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Abstract
Implicit computational complexity is an active area of theoretical computer science, which aims
at providing machine-independent characterizations of relevant complexity classes. One of the
seminal works in this field appeared in 1965, when Cobham introduced a function algebra closed
under bounded recursion on notation to capture FP. Later on, several complexity classes have
been characterized using limited recursion schemas. In this context, a new approach was recently
introduced, showing that ordinary differential equations (ODEs) offer a natural tool for algorithmic
design and providing a characterization of FP by an ODE-schema. The overall goal of the present
work is precisely that of generalizing this approach to parallel computation, obtaining an original
ODE-characterization for the small circuit classes FAC0 and FTC0.
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1 Introduction

As computability theory investigates the limits of what is algorithmically computable,
complexity theory classifies functions based on the amount of resources, typically time and
space, required by a machine to compute them. Taking a different point of view, implicit
computational complexity (ICC) aims at providing machine-independent characterizations,
which in turn have offered remarkable insights on the corresponding classes and led to relevant
meta-theorems in various domains, such as database theory and constraint satisfaction.

One of the major approaches to computability and (implicit) complexity theory is
constituted by the study of recursion. A foundational work in this area is due to Cobham [15],
who gave a characterization of the class of poly-time computable functions FP, relying
on a restricted recursion mechanism, called bounded recursion on notation (BRN). This
groundbreaking result has inspired several characterizations based on limited recursion
schemas for various other classes, but also alternative implicit ways to capture FP, for
instance, via safe recursion [5] and ramification [25, 26].

© Melissa Antonelli, Arnaud Durand, and Juha Kontinen;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melissa.antonelli@helsinki.fi
https://orcid.org/0009-0006-9072-4847
mailto:durand@math.univ-paris-diderot.fr
https://orcid.org/0000-0003-2976-7259
mailto:juha.kontinen@helsinki.fi
https://orcid.org/0000-0003-0115-5154
https://doi.org/10.4230/LIPIcs.MFCS.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 A New Characterization of FAC0 via Discrete ODEs

Cobham’s work [15], together with other early results in recursion theory [20, 6, 29, 27],
have even paved the way to recursion-theoretic characterizations for small circuit classes [11,
12, 16, 1, 14, 9]. Specifically, in [11, 12], an algebra based on the so-called concatenation
recursion on notation schema (CRN) was introduced and shown able to capture functions
computable in (Dlogtime-uniform) AC0 (i.e. computable by families of polynomial size
and constant depth circuits) [11, 12]. This result was extended to ACi and NCi due to
the notions of k-bounded and weak bounded recursion on notation [12]. A few years later, a
similar function algebra to capture TC0 was introduced [14]. Other characterizations for
subclasses of NC were independently presented in [16, 1, 9].

Related, but alternative, approaches to capture small circuit classes have also been
provided in the framework of model- and proof-theory. In particular, it is well-known that
there is an equivalence between AC0 and first-order logic, which naturally generalizes to
extensions of the latter and larger circuit classes [23, 4, 22, 21, 28]. In [16], both a function
algebra, based on so-called upward recursion tree, and a logical system to capture NC1 are
presented. On the proof-theoretical side, in [1], together with the corresponding algebra,
Allen defined a proof system à la Buss to capture NC. Another bounded theory to capture
NC is introduced in [13] and then extended to several small circuit classes [14]. Theories
for TC0 have been developed in [24] and, in the setting of second-order theories, in [18].
Alternative, proof-theoretical characterizations for NC1 were presented in [2], and, in the
context of two-sorted theories, in [17].

A different descriptive approach to complexity, based on discrete ordinary differential
equations (ODEs), was recently introduced in [10]. Informally speaking, its objective is to
characterize functions computable in a given complexity class as solutions of a corresponding
type of ODE. In this vein, in [10] a purely syntactic characterization of FP was given by
linear systems of equations deriving along a logarithmically growing function. Intuitively, the
latter condition controls the number of steps, while linearity controls the growth of objects
generated during the computation. Recently, this approach has also been generalized to the
continuous setting [7, 8].

Although small circuit classes have been characterized in multiple ways, it is an interesting
and challenging question whether they can be studied through an ODE-based approach and
whether this would shed some new light on these well-known classes. Interesting, because
for a descriptive approach based on ODEs to make sense and be fruitful it has to be able
to cope with very subtle and restricted modes of computation. Challenging, because even
simple and useful mathematical functions may not be computable (e.g. multiplication is not
in AC0), thus tools at hand and the naturalness of the approach are drastically restricted.
In the present paper, we investigate these questions, and show that, in fact, natural ways
to introduce ODE-oriented function algebras to capture small circuit classes can be found.
Our approach relies on the introduction of ODE-schemas, still using derivation along the
logarithmic function and allowing for bit shifting operations through restricted forms of linear
equations. Our case study focuses on the smallest classes AC0 and TC0, but is intended
as the first step towards a uniform characterization of other relevant classes in the AC and
NC hierarchies.

Structure of the paper. The paper is divided into two main sections. In Section 2, we
introduce notions and results at the basis of our ODE-style characterizations. In particular, in
Section 2.1, we summarize salient aspects of the approach by [10], which we aim to generalize
from the study of FP to that of small circuit classes. In Section 2.2, we briefly recap
basic notions in parallel complexity and recall the function algebra approach of [11, 12, 14]
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to capture AC0 and TC0. In Section 3, we present our ODE-characterizations for the
mentioned classes. Specifically, in Section 3.1, we introduce restricted ODE-schemas, and,
using them, in Sections 3.2 and 3.3, we define ODE-function algebras capturing the analog
for functions of AC0 and TC0, respectively. Then, in Section 3.4, we provide alternative
and direct completeness proofs for both classes in the non-uniform setting, namely assuming
that functions describing the circuits are given as basic functions. Finally, in Section 4, we
briefly point at possible directions of future research.

2 Preliminaries

2.1 Capturing Complexity Classes via ODEs
We suppose the reader familiar with the basics of complexity theory [3, 30]. In order to
introduce the approach to complexity delineated in [10], we start by cursorily recalling
Cobham’s result, capturing FP by the following BRN schema.

▶ Definition 1 (Bounded Recursion on Notation, BRN). Given g : Np → N, k : Np+1 → N and
hi : Np+2 → N, with i ∈ {0, 1}, f : Np+1 → N is defined by BRN from g, h0, h1 and k if

f(0, y) = g(y) and f(si(x), y) = hi(f(x, y), x, y), for x ̸= 0

with f(x, y) ≤ k(x, y) and sj(x) = 2x + j (j ∈ {0, 1}) being the binary successor functions.

The growth of f is controlled by the function k (in FP), while the number of induction steps
is kept under control by the application of the binary successor functions si. Such a schema
is not fully satisfactory as it imposes an explicit bound on recursion in the form of an already
known function.

As anticipated, Cobham’s paper not only led to a variety of implicit characterizations
for classes other that FP, but also inspired alternative approaches to capture this class.
Among them, the proposal by [10] has the specificity of not imposing any explicit bound on
the recursion schema or assigning specific role to variables. Instead, it is based on Discrete
Ordinary Differential Equation (a.k.a. Difference Equations) and combines two peculiar
features: derivation along specific functions, so to control the number of computation steps,
and a special syntactic form of the equation itself (here linearity), allowing to control the
object size. We present the basics of the method as necessary to formulate our new results.

Recall that the discrete derivative of f(x) is defined as ∆f(x) = f(x + 1) + f(x), and that
ODEs are expressions of the form:

∂f(x, y)
∂x

= h(f(x, y), x, y),

where ∂f(x,y)
∂x stands for the derivative of f(x, y) considered as a function of x, for a fixed

value for y. When some initial value f(0, y) = g(y) is added, this is called Initial Value
Problem (IVP). Then, in order to deal with complexity, some restrictions are needed. First,
the notion of derivation has to be generalized, allowing to derive along functions.

▶ Notation 1. For x ̸= 0, let ℓ(x) denote the length of x written in binary, i.e. ⌈log2(x + 1)⌉,
and ℓ(0) = 0. For u ≥ 0, α(u) = 2u − 1 denotes the greatest integer the binary length of
which is u. Also, we use ÷2 to denote integer division by 2, i.e. for all x ∈ Z, x ÷ 2 =

⌊
x
2
⌋
.

▶ Definition 2 (λ-ODE Schema). Let f , λ : Np → Z and h : Np+1 → Z be functions. Then,
∂f(x, y)

∂λ
= ∂f(x, y)

∂λ(x, y) = h
(
f(x, y), x, y

)
(1)

is a formal synonym of f(x + 1, y) = f(x, y) +
(
λ(x + 1, y) − λ(x, y)

)
× h(f(x, y), x, y). When

λ(x, y) = ℓ(x), we call (1) a length-ODE.

MFCS 2024



10:4 A New Characterization of FAC0 via Discrete ODEs

Intuitively, one of the key properties of the λ-ODE schema is its dependence on the number
of distinct values of λ, i.e., the value of f(x, y) changes only when the value of λ(x, y) does.

The computation of solutions of λ-ODEs have been fully described in [10]. Here, we
focus on the special case of λ = ℓ, which is particularly relevant for our characterizations.
First, observe that the value of ℓ(x) changes (i.e. increases by 1) when x goes from 2t − 1
to 2t, i.e. from α(t) to α(t) + 1. So, if f is a solution of (1) with λ = ℓ and initial value
f(0, y) = g(y), then f(1, y) = f(0, y) + h

(
f(α(0), y), α(0), y

)
, and, more generally, for all x

and y, f(x, y) = f(x − 1, y) + ∆(ℓ(x − 1)) × h
(
f(x − 1, y), x − 1, y

)
= f(α(ℓ(x) − 1), y) +

h
(
f
(
α
(
ℓ(x) − 1

)
, y
)
, α(ℓ(x) − 1), y

)
, where ∆

(
ℓ(t − 1)

)
= ℓ(t) − ℓ(t − 1). Starting from

t = x ≥ 1 and taking successive decreasing values of t, the first difference such that ∆(t) ̸= 0
is given by the biggest t − 1 such that ℓ(t − 1) = ℓ(x) − 1, i.e. t − 1 = α(ℓ(x) − 1). Hence, by
induction, it is established that:

f(x, y) =
ℓ(x)−1∑
u=−1

h
(
f(α(u), y), α(u), y

)
,

with h(·, α(−1), y) = f(0, y) and, as seen, α(u) = 2u − 1.
The second crucial novelty is the introduction of a special concept of linearity, utilized

to control the growth of functions defined by ODEs. First, we present the notion of degree
for a polynomial expression, which is a generalized (and slightly modified) version of the
corresponding definition in [10]. Here, the degree of an expression is considered in relation to
a set of variables, instead of a single one.

Let sg : Z → Z be the sign function over Z, taking value 1 for x > 0 and 0 otherwise.

▶ Definition 3. A sg-polynomial expression P (x1, . . . , xh) is an expression built over the
signature {+, −, ×}, the sg function and a set of variables X = {x1, . . . , xh} plus integer
constants. Given a list of variables x = xi1 , . . . , xim , for i1, . . . , im ∈ {1, . . . , h} the degree of
a set x in a sg-polynomial expression P , deg(x, P ), is inductively defined as follows:

deg(x, P ) = 0 for P constant
deg(x, xij ) = 1, for xij ∈ {xi1 , . . . xim}, and deg(x, xij ) = 0, for xij ̸∈ {xi1 , . . . , xim}
deg(x, P + Q) = deg(x, P − Q) = max{deg(x, P ), deg(x, Q)}
deg(x, P × Q) = deg(x, P ) + deg(x, Q)
deg(x, sg(P )) = 0.

A sg-polynomial expression P is said to be essentially constant in a set of variables x when
deg(x, P ) = 0. A sg-polynomial expression P is said to be essentially linear in a set x, when
deg(x, P ) = 1.

In what follows, we consider functions f : Np+1 → Zd, i.e. vectors of functions f = f1, ..., fd

from Np+1 to Z, and we introduce the linear λ-ODE schema.

▶ Definition 4 (Linear λ-ODE). Given g : Np → Nd, h : Np+1 → Z and u : Z × Np+1 → Zd,
the function f : Np+1 → Zd is linear λ-ODE definable from g, h and u if it is the solution of
the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂λ

= u
(
f(x, y), h(x, y), x, y

)
,

where u is essentially linear in f(x, y). For λ = ℓ, such schema is called linear length ODE.
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If u is essentially linear in f(x, y), there exist matrices A and B, whose coefficients are
essentially constant in f(x, y) and such that:

f(0, y) = g(y)
∂f(x, y)

∂ℓ
= A

(
f(x, y), h(x, y), x, y

)
× f(x, y) + B

(
f(x, y), h(x, y), x, y

)
.

Then, for all x and y,

f(x, y)=
ℓ(x)−1∑
u=−1

( ℓ(x)−1∏
t=u+1

(
1+A

(
f(α(t), y), h(α(t), y), α(t), y

)))
×B
(
f(α(u), y), h(α(u), y), α(u), y

)
,

with the convention that
∏x−1

x κ(x) = 1 and B(·, ·, α(−1), y) = f(0, y).

▶ Example 5 (Function 2ℓ(x)). The function x 7→ 2ℓ(x) can be seen as the solution of the
IVP with initial value f(0) = 1 and such that ∂f(x)

∂ℓ = f(x), i.e. where A = 1, B = 0. Indeed,
the solution of this system is of the form f(x) =

∏ℓ(x)−1
u=0 2 = 2ℓ(x). In addition, the function

(x, y) : x, y 7→ 2ℓ(x) × y can be captured by the same equation, with initial value f(0, y) = y.

One of the main results of [10] is the implicit characterization of FP by the algebra made
of basic functions 0, 1, πp

i , ℓ, +, −, ×, sg and closed under composition (◦) and ℓ-ODE:

LDL = [0, 1, πp
i , ℓ, +, −, ×, sg; ◦, ℓ-ODE].

2.2 On Parallel Computation and Function Algebras for FAC0

Boolean circuits are vertex-labeled directed acyclic graphs whose nodes are either input nodes
(no incoming edges), output nodes (no outgoing edges) or labeled with a Boolean function
from the set {∧, ∨, ¬}. A Boolean circuit with majority gates allows in addition gates labeled
by the function Maj, that outputs 1 when the majority of its inputs are 1’s. A family of
circuits (Cn) is Dlogtime-uniform if there is a Turing machine (with a random access tape)
that decides in deterministic logarithmic time the direct connection language of the circuit,
i.e. which, given 1n, a, b and t ∈ {∧, ∨, ¬}, decides if a is of type t and b is a predecessor of
a in the circuit (and analogously for input and output nodes). When dealing with circuits,
the resources of interests are size, i.e. the number of its gates, and depth, i.e. the length of
the longest path from the input to the output (see [30] for more details and related results).

▶ Definition 6 (Classes FACi and FTCi). For i ∈ N, the class ACi (resp., TCi) is the class
of languages recognized by a Dlogtime-uniform family of Boolean circuits (resp. circuits
including majority gates) of polynomial size and depth O((log n)i). We denote by FACi and
FTCi the corresponding function classes.

For FAC0, a particularly relevant recursion-theoretic characterization was provided by
Clote [11, 12]. It relies on the schema of concatenation recursion on notation.

▶ Definition 7 (Concatenation Recursion on Notation, CRN). A function f is defined by
concatenation recursion on notation from g and hi, with i ∈ {0, 1}, if for all x, y:

f(0, y) = g(y) and f(si(x), y) = shi(x,y)(f(x, y)), for x ̸= 0.

Then, Clote’s function algebra is defined as the class:

A0 = [0, πp
i , s0, s1, ℓ, BIT, #; ◦, CRN],

where BIT(x, y) returns the yth value in the binary representation of x, and x#y = 2ℓ(x)×ℓ(y)

is the smash function. This class was also proved able to capture FAC0 [11, 12].

MFCS 2024



10:6 A New Characterization of FAC0 via Discrete ODEs

▶ Theorem 8 ([11, 12]). A0 = FAC0.

That A0 ⊆ FAC0 is proved by passing through the (function version of the) logarithmic time
hierarchy FLH, which is known to be equivalent to FAC0. Then, A0 ⊆ FLH is established
by showing that basic functions are computable in log-time and that FLH is closed under
composition and CRN. That FLH ⊆ A0 is proved by the arithmetization of log-time bounded
RAM. Remarkably, in [14], these results are even generalized to FTC0, which is proved
equivalent to the function algebra:

T C0 = [0, πp
i , s0, s1, ℓ, BIT, ×, #; ◦, CRN].

3 Towards an ODE-Characterization of FAC0

In this section, we provide the first implicit characterization of FAC0 in the ODE-setting.
We start by introducing the new ODE-schemas which are at the basis of our characterizations
of FAC0 and FTC0 and intuitively corresponding to left- and right-shifting (Sec. 3.1). Due
to them, we introduce the function algebra ACDL, the defining feature of which is precisely
the presence of these special ODE-schemas, and prove this class able to capture FAC0

(Sec. 3.2). This is established passing through Clote’s A0. As a byproduct, we obtain a
similar ODE-characterization for FTC0 (Sec. 3.3). Finally, an alternative, direct proof of
completeness is provided for both classes in a non-uniform setting (Sec. 3.4).

▶ Remark 9. Here, functions can take images in Z. Accordingly, a convention for the binary
representation of integers must be adopted, e.g. by assuming that, in any binary sequence,
the first bit indicates the sign. Then, all arithmetic operations can be easily re-designed to
handle encodings of possibly negative integers by circuits of the same size and depth.

3.1 Discrete ODE-Schemas for Shifting
We start by considering the ODE-schemas which are at the basis of our characterizations

of FAC0 and FTC0. Observe that they will sometimes include ×. This is admissible since,
as we shall see, the “kind of multiplication” we consider is actually limited to special cases
(namely, multiplication by 2i), which are proved to be computable in FAC0.

The ℓ-ODE1 and ℓ-ODE2 Schemas. We start with the limited ℓ-ODE1 schema, intuitively
corresponding to left shifting(s) and (possibly) adding a bit.

▶ Definition 10 (ℓ-ODE1 Schema). Given g : Np → N and h : Np+1 → N, such that h takes
values in {0, 1} only, the function f : Np+1 → N is defined by ℓ-ODE1 from functions g and
h when it is the solution of the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

= f(x, y) + h(x, y).

The definition of the function 2ℓ(x) (and 2ℓ(x) × y) given in Example 5 is a special case of a
ℓ-ODE1 (with h(x, y) = 0).

▶ Remark 11. An equivalent, purely-syntactical formulation of Definition 10 is obtained by
substituting the explicit constraint that h(x, y) ∈ {0, 1} with the assumption that h(x, y)
is of the form sg

(
B(h1, . . . , hm, x, y)

)
, where B is an expression built over the signature

{+, −, ÷2, sg} and calling previously defined FAC0 functions h1(x, y), . . . , hm(x, y).
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In terms of circuits, this schema intuitively allows us to iteratively left-shifting (the binary
representation of) a given number, each time possibly adding 1 to its final position. This is
clarified by the proof below, establishing that FAC0 is closed under the mentioned schema.

▶ Proposition 12. If f is defined by ℓ-ODE1 from g and h in FAC0, then f is in FAC0.

Proof Sketch. By Def. 10, for all x and y: f(x, y) =
∑ℓ(x)−1

u=−1

(∏ℓ(x)−1
t=u+1 2

)
× h
(
α(u), y

)
=∑ℓ(x)−1

u=−1 2ℓ(x)−u−1 × h(α(u), y), with the convention that α(u) = 2u − 1,
∏x−1

x κ(x) = 1 and
h
(
α(−1), y

)
= f(0, y). Clearly, the multiplication here involved is always by a power of 2

(which basically corresponds to left-shifting, so is computable in FAC0). Since h(x, y) ∈ {0, 1},
the outermost sum amounts to a concatenation (which again can be computed in FAC0). ◀

Notice that this schema is not as weak as it may seem since, together with sg, it is enough
to express bounded quantification.

▶ Remark 13. Let R ⊆ Np+1 and hR be its characteristic function. Then, for all x and y, it
holds that (∃z ≤ ℓ(x))R(z, y) = sg

(
f(x, y)

)
, where f is such that f(0, y) = hR(0, y) and

∂f(x, y)
∂ℓ

= f(x, y) + hR

(
ℓ(x + 1), y

)
.

Clearly, f(x, y) is an instance of ℓ-ODE1. Intuitively, f(x, y) ̸= 0 when, for some z smaller
than x, R(z, y) is satisfied (i.e. hR(z, y) = 1): when such instance exists, our bounded search
ends with a positive answer. Universally bounded quantification can be expressed in a similar
way, considering cosg(f(x, y)), where f is defined substituting the value of hR with its co-sign
(such that, cosign(x) = 1 − sg(x)).

The more general schema ℓ-ODE2 allows multiple left-shifting, such that each “basic
operation” corresponds to shifting a given value of a number of digits determined by ℓ(k(y)).

▶ Definition 14 (ℓ-ODE2 Schema). Given g : Np → N, h : Np+1 → N and k : Np → N, the
function f : Np+1 → N is defined by ℓ-ODE2 from g, h and k if it is the solution of the IVP
with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

=
(
2ℓ(k(y)) − 1

)
× f(x, y) + h(x, y),

where h(x, y) ∈ {0, 1}, and if, for some x and y, h(x, y) ̸= 0, then k(y) ̸= 0.

Since this schema is introduced to characterize FAC0, the constraint imposing k(y) ̸= 0,
when at some point h(x, y) takes value 1, is really essential. Indeed, as we shall see (Sec. 3.3),
if we omit it, ℓ-ODE2 will be too strong, as able to capture binary counting (which is not in
FAC0).

Observe that ℓ-ODE1 is a special case of ℓ-ODE2, such that ℓ(k(y)) = 1, and that, also
for it, the following closure result holds.

▶ Proposition 15. If f is defined by ℓ-ODE2 from FAC0-functions g, k and h, then f is in
FAC0.

Proof Sketch. There are two cases: if k(y) ̸= 0, the proof is analogous to that of Prop. 12;
if k(y) = 0 (and h(x, y) = 0), for all x and y, f(x, y) = g(y), in FAC0 by hypothesis. ◀

MFCS 2024



10:8 A New Characterization of FAC0 via Discrete ODEs

The Schema ℓ-ODE3. Let us now consider ℓ-ODE3, intuitively corresponding to (basic)
right-shifting operations.

▶ Definition 16 (ℓ-ODE3 Schema). Given g : Np → N, the function f : Np+1 → N is defined
by ℓ-ODE3 from g if it is the solution of the IVP with initial value f(0, y) = g(y) and such
that:

∂f(x, y)
∂ℓ

= −
⌈

f(x, y)
2

⌉
where ⌈ z

2 ⌉ is a shorthand for z − (z ÷ 2).

▶ Proposition 17. If f is defined by ℓ-ODE3 from g in FAC0, then f is in FAC0 as well.

Proof Sketch. The proof is similar to the one for Prop. 12. By Def. 16 and since (a÷2b)÷2 =
a ÷ 2b+1, it can be shown by induction that for all x and y: f(x, y) = g(y) ÷ 2ℓ(x)−1. This
intuitively corresponds to right-shifting g(y) a number of times equal to ℓ(x) − 1 and can be
easily shown computable by a constant-depth circuit. ◀

3.2 An ODE-Characterization of FAC0

We now define a new class of functions, crucially relying on the ODE-schemas just introduced:

ACDL = [0, 1, πp
i , ℓ, +, −, ÷2, sg; ◦, ℓ-ODE2, ℓ-ODE3].

Observe that all its basic functions and (restricted) schemas are natural in the context
of differential equations and calculus. In ACDL, multiplication is, of course, not allowed.
Compared to LDL, the linear-length ODE schema is substituted by the two schemas ℓ-ODE2
and ℓ-ODE3, characterized by a very limited form of “multiplication” and intuitively allowing
to capture left and right shifting.

In order to prove that ACDL captures FAC0 we start by providing an indirect proof
that FAC0 ⊆ ACDL. This is established by showing that any basic function and schema
defining Clote’s A0 (so its arithmetization of log-time bounded RAM) can be simulated in
our setting by functions and schemas of ACDL. Preliminarily, observe that some important
operations “come for free” by composition. For instance, the modulo 2 operation is defined as
(x mod 2) = x −

⌊
x
2
⌋

−
⌊

x
2
⌋
, while binary successor functions are expressed in our setting as

s0(x) = x + x and s1(x) = s0(x) + 1 (being the constant 0 and + basic functions of ACDL).

The smash function 2ℓ(x)×ℓ(y). The smash function x#y : x, y 7→ 2ℓ(x)×ℓ(y) is rewritten
as the solution of the IVP defined by the initial value f(0, y) = 1 and such that ∂f(x,y)

∂ℓ =
(2ℓ(y) − 1) × f(x). This is clearly an instance of ℓ-ODE2, such that g(y) = 1, k(y) = y and
h(x, y) = 0. Recall that, since h(x, y) = 0, even the limit case of y = 0 is properly captured.

The BIT function. Intuitively, the function BIT(x, y) returns the yth bit in the binary
representation of x. In order to capture it, a series of auxiliary functions are needed:

the log most significant part function msp(x, y) : x, y 7→
⌊

y
2ℓ(x)

⌋
, which can be rewritten

via ℓ-ODE3,
the basic conditional function if(x, y, z), returning y if x = 0 and z otherwise, can be
rewritten in our setting by composition, using, in particular, the “shift function” 2ℓ(x) × y

(defined using ℓ-ODE1),
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the special bit function bit(x, y), returning 1 when the ℓ(y)th bit of x is 1, can be rewritten
in ACDL due to msp,
the bounded exponentiation function bexp(x, y), that, for any y ≤ ℓ(x), returns 2y, can be
obtained relying on functions in ACDL, including, in particular, msp, if and 2ℓ(·) together
with ODE-schemas.

Then, using bexp and bit, the desired BIT function can be rewritten in our setting by
composition: BIT(x, y) = bit(x, bexp(x, y) − 1).

The CRN Schema. A function f defined by CRN from g, h0 and h1 can be simulated in
ACDL via the ℓ-ODE1 schema. Let us consider the IVP with initial value F (0, x, y) = g(y)
and such that:

∂F (t, x, y)
∂ℓ(t) = F (t, x, y) + h(t + 1, x, y)

where h(t, x, y) ∈ {0, 1} is, in turn, defined as:

if
(
bit(x, 2ℓ(x)−ℓ(t) − 1), h0(msp(2ℓ(x)−ℓ(t), x), y), h1(msp(2ℓ(x)−ℓ(t), x), y)

)
.

The function F (t, x, y) is clearly an instance of ℓ-ODE1, and h(t, x, y) is defined by composi-
tion from functions proved to be in ACDL. Then, we set f(x, y) = F (x, x, y).

We now have all the ingredients to prove our main result.

▶ Theorem 18. ACDL = FAC0.

Proof. ACDL ⊆ FAC0. All basic functions of ACDL are computable in FAC0. Moreover,
the class is closed under composition and, by Prop. 15 and 17, under ℓ-ODE2 and ℓ-ODE3.
FAC0 ⊆ ACDL since, as we just proved, functions and schemas constituting A0 have been
rewritten in ACDL. ◀

A careful analysis of the above definitions shows that ℓ-ODE2 is actually used only to
capture the smash # function. One obtains a class equivalent to ACDL by allowing # and
by replacing ℓ-ODE2 with the simpler ℓ-ODE1 schema.

▶ Corollary 19. FAC0 = [0, 1, πp
i , ℓ, +, −, ÷2, sg, #; ◦, ℓ-ODE1, ℓ-ODE3]

3.3 An ODE-Characterization of FTC0

As a byproduct, an ODE-characterization for FTC0 is easily obtained, this time passing
through T C0 [14]. We consider an extension of ACDL endowed with the basic function ×:

TCDL = [0, 1, πp
i , ℓ, +, −, ÷2, ×, sg; ◦, ℓ-ODE2, ℓ-ODE3].

▶ Proposition 20. Let f be defined by ℓ-ODE2 from functions in FTC0. Then, f is in
FTC0.

Proof Sketch. The proof is similar to that of Prop. 15. The main difference concerns
the computation of level 0, i.e. that of the initial values g(y) and h(x, y), which are now
expressions possibly including ×. This does not affect the overall structure of the circuit. ◀

▶ Proposition 21. Let f be defined by ℓ-ODE3 from functions in FTC0. Then, f is in
FTC0.

MFCS 2024
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Proof Sketch. Straightforward generalization of Prop. 17, with the same provisos of Prop. 20.
◀

Then, the desired characterization easily follows from Propositions 20 and 21 and from [14],
rewritten in our ODE-setting (see Sec. 3.2).

▶ Theorem 22. TCDL = FTC0.

An alternative characterization of FTC0 is obtained by considering the following class:

TCDL∗ = [0, 1, πp
i , ℓ, +, −, ÷2, sg; ◦, ℓ-ODE∗

2, ℓ-ODE3].

where TCDL∗ does not include × as a basic function, but allows the generalized schema
ℓ-ODE∗

2, with no constraint over the function k:

▶ Definition 23 (ℓ-ODE∗
2 Schema). Let g : Np → N, h : Np+1 → N and k : Np → N, where h

takes values in {0, 1}. Then, the function f : Np+1 → N is defined by ℓ-ODE∗
2 from g, h and

k when it is the solution of the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

=
(
2ℓ(k(y)) − 1

)
× f(x, y) + h(x, y).

▶ Example 24 (bcount). Observe that if k(y) = 0, then ℓ-ODE∗
2 is enough to express

the binary counting function bcount(x), that outputs the sum of the bits of x. Indeed,
bcount(x) = f(x, x) where f is the solution of the IVP with initial value f(0, y) = bit(0, y)
and such that:

∂f(x, y)
∂ℓ

= bit(x, y).

Since such function is not in FAC0 (see [19]), this also illustrates that ℓ-ODE∗
2 is really more

expressive than ℓ-ODE2.

It is easy to see that ℓ-ODE∗
2 is enough to capture majority (and to “simulate” multiplication,

see [30]), which is the essential step to show that TCDL∗ = FTC0.
This observation, together with the fact that what really makes ℓ-ODE∗

2 more expressive
than ℓ-ODE2 is its behavior for k(y) = 0, leads us to an alternative characterization for
FTC0, in line with the one of Corollary 19. Let’s consider the following schema.

▶ Definition 25 (ℓ-ODE∗
1 Schema). Let g : Np → N and h, k : Np+1 → {0, 1}. Then the

function f : Np+1 → N is defined by ℓ-ODE∗
1 from g, h and k, when it is the solution of the

IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

= k(x, y) × f(x, y) + h(x, y).

By straightforward inspection and Example 24, it is easily seen that FTC0 is again captured
by adding the basic function # and by replacing ℓ-ODE∗

2 with the simpler schema ℓ-ODE∗
1.

▶ Corollary 26. FTC0 = TCDL∗ = [0, 1, πp
i , ℓ, +, −, ÷2, sg, #; ◦, ℓ-ODE∗

1, ℓ-ODE3].

3.4 Alternative Direct Proofs
In this section, we introduce alternative classes ACDLC and TCDLC , (resp.) extending ACDL
and TCDL with new basic functions that arithmetize the circuit families of polynomial size
and constant depth (Cn)n≥0 used for computation. In this non-uniform context, we prove
both FAC0 ⊆ ACDLC (Sec. 3.4.1) and FTC0 ⊆ TCDLC (Sec. 3.4.2) directly, i.e. without
any references to results in [11, 14], .
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3.4.1 Direct Completeness for ACDLC

Let C = (Cn)n≥0 be a class of circuits of polynomial size nk, for some k ∈ N, and constant
depth d. We assume that each circuit Cn is in a special normal form, such that it strictly
alternates between ∧ and ∨ (and edges are only between gates of consecutive layers): input
gates are all at level 0, negation gates are all at level 1, even levels are all ∧ gates, odd levels
(other than 1) are all ∨ gates, and the depth d is even (so output gates are ∧ gates).

In this context we keep the basic functions of ACDL, but add a set circC = {C, Lin
0 , L¬

0 , Le}
of characteristic functions associated to the following predicates. The predicate C ⊆ N×N×N
describes the underlying graph of the circuit: for any integers x, α, β, (x, α, β) ∈ C when,
in Cℓ(x), the αth ≤ ℓ(x)k gate of some level is a predecessor of the βth ≤ ℓ(x)k gate of the
next level (thus, in this encoding, α and β are exponentially smaller than x). The relations
Lin

0 , L¬
0 , Le ⊆ N × N, for e ∈ {1, . . . , d}, describe the level of gates (and, implicitly, their

type): Lin
0 refers to input gates, L¬

0 to negation gates, and Le to ∧ and ∨ gates, depending
on e being odd or even. Since we aim at defining functions over integers, we assume that
input gates are numbered from n − 1 to 0 and output gates from m − 1 to 0, with m ≤ ℓ(x)k.
By considering the functions corresponding to the given relations, we obtain the desired
ODE-style family of classes (parameterized by C):

ACDLC = [0, 1, πp
i , ℓ, +, −, ÷2, sg, circC ; ◦, ℓ-ODE2, ℓ-ODE3].

▶ Remark 27. If the family C is Dlogtime-uniform, then the functions in circC are computable
in A0. Consequently, in this case, it holds that ACDLC = ACDL.

In this non-necessarily uniform context, a completeness proof still holds.

▶ Proposition 28. If a function f : N → N is computable by a family C = (Cn)n≥0 of
polynomial size and constant-depth circuits, then it is in ACDLC.

To prove it we need the following lemma (which is easily established relying on Remark 13).

▶ Lemma 29. Let g and h be functions computable in ACDLC and k ∈ N. Then, the function
mini≤ℓ(x1)k {g(i, x) : h(i, x) ▷ j}, for ▷ ∈ {<, ≤, >, ≥, =} and j ∈ {0, 1}, is in ACDLC.

Proof of Prop. 28. Let Eval(t, x) be a function that returns the value of the tth output gate
of the circuit Cℓ(x) of input x when t ≤ m − 1 (and Eval(t, x) = 0 for t > m − 1). Then,
the following expression defines a function f such that f(2ℓ(x)k

, x) outputs the value of the
computation of Cn (for n = ℓ(x)) on input x:

∂f(y, x)
∂ℓ(y) = f(y, x) + Eval(ℓ(x) − ℓ(y) − 1, x)

with f(0, x) = 0. Intuitively, the function above computes the successive suffixes of the
output word, starting from the bits of bigger weights. Remarkably, this is an instance of the
ℓ-ODE1 schema (indeed, Eval(y, x) ∈ {0, 1}). So, the given f can be rewritten in ACDLC .

It remains to describe how the function Eval(t, x) is computed. Again, we assume that
Cn has depth d, is in the normal form described above, and d is even. Concretely, we start
by defining a special (bounded) minimum operator function such that, given k ∈ N and two
functions g and h, with h(t, x) ∈ {0, 1} for t ∈ N and x = x1, . . . , xh,

mini≤ℓ(x1)k {g(i, x) : h(i, x) ▷ 0},

with ▷ ∈ {<, ≤, >, ≥, =} and j ∈ {0, 1}. Intuitively, given i ∈ {0, . . . , ℓ(x1)}, this function
computes the minimum of the values of g(i, x), for i and x such that h(i, x) ▷ j.

The inductive definition of Eval relies on those of the d + 1 functions Eval0, . . . , Evald,
with Evald = Eval:
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Eval0(t, x) is equal to BIT(t, x) if Lin
0 (t, x) holds and to 1 − BIT(t, x) if L¬

0 (t, x) does. For
t not corresponding to gate index, Eval0(t, x) is set to an arbitrary value, say 0. Recall
that, since BIT can be rewritten in ACDL (Sec. 3.2), Eval0 is in ACDLC as well.
Eval2e(y, x) is equal to mini≤ℓ(x)k {Eval2e−1(i, x) : C(x, i, t) = 1}, for L2e(t, x) (i.e., if t is
the index of a gate at this level). The evaluation for the ith gate of the level 2e (a ∧-gate)
is the minimum of the evaluations of its predecessor gates of level 2e − 1. As seen, min is
in ACDL (Lemma 29), so Eval2e can also be rewritten in this class.
Similarly, Eval2e+1(y, x) is the 1 − mini≤ℓ(x)k {1 − Eval2e(i, x) : C(x, i, t) = 1}. The
evaluation for the tth gate of level 2e + 1 (a ∧-gate) is the maximum among evaluations of
its predecessor gates of level 2e. As for Eval2e, Eval2e+1 can be rewritten in ACDL. ◀

▶ Remark 30. The following converse to Proposition 28 also holds (by inspecting the proofs
of Proposition 15 and 17): If a function f : N → N is in ACDLC for some family C of
polynomial size and constant-depth circuits, then there exists a family C′ of polynomial size
and constant-depth circuits that computes it.

3.4.2 Direct Completeness for FTC0

Let us now consider the similar, direct characterization for FTC0. Suppose that Cn strictly
alternates between ∧, ∨ and Maj gates, and that input gates and their negation are all at
level 0, ∨ gates are at levels 3e + 1, ∧ gates at levels 3e + 2, and Maj gates at levels 3e.
Accordingly, in this case Le describes the level of a gate of a type not limited to ∧, ∨, but
including Maj. Then, the desired family of classes is defined as:

TCDLC = [0, 1, πp
i , ℓ, +, −, ÷2, sg, circC ; ◦, ℓ-ODE∗

2, ℓ-ODE3]

where, with a slight abuse of notation, we use circC to denote the function corresponding
to a (set of) relation(s), this time including the extended Le. The proof that non-uniform
FTC0 ⊆ TCDLC is similar to the one from Section 3.4.1.

▶ Proposition 31. If a function f : N → N is computable by a family C = (Cn)n≥0 of
polynomial-size and constant-depth circuits including Maj gates, then it is in TCDLC.

Proof Sketch. The functions f and Eval are globally defined as before. Modifications only
affect the definition of Evald and, in particular, the inductive levels corresponding to Maj.
Specifically, it is obtained as follows:

for a given function h and integer k, bcounth(t, x) =
∑

i≤ℓ(x)k h(i, t, x). Notice that this
function is in TCDLC, since it can be rewritten as an instance of ℓ-ODE∗

2, and h is in
TCDL∗ (due to Lemma 29),
for any i such that L3e−1(i) and 3e − 1 < d: v0

3e−1(i, t, x) = sg(C(x, i, t)) and
v1

3e−1(i, t, x) = if(C(x, i, t), Eval3e−1(i,x), 0). The value of v0
3e−1(i, t, x) is 1 when i is

a predecessor of gate t, and v1
3e−1(i, t, x) is 1 when, in addition, the value of gate i, on

input x, is 1,
for t such that L3e(t), Eval3e(t, x) is defined as sg

(
bcountv0

3e−1
(t, x)−2×bcountv1

3e−1
(t, x)

)
.

The function outputs 1 when more than half of the inputs of gate t are 1. ◀

4 Conclusion

We have presented new characterizations for FAC0 and FTC0 through the prism of discrete
differential equations. Although the use of classical arithmetical functions is intrinsically
limited by the low computational power of these classes, the ODEs used are surprisingly
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natural restrictions of linear ODEs. More generally, this work is intended as the first
step of a project aiming at characterizing other relevant classes, starting with FACk and
FNCk. Another challenging direction of future research would be to develop logical and
proof-theoretical counterparts to ODE-style algebras, e.g. by defining natural rule systems
(oriented by the ODE design) to syntactically characterize the corresponding classes.
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A Proofs from Section 3

A.1 The Schemas ℓ-ODE1 and ℓ-ODE2

Proof of Proposition 12. By Definition 10, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

( ℓ(x)−1∏
t=u+1

2
)

× h
(
α(u), y

)
=

ℓ(x)−1∑
u=−1

2ℓ(x)−u−1 × h(α(u), y)

with the convention that α(u) = 2u − 1,
∏x−1

x κ(x) = 1 and h
(
α(−1), y

)
= f(0, y). Notice

that the given multiplication is always by a power of 2 decreasing for each increasing value
of u, which basically corresponds to left-shifting (which can be computed in FAC0). Hence,
since by Definition 10, h(x, y) ∈ {0, 1}, the outermost sum amounts to a concatenation
(which again can be computed in FAC0).

Concretely, for any inputs x and y, the desired polynomial-sized and constant-depth
circuit to compute f(x, y) is defined as follows:

In parallel compute the values of g(y) and of each h(α(u), y), for any u ∈ {0, . . . , ℓ(x)−1}.
For hypothesis, g and h are computable in FAC0, and, since there are ℓ(x) + 1 initial
values to be computed, the whole desired computation can be done in polynomial size
and constant depth.
In one step, (left-)shift the value of h

(
α(−1), y)

)
= g(y) by padding ℓ(x) zeros on the

right and, for u ≥ 0, (left-)shift each value h
(
α(u), y

)
by padding on the right ℓ(x) − u − 1

zeros (this corresponds to multiply by 2ℓ(x)−u−1) and padding on the left u + ℓ(g(y))
zeros.
Compute, bit-by-bit, the disjunction of all values computed above. Clearly, this is done
in constant depth. ◀

https://arxiv.org/abs/2309.06926
https://arxiv.org/abs/2309.06926
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Proof of Proposition 15. There are two main cases to be taken into account. If k(y) ̸= 0,
the proof is similar to that of Proposition 12. Indeed, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

(
ℓ(x)−1∏
t=u+1

2ℓ(k(y))

)
× h
(
α(u), y

)
=

ℓ(x)−1∑
u=−1

2ℓ(k(y))×(ℓ(x)−u−1) × h
(
α(u), y

)
with the convention that α(u) = 2u − 1,

∏x−1
x κ(x) = 1 and h

(
α(−1), y

)
= f(0, y). Observe

that here multiplication corresponds to a left-shifting where “basic shifting” corresponds
to a left movement of ℓ(k(y)) digits. As for the basic case, it can be easily shown that
this operation can be implemented by a constant-depth circuit. Then, analogously to
Proposition 12, the outermost iterated sum amounts to concatenation (as, by construction,
h(α(u), y) ∈ {0, 1}).

Concretely, we can construct a constant-depth circuit generalizing the procedure defined
for the special case of ℓ-ODE1:

In parallel, compute the values of g(y) and h(α(u), y), for each u ∈ {0, . . . , ℓ(x) − 1}.
This can be done in constant depth by hypothesis.
In one step, shift the value of g(y) by padding ℓ(k(y)) × ℓ(x) zeros on the right, and, for
u ≥ 0, shift all values h(α(u), y) by padding on the right ℓ(k(y)) × (ℓ(x) − u − 1) zeros
(i.e. multiplying by 2ℓ(k(y))×(ℓ(x)−u−1)) and by padding on the left ℓ(g(y)) + ℓ(k(y)) ×
(u + 1) − 1 zeros.
Compute, bit-by-bit, the disjunction of all the values above.

In the special case of k(y) = 0 and h(x, y) = 0, it holds that for all x and y, f(x, y) = g(y).
This is clearly computable in FAC0, as corresponding to compute g(y), which is computable
in constant depth by hypothesis. ◀

A.2 The Schema ℓ-ODE3

For x > 0, the equation characterizing Definition 16 can be re-written as:

f(x, y) = f(x − 1, y) − ∆ℓ(x − 1) ×
⌈

f(x − 1, y)
2

⌉
,

where, as seen, ∆ℓ(x − 1) = ℓ(x) − ℓ(x − 1). Observe that also in this case we are using
× with a slight abuse of notation: indeed, we are dealing with “bit multiplication” and
multiplying a number by 0 or 1 can be easily done in FAC0 (and easily rewritten in our
setting using the basic conditional function if, which, in turn, can be defined in ACDL, see
Sec. 3.3). In other words,

f(x, y) =

f(x − 1, y) if ℓ(x) = ℓ(x − 1)
f(x − 1, y) −

⌈
f(x−1,y)

2

⌉
otherwise

=

f(x − 1, y) if ℓ(x) = ℓ(x − 1)⌊
f(x−1,y)

2

⌋
otherwise

=
{

f(x − 1, y) if ℓ(x) = ℓ(x − 1)
f(x − 1, y) ÷ 2 otherwise.
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A bit more formally,

f(x, y) =
⌊

f(β(ℓ(x) − 1), y)
2

⌋
=
⌊

f(2ℓ(x)−1 − 1, y)
2

⌋
= f

(
2ℓ(x)−1 − 1, y

)
÷ 2

where β
(
ℓ(z)

)
= 2ℓ(z) −1 is the greatest integer the length of which is ℓ(z), i.e. here, 2ℓ(x)−1 −1

is the greatest integer the length of which is ℓ(x) − 1. Hence, starting with x > 0, there are
ℓ(x) − 1 jumps of values.

Proof of Proposition 17. By Definition 16 (as clarified by the remarks above),and, since
(a ÷ 2b) ÷ 2 = a ÷ 2b+1, it is easily shown by induction that, for all x and y:

f(x, y) =
⌊ ℓ(x)−1∏

u=1

g(y)
2

⌋
=
⌊

g(y)
2ℓ(x)−1

⌋
= g(y) ÷ 2ℓ(x)−1.

This corresponds to right-shifting g(y) a number of times equal to ℓ(x) − 1, which can be
easily implemented by a constant-depth circuit. ◀

A.3 Rewriting the Function BIT in ACDL

First, the log most significant part function msp(x, y) : x, y 7→
⌊

y
2ℓ(x)

⌋
can be rewritten as

the solution of the IVP:

f(0, y) = y

∂f(x, y)
∂ℓ

= −
⌈

f(x, y)
2

⌉
which is clearly an instance of ℓ-ODE3.

Second, we introduce the basic conditional function:

if(x, y, z) =
{

y if x = 0
z otherwise.

Notice that this function is also crucial to rewrite the CRN schema. As seen, the “shift
function” 2ℓ(x) × y can be easily rewritten via ℓ-ODE1. Thus, if(x, y, z) is simulated in our
setting by composition from shift, addition and subtraction:

if(x, y, z) =
(
2ℓ(1−sg(x)) × y − y

)
+
(
2ℓ(sg(x)) × z − z

)
.

Indeed, as desired, if x = 0, then sg(x) = 0 and ℓ(sg(x)) = 0, so that if(0, y, z) =
(
2ℓ(1) × y −

y
)

+
(
2ℓ(0)×z−z) = y; similarity, for x ≠ 0, if(0, y, z) =

(
2ℓ(0) × y − y

)
+
(
2ℓ(1) × z − z) = z.

Generalizing this definition we can capture a more general conditional function below:

cond(x, v, y, z) =
{

y if x < v

z otherwise

Then, we consider the special bit function bit(x, y) returning 1 when the ℓ(y)th bit of x

is 1. This can be rewritten in ACDL due to msp:

bit(x, y) = msp(y, x) − 2 × msp(2y + 1, x).
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Finally, we introduce the function bexp(x, y), that, for any y ≤ ℓ(x), returns 2i. We start
by defining faux(t, x, i) by the ℓ-ODE1 schema below:

faux(0, x, i) = if(i, 1, 0)
∂faux(t, x, i)

∂ℓ(t) = faux(t, x, i) + haux(t, i)

where

haux(t, i) = if(ℓ(t) − i, 1, 0).

Observe that, as seen, if can be rewritten in ACDL (while ℓ and subtraction are basic
functions). Then, for i ≤ ℓ(x), we obtain faux(x, x, i) = 2ℓ(x)−i. The function bexp is then
defined as follows:

bexp(x, i) = msp
(
faux(x, x, i) − 1, 2ℓ(x)) =

⌊
2ℓ(x)

2ℓ(x)−i

⌋
= 2i,

as the length of faux(x, x, i) − 1 is ℓ(x) − i. Clearly, the function bexp is also in ACDL as all
the functions involved in its definitions (namely, msp, faux and 2ℓ(·)) are in ACDL.

We conclude by showing that, due to bexp and bit, the desired BIT function can be
rewritten in our setting by composition:

BIT(x, y) = bit(x, bexp(x, y) − 1).

Observe that alternative proofs are possible, but the one proposed here, and based on the
introduction of bexp, not only has the advantage of being straightforward, but also avoids
the unnatural use of function most significant part function, MSP.

A.4 On the ODE-Characterization of FTC0

Proof of Proposition 20. The proof is similar to that of Proposition 15. The main difference
concerns g(y) and h(x, y), which are now expressions possibly including ×.

As seen, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

(
ℓ(x)−1∏
t=u+1

2ℓ(k(y))

)
× h
(
α(u), y

)
with the convention that α(u) = 2u − 1,

∏x−1
x κ(x) = 1 and h

(
α(−1), y

)
= f(0, y). In-

tuitively, the (constant-depth) circuit we are going to construct is equivalent to that of
Proposition 15, but the values to be initially computed in parallel are obtained even via ×.
Yet, the introduction of multiplication does not affect the overall structure of the circuit, as
h
(
α(u), y

)
∈ {0, 1}, so that the final sum again corresponds to a simple bit-concatenation

(without carries).
More precisely, the desired constant-depth circuit is defined as follows:
In parallel, compute the values of g(y) and, for any u = 0, . . . , ℓ(x) − 1, of h

(
α(u), y

)
.

Observe that this can be done in FTC0, but possibly not in FAC0, as now these
arithmetic expressions may include ×.
The value of g(y) is shifted by padding 2ℓ(k(y))×ℓ(x) zeros on the right and, for u ≥ 0, all
values h

(
α(u), y

)
are shifted by padding on the right ℓ(k(y)) zeros ℓ(x) − u − 1 times,

and by padding on the left ℓ(k(y)) zeros ℓ(g(y)) + u times.
the disjunction of the above values is computed bit by bit. ◀
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Proof of Proposition 22. TCDL ⊆ FTC0. All basic functions are computable in FTC0,
and the class is closed under composition and, by Propositions 20 and 21, under ℓ-ODE2
and ℓ-ODE3.

FTC0 ⊆ TCDL. By mimicking the arithmetization proof provided in [14] (see Sec. 2.2),
as all the functions defining T C0 can be rewritten in TCDL (this time including ×, which is
basic in TCDL). ◀
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