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Abstract
For any natural number d, a graph G is a (disjoint) d-interval graph if it is the intersection graph of
(disjoint) d-intervals, the union of d (disjoint) intervals on the real line. Two important subclasses
of d-interval graphs are unit and balanced d-interval graphs (where every interval has unit length
or all the intervals associated to a same vertex have the same length, respectively). A celebrated
result by Roberts gives a simple characterization of unit interval graphs being exactly claw-free
interval graphs. Here, we study the generalization of this characterization for d-interval graphs.
In particular, we prove that for any d ⩾ 2, if G is a K1,2d+1-free interval graph, then G is a unit
d-interval graph. However, somehow surprisingly, under the same assumptions, G is not always a
disjoint unit d-interval graph. This implies that the class of disjoint unit d-interval graphs is strictly
included in the class of unit d-interval graphs. Finally, we study the relationships between the classes
obtained under disjoint and non-disjoint d-intervals in the balanced case and show that the classes of
disjoint balanced 2-intervals and balanced 2-intervals coincide, but this is no longer true for d > 2.
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12:2 Generalizing Roberts’ Characterization of Unit Interval Graphs

1 Introduction

Interval graphs are the intersection graphs of intervals on the real line: every vertex represents
an interval and there is an edge between two vertices if and only if their corresponding
intervals intersect. The class of interval graphs is one of the most important classes of
intersection graphs, mostly due to their numerous applications in scheduling or allocation
problems and in bioinformatics, see for examples these monographs [11, 23, 25].

Already in the late 70s, situations arising naturally in scheduling and allocation motivated
the generalization of interval graphs to multiple interval graphs, where every vertex is
associated to the union of d intervals on the real line (called a d-interval), for some natural
number d, instead of to a single interval. This allowed a more robust modeling of problems
such as multi-task scheduling or allocation of multiple associated linear resources [15, 22, 29],
and led to several interesting problems [10, 12, 17, 18, 19]. The applications of 2-interval
graphs to bioinformatics also increased the interest on this class of graphs [20, 30].

These concrete applications of multiple interval graphs, specifically 2-interval graphs,
suggested a focus on different restrictions, such as unit 2-interval graphs [2], or balanced
2-interval graphs [7]. For both interval and multiple interval graphs, we say that they are unit
if all the intervals in the representation, i.e. the set of intervals associated to the graph, have
unit length. For multiple interval graphs, we also define the subclass of balanced d-interval
graphs, where all intervals forming the same d-interval have equal length, but intervals of
different d-intervals can have different lengths. Finally, for both interval and multiple interval
graphs, we say that they are proper if there exists an interval representation where no interval
properly contains another one. The class of unit 2-interval graphs is known to be properly
contained in the class of balanced 2-interval graphs [13].

Let us remark that in the literature, d-intervals have been defined both as the union of
d disjoint intervals [2, 5, 31], as the union of d not necessarily disjoint intervals [29], and
simply as the union of d intervals, without specifying whether they are disjoint or not [9, 27].
This ambiguity is not relevant in the general case, since both definitions lead to the same
class of graphs. However, in this paper we focus on subclasses of multiple interval graphs,
namely unit and balanced, for which this equivalence is not known to be true. Therefore,
we will distinguish between the two possible definitions of d-intervals. The first definition
is denoted as disjoint d-intervals while the second is simply denoted as d-intervals (further
details are discussed in Section 2).

From an algorithmic perspective, another reason why interval graphs have been widely
studied is because many problems that are NP-hard become solvable in polynomial time when
restricted to this class of graphs. This is not the case for d-interval graphs [2, 5, 12]. The
problem of recognizing d-interval graphs is no exception: it is NP-complete for every natural
number d ⩾ 2 [31], even for unit 2-interval graphs [1] and balanced 2-interval graphs [13]. In
sharp contrast, the recognition of interval graphs (both in the unit and unrestricted case)
can be done in polynomial time [4, 16], and there exist multiple characterizations of them,
including a characterization in terms of forbidden induced subgraphs [21, 24]. In particular,
in 1969, Roberts proved that the class of proper interval graphs and the class of unit interval
graphs coincide [24], and showed that unit interval graphs are exactly K1,3-free interval
graphs (i.e., interval graphs that do not contain the star with three leaves as an induced
subgraph). To do so, he used the Scott-Suppes characterization of semiorders (see [3, 14]
for short constructive proofs of this result). This is a remarkable result as it gives a simple
characterization of unit interval graphs. It also implies that if G = (V, E) is a unit interval
graph, then there exists a semiorder S(V, P ) on the vertices of V such that (u, w) ∈ P if and
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only if (u, w) /∈ E, which justifies the original name of “indifference graphs” for unit interval
graphs (as they can represent indifference relations by joining two elements by an edge if
neither is preferred over the other one).

It is straight-forward to check that being K1,3-free is a necessary condition for being a unit
interval graph, as an interval of unit length cannot intersect three pairwise disjoint intervals of
length one. The reader can observe that this necessary condition extends naturally to multiple
interval graphs: a unit 2-interval graph cannot contain a K1,5 as an induced subgraph; and
more generally, a unit d-interval graph cannot contain a K1,2d+1 as an induced subgraph.
Thus the following natural question arises: can we generalize Roberts characterization of unit
interval graphs to multiple interval graphs? Perhaps the most straight-forward generalization
would be to characterize unit d-interval graphs as K1,2d+1-free d-interval graphs, but this
has already been proven false in [28]: there exists a graph which is 2-interval and K1,5-free,
but not unit 2-interval. But not all hope of generalizing Roberts characterization must be
lost yet! What if we add some additional constraints?

Already in 2016, Durán et al. decided to focus on d-interval graphs which are also
interval [8]. In a presentation at VII LAWCG, they claimed that if G is an interval graph,
then G is a disjoint unit d-interval graph if and only if it is K1,2d+1-free 1. In this paper,
we show that the aforementioned statement is actually false, and that, perhaps surprisingly,
Roberts characterization can only be generalized depending on the chosen definition of
d-interval graphs! (See Figure 1 for a summary of the main results).

We also study the subclasses obtained under the two definitions of d-intervals in the
balanced case, expanding the knowledge of the relationships between the different subclasses
of 2-interval graphs.

K1,5-free intervaldisjoint unit
2-interval

unit 2-interval

Figure 1 K1,5-free interval graphs are not contained in the class of disjoint unit 2-interval graphs.
The class of unit 2-interval graphs is a superclass of disjoint unit 2-interval graphs, and spans the
whole intersection of K1,5-free and interval graphs.

The structure of the paper is as follows: Section 2 briefly introduces the necessary
definitions and discusses the definition of d-interval. In Section 3, we prove that if G is an
interval graph, then it is unit d-interval if and only if it is K1,2d+1-free. We then show that
this result cannot be generalized for disjoint multiple intervals in Section 4, which implies
that the class of disjoint unit d-interval graphs is actually properly contained in the class
of unit d-interval graphs. Finally, we study the balanced case in Section 5, and show that
the definition of d-interval also matters, as the classes of disjoint balanced 2-intervals and
balanced 2-intervals coincide, but this is no longer true for d > 2. We conclude with some
open questions in Section 6. Due to space constraints, some proofs, marked with a (⋆), are
deferred to the full version of this paper.

1 Note that they refer to disjoint unit d-intervals simply as unit d-intervals, but they are explicitly defined
beforehand as the union of d disjoint intervals.

MFCS 2024
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2 Preliminaries

In the following, G = (V, E) will denote a simple undirected graph on the set of vertices V

and with edges E, and an interval will be a set of real numbers of the form [a, b] := {x ∈ R |
a ⩽ x ⩽ b}.

A graph G is an interval graph if there exists a bijection from the vertices of G to a
multiset of intervals, f : V → I, such that there exists an edge between two vertices if
and only if their corresponding intervals intersect. The multiset I is called an interval
representation of G.

For any natural number d > 0, a (disjoint) d-interval is the union of d (disjoint) intervals
on the real line.

For any natural number d > 0, a graph G is a (disjoint) d-interval graph if there exists
a bijection from the vertices of G to a multiset of (disjoint) d-intervals, f : V → I, such
that there exists an edge between two vertices if and only if their corresponding d-intervals
intersect. The multiset I of d-intervals is called a d-interval representation of G, and the
family of all intervals that compose the d-intervals in I is called the underlying family of
intervals of I.

A (disjoint) d-interval graph is unit if there exists a (disjoint) d-interval representation
where all the intervals of the underlying family have unit length, and it is proper if there
exists a representation where no interval of the underlying family is properly contained in
another one. A (disjoint) d-interval graph is balanced if there exists a (disjoint) d-interval
representation where the d intervals of a same d-interval have the same length, but intervals
of different d-intervals can differ in length.

The graph K1,t is the star with t leaves (also referred to as t-claw in the following). For
any t ⩾ 3, if the set of vertices {v0, v1, . . . , vt} induces a K1,t with center v0, we will denote
it by [v0; v1, . . . , vt]. We say that a graph is K1,t-free if it does not contain any induced
K1,t’s. Furthermore, we say that an induced t-claw K1,t is maximal if it is not contained in
an induced K1,m with m > t.

Discussion on the definition of d-intervals. As mentioned in the introduction, d-interval
graphs have been defined in the literature both as the union of d disjoint intervals and as the
union of d not necessarily disjoint intervals. This might be related to the fact that when
there are no length restrictions on the intervals, both definitions lead to the same class of
graphs (as one can simply stretch the intervals associated to a same vertex that intersect to
make them disjoint without changing any of the other intersections).

▶ Observation 1. (⋆) The classes of disjoint d-interval and d-interval graphs are equivalent.

However, if there are length restrictions, the previous observation does not hold. For unit
intervals, one cannot replace two intersecting intervals [a, b] and [c, d], with a < c < b < d,
by [a, d], as the resulting interval would not be of unit length, and stretching it to make it
unit might disrupt the rest of the intersections. Thus, in this case, it cannot be inferred that
both definitions of multiple intervals lead to the same class of graphs. In fact, our results
prove that they do not. Therefore, we study the generalization of Roberts characterization
separately for both definitions of d-intervals.

3 Unit d-interval graphs

In this section, we generalize Roberts characterization of unit interval graphs for d-interval
graphs. Recall that by d-interval graphs we refer to intersection graphs of d-intervals where
the d intervals are not necessarily disjoint, or in other words, to the most general definition.
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▶ Theorem 2. Let G be an interval graph. Then, for any natural number d ⩾ 2, G is a
unit d-interval graph if and only if G does not contain a copy of a K1,2d+1 as an induced
subgraph. Furthermore, given a K1,2d+1-free interval graph, a unit d-interval representation
can be constructed in O(n + m) time, where n and m are the number of vertices and edges
of the graph, respectively.

We present a polynomial-time algorithm that, given an arbitrary interval representation
I of a K1,2d+1-free graph, returns a d-interval representation I ′ of the graph where no
interval of the underlying family of I ′ intersects three or more pairwise disjoint intervals.
This ensures that the underlying family of intervals returned corresponds to an interval
representation of a K1,3-free graph, so we can use the algorithm described in [3] to turn it
into a proper representation (and then to a unit one in linear time [14]). Note that if an
interval representation of the graph is not given, we can always compute it in linear time [6].

Before presenting the algorithm formally, let us give the idea behind it. The algorithm
constructs a family I ′ of d-intervals in the following way: for every interval I ∈ I that
intersects m (and no more than m) pairwise disjoint intervals, we create a t-interval I1∪. . .∪It,
where t = ⌈ m

2 ⌉. Note that for every interval I that intersect only two disjoint intervals,
we have t = 1, and the interval I1 added to I ′ will be exactly I. We will refer to such
intervals as original intervals, as they are equal to the ones in I. After creating the t-intervals
described above, to obtain a d-interval representation of the graph, it suffices to add d − t

“dummy” intervals for each vertex that is represented by t < d intervals (where by “dummy”
intervals we mean that they do not intersect any other interval from the representation).
Each d-interval I1 ∪ . . . ∪ Id introduced will preserve the same intersections as the interval
I ∈ I, and each Ii will possess three key properties: it intersects at most two disjoint original
intervals, it contains an original interval, and each of its endpoints coincides with an endpoint
of an original interval. These properties ensure that the representation I ′ can be made unit.

Algorithm

Let the family of intervals I be an interval representation of G. For every interval I ∈ I,
let l(I) and r(I) stand for its left and right endpoint, respectively. Furthermore, define a
partial order as follows: given two intervals I, J ∈ I, let I ≺ J if and only if r(I) < l(J) (i.e.
interval J is fully to the right of interval I). Two intervals are incomparable if they intersect.
Step 1 Initialize a set of intervals C with all the intervals of I, set I ′ := ∅, and go to Step 2.
Step 2 Pick an interval I of C, remove it from the set and define its neighborhood N (I) =

{J ∈ I : J ∩ I ̸= ∅}. Let m be the maximum number of pairwise disjoint intervals
that I intersects. If m ⩽ 2, go to Step 3; if m = 3, go to Step 4; and if m > 3, go
to Step 5.

Step 3 If m ⩽ 2, add the interval I1 = I to the family I ′ and call I1 an original interval.
Then go to Step 6.

Step 4 If m = 3, define four auxiliary intervals:

A1 = arg min
J∈N (I)

{r(J)} A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)} A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Then add to I ′ the 2-interval I1 ∪ I2, with I1 = [l(I), r(A2)] and I2 = [l(A3), r(I)].
Note that A2 and A3 necessarily intersect, as otherwise we would have m ⩾ 4, so
I1 ∪ I2 is not a disjoint 2-interval. After adding it to I ′, go to Step 6.

MFCS 2024
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I

I1 I2 I3 I4

A1 A2 A3 A4 A5 A6 A7 A8

B3

Figure 2 Interval I intersects 8 disjoint intervals. In red, the 4-interval returned by the algorithm.
Note that if l(I2) were defined as l(A3) instead of l(B3), it would create a forbidden K1,3.

Step 5 If m > 3, define two families of auxiliary intervals. The first family A := {Ai | i ∈
{1, . . . , m}} forms a maximum set of pairwise disjoint intervals intersecting I, and
it will ensure that all the intersections are preserved. It is defined as follows:

A1 = arg min
J∈N (I)

{r(J)} Ai = arg min
{J∈N (I) : Ai−1≺J}

{r(J)} , ∀ i ∈ {2, . . . , m − 2}

Am = arg max
J∈N (I)

{l(J)} Am−1 = arg max
{J∈N (I) : J≺Am}

{l(J)}

The second family B := {Bi | i ∈ {1, . . . , m}} is a tool to ensure that each new
interval Ii intersects only two disjoint intervals in I ′. Note that restricting each Ii to
intersect only two disjoint intervals from the family A is not enough: for example, in
Figure 2, if I2 were defined as [l(A3), r(A4)], then it would intersect three pairwise
disjoint intervals in I ′ (as all the intervals except I are original intervals in this
example), whereas if the left endpoint of I2 were chosen as r(A2i−1), then an original
interval that was not the center of a claw in I might become the center of a new
claw in I ′. Thus, for every i ∈ {1, . . . , m}, Bi is defined as follows:

Bi = arg max
J∈N (Ai)∪Ai

{l(J)}

In other words, Bi is the interval in the closed neighborhood of Ai starting the
latest. Note that if there does not exist any interval intersecting Ai which starts
after Ai, then Bi = Ai since we are considering the closed neighborhood. Now,
add to I ′ the t-interval I1 ∪ ... ∪ It, defined as follows. We distinguish two slightly
different cases:
a. If m is even, i.e., m = 2t for some t > 1, define I1 = [l(I), r(A2)], Ii =

[l(B2i−1), r(A2i)] for every i ∈ {2, . . . , t − 1}, and It = [l(A2t−1, r(I)].
b. If m is odd, i.e., m = 2t − 1 for t > 2, define It−1 and It differently, as

It−1 = A2t−3 and It = [l(A2t−2, r(I)], and the rest of the intervals as before.
Notice that by definition, the intervals I1, ..., It are actually pairwise disjoint, so if
m > 3, the t-interval added to I ′ is a disjoint d-interval. After adding the t-interval,
go to Step 6.

Step 6 If C = ∅, return I ′, else go to Step 2.
Figure 2 illustrates the algorithm on a concrete interval which intersects eight pairwise

disjoint intervals. Before proceeding to the proof of correctness of the algorithm, we highlight
the properties of the intervals constructed that will be useful to prove the next three claims.
In the following, we say that an interval I of I has been transformed into a t-interval
I1 ∪ · · · ∪ It by the algorithm after it has been processed.
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▶ Observation 3. Let I ∈ I be an interval transformed into I1 ∪ · · · ∪ It by the algorithm,
for some 1 < t ⩽ d. Then, for every i ∈ {1, . . . , t}:
1. The left (resp., right) endpoint of every interval Ii coincides with the left (resp., right)

endpoint of an original interval.
2. There is an original interval contained in Ii.

Now, to prove the correctness of the algorithm, we need to show that for every interval
I ∈ I, the t-interval Ii ∪ ... ∪ It ∈ I ′ preserves the same intersections as I, and that no
interval in the underlying family of I ′ intersects three pairwise disjoint intervals. In the next
claim, we prove that intersections are preserved:

▷ Claim 4. Let I be an interval transformed into I1 ∪ · · · ∪ It by the algorithm, for some
1 ⩽ t ⩽ d. Then, the t-interval I1 ∪ . . . ∪ It preserves the intersections of I.

Proof. It is clear that no new intersections are created as I1 ∪ . . . ∪ It ⊆ I. To see that
no intersection is lost, suppose that there exists an interval L that intersects I in the
original representation I, and after the algorithm finishes, L is transformed into a t0-interval
L1 ∪ . . . ∪ Lt0 (for some 1 ⩽ t0 ⩽ d, where if t0 = 1, the interval remains as in the
original representation) such that the t-interval I1 ∪ . . . ∪ It does not intersect the t0-interval
L1 ∪ . . .∪Lt0 in I ′. Since l(I1) = l(I) and r(It) = r(I) (and the same holds for L), this means
that there exists an Lj (with 1 ⩽ j ⩽ t0) such that Ii ≺ Lj ≺ Ii+1 for some 1 ⩽ i ⩽ t − 1.

For 1 ⩽ t ⩽ 2, this cannot occur because I ⊆ I1 ∪ . . . ∪ It. For t > 3, since the set of
intervals Ak used to defined the t-interval associated to I forms a maximal set of pairwise
disjoint intervals intersecting I, we cannot have that Ak ≺ Lj ≺ Ak+1 for any 1 ⩽ k ⩽ 2t − 1.
Indeed, this would contradict maximality, as Lj is either an original interval or it contains
an original interval (by Observation 3). Thus, the only possible option is that there exists
an i such that A2i ≺ Lj ≺ B2i+1 (where B2i+1 is different from A2i+1). Then, since B2i+1
intersects A2i+1 and Lj ≺ B2i+1, we have that r(Lj) < r(A2i+1). But this contradicts the
choice of A2i+1, which should have been Lj or the original interval contained in Lj , as
A2i ≺ Lj . ◁

The next two claims are dedicated to proving that no interval in the underlying family of
I ′ intersects three or more pairwise disjoint intervals. We distinguish the cases when the
center of the claw is an original interval and when it is not.

▷ Claim 5. Let I ∈ I be an original interval (i.e., transformed to I1 by the algorithm).
Then, I1 intersects at most two disjoint intervals in the underlying family of I ′.

Proof. Suppose, towards a contradiction, that there exists an original interval I1 that
intersects three pairwise disjoint intervals L1, L2 and L3 in the underlying family of I ′, with
L1 ≺ L2 ≺ L3. By Observation 3, there exists an original interval L′

1 with the same right
endpoint as L1, an original interval L′

2 contained in L2, and an original interval L′
3 with

the same left endpoint as L3. Note that if any of the Li are original, then L′
i = Li. But

then, L′
1 ≺ L′

2 ≺ L′
3 are three pairwise disjoint original intervals that intersect I1, which

contradicts the fact that it is an original interval. Indeed, this implies that the interval I

intersects three pairwise disjoint intervals in I, and so the algorithm would have transformed
it into a t-interval with t strictly greater than 1. ◁

▷ Claim 6. Let I ∈ I be an interval transformed into the t-interval I1 ∪ · · · ∪ It by the
algorithm, for some 1 < t ⩽ d. For every 1 ⩽ i ⩽ t, Ii intersects at most two disjoint intervals
of the underlying family of I ′.

MFCS 2024



12:8 Generalizing Roberts’ Characterization of Unit Interval Graphs

Proof. We proceed by contradiction. Suppose that there exists an interval Ii, with 1 ⩽
i ⩽ t that intersects three pairwise disjoint intervals L1, L2, L3, with L1 ≺ L2 ≺ L3. By
Observation 3, there exists an original interval L′

1 with the same right endpoint as L1, an
original interval L′

2 contained in L2, and an original interval L′
3 with the same left endpoint

as L3.
Assume first that t = 2. Then, if i = 1, this contradicts the choice of the interval A2

(resp. A3 if i = 2), which should have been L′
2.

Let us now study the general case for t > 2. Suppose first that 1 < t < d and Ii is defined
as [B2i−1, A2i] with B2i−1 ̸= A2i−1. We distinguish two cases:
1. r(L1) > r(A2i−1). Then, since we are assuming that L1 and L2 are disjoint, l(L2) >

r(A2i−1). Furthermore, as L3 also intersects Ii, we need r(L2) < r(A2i). But this
contradicts the choice of A2i, which should have been L′

2.
2. r(L1) < r(A2i−1). If l(L2) > r(A2i−1), we are in the same case as before. Thus, L2 and

A2i−1 must intersect. However, we have l(L2) > l(B2i−1) (since otherwise Ii would not
be able to intersect L1 on its left extreme). This contradicts the choice of B2i−1 if L′

2
intersects A2i−1, or the choice of A2i otherwise.

On the other hand, if B2i−1 = A2i−1, then by construction, since we take the two disjoint
intervals that finish first, we cannot have three pairwise disjoint intervals intersecting Ii. This
is also the case for I1 and It (although in the latter case, we take the two disjoint intervals
starting last). Finally, for odd claws, it is also clear that It−1 intersects at most two disjoint
intervals, as it is equal to an original interval. ◁

Combining Claims 4, 5 and 6, plus the fact that we can trivially transform a t-interval
with t < d into a d-interval, we obtain that the algorithm returns a d-interval representation
of the input graph where no interval of the underlying family intersects more than two
disjoint intervals, which as explained before can be converted into a unit representation. The
last part of Theorem 2 follows because an efficient implementation of the algorithm described
above requires O(1 + deg(v)) operations for each vertex v (where deg(v) denotes the degree
of vertex v), as it suffices to iterate over the neighborhood of a given interval to transform it
into the corresponding d-interval. Finally, the obtained representation can be converted to a
unit representation in linear time, which yields the stated runtime O(n + m). This concludes
the proof of Theorem 2.

We have proven that the algorithm constructs a unit d-interval representation, but it is not
a disjoint one. Indeed, as mentioned before, in the case of maximal K1,3’s, the constructed
intervals I1 and I2 intersect each other. However, in the case of maximal K1,m’s with m > 3,
the t intervals of the t-interval created are actually pairwise disjoint. Thus, we obtain as a
direct corollary that if G is a K1,2d+1-free interval graph not containing any maximal K1,3’s,
then G is a disjoint unit d-interval graph. In fact, with a more careful analysis, we can
infer an even stronger corollary, which instead of requiring the absence of maximal 3-claws
altogether, only forbids a subset of them. We refer to these forbidden claws, which are
exactly those maximal 3-claws contained in an induced E graph, as E-claws. Recall that an
E graph (or star1,2,2) is a graph on six vertices which has as edge set a path v1, v2, v3, v4, v5
and an additional edge (v3, v6).

▶ Corollary 7. Let G be a K1,2d+1-free graph that does not contain any E-claws. Then, G is
a disjoint unit d-interval graph.
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Proof. To prove the theorem, we modify Step 4 of the previous algorithm so that it produces
a disjoint 2-interval.
Step 4’ Let I be an interval and let m = 3 be the maximum number of pairwise disjoint

intervals that it intersects. By assumption, the vertex associated to I is a center of
a maximal claw which is not an E-claw. We define

A1 = arg min
J∈N (I)

{r(J)}

A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)}

A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Note that A2 and A3 necessarily intersect (or are the same interval). Now, since
the vertex associated to I is a center of a claw that is not an E-claw, this means
that at least one of A1 or A4 does not intersect an interval which is disjoint from I.
Thus, we can modify the representation so that A1 (resp. A4) is properly contained
in I without loosing any intersections, by simply stretching them. Then, if A1 is
properly contained in I, we define I1 = A1 and I2 = [l(A3), r(I)]. On the other
hand, if A4 is properly contained in I instead, we define I1 = [l(I), r(A2)] and
I2 = A4. If both of them are properly contained in I, we can define I1 and I2 either
way.

Notice that the 2-intervals introduced in this step have the same properties as in Observation 3,
so the proof of correctness of the previous algorithm can be directly adapted for this
extension. ◀

4 Disjoint unit d-interval graphs

In this section, we prove that Theorem 2 cannot be generalized for disjoint unit d-interval
graphs. Note that by Corollary 7, if we have a graph which does not contain any E-claws,
then the generalization still holds for disjoint unit d-interval graphs, but this is not the case in
general. Indeed, suppose there is an interval I that intersects exactly three pairwise disjoint
intervals, A1, A2 and A3, and both A1 and A3 intersect each an interval disjoint from I.
Then, the algorithm presented in the previous section would return a 2-interval I1 ∪ I2, where
I1 and I2 are not disjoint. If we try to extend the algorithm in the most natural way, that
is, stretching these two intervals until they are disjoint, we would still not succeed. This is
because, since I1 and I2 cannot intersect, then either r(I1) will be to the left of the right
endpoint returned by the algorithm, or l(I2) will be to the right of the endpoint returned by
the algorithm. But then, one of I1 or I2 might not properly contain a complete interval from
the original representation, which can cause I1 or I2 – the interval which does not properly
contain a complete original interval – to be contained in an interval that intersects three
pairwise disjoint intervals (see Figure 3).

In the following, we show that there is no way to extend the algorithm to make it work
in the general case for disjoint unit d-interval graphs. In particular, we prove the following
theorem.

▶ Theorem 8. There exists a K1,5-free interval graph that is not a disjoint unit 2-interval
graph.

MFCS 2024
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Figure 3 Interval representation of a K1,5-free graph that cannot be turned into a disjoint unit
2-interval representation just by “cutting” intervals that intersect more than three pairwise disjoint
intervals. In the figure, the intervals in red are all obtained using a natural extension of the algorithm.
We can see that in this way, 32 intersects three disjoint intervals: 81, 82, 11. The reader can check
that no other way of stretching the intervals works if 81 and 82 are required to be disjoint.

To prove Theorem 8, we offer the graph G in Figure 4 as a certificate. The reader can
check that G has no induced K1,5, and an interval representation of G is provided in Figure 5.
The proof that G is not a disjoint unit 2-interval graph is the challenging part. Indeed,
checking whether a graph is disjoint unit 2-interval is a computationally expensive task,
and even with the aid of computer search, a naive ILP implementation already takes too
much time to consider an exhaustive search. Needless to say, checking manually by brute
force leads to a very long branching process. The proof presented here is based on a careful
analysis of the graph, and the technique employed (which uses the characterization of unit
2-interval graphs in [[1], Lemma 5]) may be applied to establish that other graphs are not
disjoint unit 2-interval graphs. We also verify the proof computationally, using an encoding
in answer set programming based on the semiorder characterization of unit interval graphs,
which proves to be way more efficient than an ILP encoding. Our code and experimental
setting can be found on our git repository 2. Furthermore, there exist five other K1,5-free
interval graphs on the same number of vertices, and with a very similar structure, that are
not disjoint unit 2-interval (see the full version of this paper). The proof that they are not
disjoint unit 2-interval is omitted, but it is analogous to the one presented here. These six
graphs are the only such graphs on 14 vertices, and there does not exist a graph satisfying
the conditions of Theorem 8 with fewer vertices. These assertions were verified by computer
search over all interval graphs of a given size without induced K1,5’s [32].

Theorem 8 follows directly from the next lemma.

▶ Lemma 9. (⋆) The graph G in Figure 4 is not a disjoint unit 2-interval graph.

We conclude this section showing that Theorem 8 can actually be generalized for disjoint
unit d-interval graphs for any d > 2.

▶ Corollary 10. (⋆) There exists a K1,2d+1-free interval graph that is not a disjoint unit
d-interval graph.

2 https://github.com/AbdallahS/unit-graphs

https://github.com/AbdallahS/unit-graphs
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Figure 4 One of the 6 graphs with 14 vertices (the one with the fewest edges) which is an interval
graph (see Figure 5) and K1,5-free, but not disjoint unit 2-interval.
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Figure 5 An interval representation of the graph in Figure 4.

5 Inclusions between the different subclasses of d-interval graphs

In this section, we analyze the relationships between different subclasses of multiple interval
graphs. We have already seen that 2-interval graphs and disjoint 2-interval graphs are
equivalent. Furthermore, the results from the previous two sections imply that the class of
disjoint unit 2-interval graphs is properly contained in the class of unit 2-interval graphs. In
the following, we summarize the containment relationships between unit 2-interval graphs,
disjoint unit 2-interval graphs, balanced 2-interval graphs and disjoint balanced 2-interval
graphs (see Figure 6 for a graphical illustration).

disjoint 3-interval = 3-interval

balanced 3-interval

disjoint balanced 3-interval
disjoint 2-interval = 2-interval

disjoint balanced 2-interval
= balanced 2-interval

unit 2-interval

disjoint unit 2-interval

Figure 6 Landscape of graph subclasses of 3-interval graphs. An arrow from a graph class C to a
C′ indicates that C′ ⊂ C. The relationships between the class of 2-interval graphs and the classes of
balanced 3-interval graphs and disjoint balanced 3-interval graphs are not known.

▶ Theorem 11. (⋆)
1. The classes of 2-interval and disjoint 2-interval graphs are equivalent.
2. The classes of balanced 2-interval and disjoint balanced 2-interval graphs are equivalent.
3. The class of unit 2-interval graphs is properly contained in the class of disjoint balanced

2-interval graphs.
4. The class of disjoint unit 2-interval graphs is properly contained in the class of unit

2-interval graphs.
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We finish by showing that the previous theorem cannot be completely generalized for the
subclasses of d-interval graphs, as the class of balanced d-interval graphs is not equivalent to
the class of disjoint balanced d-interval graphs for d > 2. We first construct a graph that is
balanced 3-interval but not disjoint balanced 3-interval and then show how to generalize this
construction for every d > 3.

▶ Theorem 12. The class of disjoint balanced 3-interval graphs is properly contained in the
class of balanced 3-interval graphs.

Proof. We construct a graph G which is balanced 3-interval but not disjoint balanced 3-
interval. The high-level idea of the construction is that for a particular vertex, one of its
intervals is forced to a given length, while the other two are forced to be placed somewhere
where there is not enough space for both of them, and thus they cannot be disjoint (note
that the difference with the case d = 2 is that now, if we stretch two of the intervals so that
they do not intersect, we also have to modify the length of the third interval, and as we show
here, this is not always possible). To enforce these constraints, we use the complete bipartite
graph K11,4 as a gadget and exploit the fact that any 3-interval representation of this gadget
must be continuous (i.e., the union of the intervals in its underlying family is an interval) [31,
Lemma 2] (see also [13, Fig. 3] for the idea of its representation).

We construct G as follows: we connect in a chain five K11,4’s, to which we add six vertices
v1, v2, v3, v4, v5, v6 (Figure 7 shows how to link v1, v2, v3, v4 to the chain, while vertices
v5 and v6 mimic the behavior of v3 and v4 with a different set of neighbors, namely, v5 is
connected to the corresponding vertices of the first two K11,4’s, and v6 is connected to the
corresponding vertices of the second and the third K11,4’s). More precisely, let Ci, with
i ∈ {1, . . . , 5}, be the five K11,4’s forming the chain, enumerated from left to right. Moreover,
for every Ci, let f j

i with j ∈ {1, . . . , 11} be the eleven vertices of one side of the bipartition,
and tk

i , with k ∈ {1, 2, 3, 4}, the four vertices of the other side of the bipartition. We assume
that the chain is connected such that f11

i is linked to f1
i+1. Then, v1 is connected to all the

vertices of C2 and C4, and to f11
3 and f1

5 , plus another independent vertex. Similarly, v2 is
connected to all the vertices of C2 and C4, to v1 and to f11

1 and f1
3 . On the other hand, v3 is

connected to f11
3 , t4

3, t1
4 and f j

4 for j ∈ {1, . . . , 9}; while v4 is connected to f1
5 , t4

4, t1
5 and f j

4
for j ∈ {3, . . . , 11}. Finally, v5 is connected to f11

1 , t3
1, t1

2 and f j
2 for j ∈ {1, . . . , 7}, as well

as f8
4 and f9

4 , whereas v6 is connected to f1
3 , t4

2, t1
3 and f j

2 for j ∈ {5, . . . , 11}, as well as f8
4

and f9
4 . The vertices v1 and v2 are both connected to v3, v4, v5 and v6.

Now, as any 3-interval representation of a K11,4 is continuous, any realization of G groups
the five K11,4’s in a block [31]. For j ∈ {1, 2, 3}, let Ij be the intervals associated to v1, Jj

the intervals associated to v2, and Kj the intervals associated to v3. First, it is clear that we
need three different intervals to cover the neighbors of v1 (and these three intervals must be
disjoint). Instead, the neighbors of v2 could be covered only with two intervals. However, we
will see that the two segments of the real line that need to be covered cannot have the same
length (assuming that the 3-interval associated to v1 is balanced). We will show that we
need two intersecting intervals to cover the first segment.

Suppose that only two intervals are needed to represent the adjacencies of v2, and let J

be the interval displaying the edges between C2 and v2, and J3 the interval displaying the
edges between C4 and v2. Similarly, let I1 be the interval associated to v1 used to represent
the edges with C2, let I2 the interval used to represent the edges with C4, and I3 the interval
displaying the edge with the isolated vertex. One can easily see that J3 is properly contained
in I2 (since I2 must also intersect an interval associated to f11

3 on its left and an interval
associated to f1

5 on its right), while I1 is properly contained in J (by an analogous argument).
Thus, len(J3) < len(I2) = len(I1) < len(J). In order for the representation to be balanced,
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v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

Figure 7 G is balanced 3-interval but not disjoint balanced 3-interval. K11,4 graphs are drawn
abstractly and are chained. A thick edge stopping at the border of the ellipse means that the vertex
is connected to every vertex in the corresponding part of the K11,4. Vertices v5 and v6 are omitted
for readability purposes.

the segment of the real line covered by J needs to be covered by two different intervals, say
J1 and J2. To prove that G is balanced 3-interval but not disjoint balanced 3-interval, we
need to bound len(J) − len(J3). In particular, we need len(J) − len(J3) < len(J3). Vertices
v3 and v4 will allow us to find constants a and a′ to bound len(I2) − len(J3) ⩽ a + a′, while
vertices v5 and v6 will serve to find constants b and b′ to bound len(J) − len(I1) ⩽ b + b′.
By showing that we can force the constants such that a + a′ + b + b′ < len(J3), we have the
result. This will follow since we will have eight pairwise disjoint intervals properly contained
in J3: two of length a, two of length a′, two of length b and two of length b′.

Indeed, let a and a′ be the lengths of the intervals associated to v3 and to v4, respectively.
The next claim implies that there are two disjoint intervals associated to v3 properly contained
in J3, and another disjoint interval that properly contains the segment between l(I2) and
l(J3), and so l(J3) − l(I2) < a.

▷ Claim 13. (⋆) Let G be a graph formed by the union of a K11,4 and a vertex v which is
adjacent to nine vertices in S11, where S11 denotes the side of the bipartition with eleven
vertices. Then, vertex v must be represented by three pairwise disjoint intervals, two of
which are each properly contained in an interval representing a vertex of S11.

Similarly, the segment between r(I2) and r(J3) is also contained in an interval associated
to v4, which has the same properties as v3 and does not intersect any interval associated to
v3. This proves that there are two intervals of length a and two intervals of length a′ (all
pairwise disjoint) contained in J3. Doing the same to bound l(I1) − l(J) and r(J) − l(I1), we
get the result. Thus, to represent v2, we need two intervals associated to v2 to intersect. If
we do not allow intersection, the length of these two intervals will be smaller than the length
of the third interval associated to v2, contradicting the fact that they are balanced. ◀

▶ Corollary 14. (⋆)The class of disjoint balanced d-interval graphs is properly contained in
the class of balanced d-interval graphs for every natural number d ⩾ 3.
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6 Concluding remarks

We have shown that the natural generalization of Roberts characterization for unit interval
graphs remains valid for the most general definition of d-interval graphs that are interval
graphs. However, quite surprisingly, if we require the d intervals to be disjoint, then the
result does not hold anymore. It remains as an open question whether disjoint d-interval
graphs that are also interval can be characterized in some other way, or simply if they can be
recognized in polynomial time. Finally, we have obtained a relatively complete landscape of
the containment relationships between different subclasses of 2-interval graphs, that cannot
be fully generalized for d > 2. In particular, for d > 2, it is still unknown whether the class
of unit d-interval graphs is contained in the class of disjoint balanced d-interval graphs.
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