Breaking the Barrier 2F for Subset Feedback
Vertex Set in Chordal Graphs

Tian Bai &
School of Computer Science and Engineering, University of Electronic Science and Technology of
China, Chengdu, China

Mingyu Xiao &
School of Computer Science and Engineering, University of Electronic Science and Technology of
China, Chengdu, China

—— Abstract

The SUBSET FEEDBACK VERTEX SET problem (SFVS) is to delete k vertices from a given graph
such that in the remaining graph, any vertex in a subset T of vertices (called a terminal set) is not in
a cycle. The famous FEEDBACK VERTEX SET problem is the special case of SFVS with T" being the
whole set of vertices. In this paper, we study exact algorithms for SEVS IN SPLIT GRAPHS (SFVS-S)
and SFVS IN CHORDAL GRAPHS (SFVS-C). SFVS-S generalizes the minimum vertex cover problem
and the prize-collecting version of the maximum independent set problem in hypergraphs (PCMIS),
and SFVS-C further generalizes SEF'VS-S. Both SFVS-S and SFVS-C are implicit 3-HITTING SET
problems. However, it is not easy to solve them faster than 3-HITTING SET. In 2019, Philip, Rajan,
Saurabh, and Tale (Algorithmica 2019) proved that SFVS-C can be solved in O*(2¥) time, slightly
improving the best result (9*(2.0755’“) for 3-HITTING SET. In this paper, we break the “2*-barrier”
for SFVS-S and SFVS-C by introducing an O*(1.8192%)-time algorithm. This achievement also
indicates that PCMIS can be solved in O*(1.8192™) time, marking the first exact algorithm for
PCMIS that outperforms the trivial O* (2") threshold. Our algorithm uses reduction and branching
rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases Subset Feedback Vertex Set, Prize-Collecting Maximum Independent Set,
Parameterized Algorithms, Split Graphs, Chordal Graphs, Dulmage-Mendelsohn Decomposition

Digital Object Identifier 10.4230/LIPIcs. MFCS.2024.15
Related Version Full Version: https://arxiv.org/abs/2212.04726

Funding Mingyu Xiao: Mingyu Xiao acknowledges the National Science Foundation of China under
Grant No. 62372095.

1 Introduction

The FEEDBACK VERTEX SET problem (FVS), one of Karp’s 21 NP-complete problems [32], is
a fundamental problem in graph algorithms. Given a graph G with n vertices and a parameter
k, FVS is to decide whether there is a subset of vertices of size at most k whose deletion
makes the remaining graph acyclic. FVS arises in a variety of applications in various fields
such as circuit testing, network communications, deadlock resolution, artificial intelligence,
and computational biology [6, 11, 29]. Because of the importance of FVS, different variants
and generalizations have been extensively studied in the literature. The SUBSET FEEDBACK
VERTEX SET problem (SFVS), introduced by Even et al. [17] in 2000, is a famous case. In
SFVS, we are further given a vertex subset T' € V called terminal set, and we are asked
to determine whether there is a set of vertices of size at most k whose removal makes each
terminal in 7" not contained in any cycle in the remaining graph. When the terminal set is the
whole vertex set of the graph, SFVS becomes FVS. SFVS also generalizes another famous
? Tian Bai and Mingyu Xiao; .

37 icensed under Creative Commons License CC-BY 4.0
49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Kralovi¢ and Antonin Kucera; Article No. 15; pp. 15:1-15:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:tianbai@std.uestc.edu.cn
https://orcid.org/0000-0003-1669-285X
mailto:myxiao@uestc.edu.cn
https://orcid.org/0000-0002-1012-2373
https://doi.org/10.4230/LIPIcs.MFCS.2024.15
https://arxiv.org/abs/2212.04726
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

Breaking the Barrier 2¥ for SFVS in Chordal Graphs

problem, i.e., NODE MULTIWAY CUT. Whether SF'VS is FPT had been once a well-known
open problem [12]. Until 2013, Cygan et al. [11] proved the fixed-parameter tractability
of SFVS by giving an algorithm with running time O*(2°(19¢%)) Recently, Iwata et al.
[30, 31] showed the first single-exponential algorithm with running time O* (4%) for SFVS.
In 2018, Hols and Kratsch showed that SF'VS has a randomized polynomial kernelization
with O(kY) vertices [25]. Besides, FVS admits a quadratic kernel [28, 40], whereas whether
there is a deterministic polynomial kernel for SEFVS is still unknown.

SEFVS has also been studied in several graph classes [35, 37, 2, 3, 4], such as interval graphs,
permutation graphs, chordal graphs, and split graphs. SF'VS remains NP-complete even in
split graphs [18], while FVS in split and chordal graphs are polynomial-time solvable [44]. Tt
turns out that both SFVS IN SpLIT GRAPHS (SFVS-S) and SFVS IN CHORDAL GRAPHS
(SFVS-C) can be regarded as implicit 3-HITTING SET. Its importance stems from the
fact that 3-HITTING SET can be used to recast a wide range of problems, and now it can
be solved in time O*(2.0755%) [42]. On the other hand, when we formulate SFVS-S or
SFVS-C in terms of 3-HITTING SET, the structural properties of the input graph are
lost. We believe these structural properties can potentially be exploited to obtain faster
algorithms for the original problems. However, designing a faster algorithm for SFVS-S
and SFVS-C seems challenging. Only recently did Philip et al. [37] improve the running
bound to O*(2*), where they needed to consider many cases of the clique-tree structures
of the chordal graphs. In some cases, they needed to branch into seven branches. Note
that 2% is another barrier frequently considered in algorithm design and analysis. Some
preliminary brute force algorithms, dynamic programming, and advanced techniques, such as
inclusion-exclusion, iterative compression, and subset convolution, always lead to the bound
2%, Breaking the “2*-barrier” becomes an interesting question for many problems.

We highlight that SFVS-S and SFVS-C are important since they generalize a natural
variation of the maximum independent set problem called PRIZE-COLLECTING MAXIMUM
INDEPENDENT SET IN HYPERGRAPHS (PCMIS). In PCMIS, we are given a hypergraph
H with n vertices. The object is to find a vertex subset S maximizing the size of S
minus the number of hyperedges in H that contain at least two vertices from S. In other
words, we may balance the size of the vertex subset against the number of hyperedges
on which S violates the independent constraints. The prize-collecting version of many
important fundamental problems has drawn certain attention recently, such as PRIZE-
COLLECTING STEINER TREE [36], PRIZE-COLLECTING NETWORK ACTIVATION [21], and
PRIZE-COLLECTING TRAVELLING SALESMAN Problem [5]. To the best of our knowledge, no
exact algorithm for PCMIS faster than O*(2") is known before.

Fomin et al. [19] showed that CLUSTER VERTEX DELETION and DIRECTED FVS IN
TOURNAMENTS admit subquadratic kernels with O(k%3) vertices and O(k®?) vertices,
respectively; while the size of the best kernel for SFVS-C is still quadratic, which can
be easily obtained from the kernelization for 3-HITTING SET [1]. As for parameterized
algorithms, Dom et al. [14] first designed an O*(2¥)-time algorithm for DIRECTED FVS IN
TOURNAMENTS, breaking the barrier of 3-HITTING SET, and the running time bound of
which was later improved to O*(1.6191%) by Kumar and Lokshtanov [33]. For CLUSTER
VERTEX DELETION, in 2010, Hiiffner et al. [27] first broke the barrier of 3-HITTING SET by
obtaining an O* (2¥)-time algorithm. Now it can be solved in O*(1.7549%) time [41].

Contributions and Techniques

In this paper, we contribute to parameterized algorithms for SFVS-S and SFVS-C. Our
main contributions are summarized as follows.

T. Bai and M. Xiao

1. We firstly break the “2*-barrier” for SFVS-S and SFVS-C by giving an O* (1.8192%)-time
algorithm, which significantly improves previous algorithms.

2. We show that an O*(a*)-time algorithm (a > 1) for SFVS-S leads to an O*(a™)-
algorithm for PCMIS. Thus, we can solve PCMIS in time O*(1.8192"), also breaking
the “2™-barrier” for this problem for the first time.

3. We make use of the Dulmage-Mendelsohn decomposition of bipartite graphs to catch
structural properties, and then we are able to use a new measure p to analyze the running
time bound. This is the most crucial technique for us to obtain a significant improvement.
Note that direct analysis based on the original measure k has encountered bottlenecks.
Any tiny improvement may need complicated case-analysis.

4. The technique based on Dulmage-Mendelsohn decomposition can only solve SFVS-S.
We also propose a divide-and-conquer method by dividing the instance of SFVS-C into
instances of SF'VS-S. We show that SFVS-C can be solved in time O*(a* + 1.6191%) if
SFVS-S can be solved in time O*(a*).

2 Preliminaries

2.1 Graphs

Let G = (V, E) stand for an undirected graph with a set V' of vertices and a set E of edges.
We adopt the convention that n = |V| and m = |E|. When a graph G’ is mentioned without
specifying its vertex and edge sets, we use V(G’) and E(G’) to denote these sets, respectively.
For a subset X < V of vertices, we define the following notations. The neighbour set of X,
denoted by Ng(X), is the set of all vertices in V\X that are adjacent to a vertex in X, and
the closed neighbour set of X is expressed as Ng[X] = Ng(X) u X. The subgraph of G
induced by X is denoted by G[X]. We simply write G — X = G[V\X] as the subgraph
obtained from G removing X together with edges incident on any vertex in X. For ease of
notation, we may denote a singleton set {v } by v.

The degree of v in G is defined by degq(v) = |Ng(v)|. An edge e is a bridge if it is not
contained in any cycle of G. A separator of a graph is a vertex set such that its deletion
increases the number of connected components of the graph. The shorthand [r] is expressed
as the set {1,2,...,r} for r e NT.

In an undirected graph G = (V, E), a set X < V is a clique if every pair of distinct
vertices u and v in X are connected by an edge uv € E; X is an independent set if uv ¢ E for
every pair of vertices u and v in X; X is a vertex cover if for any edge uv € E at least one of
wand v isin X. A subset S € V is a vertex cover of G if and ouly if V\S is an independent
set. A vertex v is called simplicial in G if Ng[v] is a clique [13]. A clique in G is simplicial
if it is maximal and contains at least one simplicial vertex. A matching is a set of edges
without common vertices.

2.2 Chordal Graphs and Split Graphs

A chord of a cycle is an edge that connects two non-consecutive vertices of the cycle. A graph
G is said to be chordal if every cycle of length at least 4 contains a chord. A chordal graph
G holds the following properties that will be used in the paper: Every induced subgraph of a
chordal graph G is chordal, and every minimal separator of G is a clique [13].

Consider a connected chordal graph G, and let Q¢ denote the set of all maximal cliques
in G. A clique graph of G is an undirected graph (Qg, Eg, o) with the edge-weighted function
o0: & — N satisfying that an edge Q1Q2 € &g if @1 N Q2 is a minimal separator and

15:3

MFCS 2024

15:4

Breaking the Barrier 2¥ for SFVS in Chordal Graphs

o(Q1Q2) = |Q1 N Q2|. A cligue tree T of G is a maximum spanning tree of the clique graph
of G, and the following facts hold [7, 23, 43]: (1) Each leaf node of a clique tree Tg is a
simplicial clique in G; (2) For a pair of maximal cliques 1 and Q2 such that Q1Q2 € &g,
Q1 N Q2 separates each pair of vertices vy € Q1\@2 and v2 € Q2\Q1.

Whether a graph is chordal can be checked in linear time O(n + m) [38]. The number
of maximal cliques in a chordal graph G is at most n [22], and all of them can be listed in
linear time O(n + m) [23]. These properties will be used in our algorithm.

A graph is a split graph if its vertex set can be partitioned into a clique K and an
independent set I [39]. Such a partition (I, K) is called a split partition. It is worth noting
that every split graph is chordal, and whether a graph is a split graph can also be checked in
linear time O(n + m) by definition.

2.3 Subset Feedback Vertex Set in Split and Chordal Graphs

Given a terminal set T € V of an undirected graph G = (V, E), a cycle in G is a T-cycle if
it contains a terminal from T, and a T-triangle is specifically a T-cycle of length three. A
subset feedback vertex set of a graph G with a terminal set T is a subset of V' whose removal
makes G contain no T-cycle.

In this study, we focus on SFVS in split and chordal graphs. The problem takes as
input a chordal graph G = (V, E), a terminal set T < V, and an integer k. The task is to
determine whether there is a subset feedback vertex set S of size at most k. Moreover, the
following lemma shows that the problem can be transformed into the problem of finding a
subset of vertices intersecting all T-triangles instead of all T-cycles.

» Lemma 1 ([37]). Let G = (V,E) be a chordal graph and T < V be the terminal set.
A vertex set S €V is a subset feedback vertex set of G if and only if G — S contains no
T-triangles.

For the sake of presentation, this paper considers a slight generalization of SFVS-C. In
this generalized version, a set of marked edges M < F is further given, and we are asked
to decide whether there is a subset feedback vertex set of size at most k, which also covers
all marked edges, i.e., each marked edge must have at least one of its endpoints included in
the set. This set is called a solution to the given instance. Among all solutions, a minimum
solution is the one with the smallest size. The size of a minimum solution to an instance Z is
denoted by s(Z). Formally, the generalization of SFVS-C is defined as follows.

(GENERALIZED) SFVS-C

Input: A chordal graph G = (V, E), a terminal set T < V, a marked edge set M € E,
and an integer k.

Output: Determine whether there is a subset of vertices S € V of size at most k,
such that neither edges in M nor T-cycles exist in G — S.

We have the following simple observations. Let abc be a T-triangle with a degree-2 vertex
b in the graph. Any solution must contain at least one of the vertices a, b, and c. If vertex b
is included in the solution, we can replace it with either a or ¢ without affecting the solution’s
feasibility. Consequently, we can simplify the graph by removing b and marking edge ac.
This observation motivates the consideration of the generalized version.

We will simply use SFVS-C to denote the generalized version. When the input graphs
are restricted to split graphs, the problem becomes SFVS-S. An instance of our problem is
denoted by Z = (G, T, M, k). During our algorithm, it may be necessary to consider some
sub-instances where the graph is a subgraph of G. We define the instance induced by X < V
or G[X] as (G[X],T n X, M n E(G[X]), k).

T. Bai and M. Xiao

In this paper, our algorithms follow a standard branch-and-reduce paradigm. An operation
on the input instance, such as the reduction rule, is safe if the input instance is a Yes-instance
if and only if the output instance is a Yes-instance. A branching operation is safe if the
input instance is a Yes-instance if and only if at least one of the resulting sub-instances is a

Yes-instance. Additionally, we use branching vectors and branching factors in our analysis.

The definitions of these standard concepts can be found in [10].

3 The Dulmage-Mendelsohn Decomposition and Reduction

This section introduces the Dulmage-Mendelsohn decomposition of a bipartite graph [15, 16].
The Dulmage-Mendelsohn decomposition will play a crucial role in our algorithm for SF'VS-S.

» Definition 2 (Dulmage-Mendelsohn Decomposition [34, 9]). Let F' be a bipartite graph with
bipartition V(F) = A u B. The Dulmage-Mendelsohn decomposition (cf. Fig. 1) of F is a
partitioning of V(F) into three disjoint parts C, H and R, such that

1. C is an independent set and H = Np(C);

2. F[R] has a perfect matching;

3. H is the intersection of all minimum vertex covers of F'; and

4. any mazimum matching in F includes all vertices in R v H.

Figure 1 A bipartite graph F' with bipartition V(F) = A u B, where A = {u; }1‘7=1 and B =
{vi }zzl. The thick edges form a maximum matching of F. The Dulmage-Mendelsohn decomposition
of F is (C, H, R) with C = {ue,ur,vs,v6,v7 }, H = {ua,us,vs }, and R = {u1,uz,us,v1,v2,vs }. If
F is an auxiliary subgraph of an instance of SFVS-S, then A = {u1,u2,us,us, ur } (denoted by
blue vertices) and B = {v1,v2,v3,v4 } (denoted by green vertices).

The Dulmage-Mendelsohn decomposition always exists and is unique [34], which can

be computed in time O(m+/n) by finding the maximum matching of the graph F [26].

Leveraging this decomposition, we propose a crucial reduction rule for SFVS-S.
Consider an instance Z = (G = (V, E), T, M, k) of SFVS-S. Let (I, K) be a split partition
of G, where I is an independent set and K is a clique. Based on the split partition (I, K) of G,

we can uniquely construct an auxiliary bipartite subgraph F' with bipartition V(F) = A u B.

In subgraph F', partition A is the subset of the vertices in I that are only incident to marked
edges and B = Ng(A). In addition, E(F') is the set of all edges between A and B, i.e.,
E(F)={abe E:a€ A, be B}. Notice that F' contains no isolated vertex, and all edges in
F' are marked by the definitions of A and B.

Let (R, H,C) denote the Dulmage-Mendelsohn decomposition of the auxiliary subgraph
F. Define A== An (RuC) and B == Bn (Ru H) (see Fig. 1). We have B = Ng(A),
and there exists a matching saturating all vertices in B. This indicates that every solution
contains at least |B| vertices in A U B. On the other hand, B is a minimum vertex cover
of the subgraph induced by Au B. Consequently, there exists a minimum solution to Z
containing B. Next, we introduce the reduction rule, which is called the DM Reduction.

15:5

MFCS 2024

15:6

Breaking the Barrier 2% for SFVS in Chordal Graphs

» Reduction Rule (DM Reduction). Let F' be the auxiliary subgraph with bipartition V(F) =
AU B, and let (R, H,C) denote the Dulmage-Mendelsohn decomposition of F. If A and B
are non-empty, delete A and B from the graph G and decrease k by |B| = |R|/2 + |H n B|.

» Lemma 3. The DM Reduction is safe.

Proof. Recall that A == An(RUC) and B == Bn(RUH). According to the definition of the
Dulmage-Mendelsohn decomposition, we know that N (A) = B, and B is a minimum vertex
cover of the subgraph induced by AU B. For a solution S to the input instance Z, the size of
S (AU B) is no less than |B| since S covers every edge in M. Let ' = (S\A) u B. Observe
that |A| > | B|; otherwise, A would be a minimum vertex cover of F, contradicting that H is
a subset of any minimum vertex cover. Consequently, we derive that |\S’| < |S]. In addition,
we can see that S’ is also a solution, leading to the safeness of the DM Reduction. <

» Lemma 4. Given an instance T = (G, T, M, k) of SFVS-S, let F be the auziliary subgraph
of G with bipartition V(F) = A u B. If the DM Reduction cannot be applied, for any
non-empty subset A’ € A, it holds that |A’'| < |Ng(A")|.

Proof. If the DM Reduction cannot be applied, the Dulmage-Mendelsohn decomposition of
F must be (R, H,C) = (&, A, B). According to the definition of the Dulmage-Mendelsohn
decomposition, A is a vertex cover, and H = A is the intersection of all minimum vertex
covers of F. As a result, we know that A is the unique minimum vertex cover of the
auxiliary subgraph F. We assume to the contrary that there exists a subset A’ = A such that
|A’| = |Ng(A")]. Then we immediately know that (A\A') U Ng(4’) is a minimum vertex
cover distinct from A, leading to a contradiction. <

» Lemma 5. Given an instance T = (G, T, M, k) of SFVS-S, let F be the auziliary subgraph
of G with bipartition V(F) = A u B. If the DM Reduction cannot be applied and k < |A|,
the instance I is a No-instance.

Proof. The size of the solution to Z = (G, T, M, k) is no less than the size of the minimum
vertex cover of F since all marked edges need to be covered. If the DM Reduction cannot be
applied, Lemma 4 implies that A is the minimum vertex cover of F'. Consequently, the size
of the minimum solution to Z must be no less than |A|, which means that an instance 7 is a
No-instance if k < |A|. <

4 Algorithms for SFVS in Split and Chordal Graphs

This section mainly presents an algorithm for SF'VS-S. This algorithm plays a critical role
in the algorithm for SFVS-C.

4.1 Good Instances

We begin by introducing a special instance of SFVS-S, which we refer to as a good instance.
We show that solving good instances is as hard as solving normal instances of SFVS-S in
some sense.

» Definition 6 (Good Instances). An instance T = (G = (V, E),T, M, k) of SEVS-S is called
good if it satisfies the following properties:
(i) (T, V\T) is the split partition, where terminal set T is the independent set and V\T
forms the clique;
(ii) every marked edge connects one terminal and one non-terminal; and
(iii) the DM reduction cannot be applied on the auziliary subgraph determined by (T, V\T).

T. Bai and M. Xiao

» Lemma 7. For any constant a > 1, SFVS-S can be solved in time O*(a*) if and only if
SFVS-S on good instances can be solved in time O* (o).

Proof. We only need to show that if there exists an algorithm GoodAlg solving good instances
in time O*(a®), there also exists an algorithm for SFVS-S running in the same time bound
O*(a®). The other direction is trivial.

Let T = (G = (V,E),T, M, k) be an instance of SFVS-S. Notice that « is a constant.

We select a sufficiently large constant C' such that the branching factor of the branching
vector (1,C, C) does not exceed the constant «. Our algorithm for SFVS-S is constructed
below.

First, we find the split partition (I, K) of G in polynomial time. If |K| < 2C, we solve
the instance directly in polynomial time by brute-force enumerating subsets of K in the

solution. Otherwise, we assume that the size of K is at least 2C' + 1. We consider two cases.

Case 1. There is a terminal ¢ € K. In this case, we partition K\ {¢} into two parts K’ and
K" such that |[K’| > C and |K”| = C. If ¢ is not included in the solution, at most one vertex
in the clique K\ {¢} is not contained in the solution. Consequently, either K’ or K" must
be part of the solution. We can branch into three instances by either

removing t, and decreasing k by 1;

removing K’, and decreasing k by |K’|; or

removing K”, and decreasing k by |K"|.
This branching rule yields a branching vector (1, |K’|,|K”|) (w.r.t. the measure k) with the
branching factor not greater than « since |K'| > C and |[K"| > C.

Case 2. No terminal is in K. For this case, each non-terminal v € I is not contained in any

T-triangle. However, we cannot directly remove v since it may be incident to marked edges.

We can add an edge between v and each vertex u € K not adjacent to v without creating any
new T-triangle. This operation will change v from a vertex in I to a vertex in K, preserving
the graph as a split graph. After handling all non-terminal v € I, we know that the terminal
set and non-terminal set form a split partition. Subsequently, for each marked edge between
two non-terminals v and u, we add a new degree-2 terminal t,, adjacent to u and v and
unmark the edge uv. We then apply the DM Reduction and obtain a good instance. Finally,
we call the algorithm GoodAlg to solve the good instance in time O*(a*).

By either branching with a branching factor not greater than a or solving the instance
directly in O*(a*) time, our algorithm runs in time O* (a*). <

In the rest of this section, we only need to focus on the algorithm, denoted as GoodAlg,
for good instances of SFVS-S.

4.2 The Measure and Its Properties

With the help of the auxiliary subgraph and DM Reduction (defined in Section 3), we use
the following specific measure to analyze our algorithm.

» Definition 8 (The Measure of Good Instances). Given a good instance T = (G, T, M, k) of
SFVS-S, let F be the auxiliary subgraph of G with bipartition V(F) = A u B. We define the
measure of the instance I as

2
u(@) = k= S|AL

15:7

MFCS 2024

15:8

Breaking the Barrier 2% for SFVS in Chordal Graphs

Figure 2 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented
in the graph; the auxiliary subgraph is F' with bipartition V(F) = A u B, where A = {t1,t2,t3}
and B = {u1,u2,us,us,v } (denoted by dotted boxes). After deleting v, the DM Reduction can be
applied. When doing the DM Reduction, A = {t2,%3} and B = {us,us4 } (denoted by dashed boxes)
are deleted.

In our algorithm GoodAlg, the DM Reduction will be applied as much as possible once
the graph changes to keep the instance always good. Additionally, according to Lemma 5, an
instance Z can be solved in polynomial time when p(Z) < 0. Thus, we can use p(-), defined
in Definition 8, as our measure to analyze the algorithm.

We may branch on a vertex by including it in the solution or excluding it from the solution
in our algorithm. In the first branch, we delete the vertex from the graph and decrease the
parameter k£ by 1. In the second branch, we execute a basic operation of hiding the vertex,
which is defined according to whether the vertex is a terminal.

Hiding a terminal ¢: delete every vertex in Ny (t) and decrease k by |Nas(t)].

Hiding a non-terminal v: delete every terminal in Nj/(v) and decrease k by |Nps(v)[; for
each T-triangle vtu containing v, mark edge tu; and last, delete v from the graph.

Here, the notation Njs(v) represents the set of the vertices adjacent to v via a marked edge.

» Lemma 9. If there exists a solution containing a vertex v, then it is safe to delete v,
decrease k by 1, and do the DM Reduction. If there exists a solution not containing a vertex
v, then it is safe to hide v and do the DM Reduction. Moreover, the resulting instance is
good after applying either of the above two operations.

Proof. Assuming a solution S contains v, it is trivial that S\ {v} is also a solution to the
instance (G —v,T\{v},k —1). Moreover, since the DM Reduction is safe by Lemma 3, the
first operation in the lemma is safe.

Now, we assume that a solution S does not contain a vertex v. Since S must cover all
edges in M, we know that S contains all neighbours of v in M. This shows that hiding v is
safe if v is a terminal. Suppose that v is a non-terminal, for every T-triangle vut containing v,
we have that S n {u,t} # &. Consequently, it is safe to mark the edge ut further. Moreover,
since the DM Reduction is safe by Lemma 3, the second operation in the lemma is safe.

Finally, either operation only deletes some vertices and marks some edges between
terminals and non-terminals. Hence, the terminal set and the non-terminal set still form
an independent set and a clique, repetitively. Additionally, the DM Reduction cannot be
applied on the resulting instances. Therefore, the resulting instance is good after applying
either of the above two operations. <

» Lemma 10. Given the good instance T = (G = (V, E), T, M, k), let F be the auxiliary
subgraph of G with bipartition V(F) = A u B, and v be a vertex in V\A. Let Iy be the
instance obtained from T by first deleting v and then doing the DM Reduction (cf. Fig. 2).
Then Ty is a good instance such that u(Z) — u(Zy) = 0.

T. Bai and M. Xiao

Figure 3 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented in
the graph; the auxiliary subgraph is F' with bipartition V(F) = A u B, where A = {t1,t2,¢3 } and
B = {u1,u2,us, us,us } (denoted by dotted boxes). After hiding ¢, the terminal ¢ becomes isolated,
and the DM Reduction cannot be applied.

Proof. Let Zy = (Go,To, My, ko) be the instance after deleting v from Z. Then, 7; =
(G1,T1, My, k1) is the instance after doing the DM Reduction from Zy. Let F; with bipartition
V(F;) = A; U B; be the auxiliary subgraph of G;, where i € {0,1}.

It is clear that u(Zy) = u(Z) since no edge is newly marked and ko = k holds. Assume
that 1210 c Ap and Bo C By are deleted. We note that the DM Reduction cannot be applied

if and only if AO = BO = &. Observe that A1 = Ao\/io, Bl = Bo\BO and kl = ko - |é0|

Thus, we have
wI) = (i) = w(Zo) = (Zr) = (ko — 2/3- |Aol) — (k1 — 2/3-|A1]) = | Bo| = 2/3 - |Ao|.

If the DM Reduction cannot be applied, then Ay =By =0 , which already implies that
w(Z) — u(Zy) = 0. Otherwise, the DM Reduction can be applied after deleting v. In this
case, we have v € B. Additionally, according to Lemma 4, 7 is a good instance implying that
Na(Ao) = Byu{v} and |By U {v}]| > |Ag|. Therefore, we obtain that |Ag| = |Bo|. Thus
we get ju(Z) — pu(Zy) = 0. The lemma holds. <

» Lemma 11. Given a good instance T = (G = (V,E),T, M, k), let F' be the auziliary
subgraph of G with bipartition V(F) = A u B, and t be a terminal in T. Let I, be the
instance obtained from I by first hiding t and then doing the DM Reduction (cf. Fig. 3).
Then 17 is a good instance such that

Ifte A, it holds u(Z) — u(Zy) = 4/3; and

Ift ¢ A, it holds n(Z) — n(Zy) = 0.

Proof. Let instance Zy = (Go, To, Mo, ko) denote the instance after hiding ¢ from Z. Then,
Ty = (G1,T1, My, kq) is the instance after doing the DM Reduction from Zy. Let F; with
bipartition V(F;) = A; U B; be the auxiliary subgraph of G;, where i € {0,1}.

After hiding terminal ¢, a non-terminal is removed if and only if it is adjacent to ¢ via a
marked edge. Thus, By = B\Nys(¢) and ko = k — | Nps(¢)| hold. Tt follows that

#(Z) = u(Zo) = (k= 2/3- |A]) = (ko — 2/3 - [Ao) = [Nas(t)] = 2/3 - (|A] = |Ao)-

Notice that after hiding ¢ the only deleted terminal is t. Besides, a terminal ¢’ # t is
removed from A if and only if it becomes an isolated vertex. It follows that Ng(t') € Nps(¢)
ift' e A\AO

15:9

MFCS 2024

15:10

Breaking the Barrier 2% for SFVS in Chordal Graphs

Assume that Ay € Ay and By By are deleted after doing the DM Reduction. We
note that the DM Reduction cannot be applied if and only if Ag = By = @. Observe that
k1 = ko — |Bo| and |A;| = |Ag| — |Ag|. Thus, we derive that

W(I) = p(T) = [Nar(8)] = 2/3 - (JA| = |Ao]) + [Bo| — 2/3 - | Ao
> [Nas(t) U Bo| —2/3 - |A\A4].

Consider a terminal ¢’ € A\A;. If ¢’ € A\Ag, we know Ng(t') € Ny (t). Otherwise,
we have t' € Ag, and all neighbours of ¢’ in G are deleted, which indicates that Ng(t') <
By U Ny(t). Tt follows that Ng(A\A1) € By U Njs(t). Since T is good, by Lemma, 4, we
have A\A; = @ or |[Ng(A\A;1)| > |A\A4].

If A\A; = @ holds, every terminal in A is not deleted, which implies that ¢ ¢ A. In this
case, we have

w(I) = (i) = [Nar(t) v Bo| = 0.
If [INg(A\A1)| > |A\A;] holds, we have
H(T) — u(T) > ING(A\AL)| — 2/3- |A\A| > 4/3.
Therefore, we complete our proof. <

» Lemma 12. Given a good instance T = (G = (V,E),T,M,k), let F be the auxiliary
subgraph of G with bipartition V(F) = Au B, and v be a non-terminal in V\T. Let Z; be
the instance obtained from T by first hiding v and then doing the DM Reduction (cf. Fig. 4).
Then Ty is a good instance such that u(Z) — u(Zy) = 0.

Furthermore, if every terminal (resp. non-terminal) is adjacent to at least two non-
terminals (resp. terminals) and no two 2-degree terminals have identical neighbours in G, it
satisfies that

If ve B, it holds

W) - w(Ty) = min{ %\NG(U) AT — %|NM(U) A A\,% } .

If v ¢ B, it holds
4

w(Z) — p(h) = min{ %\Nc(v) NT|+ %|NM(’U) n Al % } -3

Proof. Let instance Zy = (Go, To, Mo, ko) denote the instance after hiding v from Z. Then,
7, = (G1,T1, My, ky) is the instance after doing the DM Reduction from Zy. Let F; with
bipartition V(F;) = A; u B; be the auxiliary subgraph of G;, where i € {0,1}.

After hiding v, a vertex is removed if and only if it is a terminal adjacent to v via a
marked edge. Thus, kg = k — |Np(v)| and A\Ag = A n Nps(v). It follows that

HT) — 1(To) = (k — S1A]) = (ko — = |4o))
= (b= ko) + 21A0\A] — 2| A\Ay
= ‘NM(U” + §|A0\A| — §|A &) N]\/[(U)|.

It is easy to see that pu(Z) — u(Zo) = 0 since |A n Ny (v)] < |Na(v)]. Thus, if the DM
Reduction cannot be applied, we have 1(Zy) = u(Z1), leading that u(Z) — u(Zy) = 0.

T. Bai and M. Xiao 15:11

Figure 4 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented
in the graph; the auxiliary subgraph is F' with bipartition V(F) = A u B, where A = {t1,t2,t3}
and B = {u1,u2,us, u4,us } (denoted by dotted boxes). After hiding v, the DM Reduction can be
applied. When doing the DM Reduction, A = {t2,t3,tsa } and B = {us,us,us } (denoted by dashed
boxes) are deleted.

Next, we consider what terminals belong to set Apg\A. On the one hand, a terminal
t € Ap\A must be adjacent to v via an unmarked edge. On the other hand, ¢ should not be
an isolated vertex after hiding v, which implies that the terminal ¢ is adjacent to at least one

vertex distinct from v. Thus, if every terminal is adjacent to at least two non-terminals, we
derive that Ag\A = (Ng(v) n T)\Nps(v). It follows that

W) = (T0) = INar ()] + 3 1A0\AL = 514 0 Nas (o)
= INu ()] + 5 (Na() 2 T)\Nas(2)] = 514 0 Nag (o)
= [Nu(@)] + 2 (Na(w) A T] = [Ny (0)]) = 214 0 Nag(0)
> §|NG(U) AT| - é|A A N (0)].
If the DM Reduction cannot be applied on Zj, we can derive that
H(I) ~ 1(T2) = WD) ~ 1) > ANG(w) A T] ~ S|4 Nas(o)].

Furthermore, if v ¢ B, then v is not adjacent to any terminal in A, leading that |An Ny (v)| =
0. In the case that v belongs to B and it is adjacent to at least two terminals, we further
have

: (1)

Now, we assume that the DM Reduction can be applied on Zy. Suppose Ay < Ap and
By < By are deleted. We know that Ay and By are non-empty, and k = ko — |Eo\ =
k — |Nas(v)| — | Bo| holds. Consider a terminal ¢’ € A\A;. If t/ € A n Ny (v) it is deleted
when hiding v; otherwise, it is deleted when doing the DM Reduction which means that
t'e An Ag. It follows that

WT) ~ W(T) = p(T) ~ W(To) > 2ING(v) A T >

Lo~

2 2
() — pu(Zy) =(k - g\AD — (k1 — §|A1|)
L 2 2
=|Npr(v)| + [Bo| + g\Al\A| - §|A\A1|
R 2 2 N
=[Ny (v)| + [Bo| + g\Al\A| - §(|A N Aol +[A N Nas(v)])

1 N 2 2 o
ZglNM(’Uﬂ + ‘Bo| + §|A1\A| — §|A ﬁAo‘.

MFCS 2024

15:12

Breaking the Barrier 2% for SFVS in Chordal Graphs

Now, we analyze the lower bound of (Z) — (Z;) and there are two cases.

Case 1.1. A n Ag is non-empty. We observe that in graph G, v is not adjacent to any
terminal in Ag. This is because all the terminals adjacent to v via a marked edge are deleted
after hiding v and they do not appear in the graph Gy. Hence we know By = Ng(flo).
Besides, we have B = Ng(A), and thus B n By = Ng(An AO) holds. since Z is good and
A n Ay is non-empty, we get |B n Bo| > |A n Ag|. Then we derive that the decrease of the
measure is

S 2 A 1 "
W) — p(Th) = |Bo| — §|Aﬁ Aol =1+ §|A0A0| >

ol i

Case 1.2. A~ Ay is empty. In this case, we can directly obtain that
1 N 2 1
wZ) = wZy) = §|NM(U)| + |Bo| + g\A1\A| = §|NM(”>| +1=1 (2)

Thus, we have proven the measure does not increase.
Finally, we show that u(Z) — u(Zy) > 4/3 always holds when the input graph satisfies the
condition in the lemma. We consider two subcases.

Case 2.1. v e B. For this subcase, v is adjacent to at least one terminal in A via a marked
edge. Hence, set Ny (v) is non-empty, and we get u(Z) — u(Zy) > 1/3 +1 = 4/3. This
completes that the measure is decreased by at least 4/3 for v € B.

Case 2.2. v ¢ B. We assume to the contrary that if the DM Reduction can be applied
and p(Z) — w(Z1) < 4/3. According to (2), we can obtain that | Ny (v)| = 0, |Bo| = 1 and
|A1\A| = 0. It means that for every terminal ¢ adjacent to v, it satisfies that

deg(t) = 2 holds according to the condition in the lemma;

tv is unmarked and ¢ ¢ A since Ny, (v) is empty;

t is in Ay since degq(t) = 2 and v is the unique non-terminal deleted after hiding v;

t is deleted when doing the DM Reduction (i.e., t € Ao) since A1 € A but ¢t ¢ A; and

t has exactly two neighbours in G which are v and the unique vertex in By (i.e., Ng(t) =
{v} U By) since |By| = 1.

Above all, we derive that all terminals in Ng(v) are 2-degree vertices and have the same
neighbours. By the condition in the lemma, vertex v is adjacent to at least two terminals,
contradicting the condition that no two 2-degree terminals have identical neighbours in G.
Combine with (1), we conclude that for any vertex v ¢ B, it holds

LA A

4

w(Z) — u(Zy) >min{§|Ng(v)mT|,;l} =3 <

4.3 An Algorithm for Good Instances

We now give the algorithm GoodAlg that solves the good instances. When introducing a
step, we assume all previous steps cannot be applied.

> Step 1. If |A] > k or even u(Z) < 0, return No and quit. If |T'] < k, return Yes and quit.

> Step 2. Delete any vertex in G that is not contained in any T-triangle or marked edge,
and then do the DM Reduction on the instance.

> Step 3. If there exists a non-terminal v such that |Ng(v) n T| = 1, hide v and then do
the DM Reduction on the instance.

T. Bai and M. Xiao

Note that the input instance is good, and every terminal is in some T-triangle after Step 3.
Thus, every terminal (resp. non-terminal) is adjacent to at least two non-terminals (resp.

terminals).

> Step 4. This step deals with some degree-2 terminals in T\ A, and there are two cases.

1. Let t be a degree-2 terminal in T\ A. If ¢ is adjacent to exactly one marked edge, hide ¢
and do the DM Reduction.
2. Let t and t’ be two degree-2 terminals in T\ A. If ¢ and ¢’ have the same neighbours and

none of them is adjacent to a marked edge, delete one of them and do the DM reduction.

After this step, one can easily find that the condition in Lemma 12 holds.

> Step 5. If there exists a non-terminal v € B adjacent to exactly one terminal ¢ via a
marked edge and exactly one terminal ¢’ via an unmarked edge, we branch into two instances
by either

hiding the vertex v and doing the DM Reduction; or

hiding the vertex ¢t and doing the DM Reduction.

> Step 6. If there exists a non-terminal v € V\T incident to at least one unmarked edge,
we branch into two instances by either

deleting the vertex v, decreasing k by 1, and doing the DM Reduction; or

hiding v and doing the DM Reduction.

Based on Lemmas 9-12, we can show that Steps 1-4 are safe and they do not increase
the measure. After applying any one of Steps 1-6, the resulting instance (or each resulting

instance of the branching rule) is good. The complete proofs can be found in the full version.

One can easily find that every edge between a terminal and a non-terminal is marked if
Step 6 cannot be applied. Thus, we have T' = A, and Step 1 will be applied and return the
answer. Therefore, we obtain the following result.

» Lemma 13. SFVS-S can be solved in time O*(1.8192%).

Proof. GoodAlg contains only two branching operations in Steps 5 and 6. By Lemmas 10, 11,
and 12, their branching vectors are not worse than (1,4/3) whose branching factor is 1.81918.
Thus, we conclude that GoodAlg solves good instances of SFVS-S in time O*(1.81918).
According to Lemma 7, SFVS-S can be solved in time O*(1.81918%) < O*(1.8192%). <«

4.4 SFVS in Chordal Graphs

Our result for SFVS-S (i.e., the O*(1.8192%)-time parameterized algorithm) can also be
effectively adapted to develop fast parameterized algorithms for SFVS-C.

Our algorithm for SF'VS-C is divided into two parts. In the first part, we introduce some
reduction rules and branching rules to deal with several easy cases and simplify the instance.
If none of the steps in the first part can be applied, we call the instance a “thin” instance. In
a thin instance, if all terminals are simplicial, we can easily reduce it to a good instance of
SFVS-S and solve it by calling GoodAlg. However, if there are “inner” terminals (terminals
not being simplicial), we employ a divide-and-conquer approach based on the clique-tree
decomposition of chordal graphs in the second part. This technique involves branching on a
minimal separator containing inner terminals. In each branch, we will obtain a good instance
of SFVS-S for each sub-instance and call GoodAlg to solve it. We finally obtain Theorem 14.
The details of the algorithm and analysis can be found in the full version.

15:13

MFCS 2024

15:14

Breaking the Barrier 2¥ for SFVS in Chordal Graphs

» Theorem 14. For any constant a > 1, SEVS-C' can be solved in time O*(a* + 1.6191%)
if SFVS-S can be solved in time O* (o).

» Corollary 15. SFVS-C can be solved in time O*(1.8192F).

5 Prize-Collecting Maximum Independent Set in Hypergraphs

Although we study the subset feedback vertex set problem in graph subclasses, SFVS-S
already generalizes other interesting problems.

Several graph connectivity problems [24, 8, 20] can be modeled as natural problems
in hypergraphs. In hypergraphs, an edge can connect any number of vertices, whereas in
an ordinary graph, an edge connects exactly two vertices. Given a hypergraph H, the set
of vertices and hyperedges are denoted by V(H) and E(H), respectively. The maximum
independent set problem in hypergraphs aims to find a maximum vertex subset I < V(H)
such that every hyperedge contains at most one vertex from /. The maximum independent
set problem in hypergraphs can be easily reduced to the maximum independent set problem
in ordinary graphs: we only need to replace each hyperedge e € F(H) with a clique formed by
the vertices in e to get an ordinary graph. In terms of exact algorithms, we may not need to
distinguish this problem in hypergraphs and ordinary graphs. However, the prize-collecting
version in hypergraphs becomes interesting, which allows us to violate the independent
constraint with penalty. As mentioned above, the prize-collecting version of many central
NP-hard problems has drawn certain attention recently.

PRIZE-COLLECTING MAXIMUM INDEPENDENT SET IN HYPERGRAPHS (PCMIS)
Input: A hypergraph H and an integer p.

Output: Determine whether there is a subset of vertices I € V(H) of the prize at
least p, where the prize of I is the size of I minus the number of hyperedges that

contain at least two vertices from 1.

» Lemma 16. PCMIS is polynomially solvable for p < 1, and PCMIS is NP-hard for each
constant p = 2.

Proof. By definition, any singleton set has a prize of 1. Therefore, PCMIS is polynomially
solvable when p < 1.

We will prove the NP-hardness of PCMIS with p > 2 by reducing from the maximum
independent set problem in ordinary undirected graphs. Let (G, k) be an instance of the
maximum independent set problem. We construct an instance (H,p) of PCMIS, where
p = 2 is a constant. Since p is a constant, we can assume that k > p.

Suppose |V (G)| = n and |E(G)| = m. We now construct a hypergraph H with n vertices
and nm + k — p hyperedges. Specifically, for each vertex v € V(G), we introduce a vertex v,
and thus we obtain V(H) = {v' : v € V(G)}. Next, for each edge uv € E(G), we introduce
n identical hyperedges e¥” = {u,v} (i € [n]); we also add k — p identical hyperedges
e, = V(H) (i € [k — p]). Hence, H contains nm + (k — p) hyperedges: F(H) = E{ U E),
where E] = {e!'” = {u,v}:uve E(G), i€ [n]} and E} = {e, =V (H) :i e [k — p]}.

Finally, we show (G, k) is a Yes-instance if and only if (H,p) is a Yes-instance. On the
one hand, let I € V(G) be an independent set of G with the size k. Let I’ = {v/ : v € I},
and we have that every hyperedge in F{ contains at most one vertex from I’. Additionally,
each hyperedge in E) contains exactly k vertices from I’. Since k = p = 2, we derive that
the prize of I' is k — |F4| = k — (k — p) = p, which means that (H,p) is a Yes-instance.

T. Bai and M. Xiao

On the other hand, let I’ € V(H) be a vertex subset of H with the prize p. Let X be the
set of hyperedges containing at least two vertices from I’. We have that p = |I'| — | X|. Note
that if one hyperedge ef" € E} (i € [n]) is in X, then all the n hyperedges identical with e
should be in X, which will make p < |I'| — n <0, a contradiction. Therefore, we derive that
I={veV(G):v €I} is an independent set in G and X n E{ = . Since X < F), we
have |I| = [I'| = p+ |X| = p+ (k —p) = k. We conclude that I is an independent set of G
with size at least k, leading that (G, k) is a Yes-instance. <

Previously, no exact algorithm for PCMIS faster than O*(2™) is known. We show that
PCMIS can be solved by reducing it to SFVS-S, and then we break the “2™-barrier” for
PCMIS. For an instance (H, p) of PCMIS, we construct an instance (G, T, M, k) of SFVS-S.
Suppose that H contains n vertices and m hyperedges. We construct a split graph G as
follows. We first introduce a clique with vertices {v' : v € V(H)}; then for each hyperedge
e € E(H), introduce a new terminal ¢, whose neighbors are exactly the vertices in the clique
corresponding to the vertices in hyperedge e. The terminal set is set as T' = {t. : e € E(H)},
the marked edge set is set as M = &, and let k =n — p.

» Lemma 17. For any constant a > 1, an O*(a¥)-time algorithm for SFVS-S leads to an
O*(a™P)-algorithm for PCMIS.

Proof. For an instance (H,p) of PCMIS, we construct an instance (G, T, M, k) of SFVS-S.
Suppose that H contains n vertices and m hyperedges. We construct a split graph G as
follows. We first introduce a clique with vertices {v' : v € V(H)}; then for each hyperedge
e € E(H), introduce a new terminal ¢, whose neighbors are exactly the vertices in the clique
corresponding to the vertices in hyperedge e. The terminal set is set as T' = {t, : e € E(H)},
the marked edge set is set as M = @, and let k =n — p.

We have the key idea: every hyperedge in a hypergraph contains at most one vertex if
and only if the corresponding split graph of the hypergraph contains no T-triangle. Let S be
a solution to (G, T, M, k) containing m’ terminals and n’ non-terminals. We can see that
I={v:veV(G)\(TuS)} is a vertex set with the prize at least (n —n') —m' =n—k=p
in (H,p). As for the opposite direction, suppose I is a solution to (H,p) of size n/, and the
prize of I is p. We can derive that there are at most m’ = n’ — p hyperedges containing at
least two vertices from I. This means that in G, we can remove m’ terminals and n — n’
non-terminals to obtain a subgraph without any T-triangle, leading that (G, T, M, k) has a
solution of size (n —n') + m’ = n — p = k. Therefore, (G,T, M, k) is a Yes-instance if and
only if (H,p) is a Yes-instance. We finish the proof of Lemma 17. <

Based on Lemma 13, we obtain an exact algorithm for PCMIS breaking the 2™ barrier.

» Corollary 18. PCMIS can be solved in time O*(1.8192").

6 Conclusion

In this paper, we broke the “2*-barrier” for SFVS IN CHORDAL GRAPHS. As a corollary,
we obtained an exact algorithm faster than O*(2") for PRIZE-COLLECTING MAXIMUM
INDEPENDENT SET IN HYPERGRAPHS. To achieve this breakthrough, we introduced a new
measure based on the Dulmage-Mendelsohn decomposition. This measure served as the basis
for designing and analyzing an algorithm that addresses a crucial sub-case. Furthermore, we
analyzed the whole algorithm using the traditional measure k, employing various techniques
such as a divide-and-conquer approach and reductions based on small separators. The
bottleneck of our algorithm occurs when dealing with SFVS IN SPLIT GRAPHS.

15:15

MFCS 2024

15:16

Breaking the Barrier 2% for SFVS in Chordal Graphs

We think it is interesting to break the “2*-barrier” or “2"-barrier” for more important

problems, say the STEINER TREE problem and TSP. For SFVS in general graphs, the best
result is O*(4%) [30, 31]. It will also be interesting to reduce the gap between the results in
general graphs and chordal graphs.

—— References

1

10

11

12

13

14

15

16

17

18

19

Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,
76(7):524-531, 2010.

Tian Bai and Mingyu Xiao. Exact and parameterized algorithms for restricted subset feedback
vertex set in chordal graphs. In Theory and Applications of Models of Computation - 17th
Annual Conference, TAMC, volume 13571 of LNCS, pages 249-261. Springer, 2022.

Tian Bai and Mingyu Xiao. A parameterized algorithm for subset feedback vertex set in
tournaments. Theor. Comput. Sci., 975:114139, 2023.

Tian Bai and Mingyu Xiao. Exact algorithms for restricted subset feedback vertex set in chordal
and split graphs. Theor. Comput. Sci., 984:114326, 2024. doi:10.1016/J.TCS.2023.114326.
Jannis Blauth and Martin Négele. An improved approximation guarantee for prize-collecting
TSP. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, (STOC),
pages 1848-1861. ACM, 2023.

Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59-68, 1994.
Peter Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9(3):205-212,
1974.

Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 1085-1100.
SIAM, 2017.

Jianer Chen and Iyad A. Kanj. Constrained minimum vertex cover in bipartite graphs:
complexity and parameterized algorithms. J. Comput. Syst. Sci., 67(4):833-847, 2003.
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, Berlin,
2015.

Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math., 27(1):290-309, 2013.
Erik D. Demaine, MohammadTaghi Hajiaghayi, and Déaniel Marx. 09511 open problems —
parameterized complexity and approximation algorithms. In Parameterized complezity and
approzimation algorithms, volume 9511 of Dagstuhl Seminar Proceedings (DagSemProc), pages
1-10, Dagstuhl, Germany, 2010.

Gabriel Andrew Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25(1):71-76,
1961.

Michael Dom, Jiong Guo, Falk Hiiffner, Rolf Niedermeier, and Anke Trufl. Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76-86,
2010.

A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of
Mathematics, 10:517-534, 1958.

Andrew L Dulmage. A structure theory of bipartite graphs of finite exterior dimension. The
Transactions of the Royal Society of Canada, Section III, 53:1-13, 1959.

Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset
feedback vertex set problem. SIAM J. Comput., 30(4):1231-1252, 2000.

Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger.
Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216-231, 2014.

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1-13:44, 2019.

https://doi.org/10.1016/J.TCS.2023.114326

T. Bai and M. Xiao

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in
hypergraphs via branching contractions. ACM Trans. Algorithms, 19(2):13:1-13:22, 2023.
Takuro Fukunaga. Spider covers for prize-collecting network activation problem. ACM Trans.
Algorithms, 13(4):49:1-49:31, 2017.

Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific J. Math.,
15(3):835-855, 1965.

Fénica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47-56, 1974.

Magnuis M. Halldoérsson and Elena Losievskaja. Independent sets in bounded-degree hyper-
graphs. Discret. Appl. Math., 157(8):1773-1786, 2009.

Eva-Maria C. Hols and Stefan Kratsch. A randomized polynomial kernel for subset feedback
vertex set. Theory Comput. Syst., 62(1):63-92, 2018.

John E. Hopcroft and Richard M. Karp. An n®? algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973.

Falk Hiiffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196-217, 2010.

Yoichi Iwata. Linear-time kernelization for feedback vertex set. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP, pages 68:1-68:14, 2017.

Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback
vertex set. Algorithmica, 83(8):2503-2520, 2021.

Yoichi Iwata, Magnus Wahlstrom, and Yuichi Yoshida. Half-integrality, LP-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377-1411, 2016.

Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, half-integral A-path
packing, and linear-time FPT algorithms. In 59th IEEE Annual Symposium on Foundations
of Computer Science, (FOCS), pages 462-473, 2018.

Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a Symposium
on the Complexity of Computer Computations, The IBM Research Symposia Series, pages
85-103, 1972.

Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for
feedback vertex set in tournaments. In 33rd Symposium on Theoretical Aspects of Computer
Science, (STACS), volume 47 of LIPIcs, pages 49:1-49:13, 2016.

Lészl6 Lovasz and Michael D. Plummer. Matching theory, volume 121 of North-Holland
Mathematics Studies. Elsevier Science Ltd., London, 1 edition, 1986.

Charis Papadopoulos and Spyridon Tzimas. Polynomial-time algorithms for the subset feedback
vertex set problem on interval graphs and permutation graphs. Discret. Appl. Math., 258:204—
221, 2019.

Lehilton Lelis Chaves Pedrosa and Hugo Kooki Kasuya Rosado. A 2-approximation for the
k-prize-collecting steiner tree problem. Algorithmica, 84(12):3522-3558, 2022.

Geevarghese Philip, Varun Rajan, Saket Saurabh, and Prafullkumar Tale. Subset feedback
vertex set in chordal and split graphs. Algorithmica, 81(9):3586-3629, 2019.

Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266—283, 1976.

Foldes Stephane and Peter Hammer. Split graphs. In Proceedings of the 8th south-east
Combinatorics, Graph Theory, and Computing, volume 9, pages 311-315, 1977.

Stéphan Thomassé. A 4k? kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1-
32:8, 2010.

Kangyi Tian, Mingyu Xiao, and Boting Yang. Parameterized algorithms for cluster vertex
deletion on degree-4 graphs and general graphs. In Computing and Combinatorics - 29th
International Conference, (COCOON), volume 14422 of LNCS, pages 182-194. Springer, 2023.
Magnus Wahlstrom. Algorithms, measures and upper bounds for satisfiability and related
problems. PhD thesis, Linképing University, Sweden, 2007.

15:17

MFCS 2024

15:18 Breaking the Barrier 2* for SFVS in Chordal Graphs

43 James Richard Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State
University, 1972.

44 Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph problem for
chordal graphs. Inf. Process. Lett., 24(2):133-137, 1987.

	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Chordal Graphs and Split Graphs
	2.3 Subset Feedback Vertex Set in Split and Chordal Graphs

	3 The Dulmage-Mendelsohn Decomposition and Reduction
	4 Algorithms for SFVS in Split and Chordal Graphs
	4.1 Good Instances
	4.2 The Measure and Its Properties
	4.3 An Algorithm for Good Instances
	4.4 SFVS in Chordal Graphs

	5 Prize-Collecting Maximum Independent Set in Hypergraphs
	6 Conclusion

