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Abstract
In a graph, the switching operation reverses adjacencies between a subset of vertices and the others.
For a hereditary graph class G, we are concerned with the maximum subclass and the minimum
superclass of G that are closed under switching. We characterize the maximum subclass for many
important classes G, and prove that it is finite when G is minor-closed and omits at least one
graph. For several graph classes, we develop polynomial-time algorithms to recognize the minimum
superclass. We also show that the recognition of the superclass is NP-hard for 𝐻-free graphs when
𝐻 is a sufficiently long path or cycle, and it cannot be solved in subexponential time assuming the
Exponential Time Hypothesis.
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1 Introduction

In a graph 𝐺, the operation of switching a subset 𝐴 of vertices is to reverse the adjacencies
between 𝐴 and 𝑉 (𝐺) \ 𝐴. Two vertices 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝑉 (𝐺) \ 𝐴 are adjacent in the resulting
graph if and only if they are not adjacent in 𝐺. The switching operation, introduced by van
Lint and Seidel [35] (see more at [29, 30, 31]), is related to many other graph operations,
most notably variations of graph complementation. The complement of a graph 𝐺 is a graph
defined on the same vertex set of 𝐺, where a pair of distinct vertices are adjacent if and
only if they are not adjacent in 𝐺. The subgraph complementation on a vertex set 𝐴 is
to replace the subgraph induced by 𝐴 with its complement, while keeping the other part,
including connections between 𝐴 and the outside, unchanged [2]. Switching 𝐴 is equivalent
to taking the complement of the graph itself and the subgraphs induced by 𝐴 and 𝑉 (𝐺) \ 𝐴.
Indeed, the widely used bipartite complementation operation of a bipartite graph is nothing
but switching one part of the bipartition. A special switching operation where 𝐴 consists
of a single vertex is also well studied. It is a nice exercise to show that switching 𝐴 is
equivalent to switching the vertices in 𝐴 one by one. This is somewhat related to the local
complementation operation [28].
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11:2 Switching Classes: Characterization and Computation

Two graphs are switching equivalent if one can be obtained from the other by switching.
Colbourn and Corneil [9] proved that deciding whether two graphs are switching equivalent
is polynomial-time equivalent to the graph isomorphism problem. Another interesting topic
is to focus on graphs from a hereditary graph class G – a class is hereditary if it is closed
under taking induced subgraphs. There are two natural questions in this direction. Given a
graph 𝐺,

whether 𝐺 can be switched to a graph in G? and
whether all switching equivalent graphs of 𝐺 are in G?

We use the upper G switching class and the lower G switching class, respectively, to denote
the set of positive instances of these two problems. Since switching the empty set does
not change the graph, the answer of the first question is yes for every graph in G, while
the answer of the second question can only be yes for a graph in G. Thus, the class G is
sandwiched in between these two switching classes. Note that the three classes collapse into
one when G is closed under switching, e.g., complete bipartite graphs.

Both switching classes are also hereditary. For the upper switching class, if a graph 𝐺
can be switched to a graph 𝐻 in G, then any induced subgraph of 𝐺 can be switched to
an induced subgraph of 𝐻, which is in G because G is hereditary. For the lower switching
class, recall that a hereditary graph class G can be characterized by a (not necessarily finite)
set F of forbidden induced subgraphs. A graph is in G if and only if it does not contain
any forbidden induced subgraph. If 𝐺 contains any induced subgraph that is switching
equivalent to a graph in F , then 𝐺 cannot be in the lower G switching class. Thus, the
forbidden induced subgraphs of the lower G switching class are precisely all the graphs that
are switching equivalent to some graphs in F .

Even when G has an infinite set of forbidden induced subgraphs, the lower G switching
class may have very simple structures. The list of forbidden induced subgraphs obtained
as above is usually not minimal. For example, Hertz [18] showed that the lower perfect
switching class has only four forbidden induced subgraphs, all switching equivalent to the
five-cycle. In the same spirit as Hertz [18], we characterize the lower G switching classes of a
number of important graph classes.

▶ Theorem 1. The lower G switching class is characterized by a finite number of forbidden
induced subgraphs when G is one of the following graph classes: weakly chordal, comparabil-
ity, co-comparability, permutation, distance-hereditary, Meyniel, bipartite, chordal bipartite,
complete multipartite, complete bipartite, chordal, strongly chordal, interval, proper interval,
Ptolemaic, and block.

Indeed, since the forbidden induced subgraphs of threshold graphs are 2𝐾2, 𝐶4, and 𝑃4 [8],
by the arguments given above, the forbidden subgraphs of the lower threshold switching class
are all graphs on four vertices (every graph on four vertices is switching equivalent to a graph
in {2𝐾2, 𝐶4, 𝑃4}). This class, consisting of only graphs of order at most three, is finite. Also
finite are lower switching classes of minor-closed graph classes that are nontrivial1 (there
exists at least one graph not in this class).

▶ Theorem 2. Let G be a nontrivial minor-closed graph class, and let 𝑝 be the smallest
order of a forbidden minor of G. Then |𝑉 (𝐺) | = 𝑂 (𝑝√𝑝), for graphs 𝐺 in lower G switching
class.

1 We thank an anonymous reviewer for the bound in Theorem 2, which improves the bound in a previous
version of this manuscript.
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Theorems 1 and 2 immediately imply polynomial-time and constant-time algorithms,
respectively, for recognizing these lower switching classes, i.e., deciding whether a graph is in
the class. We remark that there are classes G such that the lower G switching class has an
infinite number of forbidden induced subgraphs.

The upper G switching classes turn out to be more complicated. These classes are
nontrivial even for the class of 𝐻-free graphs for a fixed graph 𝐻. Although G has only one
forbidden induced subgraph, the number of forbidden induced subgraphs of the upper G
switching class is usually infinite. Based on our current knowledge, exceptions do exist but
are rare [19]. Even so, for many graph classes G, polynomial-time algorithms for recognizing
the upper G switching class exist, e.g., bipartite graphs [16]. Our understanding of this
problem is very limited, even for classes defined by forbidding a single graph 𝐻. For all graphs
𝐻 on at most three vertices, polynomial-time algorithms are known for recognizing the upper
𝐻-free switching class [16, 17, 24]. Of a graph 𝐻 on four vertices, the four-path [18] and the
claw [19] have been settled. We present a polynomial-time algorithm for paw-free graphs.
If two graphs 𝐻1 and 𝐻2 are complements to each other, then the recognition of the upper
𝐻1-free switching class is polynomially equivalent to that of the upper 𝐻2-free switching class.
Thus, the remaining cases on four vertices are the diamond, the cycle, and the complete
graph. We made attempt to them by solving the class of forbidding the four-cycle and its
complement, which is known as pseudo-split graphs.

▶ Theorem 3. The upper G switching class can be recognized in polynomial time when
G is one of the following graph classes: paw-free graphs, pseudo-split graphs, split graphs,
{𝐾1, 𝑝 , 𝐾1,𝑞}-free graphs, and bipartite chain graphs.

In Theorem 3, we want to highlight the algorithms for pseudo-split graphs and for split
graphs. We actually show a stronger result. Any input graph 𝐺 has only a polynomial
number of ways to be switched to a graph in these two classes, and we can enumerate them
in polynomial time. Thus, the algorithms can apply to hereditary subclasses of pseudo-split
graphs, provided that these subclasses themselves can be recognized in polynomial time.
This is only possible when the lower switching classes of them are finite. It is unknown
whether the other direction also holds true.

Jelínková and Kratochvíl [19] found graphs 𝐻 such that the upper 𝐻-free switching class
is hard to recognize. The smallest graph they found is on nine vertices. More specifically,
they showed that, for all 𝑘 ≥ 3, there is a graph of order 3𝑘 with this property. The graph is
obtained from a three-vertex path by substituting one degree-one vertex with an independent
set of 𝑘 vertices, and each of the other two vertices with a clique of 𝑘 vertices. We show
that the recognition of the upper 𝐻-free switching class is already hard when 𝐻 is a cycle on
seven vertices or a path on ten vertices. Our proofs can be adapted to longer ones.

▶ Theorem 4. Deciding whether a graph is switching equivalent to a 𝑃10-free graph or a
𝐶7-free graph is NP-complete, and it cannot be solved in subexponential time (on |𝑉 (𝐺) |)
assuming the Exponential Time Hypothesis.

Since the problem admits a trivial 2 |𝑉 (𝐺) | · |𝑉 (𝐺) |𝑂 (1) -time algorithm, by enumerating
all subsets of 𝑉 (𝐺), our bound in Theorem 4 is asymptotically tight. We conjecture that it
is NP-complete to decide whether a graph can be switched to an 𝐻-free graph when 𝐻 is a
cycle or path of length six.

Theorem 1 and 2 are proved in Section 3, Theorem 3 is proved in Section 4, and Theorem 4
is proved in Section 5. Due to space constraints, most of the proofs are left to a full version
of the paper.

MFCS 2024
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Other related work
Jelínková et al. [20] studied the parameterized complexity of the recognition problem of the
upper switching classes. Let us remark that there is also study on the upper switching classes
for non-hereditary graph classes. For example, we can decide in polynomial time whether a
graph can be switching equivalent to a Hamiltonian graph [11] or to an Eulerian graph [16],
but it is NP-complete to decide whether a graph can be switching equivalent to a regular
graph [23]. Cameron [6] and Cheng and Wells Jr. [7] generalized the switching operation to
directed graphs. Foucaud et al. [13] studied switching operations in a different setting.

Seidel [30] showed that the size of a maximum set of switching inequivalent graphs on 𝑛
vertices is equivalent to the number of two-graphs of size 𝑛. This is further shown to be the
same as the number Eulerian graphs on 𝑛 vertices [25] and graphs on 2𝑛 vertices admitting
certain coloring [26]. Bodlaender and Hage [4] showed that the switching operation does not
change the cliquewidth of a graph too much, though it may change the treewidth significantly.
The switching equivalence between graphs in certain classes can be decided in polynomial
time. For example, acyclic graphs because two forests are switching equivalent if and only
if they are isomorphic [14]. In a complementary study, Hage and Harju [15] characterized
graphs that cannot be switched to any forest. They are either a small graph on at most nine
vertices, or switching equivalent to a cycle.

From a graph 𝐺 on 𝑛 vertices, we can obtain 𝑛 graphs by switching each vertex, called the
switching deck of 𝐺. The switching reconstruction conjecture of Stanley [32] asserts that for
any 𝑛 > 4, if two graphs on 𝑛 vertices have the same switching deck, they must be isomorphic.
The conjecture remains widely open, and we know that it holds on triangle-free graphs [12].
A similar question in digraph is also studied [5].

2 Preliminaries

All the graphs discussed in this paper are finite and simple. The vertex set and edge set of a
graph 𝐺 are denoted by, respectively, 𝑉 (𝐺) and 𝐸 (𝐺). Let 𝑛 = |𝑉 (𝐺) | and 𝑚 = |𝐸 (𝐺) |. For
a subset 𝑈 ⊆ 𝑉 (𝐺), we denote by 𝐺 [𝑈] the subgraph of 𝐺 induced by 𝑈, and by 𝐺 −𝑈 the
subgraph 𝐺 [𝑉 (𝐺) \𝑈], which is shortened to 𝐺 − 𝑣 when 𝑈 = {𝑣}. The neighborhood of a
vertex 𝑣, denoted by 𝑁𝐺 (𝑣), comprises vertices adjacent to 𝑣, i.e., 𝑁𝐺 (𝑣) = {𝑢 | 𝑢𝑣 ∈ 𝐸 (𝐺)},
and the closed neighborhood of 𝑣 is 𝑁𝐺 [𝑣] = 𝑁𝐺 (𝑣) ∪ {𝑣}. The closed neighborhood and
the neighborhood of a set 𝑋 ⊆ 𝑉 (𝐺) of vertices are defined as 𝑁𝐺 [𝑋] =

⋃
𝑣∈𝑋 𝑁𝐺 [𝑣] and

𝑁𝐺 (𝑋) = 𝑁𝐺 [𝑋] \ 𝑋, respectively. We may drop the subscript if the graph is clear from the
context. We write 𝑁 (𝑢, 𝑣) and 𝑁 [𝑢, 𝑣] instead of 𝑁 ({𝑢, 𝑣}) and 𝑁 [{𝑢, 𝑣}]; i.e., we drop the
braces when writing the neighborhood of a vertex set. Two vertex sets 𝑋 and 𝑌 are complete
(resp., nonadjacent) to each other if all (resp., no) edges between 𝑋 and 𝑌 are present.

For positive ℓ, we use 𝐶ℓ (ℓ ≥ 3), 𝑃ℓ , and 𝐾ℓ to denote the cycle, path, and complete
graph, respectively, on ℓ vertices. When ℓ ≥ 4, an induced 𝐶ℓ is called an ℓ-hole. A complete
bipartite graph with 𝑝 and 𝑞 vertices in the two parts are denoted as 𝐾𝑝,𝑞.

The disjoint union of two graphs 𝐺1 and 𝐺2 is denoted by 𝐺1 + 𝐺2. The complement
graph 𝐺 of a graph 𝐺 is defined on the same vertex set 𝑉 (𝐺), where a pair of distinct vertices
𝑢 and 𝑣 is adjacent in 𝐺 if and only if 𝑢𝑣 ∉ 𝐸 (𝐺). By G𝑐, we denote the set of graphs not in
G. The switching of a vertex subset 𝐴 of a graph 𝐺 is denoted by 𝑆(𝐺, 𝐴). It has the same
vertex set as 𝐺 and its edge set is 𝐸 (𝐺 [𝐴]) ∪𝐸 (𝐺 − 𝐴) ∪ {𝑢𝑣 | 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉 (𝐺) \ 𝐴, 𝑢𝑣 ∉ 𝐸 (𝐺)}.
The following observations are immediate from the definition. The symmetric difference of
two sets is defined as 𝐴Δ𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴).
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▶ Proposition 5 (folklore). Let 𝐺 be a graph, and 𝐴, 𝐵 ⊆ 𝑉 (𝐺).
𝑆(𝐺, 𝐴) = 𝑆(𝐺, (𝑉 (𝐺) \ 𝐴)).
𝑆(𝑆(𝐺, 𝐴), 𝐴) = 𝐺.
𝑆(𝑆(𝐺, 𝐴), 𝐵) = 𝑆(𝑆(𝐺, 𝐵), 𝐴) = 𝑆(𝐺, 𝐴Δ𝐵).
𝑆(𝐺, 𝐴) = 𝑆(𝐺, 𝐴).

Two graphs 𝐺 and 𝐺′ are called switching equivalent if 𝑆(𝐺, 𝐴) = 𝐺′ for some 𝐴 ⊆ 𝑉 (𝐺).
By Proposition 5, switching is an equivalence relation. For example, the eleven graphs of
order 4 can be partitioned into the following three sets

{𝐶4, 𝐾3 + 𝐾1, 4𝐾1}, {2𝐾2, 𝐾3 + 𝐾1, 𝐾4}, {𝑃4, 𝐾2 + 2𝐾1, 𝐾2 + 2𝐾1, 𝑃3 + 𝐾1, 𝑃3 + 𝐾1}.

Note that 𝐾3 + 𝐾1 is the claw, 𝑃3 + 𝐾1 is the paw, and 𝐾2 + 2𝐾1 is the diamond; see Figure 1
and 2a. For a graph 𝐺, we use S(𝐺) to denote the set of non-isomorphic graphs that can be
obtained from 𝐺 by switching. Figure 2 illustrates S(𝐶4) and S(𝐶5). For a set G of graphs,
by S(G) we denote the union of S(𝐺) for 𝐺 ∈ G.

A graph 𝐺 is a split graph if the vertex set of 𝐺 can be partitioned in such a way that
one is a clique and the other is an independent set. Split partitions of a split graph refer to
such (clique, independent set) partitions. An edgeless graph is a graph without any edges.

In general, for two sets G and H of graphs, we say that G is H -free if 𝐺 is 𝐻-free for
every 𝐺 ∈ G and for every 𝐻 ∈ H . By F (H), we denote the class of H -free graphs. Note
that F (H ∪H ′) = F (H) ∩ F (H ′).

For a graph property G, the lower G switching class, denoted by L(G), consists of all
graphs 𝐺 with S(𝐺) ⊆ G. Note that every graph in L(G) is also in G. Thus, L(G) is
the maximal subset G′ of G such that S(G′) = G′. The upper G switching class, denoted
by U(G), consists of all graphs 𝐺 with S(𝐺) ∩ G ≠ ∅. Clearly, every graph in G is in
U(G). Therefore, U(G) is the minimal superset G′ of G such that S(G′) = G′. We note that
U(G) = S(G). The following proposition is immediate from the definitions and Proposition 5.

▶ Proposition 6. Let G and G′ be graph classes. Then the following hold true.
1. (L(G))𝑐 = U(G𝑐).
2. If G′ ⊆ G, then L(G′) ⊆ L(G) and U(G′) ⊆ U(G).
3. L(G) ∩ L(G′) = L(G ∩ G′).

▶ Proposition 7. For a set H of graphs, L(F (H)) = F (U(H)).

(a) paw (b) diamond (c) house (d) net (e) sun (f) domino

Figure 1 Small graphs.

3 Lower switching classes

Every (odd) hole of length at least seven contains an induced 𝑃4 + 𝐾1, and its complement
contains an induced gem. Both 𝑃4 + 𝐾1 and the gem are in S(𝐶5); see Figure 2b. Thus, all
the forbidden induced subgraphs of perfect graphs, namely, odd holes and their complements,
boil down to S(𝐶5), and the lower perfect switching class is equivalent to the lower 𝐶5-free

MFCS 2024



11:6 Switching Classes: Characterization and Computation

(a) S(𝐶4 ) = {𝐶4, claw, 4𝐾1} (b) S(𝐶5 ) = {𝐶5, bull, gem, 𝑃4 + 𝐾1}

Figure 2 Switching equivalent graphs of 𝐶4 and 𝐶5. Switching the solid nodes (or the rest)
results in the first graph in the list.

switching class [18]. In the same spirit, we characterized the lower G switching classes of
a number of important graph classes listed in Figure 3. The results are listed in Table 1.
Since all these lower switching classes have finite characterizations, they can be recognized
in polynomial time. For the class of chordal graphs and several of its subclasses, we show
a stronger structural characterization of their lower switching classes. They have to be
proper interval graphs with a very special structure. The following lemma, a consequence of
Proposition 6(2), is crucial for our arguments.

▶ Lemma 8. Let G1,G2, and G3 be three classes of graphs such that G1 ⊆ G2 ⊆ G3. If L(G3)
= L(G1), then L(G2) = L(G1). In particular, the following is true. Let H1,H2, and H3 be
three sets of graphs such that H3 ⊆ H2 ⊆ H1. If L(F (H3)) = L(F (H1)), then L(F (H2)) =
L(F (H1)).

weakly chordal Meyniel

chordaldistance-hereditary

strongly chordalPtolemaic

block

proper interval

interval

co-comparability

chordal bipartite

permutation

comparability

bipartite

complete bipartite

Figure 3 The Hasse diagram of graph classes studied in Section 3.

To see a simple application of Lemma 8, let G be the class of complete bipartite graphs
and G′ be the class of bipartite graphs. Since 𝐾3 and 𝐾2 + 𝐾1 are switching equivalents, and
bipartite graphs are 𝐾3-free, we obtain that lower bipartite switching class is {𝐾3, 𝐾2 + 𝐾1}-
free. Recall that {𝐾3, 𝐾2 + 𝐾1}-free graphs are exactly the class of complete bipartite graphs.
Further, switching a complete bipartite graph results in a complete bipartite graph. Therefore,
lower G′′ switching class is equivalent to the class of complete bipartite graphs, where G′′ is
a subclass of bipartite graphs and a superclass of complete bipartite graphs, such as bipartite
graphs, complete bipartite graphs, and chordal bipartite graphs (bipartite graphs in which
every cycle longer than 4 has a chord).

▶ Lemma 9. Let G be any subclass of bipartite graphs and any superclass of complete bipartite
graphs. Then L(G) is the class of complete bipartite graphs.
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Table 1 Lower switching classes of various graph classes.

G L(G) By

weakly chordal, permutation {𝐶5, 𝐶6, 𝐶6}-free

Corollary 11
distance-hereditary {domino, house, 𝐶5, 𝐶6}-free
comparability {𝐶5, 𝐶6}-free
co-comparability {𝐶5, 𝐶6}-free
Meyniel graphs {𝐶5, house}-free
complete bipartite, chordal bi-
partite, bipartite

complete bipartite Lemma 9

chordal, strongly chordal, inter-
val, proper interval, Ptolemaic

C0 Corollary 13

block (+), (+, 0, +), (1, 1, 1), and (1, 0, 1, 0, 1) Lemma 14

Let H be the set of all graphs having an induced subgraph isomorphic to at least one
graph in S(𝐶5). A building is obtained from a hole by adding an edge connecting two vertices
of distance two; e.g., the house, see Figure 1. An odd building is a building with odd number
of vertices.

▶ Observation 10. H contains 𝐶5, holes of length at least seven, complements of holes of
length at least seven, and buildings of at least six vertices.

Lemma 8 and Observation 10 lead us to Corollary 11.

▶ Corollary 11. The forbidden induced subgraphs of the lower G switching class of G
being weakly chordal, distance-hereditary, comparability, co-comparability, permutation, and
Meyniel graphs are {𝐶5, 𝐶6, 𝐶6}, {domino, house, 𝐶5, 𝐶6}, {𝐶5, 𝐶6}, {𝐶5, 𝐶6}, {𝐶5, 𝐶6, 𝐶6},
{𝐶5, house}, respectively.

Next we deal with the class of chordal graphs and its subclasses. We start with showing
that the lower {𝐶4, 𝐶5, 𝐶6}-free switching class is a subclass of proper interval graphs and
has very simple structures. Let 𝑎1, . . ., 𝑎𝑝 be 𝑝 nonnegative integers. For 1 ≤ 𝑖 ≤ 𝑝, we
substitute the 𝑖th vertex of a path on 𝑝 vertices with a clique of 𝑎𝑖 vertices. We denote the
resulting graph as (𝑎1, 𝑎2, . . . , 𝑎𝑝). For example, the paw and the diamond are (1, 1, 2) and
(1, 2, 1), respectively, while the complement of the diamond can be represented as (2, 0, 1, 0, 1).
We use “+” to denote an unspecified positive integer, and hence (+) stands for all complete
graphs.

The forbidden induced subgraphs of proper interval graphs are holes, sun, net, and claw.
Note that a sun and a net (see Figure 1) contains an induced bull (∈ S(𝐶5)), while any
cycle on at least seven vertices contains an induced 𝑃4 + 𝐾1 ∈ S(𝐶5). A claw is in S(𝐶4).
Therefore, lower {𝐶4, 𝐶5, 𝐶6}-free switching class is a subclass of proper interval graphs. A
careful analysis shows that the structure is much simpler.

▶ Lemma 12. The lower {𝐶4, 𝐶5, 𝐶6}-free switching class consists of graphs (+), (+, +, 1),
(+, 1, +), (+, 0, +), (+, +, 1, 0, +), (+, 0, +, 0, 1), (+, +, 1, +), and (+, +, 1, +, +).

Let C0 denote the lower {𝐶4, 𝐶5, 𝐶6}-free switching class. Since chordal graphs are {𝐶4, 𝐶5, 𝐶6}-
free, lower chordal switching class is a subclass of C0. By Lemma 12, C0 is a subclass of lower
chordal switching class. Therefore, they are equivalent. This same observation applies to
subclasses of chordal graphs that contain all the graphs in C0 and by Lemma 8 to superclasses
of chordal graphs which are {𝐶4, 𝐶5, 𝐶6}-free.

MFCS 2024



11:8 Switching Classes: Characterization and Computation

▶ Corollary 13. The following switching classes are all equivalent to C0: lower chordal
switching class, lower strongly chordal switching class, lower interval switching class, lower
proper interval switching class, and lower Ptolemaic switching class.

Proof. Since chordal graphs, strongly chordal graphs, interval graphs, and proper interval
graphs are all hole-free, all the lower switching classes are subclasses of C0 by Proposition 6.
On the other hand, by Lemma 12, all the graphs in C0 are proper interval graphs. Thus,
C0 is a subclass of proper interval switching graphs, hence also a subclass of the first three
switching classes. Ptolemaic graphs are gem-free chordal graphs. Since gem is in S(𝐶5), the
lower Ptolemaic switching class is also C0. Thus, they are all equal. ◀

The class of line graphs has nine forbidden induced subgraphs [3], two of which are
switching equivalent to 𝐶6, and one 𝐶4. Although 𝐶5 is not forbidden, we show that a graph
in the lower line switching class contains an induced 𝐶5 if and only if it is a 𝐶5. Thus, this
switching class consists of S(𝐶5) and a subclass of C0.

▶ Lemma 14. The lower block switching class consists of graphs (+), (+, 0, +), (1, 1, 1), and
(1, 0, 1, 0, 1). The lower line switching class comprises of (+), (1,1,1), (2,1,1), (1,2,1), (2,1,2),
(+,0,+), (1,1,1,0,1), (2,1,1,0,1), (1,0,1,0,1), (2,0,1,0,1), (2,0,2,0,1), (1,1,1,1), (1,2,1,1),
(1,1,1,1,1), and S(𝐶5).

A graph 𝐹 is a minor of a graph 𝐺 if 𝐹 can be obtained from a subgraph of 𝐺 by
contracting edges (identifying the two ends of the edge and keeping one edge between the
resulting vertex and each of the neighbors of the end points of the edge). For example, any
cycle contains all shorter cycles as minors. A graph class G is minor-closed if every minor of
a graph in G also belongs to G. In other words, there is a set M of forbidden minors such
that a graph belongs to G if and only if it does not contain as a minor any graph inM. Since
an induced subgraph of a graph 𝐺 is a minor of 𝐺, a minor-closed graph class is hereditary.
We say that a graph class is nontrivial if there is at least one graph not in the class.

Kostochka [21, 22] and Thomason [33] proved that, there exists an absolute constant
𝑐 > 0 such that every graph 𝐺 with at least 𝑐 · |𝑉 (𝐺) | · 𝑝√𝑝 edges has 𝐾𝑝 as a minor. See [34]
for an overview. This helps us to prove Theorem 2:

▶ Theorem 2. Let G be a nontrivial minor-closed graph class, and let 𝑝 be the smallest
order of a forbidden minor of G. Then |𝑉 (𝐺) | = 𝑂 (𝑝√𝑝), for graphs 𝐺 in lower G switching
class.

Proof. Let 𝐺 ∈ L(G) be a graph with 𝑛 vertices. It is straight-forward to verify that there
exists a constant 𝑐′ > 0 such that either 𝐺 or 𝑆(𝐺, 𝐴) has 𝑐′ · 𝑛2 edges, where 𝐴 is any subset
of 𝑉 (𝐺) with cardinality ⌊𝑛/2⌋. If 𝑐′ · 𝑛2 ≥ 𝑐 · 𝑛 · 𝑝√𝑝, then 𝐺 has a 𝐾𝑝-minor. Therefore,
𝑛 = 𝑂 (𝑝√𝑝). ◀

We have found that, for the class of outerplanar graphs, planar graphs, and series-parallel
graphs, the maximum orders of graphs in the lower switching classes are five, seven, and at
most 12, respectively.

Let us mention that there are classes G such that the lower G switching class has an
infinite number of forbidden induced subgraphs.

▶ Lemma 15. For any infinite set 𝐼 ⊆ {9, 10, . . .}, the forbidden induced subgraphs of the
lower {𝐶ℓ , ℓ ∈ 𝐼}-free switching class are

⋃
ℓ∈𝐼 S(𝐶ℓ).
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4 Upper switching classes: algorithms

For the recognition of the upper G switching class, the input is a graph 𝐺, and the solution
is a vertex subset 𝐴 ⊆ 𝑉 (𝐺) such that 𝑆(𝐺, 𝐴) ∈ G.

We start with split graphs. If the input graph 𝐺 is a split graph, then we have nothing
to do. Suppose that 𝐺 is in the upper split switching class. Let 𝐴 be a solution, and 𝐾 ⊎ 𝐼 a
split partition of 𝑆(𝐺, 𝐴). Note that if 𝐴 ∈ {𝐾, 𝐼}, then 𝐺 is a split graph. We may assume
that 𝐴 intersects both 𝐾 and 𝐼: if 𝐴 is a proper subset of 𝐾 or 𝐼, we replace 𝐴 with 𝑉 (𝐺) \ 𝐴.
We can guess a pair of vertices 𝑢 ∈ 𝐴 ∩ 𝐾 and 𝑣 ∈ 𝐴 ∩ 𝐼. The vertex set 𝑉 (𝐺) \ {𝑢, 𝑣} can be
partitioned into four parts, namely, 𝑁 (𝑢) \𝑁 [𝑣], 𝑁 (𝑣) \𝑁 [𝑢], 𝑁 (𝑢) ∩𝑁 (𝑣), and 𝑉 (𝐺) \𝑁 [𝑢, 𝑣].
It is easy to see that the first is a subset of 𝐴 while the second is disjoint from 𝐴. The
subgraphs 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] and 𝐺 − 𝑁 [𝑢, 𝑣] must be split graphs, and each admits a special
split partition with respect to 𝐴. The algorithm is described in Figure 4. We can modify the
algorithm so that it enumerates all solutions.

▶ Theorem 16. Let 𝐺 be a graph. There are a polynomial number of subsets 𝐴 of 𝑉 (𝐺)
such that 𝑆(𝐺, 𝐴) is a split graph, and they can be enumerated in polynomial time.

1. if 𝐺 is a split graph then return “yes”;
2. for each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) do
2.1. if 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] is not a split graph then continue;
2.2. if 𝐺 − 𝑁 [𝑢, 𝑣] is not a split graph then continue;
2.3. for each split partition 𝐾1 ⊎ 𝐼1 of 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] do
2.3.1. for each split partition 𝐾2 ⊎ 𝐼2 of 𝐺 − 𝑁 [𝑢, 𝑣] do
2.3.1.1. if 𝑆(𝐺, {𝑢, 𝑣} ∪ (𝑁 (𝑢) \ 𝑁 [𝑣]) ∪ 𝐾1 ∪ 𝐼2) is a split graph

then return “yes”;
3. return “no.”

Figure 4 The algorithm for split graphs.

A pseudo-split graph is either a split graph, or a graph whose vertex set can be partitioned
into a clique 𝐾, an independent set 𝐼, and a set 𝐻 that (1) induces a 𝐶5; (2) is complete
to 𝐾; and (3) is nonadjacent to 𝐼. We say that 𝐾 ⊎ 𝐼 ⊎ 𝐻 is a pseudo-split partition of the
graph, where 𝐻 may or may not be empty. If 𝐻 is empty, then 𝐾 ⊎ 𝐼 is a split partition of
the graph. When 𝐻 is nonempty, the pseudo-split partition is unique.

For pseudo-split graphs, we start with checking whether the input graph can be switched
to a split graph. We are done if the answer is “yes.” Henceforth, we are looking for a resulting
graph that contains a hole 𝐶5. Suppose that 𝐺 is in the upper pseudo-split switching class.
Let 𝐴 be a solution, and 𝐾 ⊎ 𝐼 ⊎ 𝐻 is a pseudo-split partition of 𝑆(𝐺, 𝐴). We may assume
that |𝐴 ∩ 𝐻 | ≥ 3: otherwise, we replace 𝐴 with 𝑉 (𝐺) \ 𝐴. The subgraph 𝐺 [𝐻] must be one
of Figure 2b, and 𝐴 ∩ 𝐻 are precisely the vertices represented as empty nodes. We can guess
the vertex set 𝐻 as well as its partition with respect to 𝐴, and then all the other vertices are
fixed by the following observation:

𝐾 is complete to 𝐻 ∩ 𝐴 and nonadjacent to 𝐻 \ 𝐴, and
𝐼 is complete to 𝐻 \ 𝐴 and nonadjacent to 𝐻 ∩ 𝐴.

The algorithm is described in Figure 5. We can modify the algorithm so that it enumerates
all solutions.
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1. if 𝐺 can be switched to a split graph then return “yes”;
2. for each vertex set 𝐻 such that 𝐺 [𝐻] ∈ S(𝐶5) do
2.0. 𝐻1 ← the empty nodes of 𝐺 [𝐻] as in Figure 2b; 𝐻2 ← 𝐻 \ 𝐻1;
2.1. for each vertex 𝑥 in 𝑉 (𝐺) \ 𝐻 do
2.1.1. if 𝑁 (𝑥) ∩ 𝐻 is neither 𝐻1 nor 𝐻2 then continue;
2.2. if 𝑁 (𝐻1) \ 𝐻 does not induce a split graph then continue;
2.3. if 𝑁 (𝐻2) \ 𝐻 does not induce a split graph then continue;
2.4. for each split partition 𝐾1⊎𝐼1 of the subgraph induced by 𝑁 (𝐻1)\𝐻 do
2.4.1. for each split partition 𝐾2⊎𝐼2 of the subgraph induced by 𝑁 (𝐻2)\𝐻 do
2.4.1.1. if 𝑆(𝐺, 𝐻1 ∪ 𝐾1 ∪ 𝐼2) is a pseudo-split graph then return “yes”;
3. return “no”.

Figure 5 The algorithm for pseudo-split graphs.

▶ Theorem 17. Let 𝐺 be a graph. There are a polynomial number of subsets 𝐴 of 𝑉 (𝐺)
such that 𝑆(𝐺, 𝐴) is a pseudo-split graph, and they can be enumerated in polynomial time.

As a result, we have an algorithm for any hereditary subclass G of pseudo-split graphs
that can be recognized in polynomial time. Since a graph has 2𝑛 subsets, and the switching
of only a polynomial number of them leads to a pseudo-split graph, every graph of sufficiently
large order can be switched to a graph that is not a pseudo-split graph. Thus, the lower
pseudo-split switching class is finite.

Next we give an algorithm for recognizing upper paw-free switching class. Since a paw
contains an induced 𝐶3 and an induced 𝑃3, both 𝐶3-free graphs and 𝑃3-free graphs are
paw-free. Olariu [27] showed that a connected paw-free graph is 𝐶3-free or 𝑃3-free (i.e.,
complete multipartite). We start with checking whether 𝐺 can be switched to a 𝐶3-free
graph [17] or a 𝑃3-free graph [24]. When the answers are both “no”, we look for a set
𝐴 ⊆ 𝑉 (𝐺) such that 𝑆(𝐺, 𝐴) is not connected and contains a triangle. It is quite simple
when 𝑆(𝐺, 𝐴) has three or more components. We can always assume that 𝐴 intersects two
of them. We guess one vertex from each of these intersections, and an arbitrary vertex
from another component (which can be in 𝐴 or not). The three vertices are sufficient to
determine 𝐴. It is more challenging when 𝑆(𝐺, 𝐴) comprises precisely two components. The
crucial observation here is that one of the components is 𝐶3-free and the other 𝑃3-free. We
have assumed the graph contains a triangle. If both components contain triangles, hence
𝑃3-free, then 𝑆(𝐺, 𝐴) can be switched to a complete multipartite graph, contradicting the
assumption above. We guess a triple of vertices that forms a triangle in 𝑆(𝐺, 𝐴), and they
can determine 𝐴. The algorithm is described in Figure 6. A co-component of a graph 𝐺 is a
component of the complement of 𝐺. Indeed, a graph is complete multipartite if and only
if every co-component is an independent set. With two tailored algorithms we prove that
recognizing upper {𝐾1, 𝑝 , 𝐾1,𝑞}-free switching class and upper bipartite chain switching class
can be solved in polynomial-time.

We end this section with the following remark. By Proposition 6(1), we know that
recognizing L(G) is polynomially equivalent to recognizing U(G𝑐). This implies polynomial-
time algorithms for U(G𝑐) for all the classes G for which we proved (in Section 3) the
finiteness of L(G) or finiteness of the set of forbidden induced subgraphs of L(G). In
particular, this implies that we have polynomial-time algorithms for recognizing upper
non-planar switching class and upper non-chordal switching class.
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1. if 𝐺 can be switched to a 𝑃3- or 𝐶3-free graph then return “yes”;
2. for each pair of nonadjacent vertices 𝑢1, 𝑢2 do // three or more components.
2.1. for each 𝑢3 ∈ 𝑉 (𝐺) \ 𝑁 [𝑢1, 𝑢2] do
2.1.1. 𝐴← {𝑥 ∈ 𝑉 (𝐺) | |𝑁 [𝑥] ∩ {𝑢1, 𝑢2, 𝑢3} ≤ 1};
2.1.2. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
2.2. for each 𝑢3 ∈ 𝑁 (𝑢1) ∩ 𝑁 (𝑢2) do
2.2.1. 𝐴← (𝑉 (𝐺) \ 𝑁 [𝑢1, 𝑢2]) ∪ ((𝑁 [𝑢1]Δ𝑁 [𝑢2]) \ 𝑁 (𝑢3));
2.2.2. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
3. for each pair of adjacent vertices 𝑢1, 𝑢2 do // two components,

one containing 𝐶3.
3.1. 𝑝 ← number of components of 𝐺 [𝑁 (𝑢1) ∩ 𝑁 (𝑢2)];
3.2. 𝑞 ← number of components of 𝐺 − 𝑁 [𝑢1, 𝑢2];
3.3. for each 𝐼 ⊆ {1, . . . , 𝑝} and 𝐽 ⊆ {1, . . . , 𝑞} with |𝐼 |, |𝐽 | ≤ 2 do
3.3.1. 𝑋 ← ⋃

𝑖∉𝐼 𝑖th co-component of 𝐺 [𝑁 (𝑢1) ∩ 𝑁 (𝑢2)];
3.3.2. 𝑌 ← ⋃

𝑗∈𝐽 𝑗th co-component of 𝐺 − 𝑁 [𝑢1, 𝑢2];
3.3.3. if 𝑋 ≠ ∅ then
3.3.3.1. 𝑢3 ← an arbitrary vertex from 𝑋;
3.3.3.2. 𝐴← 𝑋 ∪ 𝑌 ∪ ((𝑁 (𝑢1)Δ𝑁 (𝑢2)) ∩ 𝑁 (𝑢3));
3.3.4. else
3.3.4.1. 𝑢3 ← an arbitrary vertex from 𝑉 (𝐺) \ (𝑁 [𝑢1, 𝑢2] ∪ 𝑌 );
3.3.4.2. 𝐴← 𝑋 ∪ 𝑌 ∪ ((𝑁 (𝑢1)Δ𝑁 (𝑢2)) \ 𝑁 (𝑢3));
3.3.5. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
4. return “no.”

Figure 6 The algorithm for paw-free graphs.

5 Upper switching classes: hardness

In this section, we prove hardness results for recognition problems for U(G), for G being
the class of 𝑃10-free graphs or the class of 𝐶7-free graphs. For convenience, we denote the
recognition problem for U(G) as Switching-to-G. We prove that Switching-to-F (𝑃10)
and Switching-to-F (𝐶7) are NP-complete and cannot be solved in time subexponential
in the number of vertices, assuming the Exponential Time Hypothesis (ETH). We refer to
the book [10] for an exposition to ETH and linear reductions which can be used to transfer
complexity lower bounds.

Our reductions are from Monotone NAE 𝑘-SAT. A Monotone NAE 𝑘-SAT instance
is a boolean formula Φ with 𝑛 variables and 𝑚 clauses where each clause contains exactly
𝑘 positive literals (and no negative literals). The objective is to check whether there is a
truth assignment to the variables so that there is at least one TRUE literal and at least one
FALSE literal in each clause in Φ. It is folklore that the problem is NP-complete and cannot
be solved in subexponential-time assuming ETH.

▶ Proposition 18 (folklore). For every 𝑘 ≥ 3, Monotone NAE 𝑘-SAT is NP-complete.
Further, the problem cannot be solved in time 2𝑜 (𝑛+𝑚) , assuming ETH.

We use the following construction for a reduction from Monotone NAE 5-SAT to
Switching-to-F (𝑃10).

MFCS 2024



11:12 Switching Classes: Characterization and Computation

▶ Construction 1. Let Φ be a Monotone NAE 5-SAT formula with 𝑛 variables
𝑋1, 𝑋2, · · · , 𝑋𝑛, and 𝑚 clauses 𝐶1, 𝐶2, · · · , 𝐶𝑚. We construct a graph 𝐺Φ as follows:

For each variable 𝑋𝑖 in Φ, introduce a variable vertex 𝑥𝑖. Let 𝐿 be the set of all variable
vertices, which forms an independent set of size 𝑛.
For each clause 𝐶𝑖 in Φ of the form {ℓ𝑖1, ℓ𝑖2, ℓ𝑖3, ℓ𝑖4, ℓ𝑖5}, introduce a set of clause vertices,
also named 𝐶𝑖, consisting of an independent set of size 5, denoted by 𝐼𝑖, and 5 disjoint 𝑃9s
each of which is denoted by 𝐵𝑖 𝑗 , for 1 ≤ 𝑗 ≤ 5. Let 𝐵𝑖 =

⋃5
𝑗=1 𝐵𝑖 𝑗 . The adjacency among

the set 𝐵𝑖 𝑗 and 𝐼𝑖, for 1 ≤ 𝑗 ≤ 5, is in such a way that the set of vertices in the 𝑃9 induced
by the 𝐵𝑖 𝑗 , except one of the end vertex 𝑣𝑖 𝑗 , is complete to 𝐼𝑖. Note that 𝐶𝑖 = 𝐵𝑖 ∪ 𝐼𝑖. The
set of union of all clause vertices is denoted by 𝐶. Let the 5 vertices introduced (in the
previous step) for the variables ℓ𝑖1, ℓ𝑖2, ℓ𝑖3, ℓ𝑖4, ℓ𝑖5 be denoted by 𝐿𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5}.
Make the adjacency between the vertices in 𝐿𝑖 and the sets of 𝑃9s in 𝐵𝑖s in such a way
that, taking one vertex from each set 𝐵𝑖 𝑗 along with the variable vertices in 𝐿𝑖 induces a
𝑃10, where the vertices in 𝐿𝑖 correspond to an independent set of size 5 in 𝑃10. More
precisely, 𝑥𝑖1 is complete to 𝐵𝑖1 and 𝑥𝑖 𝑗 is complete to 𝐵𝑖 ( 𝑗−1) ∪𝐵𝑖 𝑗 , for 2 ≤ 𝑗 ≤ 5. Further,
make the adjacency among the set 𝐼𝑖 and 𝐿𝑖 in such a way that, if exactly one of the set
𝐿𝑖 or 𝐼𝑖 is in the switching set 𝐴, then the vertices in 𝐿𝑖 ∪ 𝐼𝑖 together induce a 𝑃10 in
𝑆(𝐺Φ, 𝐴).
For all 𝑖 ≠ 𝑗 , 𝐶𝑖 is complete to 𝐶 𝑗 .

This completes the construction of the graph 𝐺Φ (see Figure 7 for an example of the
construction).

𝐵11 𝐵12 𝐵13 𝐵14 𝐵15 𝐵21 𝐵22 𝐵23 𝐵24 𝐵25

𝐼11 𝐼12 𝐼13 𝐼14 𝐼15 𝐼21 𝐼22 𝐼23 𝐼24 𝐼25

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝐵1

𝐼1 𝐼2

𝐿1

𝐶1

𝐵2

𝐿2

𝐶2

Figure 7 An example of Construction 1 with the formula Φ = 𝐶1∧𝐶2, where 𝐶1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}
and 𝐶2 = {𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}. Single lines connecting two rectangles indicate that each vertex in one
rectangle is adjacent to all vertices in the other rectangle. The double line connecting two rectangles
indicates that each vertex in one rectangle is adjacent to the vertices in the other rectangle in such
a way that if a switching set 𝐴 contains all the vertices of one rectangle and no vertex of the other
rectangle, then a 𝑃10 is induced by these two sets of vertices after switching.

We recall that the vertices in 𝐿𝑖 and one vertex each from 𝐵𝑖 𝑗s (1 ≤ 𝑗 ≤ 5) induce a 𝑃10.
If we have a truth assignment which satisfies Φ, then the vertices in 𝐿 corresponding to the
TRUE literals can be switched to obtain a 𝑃10-free graph. The backward direction is easy
and is proved in Lemma 19.

▶ Lemma 19. Let Φ be an instance of Monotone NAE 5-SAT. If 𝑆(𝐺Φ, 𝐴) is 𝑃10-free,
for some 𝐴 ⊆ 𝑉 (𝐺Φ), then there exists a truth assignment satisfying Φ.
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Proof. We claim that assigning TRUE to the variables corresponding to the variable vertices
in 𝐴∩ 𝐿 satisfies Φ. It is sufficient to prove that 𝐴∩ 𝐿𝑖 ≠ ∅ and 𝐿𝑖 \ 𝐴 ≠ ∅, for every 1 ≤ 𝑖 ≤ 𝑚.

For a contradiction, assume that 𝐴 ∩ 𝐿𝑖 = ∅, for some 1 ≤ 𝑖 ≤ 𝑚. Since 𝐿𝑖 and one vertex
each from 𝐵𝑖 𝑗 induces a 𝑃10, we obtain that 𝐵𝑖 𝑗 ⊆ 𝐴, for some 1 ≤ 𝑗 ≤ 5. Then 𝐼𝑖 ⊆ 𝐴

(otherwise, there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐵𝑖 𝑗 and a vertex in 𝐼𝑖 not in 𝐴 - recall that
one end vertex 𝑣𝑖 𝑗 of the 𝑃9 formed by 𝐵𝑖 𝑗 is not adjacent to 𝐼𝑖). Then at least one vertex
from 𝐿𝑖 is in 𝐴, otherwise there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐼𝑖 ∪ 𝐿𝑖. This gives us a
contradiction.

Next we show that 𝐿𝑖 is not a subset of 𝐴. For a contradiction, assume that 𝐿𝑖 \ 𝐴 = ∅.
Then at least one vertex 𝐼𝑖ℓ ∈ 𝐼𝑖 (for some 1 ≤ ℓ ≤ 5) is in 𝐴 - otherwise there is an 𝑃10
induced in 𝑆(𝐺Φ, 𝐴) by 𝐿𝑖 ∪ 𝐼𝑖. Then at least one vertex from each 𝐵𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 5) must
be in 𝐴 - otherwise there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐼𝑖ℓ and 𝐵𝑖 𝑗 , where 𝐵𝑖 𝑗 ∩ 𝐴 = ∅.
Then there is a 𝑃10 induced by 𝐿𝑖 and one vertex, which is in 𝐴, from each 𝐵𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 5).
This is a contradiction. ◀

With a similar reduction from Monotone NAE 3-SAT, we prove that Switching-to-
F (𝐶7) is NP-complete and cannot be solved in subexponential-time.

6 Concluding remarks

There are many interesting questions one can ask about the characterization and computation
of lower and upper switching classes of various graph classes. Here we list a few of them.

Since recognizing U(F (𝑃10)) and recognizing U(F (𝐶7)) are NP-complete, by Proposi-
tion 6(1), we obtain that recognizing L(G) is NP-complete, where G is the class of graphs
containing an induced 𝑃10 or the class of graphs containing an induced 𝐶7. Note that these
classes are non-hereditary. For a hereditary graph class G, is it true that whenever G is
recognizable in polynomial-time, lower G switching class is also recognizable in polynomial-
time? We know by Proposition 7 that this is true whenever G is characterized by a finite set
of forbidden induced subgraphs.

Is it true that recognizing upper 𝐻-free switching class is polynomially equivalent to
recognizing the upper 𝐻′-free switching class, where 𝐻 and 𝐻′ are switching equivalent? We
know that the answer to the corresponding question for lower switching class is trivial, as
both lower 𝐻-free and lower 𝐻′-free switching classes can be recognized in polynomial-time.
In particular, can we recognize the upper 𝐻-free switching class in polynomial time when 𝐻

is 𝐶4, 𝐾4, or diamond? For each of them, we know a switching equivalent 𝐻′ such that the
upper 𝐻′-free switching class can be recognized in polynomial time.

Let G be a graph class. Assume that, for any graph 𝐺, there are only polynomial number
of ways to switch 𝐺 to a graph in G. Then every large enough graph 𝐺 can be switched to
a graph not in G. Therefore, L(G) is finite. Is it true that whenever L(G) is finite, then
U(G) can be recognized in polynomial-time?

What is the smallest integer ℓ such that the recognition of U(F (𝑃ℓ)) is NP-complete?
We know that 5 ≤ ℓ ≤ 10. Similarly, what is the smallest integer ℓ such that the recognition
of U(F (𝐶ℓ)) is NP-complete? We know that 4 ≤ ℓ ≤ 7.
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