and easily understood notion of feature
importance to a decision. It builds on the concepts of formal abductive and contrastive
explanations [36], which can be related to the concepts of minimal unsatisfiable subsets
(MUSes) and minimal correction subsets (MCSes) in the context of SAT solving. Unfortu-
nately, for many classifiers and datasets FFA is challenging to compute exactly. As our paper
demonstrates, it remains hard even if the set of CXp’s is provided. Hence, there is a need
for anytime approaches to compute FFA. One approach to compute and approximate FFA
values is by exploiting the duality between AXp’s and CXp’s and applying the MARCO-style
algorithms [45, 27, 29] of exhaustive AXp (resp., MUS) and CXp (resp., MCS) enumeration.
As exhaustive explanation enumeration can be done by targeting either AXp’s or CXp’s, it is
not always clear which approach is more efficient in practice from the perspective of the raw
number of explanations but also from the view of the quality of FFA value approximations.
Surprisingly, using CXp enumeration to generate AXp’s leads to fast good approximations of
FFA, but in the longer term it is worse than simply enumerating AXp’s. This paper shows
how to combine the approaches by diligently switching the phase of enumeration, without
losing information computed in the underlying MARCO enumeration algorithm. This gives
a highly practical approach to computing FFA.

The proposed mechanism can be readily adapted to a multitude of other problems, e.g. in
the domains of over-constrained systems or model-based diagnosis (MBD), where one wants
to collect a diverse and representative set of MUSes or explanations as the same minimal
hitting set duality exists in unsatisfiability and MBD between the concepts of MUSes and
MCSes, and explanations and diagnoses, respectively [6, 48].
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1 Introduction

A (k, s)-formula is a propositional CNF formula in which each clause has exactly k distinct
literals and each variable occurs (positively or negatively) in at most s clauses. Since Tovey [27]
initiated the study of (k, s)-CNF formulas in 1984, they have been the subject of intensive
investigation [3, 4, 7, 9, 10, 11, 12, 15, 21, 25]. Using Hall’s Marriage Theorem, Tovey showed
that all (3, 3)-CNF formulas are satisfiable, but allowing a fourth occurrence per variable
yields a class of formulas for which the satisfiability problem is NP-complete. Kratochvíl,
et al. [21] generalized this result and showed that for each k ≥ 3, there exists a threshold
s = f(k) such that all (k, f(k))-formulas are satisfiable and checking the satisfiability of
(k, f(k) + 1)-formulas (the (k, s)-SAT problem) is NP-complete. Therefore, determining
whether (k, s)-SAT is NP-hard boils down to identifying an unsatisfiable (k, s)-formula.
While tight asymptotic bounds for the threshold have been obtained [10], exact values are
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only known for k ≤ 4 [11]: f(3) = 3, f(4) = 4; f(5) ∈ [5, 7]. No decision procedure is
known for determining the threshold f(k), since no upper bound on the size of a smallest
unsatisfiable (k, s)-formula is known for k > 4.

It is an intriguing question of extremal combinatorics to determine the size of the smallest
unsatisfiable (k, s)-formulas (with s > f(k)), and this paper sets out to address this question
for various values of the parameters. This requires proving lower and upper bounds – an
upper bound typically consists in exhibiting a formula with suitable parameters, while a
lower bound requires a proof that no such formulas of a particular size exist. For k = 3, the
unsatisfiable (3, 4)-formula constructed by Tovey [27] has 40 clauses, this was later improved
to 19 and then 16 by Berman, et al. [3, 4].

A simple counting argument shows that such a formula must contain at least 8 clauses,
hence there is a significant gap between the known lower and upper bounds. For k = 4, the
gap is even larger. Stříbrná [26] constructed an unsatisfiable (4,5)-CNF formula with 449
clauses, which Knuth [20, p. 588] improved to 257. The same counting argument shows that
such a formula must contain at least 16 clauses.

All constructions above have the following in common. A satisfiable (k, s)-formula with a
backbone variable x that must be false in all satisfying truth assignments is first constructed.
Such a formula is called a (k, s)-enforcer. Then one combines k copies of this formula together
with a k-clause with the k backbone variables to obtain an unsatisfiable (k, s)-CNF formula.
Aside from providing an upper bound for the size of a smallest unsatisfiable (k, s)-formula,
the size of unsatisfiable (k, s)-enforcers has a direct effect on inapproximability results for
certain NP-hard Max-SAT problems [3]. We also address the problem of the smallest size of
a (3, s) or (3, p, q)-enforcer in this paper.

Contribution

In this paper, we develop a general approach to computing small unsatisfiable (k, s)-formulas
and (k, s)-enforcers. We also consider the more fine-grained setting of (k, p, q)-formulas, where
p and q bound the number of positive and negative occurrences per variable, respectively.
We observe a similar threshold phenomenon in the complexity of (k, p, q)-SAT as in the case
of (k, s)-SAT (Lemma 4).

Our approach rests on utilizing the SAT Modulo Symmetries (SMS) framework [18, 16]
for isomorph-free generation of unsatisfiable (k, s) and (k, p, q)-formulas for a fixed number n
of variables and number m of clauses with parameters k, s, p, q.

The basic setting without any techniques for speed-up and divide-and-conquer scales up
to about m = 13. We then use further theoretical arguments together with techniques for
speed-up to determine the size of smallest formulas in various setting.

Smallest unsatisfiable formulas. We determined the size of smallest unsatisfiable (3, s) and
(3, p, q)-formulas for all possible s, p and q the values are given in Table 1 on the left for
(3, s)-formulas and on the right for (3, p, q)-formulas.

In particular, we identified a smallest unsatisfiable (3, 1, 3)-formula with 22 clauses, which
implies that (3, 1, 3)-SAT is NP-complete. Hence, we now have a direct and streamlined
proof for the dichotomy of (3, p, q)-SAT (Theorem 5).

Smallest enforcers. Table 2 summarizes our results on the size of smallest (3, s)-enforcers
and (3, p, q)-enforcers.
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Table 1 Size of smallest unsatisfiable (3, s)-formulas (left) and size of smallest unsatisfiable
(3, p, q)-formulas (right). ∞ indicates that for these parameters no unsatisfiable formula exists.

s ≤ 3 s = 4 s = 5 s ≥ 6

∞ 16 11 8

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 22 19 16
p = 2 – 20 11 10 10
p ≥ 3 – – 8 8 8

Table 2 Size of smallest (3, s)-enforcers (left) and smallest (3, p, q)-enforcers (right).

s ≤ 3 s = 4 s ≥ 5

∞ 5 4

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 7 6 5
p = 2 – 10 5 5 5
p ≥ 3 – – 5 5 5

A smaller unsatisfiable (4, 5)-formula. Recall that f(4) = 5. The smallest known unsatis-
fiable (4, 5)-formula is due to Knuth and has 257 clauses. We improve this by exhibiting an
unsatisfiable (4, 5)-formula with 235 clauses. We obtain this by first computing an auxiliary
formula with SMS and then constructing from it an unsatisfiable (4, 5)-formula by disjunctive
splitting.

Structure of the paper. After this introduction, and preliminaries, the paper is organized
into two main parts. In Section 3, we lay out the principle encoding that provides the basis
for all our results. In Section 4, we dive into the more complicated, technical aspects that
are necessary to rule out the existence of larger formulas and obtain better lower bounds.
Lemmas and Theorems marked with ⋆ have proofs in the full version [28], where some
arguments have been streamlined.

2 Preliminaries

For positive integers k < ℓ, we write [k] = {1, 2, . . . , k}, [−k] = {−k,−(k − 1), . . . ,−1},
and [k, ℓ] = {k, . . . , ℓ}. We assume familiarity with fundamental notions of propositional
logic [19]. In this paper we will talk about (minimally) unsatisfiable propositional formulas
represented as graphs, specified by properties expressed as quantified Boolean formulas, and
about isomorphisms (symmetries) of these formulas. We review the relevant basics below.

CNF formulas. A literal is a (propositional) variable x or a negated variable x, whereby
x = x. We write var(x) := var(x) := x for the variable belonging to a literal. A set S of literals
is tautological if S ∩ S ≠ ∅, where S = {x : x ∈ S }. A clause is a finite non-tautological set
of literals. A k-clause is a clause that contains exactly k literals. The 0-clause is denoted
by □. A (CNF) formula is a finite set of clauses. For k ≥ 1, a k-CNF formula is a formula
in which all clauses are k-clauses (please note that some authors allow a k-CNF formula to
contain clauses with fewer than k literals, but it is significant in our context that the number
is exactly k) and a (≤ k)-CNF formula is a formula in which all clauses contain at most
k literals. A variable x occurs positively in a clause C if x ∈ C, it occurs negatively in C

if x ∈ C, and it occurs in C if it occurs in C positively or negatively. For a literal x, F [x]
denotes the set of clauses in F in which var(x) occurs. We will often write a ≤ k-CNF with m

SAT 2024
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clauses as a k ×m matrix whose columns are the clauses, and entries are literal occurrences.
When a clause has r < k literals, we write × in the last k − r rows in the corresponding
column of the matrix.

Counting occurrences. For a clause C, we write var(C) for the set of variables that occur
in C, and for a CNF formula F we write var(F ) =

⋃
C∈F var(C). The degree of a variable in

a formula F is defined as degvar
F (x) := |F [x]|. For literals, we put degvar

F (x) := degvar
F (x). The

degree of a literal x, denoted by degF (x), is the number of clauses in which the literal occurs.
We may omit the subscript F when it is clear from the context.

For k, s ≥ 1, a (k, s)-formula is a k-formula in which each variable occurs in at most s
clauses, and a (≤ k, s)-formula is a (≤ k)-formula in which each variable occurs in at most s
clauses. For k, p, q ≥ 1, a (k, p, q)-formula is a k-formula in which each variable occurs in at
most p clauses positively and in at most q clauses negatively, and a (≤ k, p, q)-formula is a
(≤ k)-formula with the same constraint. Without loss of generality, we will assume p ≤ q for
(k, p, q)-formulas as we can always swap positive and negative literals.

We define µ(k, s) to be the number of clauses of a smallest unsatisfiable (k, s)-formula,
and µ(k, p, q) denotes that of the smallest unsatisfiable (k, p, q)-formula.

Bounded literal occurrence SAT. A truth assignment for a set X of variables is a mapping
τ : X → {0, 1}. In order to define τ on literals, we set τ(x) = 1 − τ(x). A truth assignment τ
satisfies a clause C if C contains at least one literal x with τ(x) = 1, and τ satisfies a
formula F if it satisfies every clause of F . In the latter case, we call F satisfiable. The
Satisfiability problem (SAT) is to decide whether a given formula is satisfiable. (k, s)-SAT
is SAT restricted to (k, s)-formulas, and (k, p, q)-SAT is SAT restricted to (k, p, q)-formulas.

Enforcers. A (k, s)-enforcer is a satisfiable (k, s)-formula F with a variable x with
degvar

F (x) < s that is set to the same value in every satisfying assignment. A (k, p, q)-
enforcer is a satisfiable (k, p, q) formula F with a variable x which is either set to true in
every satisfying assignment, and then degF (x) < p, or it is set to false in every satisfying
assignment, and then degF (x) < q. We say the literal of x that is set to true in every
satisfying assignment is enforced. An enforcer can be completed into an unsatisfiable (≤ k, s)
or (≤ k, p, q)-formula by adding the unit clause containing the negation of the enforced literal.

Minimal unsatisfiability. A CNF formula is minimally unsatisfiable if it is unsatisfiable but
dropping any of its clauses results in a satisfiable formula. Let MU denote the class of all
minimally unsatisfiable formulas. The deficiency of a CNF formula F is δ(F ) = |C|−|var(F )|.
It is known that δ(F ) > 0 for any F ∈ MU [1]; therefore it is natural to parameterize MU by
deficiency and to consider the classes MU(d) := {F ∈ MU : δ(F ) = d } for d ≥ 1.

Variable elimination. It is well-known that one can eliminate variables of a CNF formula
by a process often called DP-resolution, after an algorithm of Davis and Putnam [6], as
follows. For two clauses C,D with x ∈ C, x ∈ D, the resolution rule yields the resolvent
clause C ∪D \ {x, x}. Let F be a CNF and x ∈ var(F ). We define F x := F \ F [x] ∪ {C ∪
D \ {x, x̄} |C,D ∈ F ;C ∩ D = {x}}. In other words, the result of eliminating x from F

is the formula that contains all clauses where x does not occur together with all possible
non-tautological resolvents on x. It is easy to see that ∃x F and F x are logically equivalent,
and in particular, if F is unsatisfiable, so is F x.
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Blocked clauses. A clause C in a CNF F is blocked in F on the literal x ∈ C if for every
C ′ ∈ F with x ∈ C ′, there exists a variable y ̸= var(x) with y ∈ C, y ∈ C ′ or y ∈ C ′, y ∈ C.
A clause is blocked in F if it is blocked on at least one of its literals. Blocked clauses are
a fundamental SAT preprocessing technique: when C is blocked in F and F is satisfiable,
then F ∪ {C} is also satisfiable [13, 22]; in other words, blocked clauses may be added or
removed without impacting satisfiability (notice that this also follows from soundness of
variable elimination). We will use the simple corollary that a minimally unsatisfiable formula
cannot contain a blocked clause.

QBF. Quantified Boolean formulas generalize propositional logic with quantification. In
this paper, we will need only the fragment of closed prenex 2-QBFs with one quantifier
alternation. A 2-QBF has the form ∃X∀Y Φ(X,Y ), where X and Y are sets of propositional
variables, and Φ is a propositional formula. A 2-QBF is true if there exists an assignment
τ : X → {0, 1} such that Φ(τ(X), Y ) evaluates to true for every assignment to Y , where
τ(X) denotes the substitution of τ values for X into Φ. The formula is false if no such
assignment τ exists.

Graphs. We only use undirected and simple graphs (i.e., without parallel edges or self-loops).
A graph G consists of set V (G) of vertices and a set E(G) of edges; we denote the edge
between vertices u, v ∈ V (G) by uv or equivalently vu.

We write Gn to denote the class of all graphs with V (G) = [n]. The adjacency matrix
A of a graph G ∈ Gn is the n× n {0, 1}-matrix where the element at row v and column u,
denoted by A(v, u), is 1 iff vu ∈ E(G).

Isomorphisms. For a permutation π : [n] → [n], π(G) denotes the graph obtained from G ∈
Gn by the permutation π, where V (π(G)) = V (G) = [n] and E(π(G)) = {π(u)π(v) : uv ∈
E(G) }. Two graphs G1, G2 ∈ Gn are isomorphic if there is a permutation π : [n] → [n] such
that π(G1) = G2; in this case G2 is an isomorphic copy of G1. A partially defined graph [17]
is a graph G where E(G) is split into two disjoint sets D(G) and U(G). D(G) contains
the defined edges, U(G) contains the undefined edges. A (fully defined) graph is a partially
defined graph G with U(G) = ∅. A partially defined graph G can be extended to a graph H

if D(G) ⊆ E(H) ⊆ D(G) ∪ U(G).

CNF Formulas as graphs. For sets S, S′, T , we write T = S⊎S′ if T = S∪S′ and S∩S′ = ∅.
A 2-graph is an undirected graph G = (V,E) together with a partition of its vertex set into
two disjoint blocks V1 ⊎ V2 = V . Two 2-graphs G = (V1 ⊎ V2, E) and G′ = (V ′

1 ⊎ V ′
2 , E

′) are
isomorphic if there exists a bijection ϕ : V1 ⊎ V2 → V ′

1 ⊎ V ′
2 such that v ∈ Vi if and only

if ϕ(v) ∈ V ′
i , i = 1, 2, and {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. The clause-literal

graph of a CNF formula F is the 2-graph G(F ) = (V1 ⊎ V2, E) with V1 = lit(F ), V2 = F ,
and E = { {x, x} : x ∈ var(F ) } ∪ { {C, ℓ} : C ∈ F, ℓ ∈ C }. We refer to the edges {x, x } as
variable edges. It is easy to verify that any two CNF formulas are isomorphic if and only if
their clause-literal graphs are isomorphic (as 2-graphs). Note that we can safely assume that
the first |V1| rows of the adjacency matrix of a clause-literal graph correspond to the vertices
in V1, and we will thoroughly do so throughout this paper.

SAT Modulo Symmetries (SMS). SMS [18] is a framework that augments a CDCL
(conflict-driven clause learning) SAT solver [8, 23] with a custom propagator that can reason
about symmetries, allowing to search modulo isomorphism for graphs in Gn satisfying a
property specified in (quantified) propositional logic.

SAT 2024
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During search, the SMS propagator can trigger additional conflicts on top of ordinary
CDCL and consequently learn symmetry-breaking clauses, which exclude isomorphic copies
of graphs. More precisely, only those copies are kept which are lexicographically minimal
(canonical) when considering the rows of the adjacency matrix concatenated into a single
vector. A key component is a minimality check, which decides whether a partially defined
graph can be extended to a minimal graph; if it cannot, a corresponding clause is learned.
For a full description of SMS, we refer to the original work where the framework was
introduced [18]. In SMS, it is possible to specify a partition of the vertex set and restrict
the symmetry breaking to those permutations that preserve the partition. In Section 3.1,
we explain how we can specify partitions to efficiently generate formulas (represented by
2-graphs) modulo isomorphism with SMS.

3 Basic encoding

In this section we explain the methodology all of our investigations build upon, and review
results already obtainable with it. In the next section, we will delve into technical details
and improvements that are necessary to scale up this basic approach.

The idea is to first list all possible number of clauses a smallest (k, s) or (k, p, q)-formula
can have, and then decide whether an unsatisfiable formula exists with increasing m. For
each m, we split the decision problem further by specifying number of variables n the sought
formula has. For fixed m and n, we reduce this task to deciding the satisfiability of a suitable
quantified Boolean formula and give it to QBF-enabled SMS. Because we gradually increase
m, the first time we hit a satisfiable instance we know the formula thus produced is smallest
possible. The desired QBF should have its models correspond to unsatisfiable (k, s)-formulas
with n variables and m clauses. Since unsatisfiability is coNP-complete, we cannot hope to
obtain a polynomial-size propositional encoding (unless NP = coNP), and instead we use
a 2-QBF of the form ∃X∀Y Φn,m

k,s (X) ∧ ¬Σn,m(X,Y ) (or ∃X∀Y Φn,m
k,p,q(X) ∧ ¬Σn,m(X,Y )),

where Φn,m
k,s (X) (Φn,m

k,p,q(X)) expresses that X represents a (k, s)-formula ((k, p, q)-formula)
with n variables and m clauses, and Σn,m(X,Y ) expresses that the assignment represented
by Y satisfies X.

3.1 Hard-coding the first part of the clause-literal graph
Before we delve into the details of the encoding, we observe the following fact about the
lexicographically minimal matrix of a clause-literal graph.

Let pos(i) = r if the rth row/column of the adjacency matrix represents the positive
literal of the ith variable, and similarly for neg(i). The first block of a clause-literal graph
contains the vertices corresponding to literals, i.e., we have pos(i), neg(i) ∈ [2n] for all i ∈ [n].

▶ Theorem 1. The lexicographically minimal matrix of any clause-literal graph is antidiagonal
in the upper-left (variables) block, i.e., for all i, j ≤ 2n, A(i, j) = 1 iff i+ j = 2n+ 1. For
the ordering of literals, this means that for each i we have {pos(i), neg(i)} = {j, 2n+ 1 − j}
for some j ∈ [n].

Proof. Towards a contradiction, consider a lexicographically minimal adjacency matrix of
some clause-literal graph, and the row i, where antidiagonality is first violated, because the
1-entry is in column 2n+ 1 − j for j > i (and not j = i as it should be; notice that j < i is
impossible since the literal 2n + 1 − j would have to be adjacent to both j and i). Then,
swapping the vertices 2n+ 1 − j and 2n+ 1 − i yields a lexicographically smaller matrix. ◀
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x x y y

C1 C2 C3

x y y x C1 C2 C3
x 0 0 0 1 0 0 1
y 0 1 0 0 1 0
y 0 0 1 0 0
x 0 1 1 0
C1 0 0 0
C2 0 0
C3 0

Figure 1 Consider the formula F = {C1, C2, C3} with C1 = {x, y}, C2 = {x, y}, and C3 = {x}.
We see the corresponding 2-graph and the upper part of its lexicographically minimal adjacency
matrix. Observe how the left part is indeed antidiagonal.

Theorem 1 shows that we can hard-code the top-left 2n × 2n matrix of the adjacency
matrix. Doing so has the following benefits. The immediate advantage is that with fewer
undecided variables to solve, SMS terminates more quickly. Also, this breaks the symmetries
from reordering the literal nodes of the clause-literal matrix. Finally, as we will see more
clearly in the next part, fixing the matching between literal nodes reduces the size of the
encoding since we no longer need to describe the cardinality constraints on how many times
a variable can occur conditionally on an undecided matching among literal nodes. Figure 1
shows an example of a clause-literal graph and its corresponding lexicographically minimal
adjacency matrix.

3.2 Encodings for formulas
In this part, we describe the detailed construction of the specific 2-QBF we use, whose models
correspond to unsatisfiable (k, s)-formulas with n variables and m clauses. We write our
encoding in the standard circuit-QBF QCIR format [14].

We express cardinality constraints using cardinality networks [2]. A cardinality network
Carda

b takes b binary inputs and outputs the most significant a inputs ordered from more
significant to less. For the purpose of illustration, suppose we want variable z to be
true if and only if exactly d variables out of x1, . . . , xb are true. Let (y1, . . . , yd, yd+1) :=
Cardd+1

b (x1, . . . , xb). Note that this way yi is true if and only if there are at least i true
inputs among x1, . . . , xb. So we can define z := yd ∧ ¬yd+1. When the number of inputs
and outputs is clear from the context, we just write Card. Let i, i′ ∈ [n], j < j′ ∈ [m], we
define ai,i′ := A(pos(i), pos(i′)), ai,−i′ := A(pos(i), neg(i′)) and a−i,−i′ := A(neg(i), neg(i′))
for edges between literal vertices, ei,j := A(pos(i), j + 2n) and ei,j := A(neg(i), j + 2n) for
edges from a literal node to a clause node, and cj,j′ := A(j + 2n, j′ + 2n) for edges between
clause nodes. Take a sufficiently large x. For all i ∈ [n], t ∈ [n] ∪ [−n] and j ∈ [m], define

(ωt,1, ωt,2, . . . , ωt,x) := Card(et,1, et,2, . . . , et,m),
(σi,1, σi,2, . . . , σi,x) := Card(ei,1, ei,2, . . . , ei,m, e−i,1, e−i,2, . . . , e−i,m), and

(τj,1, τj,2, . . . , τj,k+1) := Card(e1,j , e2,j , . . . , en,j , e−1,j , e−2,j , . . . , e−n,j).

The following are some useful properties expressed in propositional logic which we use as
components in the desired 2-QBF. F1 expresses that there are no edges between two clause
nodes. F2 expresses that each literal occurs at least once. F3 expresses that a literal and its
negation cannot occur in the same clause. F v

4 expresses that each variable occurs at most s
times. F5 expresses that each clause contains exactly k literals.
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F1 :=
∧

0≤j<j′<m

¬cj,j′ , F2 :=
∧

i∈[n]∪[−n]

∨
j∈[m]

ei,j , F3 :=
∧

i∈[n],j∈[m]

¬ei,j ∨ ¬e−i,j .

F v
4 :=

∧
i∈[n]

¬σi,s+1, F l
4 :=

∧
i∈[n]∪[−n]

¬ωi,q+1 ∧
∧

i∈[n]

¬ωi,p+1 ∨ ¬ω−i,p+1,

F5 :=
∧

j∈[m]

τj,k ∧ ¬τj,k+1.

It is easy to see that a smallest (k, s) or (k, p, q)-formula must be minimally unsatisfiable, and
thus we can also require (in Φn,m

k,s ) that it contain no blocked clauses. Given i ∈ [n] ∪ [−n]
and j, j′ ∈ [n], define ψi,j,j′ and φi,j as follows. Here φi,j expresses that the j-th clause is
not blocked on the literal i.

ψi,j,j′ :=
∧

i′∈[n]∪[−n]
i′ ̸=i,−i

(¬ei′,j ∨ ¬e−i′,j′), φi,j := ¬ei,j ∨
∨

j′∈[m]
j′ ̸=j

(e−i,j′ ∧ ψi,j,j′).

F6 expresses that the formula contained no blocked clauses.

F6 :=
∧

i∈[n]∪[−n],
j∈[m]

φi,j

F7 hard-codes the matching between the literal nodes.

F7 :=
∧

i∈[n]

ai,−i ∧
∧

i∈[n],i′∈[−n]
i̸=−i′

¬ai,i′ ∧
∧

i<i′∈[n]

¬ai,i′ ∧
∧

i′<i∈[−n]

¬ai,i′

Let X := {A(i, j) : i < j ∈ [2n + m] } and Y = {αi : i ∈ [m] }. For i ∈ [n], we put
α−i := ¬αi. Finally, define Φn,m

k,s (X) := F1 ∧ F2 ∧ F3 ∧ F v
4 ∧ F5 ∧ F6 ∧ F7, Φn,m

k,p,q(X) :=
F1 ∧ F2 ∧ F3 ∧ F l

4 ∧ F5 ∧ F6 ∧ F7 and

Σn,m(X,Y ) :=
∧

j∈[m]

∨
i∈[n]∪[−n]

αi ∧ ei,j .

3.3 Preliminary findings
To determine the exact value of µ(3, s) and µ(3, p, q) for various choices of s, p and q, we
enumerate all permissible values of (m,n), where m is the number of clauses and n is the
number of variables, from smaller to bigger in the lexicographical order. For each pair (m,n),
we solve the formula described in Section 3.2 with SMS.1 We terminate the solver if it cannot
answer within 5 days.

We ran the solver on a Sun Grid Engine (SGE) cluster consisting of heterogeneous
machines running Ubuntu 18.04.6 LTS.2

We begin by observing that since allowing more occurrences yields a larger class of
formulas, by definition, µ(k, s) ≤ µ(k, s− 1), µ(k, p, q) ≤ min

(
µ(k, p− 1, q), µ(k, p, q − 1)

)
,

and µ(k, p+ q) ≤ µ(k, p, q). The following lemmas provide preliminary bounds on m and n

for our enumeration.

1 https://sat-modulo-symmetries.readthedocs.io
https://github.com/markirch/sat-modulo-symmetries

2 The cluster contains nodes with the following architectures: 2× Intel Xeon E5540 with 2.53 GHz Quad
Core, 2× Intel Xeon E5649 with 2.53 GHz 6-core, 2× Intel Xeon E5-2630 v2 with 2.60GHz 6-core, 2×
Intel Xeon E5-2640 v4 with 2.40GHz 10-core and 2× AMD EPYC 7402 with 2.80GHz 24-core.

https://sat-modulo-symmetries.readthedocs.io
https://github.com/markirch/sat-modulo-symmetries
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Table 3 Preliminary results based only on the method of this section, for µ(3, s) (left) and
µ(3, p, q) (right). Since the right table is symmetric with respect to the main diagonal, we only give
the upper triangle due to the assumption q ≥ p. All values for s ≥ 6 and q ≥ p ≥ 3 are 8: less is not
possible by Lemma 2. Lemma 2 also rules out a (3, 2, q)-formula with 9 clauses and q ≥ 5.

s = 4 s = 5 s ≥ 6

[14, 16] 11 8

q = 1 q = 2 q = 3 q = 4 q ≥5

p = 1 ∞ ∞ [14,∞] [11,∞] [8,∞]
p = 2 – [8, 20] 11 10 10
p ≥ 3 – – 8 8 8

▶ Lemma 2. An unsatisfiable k-CNF formula that contains a variable of type (p, q) has at
least 2k + |q − p| clauses.

Proof. Let F be an unsatisfiable k-CNF with m clauses, n variables, and x a variable of type
(p, q). F |x := {C \ {x} ∈ F : x ̸∈ C }, obtained from F by setting x to false, is unsatisfiable,
has n− 1 variables, p clauses of size k − 1, and m− p− q clauses of size k. Since a clause of
size r is falsified by 2n−1−r assignments, and each assignment falsifies some clause, we have
p2n−k + (m− p− q)2n−1−k ≥ 2n−1, and solving for m completes the proof. ◀

▶ Lemma 3. A minimally unsatisfiable (k, s)-formula with m clauses has between ⌈ k·m
s ⌉ and

m − 1 variables. Similarly, a minimally unsatisfiable (k, p, q)-formula with m clauses has
between ⌈ k·m

p+q ⌉ and m− 1 variables.

Proof. With n variables of degree ≤ s there are mk ≤ ns literal occurrences. For the upper
bound, recall that minimally unsatisfiable formulas have positive deficiency. ◀

It is known that an unsatisfiable (3,4)-formula with 16 clauses and an unsatisfiable
(3,2,2)-formula with 20 clauses exist [4]. We give the formulas as E3,4 and M3,2,2 in the
appendix. The experimental results combined with this knowledge yield Table 3. One can
find a smallest (3, 2, 3), (3, 2, 4) and (3, 3, 3)-formula in the appendix as M3,2,3, M3,2,4, and
M3,3,3. M3,2,3 also serves as a smallest (3, 5)-formula, and M3,3,3 as a smallest (3, 6) formula.

A closer look at the time spent on deciding the existence of an unsatisfiable (3, 4)-formula
with different n and m shown in Table 4 reveals that this basic method reaches its limit
with formulas of about 13 clauses. Thus, further considerations are called for if we want to
determine the precise value for some of the entries in the tables.

Table 4 Time spent deciding the existence of an unsatisfiable (3, 4)-formula with n variables and m

clauses (without/with blocked-clause detection encoded as F6). Unsolved queries are marked by to,
blank areas are out of bounds determined by Lemma 3. All terminated queries were unsatisfiable
except the one marked in blue with n = 12 and m = 16.

n m = 8 m = 9 m = 10 m = 11 m = 12

6 0.4s/0.6s
7 0.7s/1.2s 1.9s/2.0s
8 4.9s/5.9s 7.3s/10.4s
9 42s/1m 1m/3m 5m/4m

10 12m/7m 43m/17m
11 3h/1.6h

n m = 13 m = 14 m = 15 m = 16

10 2h/1h
11 12h/6h 28h/27h
12 5d/42h to to to/5d
13 to to to
14 to to
15 to

SAT 2024
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3.4 A dichotomy theorem for (3, 1, q)-SAT
The following extends a result by Kratochvíl, et al. [21, Lemma 2.2].

▶ Lemma 4 (⋆). Let k ≥ 3 and p, q ≥ 1 such that p+ q ≥ 3. If there exists an unsatisfiable
(k, p, q)-formula, then (k, p, q)-SAT is NP-hard.

▶ Theorem 5 (Dichotomy). For any p, q ≥ 1, if p+ q < 4 then (3, p, q)-SAT is solvable in
polynomial time, otherwise (3, p, q)-SAT is NP-hard.

Proof. (3, p, q)-SAT is a special case of (3, p+ q)-SAT, and (3, s)-SAT is in P for s ≤ 3 [27].
Let p+ q ≥ 4, w.l.o.g., p ≤ q. If p = 1, then q ≥ 3, if p ≥ 2, then q ≥ 2, and unsatisfiable
(3, 1, 3)-formulas and (3, 2, 2)-formulas exist (which are also (3, p, q)-formulas for larger p, q,
see Table 1). NP-hardness follows from Lemma 4. ◀

The NP-hardness part of Theorem 5 holds even for monotone SAT, where each clause is
required to contain only positive or only negative literals [5], with the exception of monotone
(3, 1, 3)-SAT, for which van Santvliet and de Haan [24] have recently shown that all instances
are satisfiable, and monotone (3, 1, 4)-SAT, which is still open. Our proof is uniform in the
sense that all hardness results rely on Lemma 4.

4 Compound methods

The core method for finding small unsatisfiable (k, s)-CNF and (k, p, q)-CNF formulas is our
SMS encoding that we have introduced in Section 3.2. This method is quite powerful and
lets us produce the smallest formulas and exact lower bounds for formula size. However,
since the search space grows very quickly, this method reaches its limits with formulas of
about 10–15 clauses, depending on the imposed side constraints. In this section, we show
how we improve the results from Table 3 by combining computational search with theoretical
analysis, and with several techniques to decrease the size of the search space. The methods
for obtaining upper bounds are disjunctive splitting and combining enforcers. The methods
for obtaining lower bounds are reductions and hard-coding part of the adjacency matrix.

Generating (k, s)-formulas directly is often prohibitively expensive. In such cases we also
consider (≤ k, s)-formulas that have a few clauses of width smaller than k. Central to the
various techniques we employ in this section is the concept of a stairway. A stairway, first
introduced by Hoory and Szeider [11], is an abstraction of a CNF formula that focuses only
on the clauses that are smaller than a given k. More specifically, a stairway σ = (a1, . . . , ar)
is a finite non-increasing sequence of positive integers. For a fixed integer k, a stairway
σ = (a1, . . . , ar) represents the set of all CNF formulas F = {C1, . . . , Cm} where ai = k−|Ci|
for 1 ≤ i ≤ r, and |Ci| = k for r + 1 ≤ i ≤ m. Define µ(k, s, σ) to be the number of clauses
of a smallest unsatisfiable (≤ k, s)-formula with stairway σ, and µ(k, p, q, σ) to be that of
the smallest unsatisfiable (≤ k, p, q)-formula with stairway σ.

It is straightforward to adapt Φn,m
k,s to encode, instead of a (k, s)-formula, a (≤ k, s)-

formula with a given stairway. Instead of requiring every clause to contain exactly k literals,
we require every clause to contain at most k literals, and that a certain number of clauses
contain less than r literals, for some 1 < r ≤ k. For each 1 < r ≤ k, j ∈ [n], let Nr be the
number of clauses that contains strictly less than r literals. We replace F5 with F ′

5 below.

F ′
5 :=

∧
j∈[n]

¬τj,k+1 ∧
∧

1<r≤k

∑
j∈[n]

¬τj,r = Nr.
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4.1 Improved bounds
The following theorems refine the bounds on µ(k, s) and µ(k, p, q) using stairways.

▶ Theorem 6. µ(k, p, q) ≥ min
(
µ(k, p, q, 1p) + q, µ(k, p, q − 1)

)
, where 1p is the stairway of

length p with each entry being a 1.

Proof. An unsatisfiable (k, p, q)-formula where at least one literal occurs q times gives an
unsatisfiable formula with p (k−1)-clauses and shorter in length by q if we set the literal that
occurs q times to true. The latter has minimal size µ(k, p, q, 1p). Taking this into account,
we know that µ(k, p, q) < µ(k, p, q− 1) is only possible if µ(k, p, q, 1p) + q < µ(k, p, q− 1). ◀

Recall the concept of an enforcer from Section 2. Enforcers can be used to provide upper
bounds, as we will show in Theorem 7. When k = 3, a (3, s)-enforcer (or a (3, p, q)-enforcer)
gives rise, by appending the appropriate unit clause, to an unsatisfiable (≤ k, s)-formula (or
an unsatisfiable (≤ k, p, q)-formula) with stairway (2), and thus by searching for formulas
with this stairway we can generate enforcers. In this way, we computed the size of a smallest
enforcer in the classes of (3, s)-formulas and (3, p, q)-formulas, and list them in Table 2.
The minimality of the (3, 3, 4)-enforcer was also shown by Jurenka [15] with a theoretical
argument. The corresponding formulas can be found in Appendix A.1.

▶ Theorem 7. µ(k, s) ≤ k · (µ(k, s, (k− 1)) − 1) + 1. Similarly, µ(k, p, q) ≤ k · (µ(k, p, q, (k−
1)) − 1) + 1.

Proof. Let E be a smallest (k, s)-enforcer, which by definition has size µ(k, s, (k − 1)) − 1
(the (k, p, q) case is analogous). We can obtain an unsatisfiable (k, s)-formula by taking k
variable-disjoint copies of E and adding a k-clause containing the negated enforced literals. ◀

Table 5 Smallest size of an unsatisfiable (≤ k, 1, q)-formula for stairway (1).

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 14 or 15 13 11

We compute the table for µ(3, 1, 3, (1)) and µ(3, 1, 3, (2)) through a similar exhaustive
search as explained in Section 3, and show the results in Table 5. Combining these tables
with Theorems 6 and 7, we have the following improvement.

▶ Corollary 8. µ(3, 1, 3), µ(3, 1, 4) ≥ 17 and µ(3, 1, q) ≥ 16 for all q ≥ 5.

▶ Corollary 9. µ(3, 1, 3) ≤ 22, µ(3, 1, 4) ≤ 19 and µ(3, 1, q) ≤ 16 for all q ≥ 5.

4.2 Disjunctive splitting
We say a CNF formula F is obtained by disjunctive splitting in x from CNF formulas
F1, F2, in symbols F = F1 ⊕ F2, if F can be partitioned into two nonempty sets F ′

1, F
′
2

such that the variable x occurs in F ′
1 positively but not negatively, and appears in F ′

2
negatively but not positively, and Fi is obtained from F ′

i with all occurrences of x, x removed.
Observe that if F1, F2 are unsatisfiable, then also F = F ′

1 ∪ F ′
2 is unsatisfiable. Hence, when

constructing an unsatisfiable (k, s)-CNF or (k, p, q)-CNF formula, we can first try to construct
(≤ k, s)-formulas or (≤ k, p, q)-formulas F1, F2 and then combine them to obtain F .

SAT 2024
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If F is obtained by disjunctive splitting in x from F1, F2, and x is added positively to p
clauses in F1 and negatively to q clauses in F2, we write F = F1 ⊕p,q F2. Disjunctive splitting
can be recursively applied to F1 and F2. This allows us to construct a formula from axioms
which are CNF formulas that we do not further split. For example, the (2, 4)-CNF formula
{{x, y}, {x, y}, {y, z}, {y, z}} can be constructed from the axiom {□}.

We can describe the construction by an ⊕-derivation, an algebraic expression ({□} ⊕1,1
{□}) ⊕2,2 ({□} ⊕1,1 {□}). In fact, MU(1) is exactly the class of all formulas that can be
constructed by disjunctive splitting from the axiom {□}.

This idea was utilized by Hoory and Szeider [11], who proposed an algorithm that
decides for given k, s whether (k, s)-CNF ∩ MU(1) ̸= ∅. This allows us to compute an
upper bound on the threshold function f(k). Hoory and Szeider define ⊕-derivations to
operate on stairways instead of formulas. For k = 3, the above ⊕-derivation would now read
((3) ⊕1,1 (3)) ⊕2,2 ((3) ⊕1,1 (3)) and produce the stairway (1, 1, 1, 1). By means of a saturation
algorithm, Hoory and Szeider could determine the upper bounds f(3) ≤ 3, f(4) ≤ 4, f(5) ≤ 7,
f(6) ≤ 11, f(7) ≤ 17, f(8) ≤ 29, and f(9) ≤ 51 on the threshold function f(k) (i.e., all
(k, f(k))-formulas are satisfiable but (k, f(k) + 1)-SAT is NP-complete), which are still the
best known upper bounds.

In this paper, we generalize Hoory and Szeider’s method in the following ways: (i) we
consider ⊕-derivations with more axioms: any unsatisfiable (≤ k, s)-formula can serve as
an axiom; (ii) we modify the saturation algorithm so that it gives the size of the smallest
unsatisfiable (k, s)-formula derivable with respect to the sizes of the formulas that serve as
axioms; (iii) we adapt the algorithm also for searching for unsatisfiable (k, p, q)-formulas. We
do this in the hope that, by finding suitable axioms with the SMS encoding, we can incorporate
them into the ⊕-derivations to obtain smaller unsatisfiable (k, s) or (k, p, q)-formulas.

Table 6 shows the size of smallest unsatisfiable (3, s) and (3, p, q)-formulas generated by
disjunctive splitting with {□} being the only axiom. The corresponding ⊕-derivations can
be found in the appendices. We determined µ(3, s, 1r) for all 1 ≤ r < s and µ(3, p, q, 1r) for
all 1 ≤ r < q, but this did not yield any new upper bounds. We were more successful with
the method of disjunctive splitting in the case of k = 4, which we discuss in Section 5.

Table 6 Size of the smallest (3, s)-formulas and (3, p, q)-formulas in MU(1).

s ≤ 3 s = 4 s = 5 s = 6 s = 7 s ≥ 8

∞ 16 12 10 9 8

q = 1 q = 2 q = 3 q = 4 q ≥ 5

p = 1 ∞ ∞ 22 19 16
p = 2 – ∞ 12 10 10
p = 3 – – 10 9 9
p ≥ 4 – – – 8 8

4.3 Hard-coding part of the matrix
After we narrowed down the search scope with tighter bounds, this and the next part deal with
deciding the missing values in Table 1 and the techniques involved. These techniques allow
us to determine the existence of unsatisfiable (3, 4)-formulas (or (3, 2, 2),(3, 1, q)-formulas)
whose size is too large to be exhaustively searched by SMS directly.

In this part, we determine the value of µ(3, 1, 3) and µ(3, 1, 3). The technique here is hard-
coding the part of the matrix that corresponds to the occurrences of some variables/literals.
The motivation is that with less undecided values in the matrix to solve, SMS terminates
more quickly. Suppose we want to fix both positive and negative occurrences of V variables
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A(i, 2n + j) 1. . . m − 9 m − 6 m − 3 m

1 (x1) 1
2 (x1) 1 1 1
3 (x2) 1
4 (x2) 1 1 1
5 (x3) 1
6 (x3) 1 1 1
7 (a1) 1
8 (b1) 1
9 (a2) 1
10 (b2) 1
11 (a3) 1
12 (b3) 1

Figure 2 The first rows of the matrix determined as a result of our choice for pos(i) and neg(i).
The omitted values are all 0.

x1, x2, . . . , xV and only the positive occurrences of L other variables xV+1, xV+2, . . . , xV+L.
To do this in a way that is compatible with the minimality check of SMS, we need to adjust
the following two things. First, when generating the encoding, we stipulate that the first
rows in the matrix correspond to x1, x1, x2, x2, . . . , xV , xV , xV+1, xV+2, ...xV+L and adjust
pos and neg to the following.

pos(i) :=
{

2i− 1 if i ≤ V ,
i+ V otherwise;

neg(i) :=
{

2i if i ≤ V ,
2n+ V − i+ 1 otherwise.

Second, we start SMS with the minimality check restricted to the refined partition

{{1}, {2}, . . . , {2V + L}, [2V + L + 1, 2n], [2n+ 1, 2n+m]}

of the original {[1, 2n], [2n+ 1, 2n+m]}. Given the specific assumption on the variables and
literals fixed, the minimality condition will determine the values of the first 2V + L rows in
the matrix. An example to this will be given shortly after.

To determine the value of µ(3, 1, 3) and µ(3, 1, 4), we prove the following lemma that
argues about the presence of certain “partially known” ≤ k-CNFs, so we can fix them. As
explained in Section 2, we write ≤ k-CNFs in matrix form. To argue about “partially known”
≤ k-CNFs, we extend the matrix notation to what is essentially a first-order language of
≤ k-CNFs. We use lowercase letters x, y, z, a, b, c, . . . to denote symbols to be interpreted by
propositional literals, positive or negative. We use to denote negation: if x is interpreted
as some literal, then x must be interpreted as its negation. Two different literal symbols may
be interpreted by different literals, or they may be interpreted by the same literal, or even by
the two literals of the same variable. When a position in the matrix is left blank, we leave
the corresponding literal unconstrained. We then say a formula F is of the form M if the
symbols in the matrix M can be interpreted by the literals of F to yield a matrix of F . A
clause C ∈ F is singular if deg(x) = 1 for all x ∈ C.
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Table 7 Results of the search for unsatisfiable (3, 1, 3)-formulas for different numbers of variables
and clauses after hard-coding the first rows as described. All queries were unsatisfiable except the
one marked in blue with m = 22 and n = 21. For each m, the lower bound for the choice of n is by
Lemma 3, and the upper bound is m − 2 since we know the smallest size of a (3, 1, 3)-formula in
MU(1). There are two values for each pair of m and n. The values on the left indicate the time spent
on the case where we assume there is a unique singular clause. The values on the right indicate that
of the case where we assume there are at least two singular clauses. The cases superscribed with ⋆

and ▲ did not terminate within a timeout of 6 days and were further split into sub-cases and time
shown is the sum of time spent on each of the sub-cases. The cases superscribed with ⋆ are split into
1258 cases in terms of where a1, b1, a2 and a2 occur, modulo symmetries. The ones superscribed
with ▲ are split into 136 cases in terms of where y1, y2 and y3 occur, modulo symmetries. It is
worth noting that both sets of case distinctions are generated automatically without symmetry
by reformulating them as graph problems and giving the corresponding encoding to SMS. An
unsatisfiable formula is found in this case, assuming there exists a unique singular clause. Upon
inspection, this formula is revealed to be composed of 3 enforcers in the spirit of Theorem 7.

m = 17 m = 18 m = 19 m = 20 m = 21 m = 22

n = 13 5.3s/7.4m
n = 14 16s/17m 38s/1.8h
n = 15 19m/1.1h 11m/28.7h 12m/43.8h 53m/13.7h⋆

n = 16 7.2m/20h 7.4h/5.8h⋆ 1.7d/1.2d⋆ 1.7d/9.9d⋆

n = 17 3.8d/9.0h⋆ 15.9h▲/1.8d⋆ 2.1d▲/14.3d⋆

n = 18 1.2d▲/2.5d⋆ 3.6d▲/34.3d⋆

n = 19 11.6d▲/56.9d⋆

n = 21 29.2m/–

▶ Lemma 10 (⋆). Let q ≥ 3 and let F be a smallest unsatisfiable (3, 1, q)-formula.

1. There is a singular clause in F .
2. If

(
x1
x2
x3

)
∈ F is singular, then F [xi] ∩ F [xj ] =

{(
x1
x2
x3

)}
for any i ̸= j ∈ {1, 2, 3}, and

deg(x1) = deg(x2) = deg(x3) ≥ 3.
3. Let

(
x1
x2
x3

)
∈ F be a singular clause and let a be a literal such that deg(a) = 1 and var(a) ̸=

var(xi) for all i ∈ {1, 2, 3}. If a ∈
⋃
F [xi], then a ̸∈

⋃
F [xj ] for any i ̸= j ∈ {1, 2, 3}.

4. If there is a unique singular
(

x1
x2
x3

)
∈ F , then

⋃
i=1,2,3 F [xi] is of the form(

x1 x1 x1 x1 x2 x2 x2 x3 x3 x3
x2 a1 a2 a3
x3 b1 b2 b3

)
where deg(ai) = deg(bi) = 1 for all i ∈ {1, 2, 3}.

When searching for a smallest unsatisfiable (3, 1, 3)-formula, we distinguish the following
two cases, depending on whether there is a unique clause whose literals only occur once. If
there is, then we hard-code the partial formula

(
x1 x1 x1 x1 x2 x2 x2 x3 x3 x3
x2 a1 a2 a3
x3 b1 b2 b3

)
in the matrix

by setting the first 12 rows to represent x1, x1, x2, x2, x3, x3, a1, b1, a2, b2, a3 and b3, starting
with the ordered partition {{1}, {2}, . . . , {12}, [13, 2n], [2n+ 1, 2n+m]}, and hard-coding
the first 12 rows of the matrix thereby determined. The fixed rows are shown in Figure 2
as an example. Otherwise, there are more than one singular clause and we hard-code the
partial formula

(
x1 x1 x1 x1 x2 x2 x2 x3 x3 x3 y1
x2 y2
x3 y3

)
. When searching for a smallest unsatisfiable

(3, 1, 4)-formula, we follow the same rationale but split both of these cases into 4 cases
depending on the size of {xi | degvar(xi) = 5, i ∈ {1, 2, 3}}.

Combining the computational results in Tables 7 and 8 with the previous lemma, we
have the following result.

▶ Theorem 11. µ(3, 1, 3) ≥ 22 and µ(3, 1, 4) ≥ 19.
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Table 8 Results of the search for unsatisfiable (3, 1, 4)-formula for different numbers of variables
and clauses after hard-coding the first rows as described. The timeout is 11 days. For each m in the
table, the lower bound for the choice of n is by Lemma 3, and the upper bound is m − 2 since we
know that the smallest size of a (3, 1, 4)-formula in MU(1). There are eight values for each pair of m

and n divided into two rows of four values each. The upper row shows the amount of time spent on
the cases where we assume there is a unique singular clause; the lower row shows the cases with at
least two singular clauses. The four values in a row correspond to cases based on the number of
variables out of x1, x2, x3 that are of degree 5 (0, 1, 2, 3 left-to-right). An unsatisfiable formula is
found only for the case where m = 19, n = 18 and degvar(x1) = degvar(x2) = degvar(x3) = 5. Upon
inspection, this formula is revealed to be composed of 3 enforces in the way of Theorem 7.

m = 17 m = 18 m = 19

n = 11 (1.1s,1.1s,1.1s,0.7s) (–,–,1.1s,0.8s)
(19s,15s,12s,13s) (–,–,13s,14s)

n = 12 (1.8s,2.0s,2.0s,2.0s) (2.2s,2.5s,2.4s,2.7s) (4.7s,2.7s,2.8s,3.0s)
(1.1m,1.0m,0.6m,13s) (1.2m,1.2m,0.5m,0.5m) (2.0m,1.4m,1.9m,1.6m)

n = 13 (15s,7.1s,4.0s,6.4s) (5.5s,10s,12s,8.2s) (12s,9.0s,6.0s,14s)
(4.5m,1.1m,0.5m,1.0m) (6m,4.9m,0.9m,1.5m) (11m,5.1m,10m,9.5m)

n = 14 (24s,43s,14s,12s) (25s,56s,26s,32s) (1.2m,40s,1.2m,34s)
(9.1m,2.4m,1.2m,1.1m) (34m,8.4m,11m,3.6m) (1.7h,3.0h,2.8h,0.9h)

n = 15 (1.0m,1.7m,17s,21s) (17m,2.7m,49s,1.8m) (2.3m,1.0h,1.3m,9.7m)
(42m,10m,2.3m,1.9m) (1.7h,50m,22m,22m) (33.2h,17.1h,2.6h,1.4h)

n = 16 (39m,24m,36m,3.3m) (14.1h,4.5h,34m,30m)
(19.7h,47m,24m,40m) (t.o.,6.4d,3.3h,2.5h)

n = 17 (7.2d,12.0h,4.8h,2.6h)
(t.o.,t.o.,10.1h,2.3h)

n = 18 (t.o.,5.6d,6.5h,1.1h)
(2.4d,t.o.,6.3d,10.4h)

4.4 Reduction

In this section, we describe the final technique that allow us to determine the value of
µ(3, 4) and µ(3, 2, 2), and thus complete Table 1. The idea is to reduce a (3, 4)-formula (or
(3, 2, 2)-formula) to a smaller (≤ 3, 4)-formula (or (≤ 3, 2, 2)-formula) that is equisatisfiable,
so that the question of the existence of a certain formula is reduced to that of the existence
of a certain, smaller formula. We then use SMS to determine the existence of such small
formulas.

It is difficult to prove any useful properties about general unsatisfiable (3, 4)-formulas
(or (3, 2, 2)-formulas), but since we exhaustively search from smaller to bigger formulas,
we can restrict our search to minimal (in terms of the number of clauses) (3, 4)-formulas
(or (3, 2, 2)-formulas). We reduce such an F to a smaller unsatisfiable (≤ 3, 4)-formula (or
(≤ 3, 2, 2)-formula) by replacing all subsets of clauses from F that fit into one of the three
forms below with a single 2-clause

(
c
d
×

)
. For each replacement operation, the symbols c,

d are instantiated separately, i.e., they could be instantiated differently each time. Each
replacement is tantamount to a sequence of variable eliminations, and thus is sound (preserves
unsatisfiability).

1.
(

x x x w w w a c
a a a b b b b d
z y y z v v z z

)
for some degvar(x) = degvar(w) = 3 and degvar(y) = degvar(v) = 2.
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Elimination sequence: var(y), var(v), var(x), var(w), var(a), var(b), var(z).
2.

(
x x x c
a a a a
d y y d

)
for some degvar(x) = 3, degvar(y) = 2 and d. Eliminate: var(y), var(x), var(a).

3.
(

y y
c c
d d

)
for some degvar(y) = 2 and degvar(c) = degvar(d) = 4. Eliminate: var(y).

Given the number of clauses m and the number of variables n of the formula, the following
lemma helps us narrow down possibilities in terms of how many subsets there are that fit
into each of the forms.

▶ Lemma 12 (⋆). Let F be an unsatisfiable (3, 4)-formula of minimal size. Let x, y, u, w
be literals such that var(y) ̸= var(u) and var(x) ̸= var(w), degvar(y) = degvar(u) = 2 and
degvar(x) = degvar(w) = 3. We have the following facts:

1. If a literal a occurs in F , then a also occurs in F .
2. If

(
a
b

)
∈ F , then var(a) ̸= var(b).

3. F [y] is of the form
(

y y
a a
b b

)
.

4. F [x] is of the form
(

x x x
a a a
b c d

)
.

5. F [y] ∩ F [u] = ∅.
6. F [x] ∩ F [w] = ∅.
7. Either F [x] ∩ F [y] = ∅, or F [x] is of the form

(
x x x
a a a
z y y

)
.

8. If F [x] =
(

x x x
a a a
z y y

)
, then F [a] =

(
x x x b
a a a a
z y y z

)
, and degvar(b) = degvar(z) = 4.

▶ Lemma 13. A smallest (3, 2, 2)-formula has even size and no variables of degree 3.

Proof. It is possible to prove fact 4 from Lemma 12 for a minimal (3, 2, 2)-formula as well
(it does not follow automatically, as a minimal (3, 2, 2)-formula is not necessarily a minimal
(3, 4)-formula, but the proof is based on the same idea). A variable x of degree 3 then
implies there is a literal a of degree 3; a contradiction in a (3, 2, 2)-formula. So, a minimal
(3, 2, 2)-formula contains only variables of type (1, 1) and (2, 2), and has an even number of
literal occurrences. With k = 3, the number of clauses must be even. ◀

One caveat to searching for a formula of a reduced profile using SMS is that the reduction
can reduce degrees of some variables and literals. This means that some of the variables
or literals in the shorter clauses must occur strictly fewer times than the general bound s

(or p, q). To accommodate for this, we count each literal that occurs in a 2-clause twice.
However, this means that the literals in the 2-clauses whose degree was not reduced by the
steps above may exceed their degree cap under this way of counting. To adjust to this, we
sum up the number of exceeding counts and call it the surplus of the formula. Given a specific
reduction, we know the exact value of allowed surplus for the reduced formula, and so we can
include it as a part of the constraints. Here as an example, we write out the formula for the
case of bounded variable degree. The formula for the literal case can be defined similarly. For
all i ∈ [n] ∪ [−n], j ∈ [m], define e′

i,j := ei,j ∧ ¬τj,k. For all i ∈ [m] and t ∈ [m] ∪ [−m], define
(σ′

i,1, σ
′
i,2, . . . , σ

′
i,s+s) := Card(σi,1, σi,2, . . . , σi,s, e

′
i,1, . . . , e

′
i,m, e

′
−i,1, . . . , e

′
−i,m). Suppose S is

the value of surplus. Then we can define

Fsurp :=
∑
i∈[n]

σ′
i,s+1 + · · · + σ′

i,s+s = S.

We call the combination of the number of variables n, the number of clauses m, a
stairway σ and the number of surplus S a profile. For further speed-up, we also hard-code a
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Table 9 Number V of hard-coded variables of degree 3 we chose and time spent determining
the existence of a formula with each profile from reduction for previously unsolved cases with n

variables and m clauses from Table 4. Naturally, in each case V is no greater than the total number
of variables of degree 3 after reduction. In the table on the right, the number of hard-coded variables
of degree 3 is always 0 because by Corollary 13 no variable of degree 3 exists.

n m n′ m′ #2-cl S V time

9 11 1 1 3 0.2s
10 12 2 0 2 2.0s

12 14 8 10 2 1 0 32s
5 7 1 2 0 0.3s
6 8 2 2 0 1.5s
9 11 3 0 0 62s

12 15 0 0 3 6.5s
12 15 11 14 1 0 1 2.1h

9 12 1 1 0 41m

11 13 2 0 3 0.7s
9 11 2 1 2 1.3s

13 15 6 8 1 2 0 1.0s
7 9 2 2 0 9.4s

10 13 3 0 1 1.6h
8 10 3 1 0 33s

n m n′ m′ #2-cl S time

12 16 12 16 0 0 5d
13 16 11 14 2 0 7m
14 16 10 12 4 0 5.2s
14 18 13 17 1 0 21d
15 18 12 15 3 0 25m
16 18 11 13 5 0 4.5s

number of variables of degree 3 in the same way as described in the previous part. Let F
be a smallest unsatisfiable (3, 4)-formula and let x1, x2, . . . , xV be V degree 3 variables in F

whose occurrences we want to fix. By Lemma 12, the formula is of the following form. We
fix the first 3V rows of the matrix thereby determined.(

x1 x1 x1
a1 a1 a1

)(
x2 x2 x2
a2 a2 a2

)
. . .

(
xV xV xV
aV aV aV

)
. . .

▶ Lemma 14. A smallest unsatisfiable (3, 4)-formula (or (3, 2, 2)-formula) with m variables
and n clauses exists only if a formula of one of the profiles in Table 9, left (right) exists.

Proof. We enumerate all possible numbers of variables of degree 2 and 3 in the (unreduced)
formula, and list all possibilities of how the clauses of variables of degree 2 and 3 overlap
according to Lemma 12. We then perform the reduction to each possibility and obtain a list
of profiles that the unsolved cases from Table 9 reduce to. ◀

We tested the existence of each of the profiles from Table 9 with SMS and all of them
returned negative. Combining these experiment results with Lemma 14, we obtain the
following theorem.

▶ Theorem 15. µ(3, 4) > 15 and µ(3, 2, 2) > 18.

5 A smaller unsatisfiable (4, 5)-formula

We now turn our attention to unsatisfiable CNF formulas with clauses of length 4. As
mentioned in the introduction, f(4) = 4, i.e., s = 5 is the smallest value so that an
unsatisfiable (4, s)-formula exists. We found an unsatisfiable (4, s)-formula with 235 clauses,
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improving upon the formulas provided by Stříbrná [26] (449 clauses) and Knuth [20, p. 588]
(257 clauses). Knuth’s formula K4,5 can be described by the ⊕-derivation from the axiom
{□} depicted as a directed acyclic graph in Figure 3.

F1 F2

F3 F4

F5

F6 F7

F8

F9

F10

F11 F12

F13

F14

F15

F16

F17 K4,5

Figure 3 The ⊕-derivation of Knuth’s formula K4,5. Each node has two incoming arcs; the
number of arrowheads denotes the values p, q in ⊕p,q.

This formula has 257 clauses and 256 variables. However, 22 of these variables occur
twice (introduced in F1) and 31 variables occur in three clauses (introduced in F2). Hence
we can identify each of the variables with 2 occurrences with one variable with 3 occurrences,
still keeping the number of occurrences of the new identified variable within the bound 5.
By this method, we can save 22 variables, and indeed, Knuth states his formula to have
256 − 22 = 234 variables. With our modified saturation algorithm we could show that K4,5
is a smallest unsatisfiable (4, 5)-formula in MU(1). Thus, for finding a smaller formula, one
needs to search outside MU(1), and outside the class of formulas that can be obtained from
an MU(1) formula by identifying pairs of low-occurrence variables.

Finding an entire unsatisfiable (4, 5)-formula with SMS does not seem feasible. However,
we can search for an unsatisfiable (≤ 4, 5)-formula F that represents a stairway σ with
fewer clauses than any formula in MU(1) that represents the same stairway σ. Thus way
we can use F as an additional axiom in ⊕-derivations and this way possibly find a smaller
unsatisfiable (4, 5)-formula. We considered all stairways σ ∈ {(3), (2), (3, 2), (2, 2), (2, 2, 2),
(1), (3, 1), (2, 1), (2, 2, 1), (1, 1), (3, 1, 1), (2, 1, 1), (2, 2, 1, 1), (1, 1, 1), (3, 1, 1, 1), (2, 1, 1, 1),
(1, 1, 1, 1)} and run our SMS encoding to find an unsatisfiable formula F with at most 13
clauses and fewer clauses than a smallest MU(1)-formula for σ.

The search resulted in two such formulas within a timeout of five days. One formula
has 7 clauses for the stairway (3, 1, 1, 1) and the other has 8 clauses for the stairway (3, 2);
shortest MU(1) formulas for these stairways have 8 and 9 clauses, respectively. Using the
first of these two formulas as axiom indeed reduces the size of the unsatisfiable (4, 5)-formula
from 257 to 235, since the axiom is used several times; the second formula can be derived by
an ⊕ operation from the new axiom and axiom {□}. Our smaller unsatisfiable (4, 5)-formula
can be obtained by replacing F6 with F ′

6 in the ⊕-derivation from Figure 3, and using F ′
6 as

an additional axiom, where the two formulas are as follows (rows are variables, columns are
clauses, +/− indicates positive/negative occurrence; c.f. the appendix).

F ′
6 =


− +

− − − − +
− − + + −
− − + + −
− + − + −

 F6 =


− − − − +

− − − + +
− − − − +
− − − +
− − +
− + − +
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6 Conclusion

We have identified the smallest unsatisfiable (3, s) and (3, p, q)-formulas for a comprehensive
range of values, and brought an improvement in the known minimal size for an unsatisfiable
(4, 5)-CNF formula. Our work also contributed a uniform proof of the dichotomy for (3, p, q)-
SAT. The core methodology, a fusion of theoretical insights and an innovative application of
the SMS framework with the methods of disjunctive splitting and reductions has not only led
to the discovery of new smallest unsatisfiable formulas but also demonstrated the practical
utility of SMS in exploring the combinatorial landscape of CNF formulas.

Our findings have illuminated several challenging and open avenues for future work. For
instance, extending the scope to identify smallest unsatisfiable formulas for k ≥ 4 remains a
significant challenge. While the methods developed here provide a solid foundation, both
novel techniques and theoretical advances are necessary to tackle the increased complexity of
larger k values. An extension of our methods may lead to determining the exact value of
the threshold f(5), currently only known to be in the interval [5, 7]. Moreover, the interplay
between the size of unsatisfiable formulas and their implications for inapproximability results
in MaxSAT problems [3] invites deeper investigation. Finally, since we found out that, for
all q ≥ 3, the size of the smallest unsatisfiable (3, 1, q)-formula coincide with that of the
smallest unsatisfiable (3, 1, q)-formula in MU(1), we conjecture that this is true for all k ≥ 3
and q ≥ f(k) + 1.
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A Formulas

In the appendix we list formulas in tabular form, where rows represent variables, columns
represent clauses, and the + and − signs indicate positive and negative occurrence, respectively.
Blank cells mean the variable does not occur in the clause.

A.1 Smallest enforcers

In the following, we give examples of smallest (3, s)-enforcers E3,s and smallest (3, p, q)-en-
forcers E3,p,q for all entries in Table 2. Note that E3,4 also acts as a smallest (3, 2, 3)-enforcer.

E3,5 =

− − − −
− − + +
− + − +

 E3,4 =


− − −

− − + +
− − + +
− + − +

 E3,1,5 =


− − − − −
− − +

− − +
− +

− +



E3,1,4 =


− − +

− − − +
− − − −
− +

− − +
− +


E3,1,3 =



+ + +
− − − +

− − − +
− − +

− − +
− +

− +


E3,2,2 =



− −
− − + +

− − + +
− − + +

− + − +
− − + +

− + − +
− − + +



A.2 Smallest MU(1) formulas

In the following, we give ⊕-derivations of the smallest (3, s)-formula M1
3,s and the smallest

(3, p, q)-formula M1
3,p,q restricted to MU(1) for each entry from Table 6. For all the

derivations, we have F1 = {□} ⊕1,1 {□}, F2 = {□} ⊕1,2 F1 and F2′ = F1 ⊕2,2 F1; other Fi

symbols are defined locally in each derivation.

M1
3,4 = F4 ⊕2,2 F4 F3 = {□} ⊕1,3 F2 F4 = F3 ⊕2,2 F3

M1
3,5 = F4 ⊕3,2 F5 F3 = {□} ⊕1,3 F2 F4 = F1 ⊕2,3 F2 F5 = F2 ⊕3,2 F3

M1
3,6 = F2′ ⊕4,2 F3 F3 = F1 ⊕2,4 F2′

M1
3,7 = F2′ ⊕4,3 F3 F3 = F1 ⊕2,3 F2

M1
3,8 = F2′ ⊕4,4 F2′

M1
3,1,3 = F6 ⊕1,3 F4 F3 = {□} ⊕1,3 F2 F4 = F3 ⊕1,3 F2 F5 = {□} ⊕1,3 F4 F6 = F5 ⊕1,3 F4

M1
3,1,4 = F5 ⊕1,3 F3 F3 = F2 ⊕1,3 F2 F4 = {□} ⊕1,4 F3 F5 = F4 ⊕1,3 F3

M1
3,1,5 = F5 ⊕1,5 F3 F3 = F1 ⊕1,3 F2 F4 = {□} ⊕1,5 F3 F5 = F4 ⊕1,5 F3

M1
3,2,3 = F5 ⊕2,3 F4 F3 = {□} ⊕1,3 F2 F4 = F1 ⊕2,3 F2 F5 = F3 ⊕2,3 F2

M1
3,2,4 = F3 ⊕2,4 F2′ F3 = F1 ⊕2,4 F2′

M1
3,3,3 = F3 ⊕3,3 F3 F3 = F1 ⊕2,3 F2

M1
3,3,4 = F3 ⊕3,4 F2′ F3 = F1 ⊕2,3 F2

M1
3,4,4 = F2′ ⊕4,4 F2′

SAT 2024
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A.3 Smallest (3, s) and (3, p, q)-formulas
In the following, we give examples of smallest (3, s)-formulas M3,s and smallest (3, p, q)-for-
mulas M3,p,q for all entries in Table 1. We take M3,4 = M1

3,4 and M3,1,q = M1
3,1,q for all

applicable q.

M3,6 = M3,3,3 =


− − − + + +

− − + − + +
− − + + − +
− + − + − +

 M3,5 = M3,2,3 =



− − − + +
− − − + +

− − + − +
− − − + +
− − + + −

− − + +
− − + +




+ + − −
+ + − −

+ + − −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −
− + + −
+ − + −

+ − + −



M3,2,4 =



− +
− +

− +
− +

− +
− − + − − +

− − + − − +
− + − +

− + − +


M3,2,2 =
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