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Abstract
Call a sequence d = (d1, d2, . . . , dn) of positive integers graphic, planaric, outer-planaric, or forestic
if it is the degree sequence of some arbitrary, planar, outer-planar, or cycle-free graph G, respectively.
The two extreme classes of graphic and forestic sequences were given full characterizations. (The
latter has a particularly simple criterion: d is forestic if and only if its volume,

∑
d ≡

∑
i
di, satisfies∑

d ≤ 2n − 2.) In contrast, the problems of fully characterizing planaric and outer-planaric degree
sequences are still open.

In this paper, we discuss the parameters affecting the realizability of degree sequences by
restricted classes of sparse graph, including planar graphs, outerplanar graphs, and some of their
subclasses (e.g., 2-trees and cactus graphs). A key parameter is the volume of the sequence d, namely,∑

d which is twice the number of edges in the realizing graph. For planar graphs, for example, an
obvious consequence of Euler’s theorem is that an n-element sequence d satisfying

∑
d > 4n − 6

cannot be planaric. Hence,
∑

d ≤ 4n − 6 is a necessary condition for d to be planaric. What about
the opposite direction? Is there an upper bound on

∑
d that guarantees that if d is graphic then it

is also planaric. Does the answer depend on additional parameters? The same questions apply also
to sub-classes of the planar graphs.

A concrete example that is illustrated in the technical part of the paper is the class of outer-
planaric degree sequences. Denoting the number of 1’s in d by ω1, we show that for a graphic sequence
d, if ω1 = 0 then d is outer-planaric when

∑
d ≤ 3n − 3, and if ω1 > 0 then d is outer-planaric when∑

d ≤ 3n − ω1 − 2. Conversely, we show that there are graphic sequences that are not outer-planaric
with ω1 = 0 and

∑
d = 3n − 2, as well as ones with ω1 > 0 and

∑
d = 3n − ω1 − 1.
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1 Introduction

Background. Throughout, we consider a a nonincreasing sequence d = (d1, . . . , dn) of n

nonnegative integers. The sequence d is graphic if it is the degree sequence of some graph G.
The graph realization problem concerns deciding, for a given d, if it is graphic, and if so -
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1:2 On Key Parameters Affecting the Realizability of Degree Sequences

constructing a realizing graph for it. The problem has been studied extensively over the past
60 years, and was given both combinatorial characterizations and construction algorithms, cf.
[9, 13, 14]. In particular, by [9], a nonincreasing sequence d is graphic if and only if

ℓ∑
i=1

di ≤ ℓ(ℓ− 1) +
n∑

i=ℓ+1
min{ℓ, di}, for ℓ = 1, . . . , n. (1)

Beyond its theoretical interest, realization questions are also relevant in the context of
specification-based network design, where the users specify the desired network properties,
as well as in some scientific contexts where it is required to discover the unknown structure
of a network based on measurements on its various parameters.

The question can be asked also in the context of special graph families. In particular,
the realizability of a given sequence d by a planar graph was studied in [23] and some of
the sequences whose status was left undetermined in [23] were later resolved in [10, 11].
In addition, regular planar graphic sequences were classified in [15], and planar bipartite
biregular degree sequences were studied in [1]. Still, the realizability of a given sequence d by
a planar graph was not given a complete solution so far.

The same question can be asked with respect to other restricted classes of graphs. One
extreme example is that of trees and more generally forests. Whereas the characterization (1)
for graphic degree sequences (realizable by general graphs) is somewhat involved, composed
of n different conditions and affected individually by each of the degrees in the sequence, the
characterization for forestic sequences (namely, ones realizable by a forest) is very simple: an
n-element sequence d is forestic if and only if its volume, defined as

∑
d ≡

∑n
i=1 di, satisfies∑

d ≤ 2n− 2 (with equality if and only if the sequence is realizable by a tree). One might
conjecture that restricted graph classes should tend to have simpler characterizations, or
ones that depend on fewer parameters.

The current paper is motivated by the (intuitively clear) fact that the volume parameter
of the sequence d plays a significant role in its realizability by classes of sparse graphs. One
direction is easy: if the class G contains only graphs of M or fewer edges, then clearly,
sequences of volume larger than 2M cannot have a realization from G. Hence

∑
d ≤ 2M is a

necessary condition for realizability by a graph from G. Here, we discuss the converse question:
Can one derive sufficient conditions for realizability by G based on the volume parameter?

Indeed, for various low-volume graph classes G, there are known results, guaranteeing that
if d is graphic and

∑
d is sufficiently small, then d has a realizing graph in G. In particular,

consider the following hierarchy of graph classes and corresponding hierarchy of volume
bounds.

Forests [12]: A sequence d is forestic if and only if
∑

d ≤ 2n− 2 and
∑

d is even.
Uni-cyclic graphs [6]: These are connected graphs with precisely one cycle. A sequence d

is uni-cyclic if and only if
∑

d = 2n and d1 ≤ n− 1.
Bi-cactus graphs [2]: Here, there is a full characterization that involves two additional
parameters, ω1 and ωodd, where ωi is the number of i’s in d and ωodd is the number of
odd degrees in d. In particular, a necessary condition for a sequence d to be realizable by
a bi-cactus is that

∑
d < 8n/3. The sufficient condition is more complex, utilizing also

ω1 and ωodd.
Cactus graphs [20]: Here, again, there is a full characterization that involves ω1 and ωodd.
In particular, a necessary condition for a sequence d to be realizable by a cactus graph is
that

∑
d ≤ 3(n− 1), and the sufficient condition utilizes also ω1 and ωodd.

Outer-planar graphs: This is the main technical contribution of the current paper, to be
described shortly.
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2-trees [7]: This class was given a full characterization, where the volume requirement is∑
d = 4n− 6 but the precise conditions depend also on ω1 and ω2, and involve also some

exceptions.
Planar graphs [4]: Full characterization is still out of reach. The natural necessary
condition based on volume is

∑
d ≤ 6n− 12. The sufficient condition given in [4] depends

also on ω1.

Our main technical contribution concerns sequences that can be realized by outer-planar
graphs. A graph is outer-planar if it can be embedded in the plane such that edges do not
intersect each other and additionally, each vertex lies on the outer face of the embedding, i.e.,
no vertex is fully surrounded inside an internal face (cf. [24]). Call a sequence d planaric
(respectively, outer-planaric) if it is the degree sequence of some planar (resp., outer-planar)
graph G.

Since it is known that every outer-planar graph has at most 2n− 3 edges, it follows that
every sequence d with

∑
d > 4n − 6 cannot be outer-planaric. In fact, as claimed in [3],

this bound can be improved if ω1, the multiplicity of degree 1, is taken into consideration.
Specifically, if the sequence d satisfies

∑
d > 4n − 6 − 2ω1 and d ̸= (n − 1, 1, . . . , 1), then

it is not outer-planaric (the exceptional sequence has n− 1 leaves and volume 2n− 2, and
is realizable by a star graph). It is also easy to show that this bound is tight, in the sense
that there are outerplanar sequences d with

∑
d = 4n− 6− 2ω1, for ω1 values in the range

[1, n− 2].
Focusing on the converse question, we look for a function f(n, ω1) guaranteeing that if d

is graphic and
∑

d ≤ f(n, ω1), then d is always outer-planaric. A straightforward such bound
is f(n, ω1) = 2n − 2, since as mentioned above, if

∑
d ≤ 2n − 2 then d has a realization

by a forest, hence it is trivially outer-planaric. Here, we present a tight answer to the
question, separated into two cases, depending on whether or not the sequence d contains
1’s. Specifically, we show that if ω1 = 0 then the desired property holds when

∑
d ≤ 3n− 3,

and if ω1 > 0 then the desired property holds when
∑

d ≤ 3n− ω1 − 2. Conversely, we show
that the set of graphic sequences that are not outer-planaric includes:
(1) sequences with ω1 = 0 and

∑
d = 3n− 2;

(2) sequences with ω1 > 0 and
∑

d = 3n− ω1 − 1.

Related Work. A number of papers studied the outerplanar degree realization problem in
the past. Forcibly outerplanar graphic sequences, i.e., sequences all of whose realizations
are outerplanar, were given a full characterization in [8]. The degree sequences of maximal
outerplanar graphs with exactly two 2-degree nodes were characterized in [19]. This was also
mentioned in [7] independently. The degree sequences of maximal outerplanar graphs with
at most four vertices of degree 2 were characterized in [17].

The special class 2-trees has also received some attention. A graph G is a 2-tree if
G = K3 or G has a vertex v with degree 2, whose neighbors are adjacent and G[V \ {v}] is
a 2-tree. Sufficient conditions for a sequence d to have a realization by a 2-tree were given
in [18]. The degree sequences of 2-trees were fully characterized in [7]. (The conditions are
surprisingly rather involved, and include a number of specific exceptions.) Note that 2-trees
have

∑
d = 4n− 6. This implies, using Theorem 1 of [7], that if a sequence d satisfies some

specific conditions, then d has a realizing 2-tree. Rengarajan and Veni Madhavan [22] have
shown that every 2-tree has a 2-page book embedding. Unfortunately, the class of 2-trees is
not hereditary (meaning that a subgraph of a 2-tree is not necessarily a 2-tree), so the result
of [7] does not extend to non-maximal degree sequences.

MFCS 2024
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The planar degree realization problem also has a long history. Regular planar graphic
sequences and planar bipartite biregular degree sequences were given a classification in [15]
and [1] respectively. Schmeichel and Hakimi [23] identified the graphic sequences with
d1 − dn = 1 that are planaric, and did the same for d1 − dn = 2 with a small number of
unresolved exceptions, some of which were later resolved in [10, 11]. Additional studies on
special cases of the planaric degree realization problem are discussed in [21].

In [4] it is shown that for every sequence d with
∑

d ≤ 4n− 4− 2ω1, if d is graphic then
it is also planaric. Conversely, there are graphic sequences with

∑
d = 4n − 2ω1 that are

non-planaric. For the case ω1 = 0, it is shown therein that d is planaric when
∑

d ≤ 4n− 4,
and conversely, there is a graphic sequence with

∑
d = 4n− 2 that is non-planaric.

A cactus graph is a connected graph in which any edge may be a member of at most
one cycle, which means that different cycles do not share edges, but may share one vertex.
Rao [20] provided a full characterization for degree sequences realizable by cactus graphs,
and also gave a characterization for degree sequences realizable by cactus graphs whose cycles
are triangles and for degree sequences realizable by connected graphs whose blocks are cycles
of k vertices. Beineke and Schmeichel [5] characterized cacti degree sequences with up to
four cycles and also provided a sufficient condition for cactus realization. A characterization
for degree sequences realizable by bipartite cactus graphs was shown in [2].

2 Preliminaries and Known Results

Some Terminology. Two necessary (but not sufficient) conditions for a non-increasing
sequence d = (d1, . . . , dn) to be graphic are that

∑
d is even and d1 ≤ n − 1. We refer to

sequences that satisfy these two conditions as standard sequences. Hereafter, we consider
only standard sequences.

For a nonincreasing sequence d of n nonnegative integers, let pos(d) denote the prefix
consisting of the positive integers of d. We use the shorthand ak to denote a subsequence of
k consecutive a’s. Denote the volume of sequence d = (d1, . . . , dn) by

∑
d ≡

∑n
i=1 di.

Trees and Forests. Consider a sequence d = (d1, . . . , dn) of positive integers such that
∑

d

is an even number. It is known that if
∑

d ≤ 2n− 2, then d is graphic and moreover, G(d)
contains an acyclic graph (forest). In this case, we say that d is forestic. If

∑
d = 2n− 2,

then d can be realized by a tree and we say that d is treeic. We refer to a vertex of degree
one as a leaf.

We make use of a special type of realizations for treeic and forestic sequences, known as
caterpillar graphs. In a caterpillar graph G = (V, E), all non-leaves are arranged on a path
which we call the spine of G, i.e., the spine S = (x1, . . . , xs) ⊂ V is an ordered sequence
where (xi, xi+1) ∈ E, for i = 1, . . . , s− 1 (see Figure 1 for an example).

x1 x2 x3 x4 x5

Figure 1 Caterpillar graph with degree sequence (5, 43, 2, 111). Leaves are depicted in yellow.

The following (possibly folklore) observation appears in [3]. We provide a proof, since its
method will be instrumental in what follows.
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▶ Observation 1 ([3]). Any forestic sequence d can be realized by a forest composed of the
union of a caterpillar graph and a matching.

Proof. First consider a treeic sequence d (such that
∑

d = 2n− 2). Assume there are n− s

vertices of degree 1 in d. Denote by d∗ the prefix of d that contains all the degrees di > 1. It
follows that

∑
d∗ + (n−s) =

∑
d = 2n−2, or equivalently

∑
d∗−2s + 2 = n−s. To get the

caterpillar realization of d, first arrange s vertices corresponding to the degrees of d∗ in a path.
The path edges contribute 2s− 2 to the volume

∑
d∗. The missing

∑
d∗ − 2s + 2 = n− s

degrees are satisfied by attaching the n− s leaves to the path, which now forms the spine of
the caterpillar realization. Note that the order of the vertices on the spine can be arbitrary.

Now assume that d is forestic but not treeic, i.e.,
∑

d < 2n− 2. In this case, remove pairs
of 1 degrees from d until the volume of the reaming sequence d′ with n′ vertices is 2(n′ − 2).
This must happen because each pair removal reduces the volume by 2 while 2n− 2 decreases
by 4. Let G′ be the caterpilar realization of d′ as implied by the first part of the proof. To
get the realization of d, add (n− n′)/2 edges to G′ to satisfy the n− n′ removed 1 degrees
by a matching. ◀

Necessary Conditions for Outer-Planaric Sequences.

▶ Lemma 2 ([25]). If d = (d1, . . . , dn) is an outer-planaric degree sequence where n ≥ 2,
then

∑
d ≤ 4n− 6.

It is known that every outer-planar graph has at least two vertices of degree two or less,
and at least three vertices of degree three or less, see for example Sysło [24]. This implies
the following necessary condition for outer-planaric sequences.

▶ Lemma 3 ([24]). If d = (d1, . . . , dn) is an outer-planaric degree sequence, then
(i) dn−1 ≤ 2, and
(ii) dn−2 ≤ 3.

The Havel-Hakimi Algorithm and Outer-planaric Sequences. The lay-off techniques
developed by Havel and Hakimi, and subsequently extended by Kleitmann and Wang,
are among the fundamental tools for constructing realizations for degree sequences. One
might hope to be able to use such techniques for finding (outer-)planar realizations as well.
Unfortunately, it turns out that the lay-off operation does not, in general, preserve planarity
or outer-planarity (only graphicity), hence it cannot be applied directly to generate a realizing
outer-planar graph for a given outer-planaric sequence.

Nevertheless, we do make use of the lay-off technique, and specifically the minimum
pivot version of the Havel-Hakimi algorithm [13, 14]. It is used for realizing a nonincreasing
degree sequence d = (d1, d2, · · · , dn) associated with the vertices v1, v2, . . . , vn, and is based
on repeatedly performing the following operation, hereafter referred to as the MP-step, until
all the vertices reach their required degree. Suppose the current sequence of residual nonzero
degrees is d′ = (d′

1 ≥ d′
2 ≥ · · · ≥ d′

h) and the corresponding vertices are vi1 , vi2 , . . . , vih
.

Pick the vertex v = vih
with degree d′

h as pivot.
Set v’s neighbors to be the d′

h vertices vi1 , vi2 , . . . , vid′
h

.
Delete the pivot from d′, reduce by 1 the residual degrees of its selected neighbors, and
delete from d every vertex whose residual degree became zero.

The key observation is that, in case the MP-step transforms the residual degree sequence d

into d′, the following holds: d is graphic if and only if d′ is graphic.

MFCS 2024
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3 Outer-Planaric Degree Sequences

3.1 Necessary conditions
We first recall that Lemma 2 can be improved if ω1, the multiplicity of degree 1, is taken
into consideration. We add the proof for completeness.

▶ Lemma 4 ([3]). If d is an outer-planaric sequence such that
∑

d > 2n− 2, then
∑

d ≤
4n− 6− 2ω1.

Proof. Let d be as in the lemma and let G = (V, E) be an outerplanar graph realizing d.
Construct a graph G′ by deleting from G all the ω1 vertices of degree 1 together with their
incident edges, and subsequently deleting the vertices whose degree was reduced to zero.
Notice that the graph G′ may contain vertices whose degree became 1. Observe that G′ is
outerplanar, and let d′ = deg(G′). Note that n′ ≤ n− ω1, where n′ the number of vertices in
G′. We have that

∑
d′ ≤ 4n′ − 6 due to Lemma 2. Hence,∑

d =
∑

d′ + 2ω1 ≤ 4(n− ω1)− 6 + 2ω1 = 4n− 6− 2ω1 ,

where the first equality comes from the fact that ω1 vertices of degree 1 together with their
incident edges are deleted. ◀

We remark that Lemma 4 is false if we drop the assumption 2n− 2 <
∑

d. To see this,
consider the sequence d = (a, 1a) which is (uniquely) realized by a star graph and therefore
outer-planaric. The construction of G′ in the proof above, applied to d, yields an isolated
vertex. Note that Lemma 2 cannot be applied in this case. Indeed, we have that∑

d = 2a > 2a− 2 = 4(a + 1)− 6− 2a = 4n− 6− 2ω1.

Observe that sequences of the form d = (a, 1a+t) are the only sequences where G′ has order
one or less. If t ≥ 2 (note that t must be even), the bound can be shown directly with the
above calculation. We state the following corollary.

▶ Corollary 5. If d = (d1, . . . , dn) is an outer-planaric sequence such that d ̸= (a, 1a), then∑
d ≤ 4n− 6− 2ω1.

The next corollary gives us a useful necessary condition for outer-planaric sequences.

▶ Corollary 6 ([16]). If d = (d1, . . . , dn) is an outer-planaric sequences, then d1 + d2 ≤ n + 2.

3.2 Sufficient Conditions
In this section, we show sufficient condition for outer-planaric sequences.

The collection of low-volume (standard) sequences is defined as

LV = LV1 ∪ LV2 ,

where

LV1 =
{

d |
∑

d ≤ 3n− ω1 − 2, dn = 1, d is graphic
}

LV2 =
{

d |
∑

d ≤ 3n− 3, dn = 2
}

Notice that by assuming that the sequences are standard, we implicitly require that
∑

d is
even and that d1 ≤ n− 1.
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We now show that all sequences in LV are outer-planaric. For the proof we analyze a
slightly large collection than LV2, namely,

LV ′
2 =

{
d |

∑
d ≤ 3n− 2, dn = 2

}
,

Notice that LV2 ⊂ LV ′
2 . We prove that all the sequences in LV ′

2 except for a small set EX are
outer-planaric. As LV2 ⊂ LV ′

2 \EX, we get that all the sequences in LV2 are outer-planaric.
Moreover, we also use LV ′

2 to prove that all the sequences in LV1 are outer-planaric.
In order to analyze the collection LV ′

2 , we break it into four sub-collections A, B, C, D,
and handle each of them separately. Specifically, we define the following sets.

A =
{

(3s, 2n−s) | n ≥ 3, 0 ≤ s ≤ n− 2, and s is even
}

,

B =
{

(d1, 2n−1) | d1 ≥ 4 and d1 is even
}

,

CM
even =

{
(d1, d2, 2n−2) | d1, d2 ≥ 4, d1 + d2 = M and d1, d2 are even

}
,

CM
odd =

{
(d1, d2, 2n−2) | d1 ≥ 5, d2 ≥ 3, d1 + d2 = M and d1, d2 are odd

}
,

Ceven =
⋃

M≤n+2
CM

even,

Codd =
⋃

M≤n+2
CM

odd,

C = Ceven ∪ Codd,

D =
{

d | d1 ≥ 4, d3 ≥ 3, dn = 2,
∑

d ≤ 3n− 2
}

.

Note that all sequences in A, B, C, D are standard.

▶ Observation 7. LV ′
2 = A ∪B ∪ C ∪D.

Proof. One can check directly that A, B, C, D ⊆ LV ′
2 , and hence A ∪ B ∪ C ∪ D ⊆ LV ′

2 .
For the converse, consider some d ∈ LV ′

2 . If d ∈ LV ′
2 \D, then d3 = 2 or d1 ≤ 3, so d has

the form (d1, d2, 2n−2) or (3s, 2n−s). First assume that d3 = 2 and consider d of the form
(d1, d2, 2n−2). If d2 = 2, then d ∈ B. If d1 = d2 = 3, then d ∈ A. Otherwise d1 ≥ 4 and
d2 ≥ 3, we have d1 + d2 ≤ n + 2 since

∑
d ≤ 3n− 2. In this case, d ∈ C. Next consider d of

the form (3s, 2n−s). Since
∑

d ≤ 3n− 2, s ≤ n− 2. In this case, d ∈ A. Combining these
cases, we have LV ′

2 ⊆ A ∪B ∪ C ∪D. The observation follows. ◀

▶ Lemma 8. Every sequence d ∈ A is outer-planaric.

Proof. Let d be as in the lemma. By the definition of A, d = (3s, 2n−s) where s is even and
0 ≤ s ≤ n− 2. We construct an outer-planar realization G of d as follows. First, arrange n

vertices in a cycle, i.e., let G = Cn. If s = 0, then G is a valid realization of d (noting that
n ≥ 3 so G is a simple graph). Now suppose s > 0. Select one vertex y on the cycle and
denote its clockwise (respectively, counter-clockwise) neighbor of distance x by ux (resp., vx),
for x = 1, . . . , s/2. Observe that the vertices us/2 and vs/2 cannot be connected by an edge
in Cn, since s ≤ n− 2. To complete our construction, we add to E(G) a matching consisting
of the edges (vx, ux), for x = 1, . . . , s/2 Since these new edges can be placed inside the cycle,
G has an outer-planar embedding as shown in Figure 2. Verifying that deg(G) = d, the claim
follows. ◀

▶ Lemma 9. Every sequence d ∈ B is outer-planaric.

MFCS 2024
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u1

v1

u2

v2

u3

v3

us/2

vs/2

y

Figure 2 Schematic outer-planar realization of a sequence d = (3s, 2n−s) where s is even and
0 ≤ s ≤ n − 2. The yellow vertices have degree two and the gray vertices have degree three. Cycle
edges are drawn in black and matching edges are drawn in green.

Proof. Since d1 is even, d can be realized by the graph G = (V, E) where V = {v1, . . . , vn}
and the edge set E is constructed by the following steps:
(1) E1 ← {(v1, vi) | i = 2, . . . , d1 + 1} connects v1 to d1 other vertices.
(2) E2 ← {(v2j , v2j+1) | j = 2, . . . , d1/2} is a perfect matching among the neighbors of v1.
(3) Let W ← V \ {v1, . . . , vd1+1} be the set of remaining vertices. If W = ∅, then set

E3 ← {(v2, v3)}. Otherwise (i.e., if W = {vj | j = d1 + 2, . . . , n} where d1 + 2 ≤ n),
E3 ← {(v2, vd1+2), (vd1+2, vd1+3), . . . , (vn, v3)}.

(4) Set E ← E1 ∪ E2 ∪ E3.

Note that Steps (1) and (3) can be performed based on d since d1 ≤ n − 1. More
specifically, Step (1) yields well-defined edges, i.e., E1 ⊆ V × V , and in Step (3), W is
well-defined. Step (2) can be performed based on d i.e., E2 ⊆ V × V , since d1 is even.
Figure 3 illustrates these steps. Note that every vertex is located on the outer face, so G is
outerplanar. As G realizes the degree sequence d, it follows that d is outer-planaric. ◀

v1

v4 v5

v3

v2

vd1+2

vn

vd1+1 vd1

. . .

. .
.

Figure 3 An illustration of the graph G constructed in the proof of Lemma 9 where the set W

(vertices in yellow) is not empty.

Define EX = Cn+2
even = {(d1, d2, 2n−2) | d1, d2 ≥ 4, d1 + d2 = n + 2 and d1, d2 are even}.

▶ Lemma 10. Let d ∈ C \ EX. Then d is outer-planaric.

Proof. Suppose d ∈ C \ EX. Since
∑

d ≤ 3n− 2, necessarily d1 + d2 ≤ n + 2.
First suppose d ∈ Codd. Construct a realizing graph G on the vertex set V = {v1, . . . , vn}

by taking the following steps. Let v1 and v2 be the vertices with degree d1 and d2 respectively.
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(1) E1 = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4)}. These edges connect v1 to v2 and also
connect v1 and v2 to two common neighbors, v3 and v4.

(2) E2 ← {(v1, vi) | i = 5, . . . , d1 + 1} connects d1 − 3 extra neighbors from the remaining
vertices to v1, and E3 ← {(v5+2j , v6+2j) | j = 0, . . . , d1−5

2 } sets a perfect matching among
the vertices {vi | i = 5, . . . , d1 + 1}.

(3) If d2 = 3, then E4, E5 ← ∅.
Otherwise, E4 ← {(v2, vi) | i = d1 + 2, . . . , d1 + d2 − 2} connects d2 − 3 extra neighbors
from the remaining vertices to v2, and E5 ← {(vd1+2+2j , vd1+3+2j) | j = 0, . . . , d2−5

2 } is
a perfect matching among the vertices {vi | i = d1 + 2, . . . , d1 + d2 − 2}.

(4) Let W ← V \ {v1, . . . , vd1+d2−2} be the set of remaining vertices. If W = ∅, then set
E6 ← {(v1, v3)}
Otherwise, plant the vertices of W on the edge (v1, v3), or more formally, replace
(v1, v3) with the edges in the path (v1, vd1+d2−1, . . . , vn, v3), namely with the edge set
E6 ← {(v1, vd1+d2−1), (vd1+d2−1, vd1+d2), . . . , (vn, v3)}

(5) Set E ← (E1 \ {(v1, v3)} ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6.

Note that Step (1) can be performed based on d, in the sense that no vertex is assigned
more edges than its degree, since d1, d2 ≥ 3 and d3 = d4 = 2. Steps (2) and (3) use d1 +d2−6
distinct vertices (from v5 to vd1+d2−2) to serve as the remaining neighbors of v1 and v2.
Since d1 + d2 ≤ n + 2, Steps (2) and (3) can be performed based on d, i.e., d1 + d2 − 2 ≤ n

so E2 ∪ E3 ⊆ V × V . Besides, the matchings in Steps (2) and (3) can be performed based
on d, i.e., E4 ⊆ V × V , since d1 and d2 are both odd. Figure 4 illustrates the steps of the
construction. One can check that constructed graph G realizes d and is outer-planaric, since
all vertices are located on the outer face.

v2v1

vd1+2 vd1+3

vℓ−2

vℓ−3

v5v6

vd1 vd1+1

v3

v4

vℓ−1

vn
. .

. . . .

. .
.. . .

Figure 4 An illustration of the graph G constructed in the proof of Lemma 10 for the case where
d ∈ Codd. Let ℓ = d1 + d2. The graph for the case where d ∈ Ceven is obtained by removing the red
dashed edges.

Now suppose d ∈ Ceven \ EX. Hence, d1 + d2 ≤ n + 1. Let d′ = (d1 + 1, d2 + 1, 2n−1).
Notice that n′ = n + 1 and that d′

1 + d′
2 = d1 + d2 + 2 ≤ n + 1 + 2 = n′ + 2. Hence, d′ ∈ Codd.

Construct a realizing outerplanar graph G′ for the sequence d′. Let G be the graph we get
by removing v4 and its two edges the edges (v1, v4) and (v2, v4) from G′. (The dashed red
edges in Figure 4.) Observe that G realizes d and it is outer-planar. ◀

▶ Lemma 11. Let d ∈ EX. Then d is not outer-planaric.

MFCS 2024
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Proof. Recall that d = (d1, d2, 2n−2), where 4 ≤ d1 ≤ n− 1, d2 ≥ 3, d1 + d2 = n + 2, and
both d1 and d2 are even. Assume towards contradiction that d is outer-planaric, and let
G = (V, E) be a realizing outerplanar graph for it. Let v1 and v2 be the vertices of degree d1
and d2 in G, respectively.

Let k ≤ d2 be the number of common neighbors of v1 and v2. If v1 and v2 are not
adjacent, then

n− 2 = (d1 − k) + (d2 − k) + k = d1 + d2 − k = n + 2− k .

Hence, k = 4. In this case, G contains a subgraph homeomorphic to K2,3, and therefore it is
not outer-planar [24], leading to a contradiction.

Otherwise, if v1 and v2 are adjacent, then

n− 2 = (d1 − k − 1) + (d2 − k − 1) + k = d1 + d2 − 2− k = n− k .

Hence, k = 2. Consequently, denoting the two common neighbors of v1 and v2 in G by v3
and v4, let N ′[v1] (respectively, N ′[v2]) be the set of neighbours of v1 (resp., v2) except for
v3, v4 and v2 (resp., v1). See Figure 5. |N ′[v1]| and |N ′[v2]| are odd, since d1, d2 are even.
Since the vertices in N ′[v1] ∪N ′[v2] all have degree 2, there must exist (at least) one vertex
in N ′[v1] and one vertex in N ′[v2] that are connected. (In Figure 5, these are marked as v5
and v6.) It follows that there are three paths from v1 to v2, the first contains v3, the second
contains v4, and the third contains v5 and v6. In this situation, in any planar embedding of
G, at least one of the common neighbors v3 or v4 or the pair v5 and v6 is not in the outer
face. (In Figure 5, the vertex v3 is blocked.) This leads to a contradiction. ◀

v2v1

v4

v3

v5 v6

. .
. . . .

. .
.. . .

N ′[v1] N ′[v2]

Figure 5 The non outer-planar graph G constructed in the proof of Lemma 11. N ′[v1] and N ′[v2]
are, respectively, the vertex sets to the left of v1 and to the right of v2.

To prove the next lemma, we construct an outer-planar graph by starting from a caterpillar
graph and adding a matching, increasing the degree of each vertex by one. The next
observation describes a part of the construction used repetitively.

▶ Observation 12. Let G = (V, E) be a caterpillar graph with an outer-planar embedding as
depicted in Figure 1. If L ⊆ V is an even set of leaf vertices that appear consecutively in the
embedding, then one can add a matching between the vertices of L such that the resulting
graph has an outer-planar embedding.

Proof. Let L = {ℓ1, . . . , ℓh} be the leaf vertices in consecutive order, for even h. Note
that vertices in L are pairwise non-adjacent. We add the matching edges (ℓ2i−1, ℓ2i), for
i = 1, . . . , h/2, i.e., we add every second edge of the path (ℓ1, . . . , ℓh). ◀
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The next lemma proves the most general case where dn ≥ 2.

▶ Lemma 13. Every sequence d ∈ D is outer-planaric.

Proof. Consider d ∈ D. Denote k =
∑

d− (2n− 2). Observe that k is even and that k ≥ 2,
since

∑
d ≥ 2n. Also, k ≤ 3n− 2− (2n− 2) = n.

Our proof consists of two major steps:
(1) Create a treeic sequence d′ from d and find an (outer-planar) caterpillar realization G of

d′ as described in Observation 1.
(2) Modify G by adding edges such that deg(G) = d and G remains outer-planar.

For step (1), construct the sequence d′ = (d′
1, d′

2, . . . , d′
n) as follows:

d′
i =

{
di, i ≤ n− k,

di − 1, i > n− k.

d′ is well defined since k ≤ n, and also note that
∑

d′ =
∑

d− k = 2n− 2.
We first assume that ω′

2 ≤ 2.
Relying on Observation 1, we find a caterpillar realization G = (V, E) of d′. Let

S = {v1, . . . , vs} ⊆ V be the vertices on the spine of G. Note that |S| ≥ 3 since d3 ≥ 3,
implying that (at least) the three highest-degree vertices are non-leaves. Let ℓ denote the
number of leaves in the caterpillar. Notice that ℓ + s = n. Also, observe that k ≥ ℓ. Out goal
is to increase the degree of all leaves and of k− ℓ vertices in the spine by 1 while maintaining
outer-planarity.

As a preliminary step we rearrange the spine such that vertices high degree vertices are
closer to the center of the spine. Specifically, if s is even, the order is vs−1, . . . , v3, v1, v2, . . . , vs,
and if s is odd, the order is vs−1, . . . , v2, v1, v3, . . . , vs. Notice that only vs and vs−1 may be
of degree 2. We refer to such a construction as an ordered caterpillar.

For step (2), we consider two cases:
Case A: k < n.

Case A.1: ℓ and k − ℓ are even.
We add a perfect matching of consecutive leaves as described in Observation 12. We
also add the (matching) edges (vi, vi−1), for i = s, s− 2, . . . , s− (k − ℓ) + 2 between
the vertices on the spine. The latter is feasible since k < n (or k − ℓ < s).

Figure 6 Illustration of the construction in Case A.1.

Case A.2: If ℓ and k − ℓ are odd, we add one leaf of vs−1 to the spine. Since ℓ − 1 is
even, we can add edges as in case A.1.

Case B: k = n.
Observe that n must be even, since k is even. Also, in this case, s = k − ℓ. Let m be the
number of leaves connected to spine vertices to the left of v1 up to v1 (including v1).
Case B.1: s and ℓ are odd.

MFCS 2024
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Figure 7 Illustration of the construction in Case A.2.

Case B.1(i): m is even.
Add a perfect matching of the consecutive leaves connected to vs−1, vs−3, . . . , v1 as
described in Observation 12, add an edge connecting v1 to the leftmost leaf of the
vertex to its right (v2 or v3), and then add perfect matching of the rest of the leaves.
In addition, add the (matching) edges (vi, vi−1), for i = s, s− 2, . . . , 3 between the
vertices on the spine.

m

Figure 8 Illustration of the construction in Case B.1(i).

Case B.1(ii): m is odd.
Add the leftmost leaf of vs−1 and the rightmost leaf of vs to the spine. Now use the
same construction as in the case B.1(i).

m− 1

Figure 9 Illustration of the construction in Case B.1(ii).

Case B.2: s and ℓ are even.
Case B.2(i): m is odd.

Add the leftmost leaf of vs−1 to the spine, and use the construction of case B.1(i).
Case B.2(ii): m is even.

Add the edges (vi, vi−1), for i = s− 1, s− 3, . . . , 3 between the vertices on the spine.
Also, add the edge (vs−1, vs). In addition, replace the edge (vs−1, u) with the edge
(v1, u), where u be the leftmost leaf of vs−1. Add a perfect matching of consecutive
leaves as described in Observation 12.

It remains to consider the case where ω′
2 > 2. There are two options regarding the 2’s in

d′. Either all of them appear in d, or all of them originate from 3’s in d.
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m− 1

Figure 10 Illustration of the construction in Case B.2(i).

m− 1

Figure 11 Illustration of the construction in Case B.2(ii).

In the first case, we obtain a sequence d′′ by removing all 2’s from d′, and construct an
outer-planar embedding for the first n′′ entries by using the construction for case where
ω′′

2 ≤ 2. Consider any edge (x, y) connecting two former leaves in the above construction.
We replace the edge with a path of length ω′

2 + 1.
In the second case, we remove t = 2 ⌊ω′

2/2⌋ 2’s from d′, and construct an outer-planar
embedding for the first n′′ entries by using the construction for case where ω′′

2 ≤ 2.
Consider any edge (x, y) connecting two former leaves in the above construction. We
replace (x, y) with a path (x = u0, u1, . . . , ut, ut+1 = y). Then, we add the edges
{(ui, ut+1−i) : i = 0, 1, . . . , t/2− 1}, but not in the outer-face. ◀

u0 u1 u2 u3 u4 u5

vi

Figure 12 Illustration for the case where ω′
2 > 2, where t = 4.

Combining Lemmas 8, 9, 10, 11, 13 and Observation 7, we have the following corollary.

▶ Corollary 14. Let d ∈ LV ′
2 .

1. The sequence d is outer-planaric except for d ∈ EX.
2. If d ∈ LV2, then d is outer-planaric.

Finally, we deal with sequences where dn = 1.

▶ Lemma 15. Every sequence d ∈ LV1 is outer-planaric.

MFCS 2024
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Proof. Consider d ∈ LV1. If
∑

d ≤ 2n − 2, then the claim follows from Observation 1.
So now assume that

∑
d > 2n − 2. Applying the MP-step of the HH method on d (see

Section 2) with pivot 1 connecting to the largest degree ω1 times yields a new sequence d′,
with n′ := |pos(d′)| = n− ω1 nonzero degrees.

We claim that all the degrees in pos(d′) are at least 2. If d′
n′ = 1, then the other degrees

in pos(d′) have value 1 or 2 by the MP-step of the HH method. Therefore,
∑

pos(d′) ≤
2(n′− 1) + 1 = 2n− 2ω1− 1, and consequently

∑
d =

∑
d′ + 2ω1 ≤ 2n− 1, contradicting the

assumption on
∑

d. Furthermore, by the MP-step of the HH method, pos(d′) is graphic, so
d′

1 ≤ n′ − 1. Also,
∑

pos(d′) =
∑

d− 2ω1 ≤ 3(n− ω1)− 2 = 3n′ − 2. Hence, pos(d′) ∈ LV ′
2 .

This and Corollary 14 imply that pos(d′) is outer-planaric except for pos(d′) ∈ EX.
Notice that if pos(d′) can be realized by an outer-planar graph G′, then d is also outer-

planaric, since a realizing graph G can be obtained from G′ by inserting di − d′
i new leaves

to each vertex of degree d′
i. This completes the proof of the lemma for all cases except

when pos(d′) ∈ EX, in which case it may be that d is outer-planaric yet pos(d′) is not. For
example, the sequence d = (8, 4, 26, 12) is outer-planaric, as illustrated in Figure 13, but for
the sub-sequence d′ obtained by applying the MP-step of the HH method on d, the positive
prefix pos(d′) = (6, 4, 26) is not outer-planaric, by Lemma 11. So it remains to show that d

is outer-planaric even if pos(d′) ∈ EX.

Figure 13 Outer-planar realization of the sequence d = (8, 4, 26, 12).

A sequence pos(d′) ∈ EX has the form pos(d′) = (d′
1, d′

2, 2n′−2) where d′
1 + d′

2 = n′ + 2
and d′

1 and d′
2 are even. Since d′

2 ≥ 3, we have d′
2 ≥ 4.

Convert d′ to d′′ = (d′
1 + 1, d′

2 − 1, 2n′−2). Note that d′′ is non-increasing since d′
2 ≥ 4.

Then d′′
1 + d′′

2 = d′
1 + d′

2 = n′ + 2. As d′′
2 ≥ 3, we have d′′

1 ≤ n′ − 1 = n′′ − 1. Also,∑
d′′ =

∑
pos(d′) ≤ 3n′ − 2 = 3n′′ − 2, so d′′ ∈ LV ′

2 . One can check that d′′ /∈ EX, since
d′′

1 , d′′
2 are odd. By Corollary 14 (1), d′′ is outer-planaric. Returning to our example of the

outer-planaric d = (8, 4, 26, 12) where pos(d′) = (6, 4, 26) is not outer-planaric, the conversion
yields d′′ = (7, 3, 26), which is outer-planaric by the construction in Lemma 10.

By the construction of d′ and d′′, di ≥ d′
i for 1 ≤ i ≤ n′ and d′

i ≥ d′′
i for 2 ≤ i ≤ n′. As

d1 > d′
1, we have di ≥ d′′

i for any 1 ≤ i ≤ n′. Let G′′ be an outer-planaric realizing graph for
d′′. Insert di − d′′

i leaves to the vertex with degree d′′
i in G′′ for any 1 ≤ i ≤ n′. This yields

an outer-planar graph G with degree sequence d. The lemma follows. ◀

In summary, combining Corollary 14 and Lemma 15, we get the following.

▶ Theorem 16. Consider a nonincreasing n-integer graphic sequence d. If
(1) ω1 = 0 and

∑
d ≤ 3n− 3, or

(2) ω1 > 0 and
∑

d ≤ 3n− ω1 − 2,
then d is outer-planaric.

Finally, we complement the positive results of Corollary 14 and Lemma 15 by tight
negative examples. Let us first consider the case of ω1 = 0. A tight example is any sequence
in EX, which is not outer-planaric by Lemma 11. The volume of any sequence d ∈ EX is
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∑
d = 3n− 2. Next consider the case of ω1 > 0. A tight example is d′ = (3n−1, 1) for even

n ≥ 6, which is planaric (See Figure 14) but not outer-planaric by Lemma 3. This sequence
satisfies that

∑
d′ = 3n− ω1 − 1.

Figure 14 A non-outer-planar realization of the sequence d = (3n−1, 1).
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