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Abstract
Fagin’s seminal result characterizing NP in terms of existential second-order logic started the
fruitful field of descriptive complexity theory. In recent years, there has been much interest in the
investigation of quantitative (weighted) models of computations. In this paper, we start the study
of descriptive complexity based on weighted Turing machines over arbitrary semirings. We provide
machine-independent characterizations (over ordered structures) of the weighted complexity classes
NP[S], FP[S], FPLOG[S], FPSPACE[S], and FPSPACEpoly[S] in terms of definability in suitable
weighted logics for an arbitrary semiring S. In particular, we prove weighted versions of Fagin’s
theorem (even for arbitrary structures, not necessarily ordered, provided that the semiring is
idempotent and commutative), the Immerman–Vardi’s theorem (originally for P) and the Abiteboul–
Vianu–Vardi’s theorem (originally for PSPACE). We also discuss a recent open problem proposed by
Eiter and Kiesel.

Recently, the above mentioned weighted complexity classes have been investigated in connection
to classical counting complexity classes. Furthermore, several classical counting complexity classes
have been characterized in terms of particular weighted logics over the semiring N of natural numbers.
In this work, we cover several of these classes and obtain new results for others such as NPMV, ⊕P,
or the collection of real-valued languages realized by polynomial-time real-valued nondeterministic
Turing machines. Furthermore, our results apply to classes based on many other important semirings,
such as the max-plus and the min-plus semirings over the natural numbers which correspond to the
classical classes MaxP[O(log n)] and MinP[O(log n)], respectively.
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1 Introduction

Descriptive complexity is a branch of computational complexity, as well as finite model
theory, where the difficulty in solving a problem by a Turing machine is characterized not
by the amount of resources required (such as time, space and so on) but rather in terms
of the complexity of describing the problem in some logical formalism. This field was
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14:2 Logical Characterizations of Weighted Complexity Classes

initially started in 1974 by Ronald Fagin with the celebrated result in [19] (coined by Neil
Immerman as “Fagin’s theorem”) which stated that the class of NP languages coincides with
the class of languages definable in existential second-order logic. Many further surprising
results followed this development, particularly the Immerman–Vardi’s theorem characterizing
P over ordered structures using fixed-point logic [31, 48] and the Abiteboul–Vianu–Vardi
characterization of PSPACE in terms of partial fixed-point logic [1, 48]. Today there are
several textbooks that cover the fundamentals of the area as a line of research within finite
model theory [15, 38, 25, 32]. In this paper, we propose to study quantitative versions of some
of these key results in this important field in connection with weighted computation. We
work over finite structures that come with a linear ordering, which is a standard restriction
in descriptive complexity.

Weighted automata are nondeterministic finite automata augmented with values from a
semiring as weights on the transitions [45]. These weights may model, e.g. the cost involved
when executing a transition, the amount of resources or time needed for this, or the probability
or reliability of its successful execution. The theory of weighted automata and weighted
context-free grammars was essential for the solution of such classical automata-theoretic
problems as the decidability of the equivalence of unambiguous context-free languages and
regular languages [43] (in fact, the only known proofs of this involve weighted automata),
the decidability of two given deterministic multitape automata [30], and the decidability
of two given deterministic pushdown automata [39, 46]. This led to quick development of
this field, described in the books [6, 12, 16, 36, 42, 43]. Furthermore, weighted automata
and weighted context-free grammars have been used as basic concepts in natural language
processing and speech recognition, as well as in algorithms for digital image compression [2].
Weighted logic [11], with weights in an arbitrary semiring, was developed originally to obtain
a weighted version of the Büchi–Elgot–Trakhtenbrot theorem, showing that a certain weighted
monadic second-order logic has the same expressive power on words as weighted automata.
Consequently, this weighted logic over suitable semirings like fields has similar decidability
properties on words as unweighted monadic second-order logic. It is worth remarking that the
classical Büchi–Elgot–Trakhtenbrot theorem is usually regarded as part of the “prehistory”
of descriptive complexity [25, p. 145].

Weighted Turing machines extend the concept of weighted automata as natural quant-
itative counterparts of classical Turing machines. They were first introduced under the
name “algebraic Turing machines” in [10, 9] and they have attracted further attention in [34].
Instances of this concept include the so called “fuzzy Turing machines” [49, 4]. Recently, the
articles [18, 17] have introduced a related notion of “semiring Turing machine” and explicitly
asked for the development of descriptive complexity in such framework as an open problem,
focusing specifically on Fagin’s theorem in connection to weighted logic [18, p. 255]. We will
address this problem at the end of Section 5.

Our contribution. The present paper develops a theory of weighted descriptive complexity
and establishes quantitative versions of some celebrated classical theorems. The novel
contributions of this work can be summarized in the following characterizations (for an
arbitrary semiring S):

The weighted complexity class NP[S] coincides with the queries definable by weighted
existential second-order logic on ordered structures, with weights in S, respectively for
all structures if S is idempotent and commutative (Theorem 22).
The weighted complexity class FP[S] coincides with the queries definable by weighted
inflationary fixed-point logic, with weights in S (Theorem 26).
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The weighted complexity class FPSPACE[S] coincides with the queries definable by
weighted partial fixed-point logic with the addition of second-order multiplicative and
additive quantifiers, with weights in S (Theorem 29).
The weighted complexity class FPSPACEpoly[S] coincides with the queries definable by
weighted partial fixed-point logic, with weights in S (Theorem 31).
The weighted complexity class FPLOG[S] coincides with the queries definable by weighted
deterministic transitive closure logic (Theorem 33).

Related work. Despite the fact that some characterizations of counting complexity classes
using Boolean logics were known [33, 44, 14], observe that the article [3] (following up on the
work of [44]) already proposes the idea of using certain weighted logics (with weights in the
semiring N of natural numbers or, in a couple of cases, Z) to characterize well-known counting
complexity classes. The authors obtain several interesting results that are also covered by
our more encompassing work here (that is, they provide logical characterizations of #P, FP,
FPSPACE, FPSPACE(poly), GapP, and MaxP). There is, however, some orthogonality as they
cover some classical complexity classes that we do not and, similarly, we cover some that
they do not, as we do not restrict our semiring to being N or Z. Moreover, the investigation
in [3], by contrast to ours, concentrates on the study of classical counting classes for ordered
structures, while we consider both ordered and arbitrary structures (provided, in the latter
case, that the semiring is idempotent and commutative; examples include e.g. the max-plus-
and min-plus-semirings). In the present article, the central aim is rather starting the study of
weighted complexity classes via logic, and the corollaries characterizing classical complexity
classes are obtained as interesting byproducts of the work. In this way, we are also meeting
the challenge posed in [34, p.3] of developing “quantitative descriptive complexity theory
based on weighted logics [. . . ] over some fairly general class of semirings”. Further work
on the model theory of weighted logics includes a Feferman–Vaught result [13], but the
area remains largely unexplored despite being one of the open problems suggested in [11].
Finally, an approach related to the weighted logics discussed here has been recently proposed
in [26, 27] motivated by problems in database theory [23]. The idea there is that the atomic
facts of a model are annotated by values from a semiring whereas in the present paper this
aspect is fully classical.

2 Weighted Turing machines

In order to introduce the notion of a weighted Turing machine, first we need to define the
kind of algebraic structures that will provide the weights, that is, semirings.

▶ Definition 1 (Semirings). A semiring is a tuple S = ⟨S,+, ·,0,1⟩, with operations addition
+ and multiplication · and constants 0 and 1 such that

⟨S,+,0⟩ is a commutative monoid and ⟨S, ·,1⟩ is a monoid,
multiplication distributes over addition, and
s · 0 = 0 · s = 0 for every s ∈ S.

We say that S is commutative if the monoid ⟨S, ·,1⟩ is commutative, and we say that S is
idempotent if the monoid ⟨S,+,0⟩ is idempotent (that is, s+ s = s for each s ∈ S).

Some examples of semirings, including those that we will use in this paper, are the
following:

the Boolean semiring B = ⟨{0, 1},min,max, 0, 1⟩,
any bounded distributive lattice ⟨L,∨,∧, 0, 1⟩,
the semiring of natural numbers ⟨N,+, ·, 0, 1⟩,
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14:4 Logical Characterizations of Weighted Complexity Classes

the semiring of extended natural numbers ⟨N ∪ {+∞},+, ·, 0, 1⟩ where 0 · (+∞) = 0,
the ring of integers, ⟨Z,+, ·, 0, 1⟩,
the ring of integers modulo n, ⟨Zn,+n, ·n, 0, 1⟩, for each n ∈ N,
the field of rational numbers ⟨Q,+, ·, 0, 1⟩,
the max-plus or arctic semiring Arct = ⟨R+ ∪ {−∞},max,+,−∞, 0⟩, where R+ denotes
the set of non-negative real numbers,
the restriction of the arctic semiring to the natural numbers Nmax =
⟨N ∪ {−∞},max,+,−∞, 0⟩,
the min-plus or tropical semiring Trop = ⟨R+ ∪ {+∞},min,+,+∞, 0⟩,
the restriction of the tropical semiring to the natural numbers Nmin =
⟨N ∪ {+∞},min,+,+∞, 0⟩,
the semiring F∗ = ⟨[0, 1],max, ∗, 0, 1⟩ given by a t-norm ∗ [49],
the semiring of finite languages 2Σ∗

fin = ⟨2Σ∗

fin ,∪, ·, ∅, {ε}⟩, for an alphabet Σ,
the semiring Smax = ⟨{0, 1}∗ ∪ {−∞},max, ·,−∞, ε⟩ of binary words in which max is
computed according to the radix order (for x, y ∈ {0, 1}∗, x ⪯ y iff |x| < |y| or |x| = |y|
and x is smaller than or equal to y in the lexicographic order) and max(x,−∞) =
max(−∞, x) = x for each x, · is the concatenation operation, and x · (−∞) = (−∞) · x =
−∞ for each x,
the semiring Smin = ⟨{0, 1}∗ ∪ {+∞},min, ·,+∞, ε⟩ analogous to the previous one.

▶ Definition 2 (Weighted Turing Machines). Let S be a semiring and Σ an alphabet. A
weighted (or algebraic) Turing machine over S and input alphabet Σ is a septuple M =
⟨Q,Γ,∆, ν, q0, F,□⟩, where

Q is a nonempty finite set whose elements are called states,
Γ ⊇ Σ is an alphabet (working alphabet),
∆ ⊆ (Q \ F ) × Γ ×Q× Γ × {−1, 0, 1} and its elements are called transitions,
ν : ∆ −→ S is called a transition weighting function, q0 ∈ Q is called the initial state,
F ⊆ Q and its elements are called accepting states, and □ ∈ Γ \ Σ is the blank symbol.

We call M a Turing machine if S is the Boolean semiring B. We call M deterministic if for
every pair ⟨p, a⟩ ∈ Q× Γ, there is at most one transition ⟨p, a, q, b, d⟩ ∈ ∆.

A configuration of M is a unique description of the machine’s state, contents of the
working tape, and the position of the machine’s head. If e = ⟨p, c, q, d, t⟩ ∈ ∆ is a transition
and C1, C2 are configurations of M, then we write C1 −→e C2 if C1 is a configuration
with state p and the head reading c, while C2 is obtained from C1 by changing state to q,
rewriting the originally read symbol c to d, and moving the head as prescribed by t. We
write C1 −→ C2 if C1 −→e C2 for some e ∈ ∆.

A computation of M is a word γ = C1e1C2e2C3 . . . CnenCn+1 such that C1, . . . , Cn+1
are configurations of M, e1, . . . , en ∈ ∆, Ck −→ek

Ck+1 for each k ∈ {1, . . . , n}, and C1 is a
configuration with state q0 and the head at the leftmost non-blank cell (if there is some). The
weight of γ is defined as ν(γ) := ν(e1)ν(e2) . . . ν(en). γ is called an accepting computation
if Cn+1 has an accepting state. We say that γ is a computation on w in Σ∗, and write
Σ(γ) = w if C1 is a configuration with w on the working tape. We denote the set of all
computations of M by C(M) and the set of all accepting computations by A(M).

▶ Convention 3. From now on we will assume that every Turing machine M is finitely
terminating, that is, the set Cw(M) = {γ ∈ C(M) | Σ(γ) = w} is finite for each w ∈ Σ∗. In
particular, the set Aw(M) = {γ ∈ A(M) | Σ(γ) = w} is finite.
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By a series σ we mean a mapping σ : Σ∗ −→ S where Σ is an alphabet, Σ∗ the corres-
ponding language and S is a semiring. Thanks to the convention, we can introduce the
following notion:

▶ Definition 4 (Behavior of a weighted Turing machine). Let M be a weighted Turing machine.
The behavior of M as the mapping ∥M∥ : Σ∗ −→ S defined as

∥M∥(w) :=
∑

γ∈Aw(M)

ν(γ).

We say that a series σ : Σ∗ −→ S is recognized by a weighted Turing machine M if ∥M∥ = σ.

The definition of weighted Turing machine we have used here is exactly the same as
that of algebraic Turing machines [10, Def. 5.1] (see also [34]). Similarly, the notion of the
behavior of the machine coincides. The semiring Turing machines of [17, 18], by contrast,
differ in that they impose some conditions on the allowed transitions [18, cf. Def. 12]. Given
distributivity of multiplication over addition, the notion of a semiring Turing machine function
in [18, Def. 13] coincides with that of the behavior we use here. Semiring Turing Machines
allow semiring values on the tape in somewhat of a black-box manner. Intuitively, one can
transition with the weight of the value on the tape, but cannot differentiate the values on
the tape or modify them. If semiring values are not allowed in the input string then the
definition of weighted and semiring Turing Machines are equivalent (in the sense that one
can be transformed into the other without a significant change of execution time). All these
definitions generalize the corresponding notions for weighted automata.

3 Some weighted complexity classes

Let M = ⟨Q,Γ,∆, ν, q0, F,□⟩ be a weighted Turing machine over S and Σ. For w ∈ Σ∗, we
denote by TIME(M, w) the maximal length of a computation of M on w, and define, for
n ∈ N, TIME(M, n) := max{TIME(M, w) : w ∈ Σ∗, |w| ≤ n}.

For a function f : N −→ N, we denote by SERIES[S,Σ](f) the set of all series σ such that
σ = ∥M∥ for some weighted Turing machine M over S and Σ with TIME(M, n) = O(f(n)).
Now we can define the complexity classes:

SERIES[S](f(n)) :=
⋃

{SERIES[S,Σ](f(n)) : Σ is an alphabet}.

▶ Definition 5. Let S be a semiring. We define the following weighted complexity class

NP[S] :=
⋃

{SERIES[S](nk) : k ∈ N}.

NP[S] (cf. [34, Def. 4.1]) coincides with the definition of the class S-#P in [10, Def. 5.2].
Furthermore, it is contained as a subclass in the similarly defined class NP[R] from [18,
Def. 14] when R is a commutative semiring. Below (Proposition 35), we will actually show
that this containment is proper, in the sense that NP[R] will contain some series that are
not in NP[S].

▶ Example 6. Following [10, Prop. 5.3] and [34, Examples 4.2–4.6], we can list some
prominent instances of NP[S]:

the usual complexity class NP, obtained when S = B is the two-element Boolean semiring
and each transition is weighted by 1 (this is the standard way of representing a classical
machine model in the weighted context),
the counting class #P [47], obtained when S = ⟨N,+, ·, 0, 1⟩ is the semiring of natural
numbers and each transition is weighted by 1,
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14:6 Logical Characterizations of Weighted Complexity Classes

the complexity class
⊕

P [40], obtained when S = ⟨Z2,+2, ·2, 0, 1⟩ is the finite field of
two elements and each transition is weighted by 1,
the class GapP, closure of #P under subtraction [20, 28], obtained when S = ⟨Z,+, ·, 0, 1⟩
is the ring of integers and transitions are weighted by 1 and −1,
the class MODq − P (for q ≥ 2) [8], defined similarly to #P but with respect to counting
modulo q, obtained when S = ⟨Zq,+q, ·q, 0, 1⟩ and transitions are weighted by 1.

▶ Example 7. Some further instances of NP[S], this time following [34, Examples 4.7–4.11],
are:

the class NP[F∗] of all fuzzy languages realizable by fuzzy Turing machines [49] with
t-norm ∗ in polynomial time, obtained when the semiring is F∗ = ⟨[0, 1],max, ∗, 0, 1⟩ and
the weights correspond to degrees of membership in the fuzzy language,
the class NPMV of all multivalued functions realized by nondeterministic polynomial-time
transducer machines [7], obtained when, given alphabets Σ1 and Σ2, the semiring is
⟨2Σ∗

2
fin ,∪, ·, ∅, {ε}⟩ and weighted Turing machines have input alphabet Σ1,

the class of all multiset-valued functions computed by nondeterministic polynomial-time
transducer machines with counting, obtained as in the previous example but using the
free semiring ⟨N⟨Σ∗

2⟩,+, ·, 0, 1⟩ instead,
the class MaxP ⊆ OptP of problems in which the objective is to compute the value of a
solution to an optimization problem in NPO [35], obtained when the semiring is Smax,
and the class MinP ⊆ OptP, obtained when the semiring is Smin,
the class MaxP[[O(logn)]] ⊆ OptP[O(logn)] of problems in which the objective is to
compute the value of a solution to an optimization problem in NPO PB [35], obtained
when the semiring is Nmax, and MinP[[O(logn)]] ⊆ OptP[O(logn)], , obtained when the
semiring is Nmin.

A notion from universal algebra (cf. [5]) that we will make use of in defining some of the
complexity classes below (e.g. FP[S],FPSPACE[S] and FPLOG[S]) is the following:

▶ Definition 8 (Term algebra). Consider a semiring S = ⟨S,+, ·,0,1⟩ and a subset X ⊆ S.
The set of terms T (X) is the collection of all well-formed strings that can be constructed
using the symbols in X and +′, ·′,0,1 (in particular, 0,1 ∈ T (X)), that is, the smallest set
such that: (1) X ⊆ T (X) and (2) (t1 +′ t2) ∈ T (X) and (t1 ·′ t2) ∈ T (X) for every two terms
t1, t2 ∈ T (X); we abuse notation and omit parentheses whenever associativity permits. The
term algebra T (X) is the structure with universe T (X) and operations +′, ·′ defined in the
obvious way.

Recall that classically FP is the set of function problems that can be solved by a
deterministic Turing machine in polynomial time.

▶ Definition 9. We define the complexity class FP[S] as

FP[S] :=
⋃

{0,1}⊆G⊆finS
Σ is a finite alphabet

FP[G,Σ]

where FP[G,Σ] is the set of all series σ : Σ∗ −→ ⟨G⟩ (where ⟨G⟩ is the subsemir-
ing of S generated by G) such that there is a constant k ∈ N and a deterministic
polynomial-time Turing machine which outputs for every word w ∈ Σ∗ a word of the form∑m1
i1=1

∏n1
j1=1 · · ·

∑mk

ik=1
∏nk

jk=1 si1j1···ikjk
in the algebra of terms T (G) in S with value σ(w)

in S.
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In Definition 9, we employ a classical deterministic Turing machine which outputs, in
each transition, symbols from G ∪ {(, ),+′, ·′,0,1} or a blank. Thus, for our outputs we
could obtain arbitrarily complex expressions. Therefore, the constant k limiting the number
of alternations of sums and products is a proper restriction. Hence this definition of FP[S]
differs from the one of [34]. Later on, we will model logical formulas with alternating sum
and product quantifiers using Turing machines which compute functions in FP[S], hence
k = 1 would be insufficient to model these alternations. For the converse, in order to model
these Turing machines by formulas, the number of alternations of sums and products in each
such Turing machine needs to be bounded to obtain a formula with nested quantifiers.

▶ Example 10. If S = B is the two-element Boolean semiring, then FP[B] is just P [34,
Example 5.4]. Observe that the terms output by the machine in that example are already
trivially of the form

∑n
i=1

∏m
j=1 sij .

FP is to #P what P is to NP. Thus, considering NP[S] as a generalization of #P (as it is
done in [10]), the relationship between FP[S] and NP[S] is similar to that between P and NP.

▶ Example 11. If S = N is the natural numbers semiring, then FP[N] is just FP [34, Example
5.5]. As before, observe that the terms output by the machine in that example are already
of the form

∑n
i=1

∏m
j=1 sij .

▶ Definition 12. The class FPLOG[S] is defined as FP[S] except that we allow the machine
to have logarithmic space on the length of the input rather than polynomial time.

▶ Example 13. If S = B, then FPLOG[B] is just DLOGSPACE.

▶ Example 14. If S = N, then FPLOG[N] is just FPLOG, which is defined as FP but allowing
the machine to use logarithmic space on the size of the input (cf. [22]).

▶ Definition 15. The class FPSPACE[S] is defined as FP[S] except that we allow the machine
to have polynomial space on the length of the input rather than polynomial time.

▶ Example 16. If S = B, then FPSPACE[B] is just PSPACE.

▶ Example 17. If S = N, then FPSPACE[N] is just FPSPACE ([37]).

▶ Definition 18. The class FPSPACEpoly[S] is defined as FPSPACE[S] except that we require
the word

∑n
i=1

∏m
j=1 sij to have length bounded by a polynomial. Here, every semiring element

is considered to have length 1.

▶ Example 19. If S = B, then FPSPACEpoly[B] is just PSPACE.

▶ Example 20. If S = N, then FPSPACEpoly[N] is just FPSPACEpoly ([37]).

4 Weighted logics

A vocabulary (or signature) τ is a pair ⟨Relτ , arτ ⟩ where Relτ is a set of relation symbols and
arτ : Relτ −→ N+ is the arity function. A τ -structure A is a pair ⟨A, IA⟩ where A is a set,
called the universe of A, and IA is an interpretation, which maps every symbol R ∈ Relτ
to a set RA ⊆ Aarτ (R). We assume that each structure is finite, that is, its universe is a
finite set. A structure is called ordered if it is given for a vocabulary τ ∪ {<} where < is
interpreted as a linear ordering with endpoints. By Str(τ)< we denote the class of all finite
ordered τ -structures.
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14:8 Logical Characterizations of Weighted Complexity Classes

We provide a countable set V of first and second-order variables, where lower case letters
like x and y denote first-order variables and capital letters like X and Y denote second-order
variables. Each second-order variable X comes with an associated arity, denoted by ar(X).
We define first-order formulas β over a signature τ and weighted first-order formulas φ over
τ and a semiring S, respectively, by the grammars

β ::= false | R(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β
φ ::= β | s | φ⊕ φ | φ⊗ φ |

⊕
x.φ |

⊗
x.φ,

where R ∈ Relτ , n = arτ (R), x, x1, . . . , xn ∈ V are first-order variables, and s ∈ S. Likewise,
we define second-order formulas β over τ and weighted second-order formulas φ over τ and
S through

β ::= false | R(x1, . . . , xn) | X(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β | ∃X.β
φ ::= β | s | φ⊕ φ | φ⊗ φ |

⊕
x.φ |

⊗
x.φ |

⊕
X.φ |

⊗
X.φ,

with R ∈ Relτ , n = arτ (R) = ar(X), x, x1, . . . , xn ∈ V first-order variables, X ∈ V a
second-order variable, and s ∈ S. We also allow the usual abbreviations ∧, ∀, →, ↔, and
true. By FO(τ) and wFO(τ, S) we denote the sets of all first-order formulas over τ and all
weighted first-order formulas over τ and S, respectively, and by SO(τ) and wSO(τ, S) we
denote the sets of all second-order formulas over τ and all weighted second-order formulas
over τ and S, respectively.

The notion of free variables is defined as usual, i.e., the operators ∃,∀,
⊕

, and
⊗

bind variables. We let Free(φ) be the set of all free variables of φ. A formula φ with
Free(φ) = ∅ is called a sentence. For a tuple φ̄ = ⟨φ1, . . . , φn⟩ ∈ wSO(τ, S)n, we define
Free(φ̄) =

⋃n
i=1 Free(φi).

We define the semantics of SO and wSO as follows. Let τ be a signature, A = ⟨A, IA⟩
a τ -structure, and V a set of first and second-order variables. A (V,A)-assignment ρ is a
function ρ : V −→ A ∪ P(A) such that, whenever x ∈ V is a first-order variable and ρ(x)
is defined, we have ρ(x) ∈ A, and whenever X ∈ V is a second-order variable and ρ(X) is
defined, we have ρ(X) ⊆ Aar(X). For a first-order variable, this restriction may cause the
variable to become undefined. Let dom(ρ) be the domain of ρ. For a first-order variable x ∈ V
and an element a ∈ A, the update ρ[x → a] is defined through dom(ρ[x → a]) = dom(ρ)∪{x},
ρ[x → a](X ) = ρ(X ) for all X ∈ V \ {x}, and ρ[x → a](x) = a. For a second-order variable
X ∈ V and a set I ⊆ Aar(X), the update ρ[X → I] is defined in a similar fashion. By AV we
denote the set of all (V,A)-assignments.

For ρ ∈ AV and a formula β ∈ SO(τ) the relation “⟨A, ρ⟩ satisfies β”, denoted by
⟨A, ρ⟩ |= β, is defined as

⟨A, ρ⟩ |= false never holds
⟨A, ρ⟩ |= R(x1, . . . , xn) ⇐⇒ x1, . . . , xn ∈ dom(ρ) and (ρ(x1), . . . , ρ(xn)) ∈ RA

⟨A, ρ⟩ |= X(x1, ..., xn) ⇐⇒ x1, ..., xn, X ∈ dom(ρ) and ⟨ρ(x1), . . . , ρ(xn)⟩ ∈ ρ(X)
⟨A, ρ⟩ |= ¬β ⇐⇒ ⟨A, ρ⟩ |= β does not hold
⟨A, ρ⟩ |= β1 ∨ β2 ⇐⇒ ⟨A, ρ⟩ |= β1 or ⟨A, ρ⟩ |= β2

⟨A, ρ⟩ |= ∃x.β ⇐⇒ ⟨A, ρ[x → a]⟩ |= β for some a ∈ A

⟨A, ρ⟩ |= ∃X.β ⇐⇒ ⟨A, ρ[X → I]⟩ |= β for some I ⊆ A.
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Let φ ∈ wSO(τ, S) and A ∈ Str(τ)<, a1, . . . , ak be an enumeration of the elements of
A according to the ordering that serves as the interpretation of <, and for every integer
n, let In1 , . . . , Inln be an enumeration of the subsets of An according to the lexicographic
ordering induced by the interpretation of <. The (weighted) semantics of φ is a mapping
JφK(A, ·) : AV −→ S inductively defined as

JβK(A, ρ) =
{

1 if ⟨A, ρ⟩ |= β

0 otherwise

JsK(A, ρ) = s

Jφ1 ⊕ φ2K(A, ρ) = Jφ1K(A, ρ) + Jφ2K(A, ρ)
Jφ1 ⊗ φ2K(A, ρ) = Jφ1K(A, ρ) · Jφ2K(A, ρ)

J
⊕
x.φK(A, ρ) =

∑
a∈A

JφK(A, ρ[x → a])

J
⊗
x.φK(A, ρ) =

∏
1≤i≤k

JφK(A, ρ[x → ai])

J
⊕
X.φK(A, ρ) =

∑
I⊆Aar(X)

JφK(A, ρ[X → I])

J
⊗
X.φK(A, ρ) =

∏
1≤i≤lar(X)

JφK(A, ρ[X → I
ar(X)
i ]).

Thanks to the lexicografic ordering our product quantifiers have a well-defined semantics.
Note that if the semiring is commutative, in the clauses of universal quantifiers, the semantics
is defined by using any order for the factors in the products.

We will usually identify a pair ⟨A, ∅⟩ (where ∅ is the empty mapping) with A. We will
also refer to the following expansions of FO:

Transitive closure logic (TC) is obtained by adding the following rule for building formulas:
if φ(x, y) is a formula with variables x = x1, . . . , xk and y = y1, . . . , yk, and u, v are
k-tuples of terms, then [tcx,y φ(x, y)](u, v) is also a formula, and its semantics is given as
A |= [tcx,y φ(x, y)](a, b) ⇐⇒ there exist an n ≥ 1 and c0, . . . , cn ∈ Ak such that c0 = a,
cn = b, and A |= φ(ci, ci+1) for each i ∈ {0, . . . , n− 1}.
Deterministic transitive closure logic (DTC) is obtained by adding the following rule for
building formulas: if φ(x, y) is a formula with variables x = x1, . . . , xk and y = y1, . . . , yk,
and u, v are k-tuples of terms, then [dtcx,y φ(x, y)](u, v) is also a formula, and its semantics
is defined by the equivalence [dtcx,y φ(x, y)](u, v) ≡ [tcx,y φ(x, y) ∧ ∀z(φ(x, z) → y =
z)](u, v).
Least fixed-point logic (LFP) is obtained by adding the following rules for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R} with only positive occurrences
of R, x is a tuple of variables, and t is a tuple of terms (both matching the arity of R),
then [lfpRx.ψ](t) and [gfpRx.ψ](t) are also formulas. For their semantics, we need to
define some auxiliary notions. The update operator Fψ : P(Ak) −→ P(Ak) is defined by
Fψ(R) := {a | ⟨A, R⟩ |= ψ(R, a)} for any relation R, and it is monotone because R occurs
only positively in ψ. A fixed point of Fψ is a relation R such that Fψ(R) = R. Since Fψ
is monotone, it has a least and a greatest fixed point (by Knaster–Tarski Theorem). The
semantics is given by: A |= [lfpRx.ψ](t) iff t

A is contained in the least fixed point of Fψ
(analogously for [gfpRx.ψ](t) and the greatest fixed point).
Partial fixed-point logic (PFP) is obtained by adding the following rule for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R}, x is a tuple of variables, and t is
a tuple of terms (both matching the arity of R), then [pfpRx.ψ](t) is also a formula. For
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the semantics, we consider again the update operator (now not necessarily monotone)
and the sequence of its finite stages: R0 := ∅ and Rm+1 := Fψ(Rm). In a finite structure
A, the sequence either reaches a fixed point or it enters a cycle of period greater than
one. We define the partial fixed point of Fψ as the fixed point reached in the former case,
or as the empty set in the latter case. Now, the semantics is given by: A |= [pfpRx.ψ](t)
iff t

A is contained in the partial fixed point of Fψ.
Inflationary fixed-point logic (IFP) is obtained by adding the following rules for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R}, x is a tuple of variables,
and t is a tuple of terms (both matching the arity of R), then [ifpRx.ψ](t) is also a
formula. For its semantics, we need to define some auxiliary notions. An operator
G : P(B) −→ P(B) is said to be inflationary if X ⊆ G(X) for all X ∈ P(B). With any
operator F : P(B) −→ P(B) one can associate an inflationary operator G by setting
G(X) := X ∪ F (X). Iterating G gives a fixed point that we will called the inflationary
fixed point of F . The semantics is given by: A |= [ifpRx.ψ](t) iff t

A is contained in the
inflationary fixed point of Fψ.

The weighted version of each of these logics is defined analogously as in the case of FO
and SO by expanding the logics TC, DTC, LFP, PFP, and IFP with the same weighted
constructs as given for wFO and wSO. By a famous result of Gurevich and Shelah [29], on
finite structures, LFP coincides with IFP and thus their weighted versions, wIFP and wLFP,
as we have defined them here, will also coincide in expressive power.

5 Logical characterizations of complexity classes

We are finally ready to present and prove the main results of the paper: the quantitative
versions of several logical characterizations of prominent complexity classes. We may assume
that every A ∈ Str(τ)< is encoded by a string of 0s and 1s. For example, where A =
⟨A,RA

1 , . . . , R
A
j ⟩ with |A| = n (and we may assume in fact that A = {0, . . . , n− 1}) we might

let

enc(A) = enc(RA
1 ) · · · · · enc(RA

j )

where if RA
i is an l-ary relation, then enc(RA

i ) is a string of symbols of length nl with a 1 in
its mth position if the mth tuple of nl is in RA

i and a 0 otherwise.

▶ Definition 21. Consider a weighted logic L[S] (with weights in a semiring S) and a
weighted complexity class C, which is simply a collection of series. We say that L[S] captures
C over ordered structures in the vocabulary τ = {R1, . . . , Rj} if:
(1) For every L[S]-formula ϕ, there exists P ∈ C such that P (enc(A)) = ∥ϕ∥(A) for every

finite ordered τ -structure A, and
(2) For every P ∈ C, there exists an L[S]-formula ϕ such that P (enc(A)) = ∥ϕ∥(A) for every

finite ordered τ -structure A.

The seminal Fagin’s Theorem characterizes NP for ordered structures by existential
second-order logic. Our goal is to present a weighted version of this result with arbitrary
semirings as weight structures. Whereas in the classical setting one obtains an equivalence
between the existence of runs of a Turing machine vs. the satisfiability of an existential
logical formula, in the weighted setting of general semirings we have to derive a one-to-one
correspondence between the runs of a Turing machine and satisfying assignments for the
formulas. Moreover, due to the absence of a natural negation function in the semiring, here,
beyond the classical setting, we need conjunctions and universal quantifications. For weighted
finite automata over words, in [11] weighted conjunction and universal quantification turned



G. Badia, M. Droste, C. Noguera, and E. Paul 14:11

out to be too powerful in general and had to be restricted. Surprisingly, here we do not need
these restrictions, but we can show the expressive equivalence between weighted polynomial-
time Turing machines and the full weighted existential second-order logic. Moreover, we
do not need commutativity of the multiplication of S (essential in [11]), but can develop
our characterization for arbitrary, also non-commutative, semirings S. This is due to new
constructions, in this setting, for the involved weighted Turing machines. By wESO we mean
the fragment of wSO where the only second-order quantifiers appear at the beginning of the
formula and are additive existential.

▶ Theorem 22 (Weighted Fagin’s theorem). Let S be a semiring and τ a vocabulary.
(i) The logic wESO[S] captures NP[S] over ordered finite τ -structures.
(ii) Assume that S is idempotent and commutative. Then, the logic wESO[S] captures

NP[S] over all finite structures in the vocabulary τ .

Let us indicate some ideas for the proof. For (i), first, for a given wESO-formula ϕ, we
have to construct an NP Turing machine M with ∥ϕ∥ = ∥M∥. For Boolean formulas β,
we can follow the classical proof. Regarding weighted formulas ϕ, let us comment on the
interesting cases. For weighted conjunctions and universal quantifications, we employ new
constructions. Since we are dealing with Turing machines, we can execute weighted Turing
machines for the components successively, by saving the word and using transitions of weight
1 in a deterministic way to restore the initial tape configuration. We can show, using the
distributivity of the semiring, that the constructed nondeterministic machine M computes
precisely the values prescribed by the semantics of the weighted conjunction or the weighted
universal quantifications, respectively.

Second, given a weighted NP Turing machine M, by the assumption on its polynomial
time usage, we construct a second-order formula ψ reflecting the accepting computation
paths of M and their employed transitions in a one-to-one correspondence; this enables us to
incorporate the weights of the transitions by means of constants in the formula. The order is
used for the construction of the formula such that the interpretation of weighted universal
quantification reflects precisely the weights of the computation sequences of the given Turing
machine.

For (ii), the order in universal quantifications now is taken care of by the commutativity
of the multiplication, and the existence of an order is taken care of by an additional existential
second-order quantification where idempotency of S implies that we obtain the same value.

From Theorem 22 and Examples 6 and 7, we immediately obtain the following corollary:

▶ Corollary 23. For ordered structures in a finite vocabulary τ , we have that:
(1) wESO[B] captures NP (originally proved in [19]).
(2) wESO[N] captures #P (originally proved in [3] and [44]).
(3) wESO[Z] captures GapP (originally proved in [3]).
(4) wESO[Smax] (respectively, wESO[Smin]). captures MaxP (MinP) (originally proved

in [3]).
(5) wESO[Z2] captures

⊕
P.

(6) wESO[Zq] captures MODq − P.
(7) wESO[Nmax] (respectively, wESO[Nmin]) captures MaxP[O(logn)] (MinP[O(logn)]).
(8) wESO[F∗] captures the class of all fuzzy languages realizable by fuzzy Turing machines

with t-norm ∗ in polynomial time.
(9) wESO[2Σ∗

2
fin ] captures NPMV.

(10) wESO[N⟨Σ∗
2⟩] captures the class of all multiset-valued functions computed by non-

deterministic polynomial-time transducer machines with counting.
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▶ Remark 24. It is worth observing that the proofs of (2)-(4) in [3] (Prop. 4.2, Cor. 4.8, and
Thm. 4.10) are (as expected) different from ours. Our argument works in all those cases but
neither of the three arguments given in [3] works for our more general setting.

Our next application of the weighted Fagin’s theorem consist in providing a natural
computational problem complete for the class NP[S] for certain semirings S. Given a
semiring S, alphabets Σ1,Σ2, and series σ1 : Σ∗

1 −→ S and σ2 : Σ∗
2 −→ S, we say that σ1 is

polynomially many-one reducible to σ2 (σ1 ≤m σ2, in symbols) if there is an f : Σ∗
1 −→ Σ∗

2
computable deterministically in polynomial time such that σ2(f(w)) = σ1(w) for each w ∈ Σ∗

1.
A series σ : Σ∗ −→ S is said to be NP[S]-hard if σ′ ≤m σ for all σ′ in NP[S]. If, moreover, σ
belongs to NP[S], then it is called NP[S]-complete.

Fix an infinite set X. The language of the weighted propositional logic over a finitely
generated semiring S is built from X as propositional variables, elements of S as truth-
constants, and logical connectives ∧,∨,¬ (where negation is only applied to propositional
variables). Let Fmla[S] be the set of all formulas.

A truth assignment is a mapping V : X −→ {0, 1} extended to V for all formulas in the
following way:
1. For each propositional variable x ∈ X, let V (x) := V (x) and V (¬x) := 1 iff V (x) = 0.

Moreover, let V (a) := a for each a ∈ S.
2. V (φ ∨ ψ) := V (φ) + V (ψ) and V (φ ∧ ψ) := V (φ) · V (ψ).

For each formula φ ∈ Fmla[S], let Xφ be the set of propositional variables that occur in
φ. Clearly, V (φ) depends only the values of V on Xφ. The “problem” SAT[S] is the series
σ : Fmla[S] −→ S defined as follows: SAT[S](φ) =

∑
V ∈{0,1}Xφ V (φ).

The following corollary of our weighted version of Fagin’s theorem has also appeared
as [34, Thm. 6.3] with a direct proof. Our proof generalizes the reasoning for the Boolean
case in [25].

▶ Corollary 25 (Weighted Cook–Levin’s theorem). Let S be a finitely generated semiring.
Then, SAT[S] is NP[S]-complete.

Now it is natural to wonder what happens with other well-known descriptive complexity
results. In the reminder of this section we will tackle a few more of these. We start with
the Immerman–Vardi’s theorem, a result that first appeared in the Boolean case in the
papers [31, 48]. Our own approach is inspired by [3, Thm. 4.4] where a version of the result
for the counting complexity class FP is provided using a weighted logic with the semiring N.
We must observe, however, that our proof is a generalization of that in [3] that works for all
semirings and not only N.

▶ Theorem 26 (Weighted Immerman–Vardi’s theorem). The logic wLFP[S] (with weights in
a semiring S) captures FP[S] over ordered structures in the vocabulary τ .

▶ Corollary 27. For ordered structures in a finite vocabulary τ , we have that:
(1) wLFP[B] captures P (originally proved in [31, 48]).
(2) wLFP[N] captures FP (originally proved in [3]).

▶ Remark 28. Observe that using second-order Horn logic (which is known to capture P [24])
instead of least fixed-point logic, would not work for us, as in the weighted version one can
encode a #P-complete problem (namely #HORNSAT). This was already noted in [3].

In the next result, wPFP[S] + {
∏
X,

∑
X} will denote the logic that is obtained from

wPFP[S] by the addition of the second-order quantitative quantifiers
∏
X and

∑
X. Clearly,

when S = B, this is the same as second-order logic with partial fixed points. The Boolean
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counterpart of Theorem 29, namely that second-order logic extended with partial fixed points
characterizes PSPACE is folklore, but a proof can be found in [41, Thm. 4]. The classical
argument also uses the result for partial fixed-point logic in [1, 48] stating that the logic
characterizes PSPACE over ordered structures.

▶ Theorem 29. The logic wPFP[S] + {
∏
X,

∑
X} (with weights in a semiring S) captures

FPSPACE[S] over ordered structures in the vocabulary τ .

▶ Corollary 30. For ordered structures in a finite vocabulary τ , we have that:
(1) wPFP[B] + {

∏
X,

∑
X} captures PSPACE (folklore, cf. [41]).

(2) wPFP[N] + {
∏
X,

∑
X} captures FPSPACE (originally proved in [3]).

▶ Theorem 31. The logic wPFP[S] (with weights in a semiring S) captures FPSPACEpoly[S]
over ordered structures in the vocabulary τ .

▶ Corollary 32. For ordered structures in a finite vocabulary τ , we have that:
(1) wPFP[B] captures PSPACE (originally proved in [1, 48]).
(2) wPFP[N] captures FPSPACEpoly (originally proved in [3]).

▶ Theorem 33. The logic wDTC[S] (with weights in a semiring S) captures FPLOG[S] over
ordered structures in the vocabulary τ .

▶ Corollary 34. For ordered structures in a finite vocabulary τ , we have that:
(1) wDTC[B] captures DLOGSPACE (originally proved in [31]).
(2) wDTC[N] captures FPLOG.

To end the present section, we address the general and interesting open problem suggested
in [18] regarding a Fagin theorem that characterizes the class NP[R] from [18, Def. 14]. We
begin by observing that for the machine model in [18, Def. 12], Fagin’s theorem will fail
if the logic considered is wESO. This is essentially due to the fact that semiring Turing
machines allow for arbitrary semiring values on the tape and can transition with these values.
However, such a large set of transitions, is only actually needed when there are infinitely
many semiring values in the input words.

▶ Proposition 35. Let R be a commutative semiring. There is a series P ∈ NP[R] such
that for no φ ∈ wESO, ||φ|| = P .

Thus one might reasonably further ask what kind of logic would capture NP[R]. Observe
that an obvious challenge here is that in the proof of Fagin’s theorem at some point we need
to encode in the logic by means of a sentence involving a long (but finite) disjunction what
the legal transitions of our machine are. Consequently, in the presence of infinitely many
transitions, it is not clear how to achieve a Fagin-style characterization in a finitary language
as before. Furthermore, it appears that semiring Turing machines are more suitable for an
analysis that involves semirings that are not finitely generated.

By contrast to the above situation, we might ask a more restricted question if what we
are doing is trying to capture NP[R] over the class of all finite ordered structures. Recall
that we are considering finite structures to be given via their binary encodings and thus the
relevant series in NP[R] are those that take as input merely binary strings. These series are
not computed by SRTMs that involve infinitely many transitions because the input words
do not involve semiring values. So let us consider now the modification of [18, Def. 12] that
only allows semiring Turing machines to come with a finite set of transitions. In this case we
will easily see that their machine model coincides with ours.
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▶ Proposition 36. Let R be a commutative semiring and allow only finitely many transitions
in a semiring Turing machine. Then NP[R] = NP[R], i.e. the NP class in the sense of [18]
coincides with the NP class in our sense.

6 Conclusions and further work

In this paper, we have established a few central results in weighted descriptive complexity,
providing quantitative versions of Fagin’s theorem and the Immerman–Vardi’s theorem, among
other logical characterizations of complexity classes. We also plan to extend our weighted
Fagin’s theorem to the even larger class of valuation monoids containing all semirings and
supporting average calculations by the theory developed in [21] for weighted finite automata
over words and weighted EMSO logic.

Furthermore, in future work, we aim to characterize further weighted complexity classes.
For example, in the definition of NP[S], by changing the requirement about polynomial time
to logarithmic space on the size of the input, we can obtain a weighted complexity class
that generalizes the classical counting class #L. The latter has been characterized by means
of a logic weighted on the semiring N in [3, Thm. 6.4]. We suspect that this work can be
generalized.
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