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Abstract
Given an undirected graph G and a set A ⊆ V (G), an A-path is a path in G that starts and ends at
two distinct vertices of A with intermediate vertices in V (G) \ A. An A-path is called an (A, ℓ)-path
if the length of the path is exactly ℓ. In the (A, ℓ)-Path Packing problem (ALPP), we seek to
determine whether there exist k vertex-disjoint (A, ℓ)-paths in G or not.

The problem is already known to be fixed-parmeter tractable when parameterized by k + ℓ via
color coding while it remains Para-NP-hard when parameterized by k (Hamiltonian Path) or ℓ

(P3-Partition) alone. Therefore, a logical direction to pursue this problem is to examine it in
relation to structural parameters. Belmonte et al. initiated a study along these lines and proved
that ALPP parameterized by pw + |A| is W[1]-hard where pw is the pathwidth of G. In this paper,
we strengthen their result and prove that it is unlikely that ALPP is fixed-parameter tractable even
with respect to a bigger parameter (|A| + dtp) where dtp denotes the distance between G and a path
graph (distance to path). We use a randomized reduction to achieve the mentioned result. Toward
this, we prove a lemma similar to the influential “isolation lemma”: Given a set system (X, F) if
the elements of X are assigned a weight uniformly at random from a set of values fairly large, then
each subset in F will have a unique weight with high probability. We believe that this result will be
useful beyond the scope of this paper.

ALPP being hard even for structural parameters like distance to path+|A| rules out the possibility
of any FPT algorithms for many well-known other structural parameters, including FVS+|A| and
treewidth+|A|. There is a straightforward FPT algorithm for ALPP parameterized by vc, the vertex
cover number of the input graph. Following this, we consider the parameters CVD (cluster vertex
deletion)+|A| and CVD +|ℓ| and show the problem to be FPT with respect to these parameters.
Note that CVD is incomparable to the treewidth of a graph and has been in vogue recently.
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16:2 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

1 Introduction

Disjoint Path problems form a fundamental class within algorithmic graph theory. These
well-studied problems seek the largest collection of vertex-disjoint (or edge-disjoint) paths
that satisfy specific additional constraints. Notably, in the absence of such constraints, the
problem reduces to the classical maximum matching problem. One of the most well-studied
variants for disjoint path problems is the Disjoint s-t Path where given a graph G and two
vertices s and t, the objective is to find the maximum number of internally vertex-disjoint
paths between s and t. This problem is polynomial-time solvable by reducing to max-flow
problem using Menger’s Theorem.

Another classical version of the disjoint path problem is Mader’s S-Path. For a graph
G and a set S of disjoint subsets of V (G), an S-Path is a path between two vertices in
different members of S. Given G and S, the objective of Mader’s S-Path problem is to
find the maximum number of vertex-disjoint S-paths. It is solvable in polynomial time, as
demonstrated by Chudnovsky, Cunningham, and Geelen [5]. One closely related and well-
known variant of Mader’s S-Path problem is the A-Path Packing problem [1, 3, 6, 14, 12].
Given a graph G and a subset of vertices A, an A-path is a path in G that starts and ends
at two distinct vertices of A, and the internal vertices of the path are from V (G) \ A. The
A-Path Packing problem aims to find the maximum number of vertex disjoint A-paths
in G. A-Path Packing problem can be modelled as an S-path problem, where for every
vertex v, we create a set {v} in S. Consequently, the A-Path Packing problem becomes
polynomial-time solvable.

Recently, Golovach and Thilikos [11], have explored an interesting variant of the classical
s-t path problem known as Bounded s-t Path problem by introducing additional constraints
on path lengths. In this variant, given a graph G, two distinct vertices s and t, and an integer
ℓ, one seeks to find the maximum number of vertex disjoint paths between s and t of length
at most ℓ. Surprisingly, the problem becomes hard with this added constraint in contrast to
the classical s-t path problem. In a similar line of study, Belmonte et al. [1] considered the
following variant of the A-Path Packing problem.

(A, ℓ)-Path Packing (ALPP)
Input: An undirected graph G = (V, E), A ⊆ V (G) and integers k and ℓ.
Question: Are there k vertex-disjoint A-paths each of length ℓ in G?

This version of A-Path Packing problem is also proved to be intractable [1]. While
considering this problem in the parameterized framework, the two most natural parameters
for ALPP are the solution size k and the length constraint ℓ. While parameterized by the
combined parameter of k + ℓ, the problem admits an easy FPT algorithm via color-coding,
parameterized by the individual parameters k and ℓ, the problem becomes Para-NP-hard
due to reductions from Hamiltonian Path for k and P3-Packing for ℓ.

Although it may appear that one has exhausted the possibilities for exploration of the
problem within the parameterized framework, another set of parameters, known as structural
parameters, emerges, allowing for further investigation. Belmonte et al. [1] initiated this line
of study by considering the size of set A (|A|) as a parameter. They proved that the problem
is W[1]-hard parameterized by pw(G) + |A|, which translates to tw(G) + |A| as well, where
pw(G) and tw(G) denote the pathwidth and treewidth of G respectively.

The intractability result for the parameter tw(G)+|A| refutes the possibility of getting FPT
algorithms for many well-known structural parameters. Nonetheless, one of the objectives
of structural parameterization is to delimit the border of the tractability of the problem,
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i.e., determining the smallest parameter for which the problem becomes FPT or the largest
parameters that make the problem W-hard. Therefore one natural direction is to study ALPP
with respect to parameters that are either larger than tw(G) + |A| or incomparable with
tw(G) + |A|.

Our Contribution. As our first result, we improve upon the hardness result of Belmonte
et al. [1] by showing hardness for a much larger parameter, dtp(G) + |A|. Here dtp(G)
denotes the distance from G to a path graph (formal definitions of all the parameters can be
found in Section 2). We present a randomized reduction from a known W[1]-hard problem,
which establishes the hardness of (A, ℓ)-Path Packing under the assumption of randomized
Exponential Time Hypothesis (rETH). The randomized reduction technique employed in
our proof is highly adaptable and can be utilized to demonstrate the hardness of various
analogous problems. We use the following lemma to prove our hardness result, which can be
of independent interest.

▶ Lemma 1 (Separation Lemma). Let (X, F) be a set system where F is a family of subsets
of X. For an arbitrary assignment of weights w : X 7→ [M ], let w(S) =

∑
x∈S w(x) denote

the weight of the subset S ⊆ X. For any random assignment of weights to the elements of X

independently and uniformly from [M ], with probability at least 1 − (|F|
2 )

M , each set S ∈ F has
a unique weight.

In addition to refining the boundaries of hardness, we have also considered the problem
with respect to the parameter of cvd(G) denoting the cluster vertex deletion size of G in
combination with the natural parameters A and ℓ. The incomparability of cvd(G) with
tw and pw makes it an intriguing parameter to explore. We have proved that ALPP is
fixed-parameter tractable with respect to the parameters cvd(G) + |A| as well as cvd(G) + ℓ

where cvd(G) denotes the cluster vertex deletion size of G (see Section 2). Below we provide
brief overviews of these two algorithms.

cvd(G) + |A|. We start by combining |A| and the cvd(G) to form a “modulator” M . Now,
each A-path comprises subpaths between certain modulator vertices. Once we guess the
interaction of M with these paths, the role of the cliques in G − M reduces to providing
vertices for these subpaths. Next, we first employ a color-coding scheme and color the cliques.
This coloring determines the role of a clique to provide required subpaths of a certain kind.
And a clique within a color class is deemed feasible if it can provide the necessary subpaths
barring the length requirements. The feasibility of a clique is identified through its color
and modulator neighborhood. Following this, we make an important observation that the
largest feasible cliques are the optimal choices for providing these length-constrained paths.
Subsequently, we design an Integer Linear Program that checks their ability to provide
subpaths with necessary length requirements.

cvd(G) + ℓ. In the context of a modulator M of size m, each clique in G − M is termed
“local”. A path is labeled “local” if it contains no vertices from M and lies entirely within a
local component (clique). It is worth noting that there are at most m non-local paths in
any optimal solution. From each clique, we designate a few vertices with a marking scheme
that are utilized in providing these non-local paths. The remaining vertices from cliques
are utilized in providing local paths and possess very specific characteristics. Exploiting
this property, we can extract such local paths from unmarked vertices of cliques, effectively
bounding the size of each clique. Subsequently, we identify equivalent/indistinguishable

MFCS 2024



16:4 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

cliques based on their modulator neighborhood and only need to retain a few of the equivalent
cliques (as almost all of them are used in providing local paths, and we can extract these
local paths). This bounds the size of the instance as the clique size, the number of equivalent
classes, and the number of equivalent cliques inside a class are bounded.

We design a cubic kernel for a larger parameter (than tw(G)) vertex cover vc(G) in a
manner very similar to the algorithm designed for cvd(G) + ℓ.

tw+ |A| pw+ |A|

fvs+ |A|

dtp+ |A|

cvd+ |A|FPT

Non-FPT

Known from [3] Known from [2]

our result

our result Parameter size

vc

ALPP

Poly Kernel

vc+ |A|

our result

dlf+ |A|

Figure 1 Structural Parameterizations of ALPP. The arrow represents the hierarchy of different
structural parameters, while the dashed line represents the parameters that have yet to be explored
in the context of our problems.

2 Preliminaries

Sets, Numbers and Graph Theory. We use N to denote the set of all natural numbers
and [r] to denote the set {1, . . . , r} for every r ∈ N. Given a finite set S and r ∈ N, we use(

S
r

)
and

(
S

≤r

)
to denote the collection of subsets of S with exactly r elements and at most r

elements respectively. We use standard graph theoretic notations from the book by Diestel
[9]. For any two vertices x, y and a path P , we denote V [x, y] as the number of vertices
in the subpath between x and y in P . And for a path P we denote the set of vertices in
P by V (P ). Further, for a collection P of paths, V (P) = {

⋃
Pi∈P V (Pi)}. In a graph G,

let Pi(v1, v2, · · · , vj) be a path and X ⊆ V be a set. An ordered intersection of Pi with X,
denoted as Xi = (va, vb, · · · , vp), is defined as V (Pi) ∩ X = Xi, where the ordering of the
vertices in Xi is the same as that in Pi. Additionally, we define X1, X2, · · · , Xx as an ordered
partition of X if each Xi is an ordered set and

⋃x
i=1 Xi = X. Given a path Pi(v1, v2, · · · , vj),

we denote Pi(v1, v2, · · · , vj−1) as Pi \ (vj−1,vj ).

Structural Parameters. Given a graph class H and a graph G, we define the distance of
G to H as the minimum number of vertices that need to be deleted to obtain a graph in
class H, denoted by dH(G). For instance, the vertex cover size vc(G) represents the distance
to the class of edgeless graphs or independent sets, the feedback vertex set size fvs(G) is
the distance to the class of forests and cluster vertex deletion set size cvd(G) denotes the
distance to the class of cluster graphs (collection of disjoint cliques). Furthermore, a graph is
called a path graph if it has only one connected component and that connected component is
an induced path. The class of all path graphs and all linear forests are denoted by Γ and
F , respectively. We denote dΓ(G) and dF (G) by dtp(G) and dlf(G), respectively. Formal
definitions of all these parameters can be found in [7].
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3 (A, ℓ)-Path Packing Parameterized by dtp(G) + |A|

This section establishes that ALPP is unlikely to be fixed-parameter tractable with respect
to the combined parameter (dtp(G) + |A|) under standard complexity theoretic assumptions.
We begin by presenting some key ideas that will be instrumental in our subsequent hardness
reduction.

ALPP Parameter: a + m

Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that G − M ∈ Γ, where Γ denotes the family of paths.
Question: Are there k vertex-disjoint A-paths each of length exactly ℓ in G?

3.1 Essential Results
We show the hardness for ALPP under the assumption that the randomized Exponential
Time Hypothesis (rETH) holds. The concept of rETH was introduced by Dell et al. [8],
which states the following. There exists a constant c > 0, such that no randomized algorithm
can solve 3-SAT in time O∗(2cn) with a (two-sided) error probability of at most 1

3 , where n

represents the number of variables in the 3-SAT instance. The O∗ notation hides polynomial
factors in the input size.

In the realm of parameterized complexity, rETH has been widely employed to prove
hardness for many well-known parameterized problems. The following theorem can be derived
from Theorem 12 in [4] when ϵ = 1/m in Conjecture 5.

▶ Theorem 2. Unless rETH fails, there is no randomized algorithm that decides k-Clique
in time f(k) · no(k) correctly with probability at least 2/3.

We establish the intractability result for ALPP parameterized by (|A| + dtp(G)) through
a “parameter preserving reduction” from the k-Independent Set problem on a 2-interval
graph, which in turn was shown to be W[1]-complete following a reduction from the k-Clique
problem by Fellows et al. [10]. A 2-interval Ii is a disjoint pair of intervals {Ia

i , Ib
i } on a real

line. We say that a pair of 2-intervals, Ii and Ij intersect if they have at least one point in
common, that is {Ia

i ∪ Ib
i } ∩ {Ia

j ∪ Ib
j } ̸= ∅. Conversely, if two 2-intervals do not intersect,

they are called disjoint.
A 2-interval representation of a graph G is a set of two intervals J such that there is a

one to one correspondence between J and V (G) such that there exists an edge between u

and v if and only if the 2-intervals corresponding to u and v intersect. A graph is a 2-interval
graph if there is a 2-interval representation for G. For a graph G, a set of vertices W ⊆ V (G)
is said to be independent if for any pair of vertices u and v in W , (u, v) /∈ E(G). Given a
graph G, the k-Independent Set problem asks whether there exists a k size independent
set in G. Observe that given a 2-interval graph G and a 2-interval representation J of G a
k-independent set W for G corresponds to a set of pairwise disjoint 2-intervals in J .

Fellows et al. [10] presented a parameterized reduction from an arbitrary instance (G, k)
of the k-Clique problem to an instance (J , k′) of the k′-Independent Set problem on
a 2-interval graph such that there exists a k size clique in G if and only if there exists a
k′ = k + 3

(
k
2
)

sized independent set in J . Thus, we have the following theorem.

▶ Theorem 3. Unless rETH fails, there is no randomized algorithm that decides k-
Independent Set on a 2-interval graph in f(k) · no(k)-time correctly with probability
at least 2/3.

MFCS 2024



16:6 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

Next, we present a lemma, which we will use later on. We believe that this can be of
independent interest and applicable to various other problem domains. This lemma is similar
to the well-known isolation lemma [13]. Recall that [r] denotes the set {1, . . . , r} where
r ∈ N+.

▶ Lemma 1 (Separation Lemma). Let (X, F) be a set system where F is a family of subsets
of X. For an arbitrary assignment of weights w : X 7→ [M ], let w(S) =

∑
x∈S w(x) denote

the weight of the subset S ⊆ X. For any random assignment of weights to the elements of X

independently and uniformly from [M ], with probability at least 1 − (|F|
2 )

M , each set S ∈ F has
a unique weight.

Proof. Let w be a random assignment of weights to the elements of X independently and
uniformly from [M ] and S1 and S2 be two arbitrary sets in F . Our objective is to find the
probability of the event “w(S1) = w(S2)”. Observe that if S1 \ S2 = ∅ or S2 \ S1 = ∅, then
P

(
w(S1) = w(S2)

)
= 0. Let S1 \ S2 = {x1, x2, · · · , xa} and S2 \ S1 = {y1, y2, · · · yb}. We

define a random variable W12 as follows.

W12 = {w(x1) + · · · + w(xa)} − {w(y2) + · · · + w(yb)} = w(S1) − w(S2) + w(y1)

From the law of total probability, we have the following.

P
(
w(S1) = w(S2)

)
=

∑
P

(
w(S1) = w(S2)|W12 = z

)
· P(W12 = z)

=
∑

P
(
w(y1) = z

)
· P(W12 = z)

=
∑

z∈[M ]

P
(
w(y1) = z

)
· P(W12 = z) if z /∈ [M ] then P

(
w(y1) = z

)
= 0

=
∑

z∈[M ]

1
M
P(W12 = z) = 1

M

∑
z∈[M ]

P(W12 = z) ≤ 1
M

Using Boole’s inequality, we can prove that none of the two sets in F are of equal weight
with probability at least 1 − (|F|

2 )
M . Thus, the claim holds. ◀

3.2 Hardness Proof
We are ready to present a randomized reduction from the k-Independent Set problem in
2-interval graphs to the ALPP problem. Throughout this section, we denote the family of
path graphs by Γ. Let (GJ , k) be an instance of k-Independent Set problem in 2-interval
graph where the set of 2-intervals representing GJ be J .

Now, we present a randomized construction of an ALPP problem instance (G, A, M, ℓ, k)
from (GJ , k) where H = G \ M is in Γ and |M | = 4k. We assume that we are given J . The
construction of G is done in two phases. In the first phase, we generate a set of points P on
the real line R. In the second phase, we construct the graph G. Observe that the points in
P naturally induce a path graph H which is defined as follows. Corresponding to each point
in P , we define a vertex in V (H), and there is an edge between two vertices if the points
corresponding to them are adjacent in R. We additionally add 4k vertices. Before detailing
our construction, let us establish a few notations and assumptions that can be accommodated
without changing the combinatorial structure of the problem. Let J = {I1, I2, · · · , In}
where each 2-interval Ij is a collection of two intervals Ia

j and Ib
j . We presume that all the

intervals in J are inside the interval [0, 1] in the real line. Furthermore, we assume that all
the endpoints of the intervals are distinct, and the distance between any two consecutive
endpoints is at least 2ϵ, where ϵ is an arbitrarily small constant. We use L(I) and R(I) to
denote the left and right endpoints of an interval I, respectively.
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Construction Process

Construction Phase 1. We place a set of points P on R as follows. For each interval
Ic

j , where c ∈ {a, b} and j ∈ [n], we generate two random numbers nr(L(Ic
j )) and

nr(R(Ic
j )) between 1 and N . We will decide on the value of N at a later stage.

Let P (L(Ic
j )) be the set of nr(L(Ic

j )) equally spaced points in the interval [L(Ic
j ), L(Ic

j )+
ϵ]. The first point of P (L(Ic

j )) coincides with L(Ic
j ), and the last point coincides with

L(Ic
j ) + ϵ. Let PL =

⋃
c∈{a,b},j∈[n] P (L(Ic

j )). Similarly, let P (R(Ic
j )) be the set of

nr(R(Ic
j )) equally spaced points in the interval [R(Ic

j ) − ϵ, R(Ic
j )]. The first point

of P (R(Ic
j )) coincides with R(Ic

j ) − ϵ and the last point coincides with R(Ic
j ). Let

PR =
⋃

c∈{a,b},j∈[n] P (R(Ic
j )). An illustration of this process can be seen in Figure 2.

Observe that the cardinality of PL ∪ PR is at most 4nN .
Consider Ij = (Ia

j , Ib
j ) be a 2-interval, and nj be the total number of points from

PL∪PR that are inside Ij . Let nj = 8nN −nj for all j ∈ [n]. Define Cj as the collection
of nj points evenly distributed within the interval [2j, 2j + 1] and let PC = ∪j∈[n]Cj .
To ease the notations, we denote Lj = 2j, Rj = 2j + 1 and Ij as the interval (Lj , Rj).
Observe that the total number of points inside Ia

j , Ib
j and Ij is 8nN .

We add a large number of points (exactly 8nN + 4 many) between Rj and Lj+1 for
j ∈ [n] and denote all these points by PX . Let P = PL ∪ PR ∪ PC ∪ PX .

Ia1 Ib1

Ia1 Ib1

L(Ia1 ) R(Ia1 ) L(Ib1) R(Ib1)

nr(L(I
a
1 )) nr(R(Ib1))

|Ci| = 4nN − ni
C1

C2 C3 C4

ℓℓ
L1 R1

Figure 2 Illustration of Construction Phase 1. Note that |Ci| = ni = 8nN − ni.

Construction Process

Construction Phase 2. Consider the set of points P in R. Observe that there is a
natural ordering among the points in P . We define adjacency based on this ordering.
Consider the path graph GP induced by P . Specifically, we introduce a vertex for
each point in P and add an edge between two vertices if and only if the points
corresponding to them are adjacent. With slight abuse of notation, we denote the
vertex corresponding to a point p by p. For any interval I, let V (I) denote the number
of points/vertices within the interval I. For two points a and b in P , λ[a, b] denotes
the path from a to b in GP .
We construct G, by setting V (G) = V (GP ) ∪ VM where VM = {ai, bi, ci, di| i ∈ [k]}.
And, E(G) = E(GP )∪Ea∪Eb∪Ec∪Ed, where Ea = {(ai, L(Ia

j )) | j ∈ [n] and i ∈ [k]},
Eb = {(bi, R(Ia

j )), (bi, Lj) | j ∈ [n] and i ∈ [k]}, Ec = {(ci, L(Ib
j )), (ci, Rj) | j ∈

[n] and i ∈ [k]}, Ed = {(di, R(Ib
j )) | j ∈ [n] and i ∈ [k]}.

Informally, the edges are defined as follows. Each ai ∈ VM is adjacent to L(Ia
j ) for

all j ∈ [n] (see Figure 3). Similarly each bi ∈ VM is adjacent to R(Ia
j ) for all j ∈ [n].

Additionally, each bi is adjacent to every other Lj for all j ∈ [n]. Each ci is adjacent
to L(Ib

j ) and Rj , and each di is adjacent to R(Ib
j ).

We denote A = {ai, di| i ∈ [k]} and set ℓ = 8nN + 4.

MFCS 2024



16:8 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

Ia1 Ib1

L(Ia1 ) R(Ia1 ) L(Ib1) R(Ib1)

nr(L(I
a
1 )) nr(R(Ib1))

|Ci| = 4nN − ni

R1

a1 b1 c1 d1
M

C1
C2 C3 C4ℓℓ

L1

x = 0 x = 1

Figure 3 Illustration of construction of (A, ℓ)-Path Packing. Note that |Ci| = ni = 8nN − ni.

Next, we demonstrate that if there exists a k-size independent set in GJ , then with
probability 1 there exist k many vertex-disjoint (A, ℓ)-paths in G where ℓ = 8nN + 4
(Lemma 4). Following this, we show that if there exist k many vertex-disjoint (A, ℓ)-paths in
G where ℓ = 8nN + 4, then with high probability there is a k-size independent set in GJ .

▶ Lemma 4. If there are k disjoint 2-intervals in J , then there are k vertex-disjoint
(A, ℓ)-paths in G.

Proof. Without loss of generality, let us assume that the k disjoint 2-intervals are
I1, I2, . . . , Ik. Recall that for two vertices a and b in the path graph GP , λ[a, b] denotes the
path from a to b in GP . Consider the following set of paths, defined for 1 ≤ i ≤ k,

λi = ai · λ[L(Ia
i ), R(Ia

i )] · bi · λ[Li, Ri] · ci · λ[L(Ib
i ), R(Ib

i )] · di

Observe that the paths in {λi|1 ≤ j ≤ k} are pairwise vertex-disjoint, each having ℓ

vertices, with two endpoints at two different vertices in A (See Figure 4 for an illustration).
By construction, they contain ℓ = 8nN + 4 many vertices. Thus, the claim holds. ◀

L(Iaj1) R(Iaj1)L(Iaj3) R(Iaj3) L(Ibj1) R(Ibj1))L(Ibj3) R(Ibj3)

a1 b1 c1 d1
M

a2 b2 c2 d2 a3 b3 c3 d3 a4 b4 c4 d4

L2 R2

Figure 4 Construction of the paths λi in the proof of Lemma 4.

Next, we show that if there exist k many vertex-disjoint (A, ℓ)-paths in G where ℓ =
8nN + 4, then with high probability there is a k size independent set in GJ .

Recall that the set of intervals {Ij |j ∈ [n]} where Ij = [Lj , Rj ]. Let Vj = V (Ij). And,
the path corresponding to Ij is λ[Lj , Rj ]. Let us define C = {Ci|1 ≤ i ≤ n}. Next, we have
the following observation.
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▶ Observation 5. For any A-path L of length exactly ℓ = 8nN + 4 in G, there exists an
integer y ∈ [n] such that Vy ⊂ V (L) and for any i ̸= y, Vi ∩ V (L) = ∅. Further L contains
the subpath bx· λ[Ly, Ry]· cz for some x, z ∈ [k].

Proof. As the total number of points/vertices in [0, 1] is at most 4nN < ℓ, note that every
(A, ℓ)-path should contain all points/vertices from at least one set of points from C. Observe
that any path with a length of exactly ℓ contains exactly one set of points Ci ∈ C as between
two consecutive set of points in C there are more than ℓ points. As only neighbors of Ci

which is not in H is bx and cz, where x, z ∈ [k], therefore, the path must include a subpath
of the form bx · λ[Ly, Ry] · cz for some y ∈ [n] and x, z ∈ [k]. ◀

Let P = {P1, . . . , Pk} be a set of k vertex-disjoint A-paths of length exactly ℓ in G. We
show that with high probability, there is a k size independent set in GJ .

▶ Observation 6. Each path Pi ∈ P is of the form p· λ[r, s]· bx· λ[Ly, Ry]· cz· λ[t, u] · q where
p, q ∈ A, r, s, t, u ∈ M , y ∈ [n] and x, z ∈ [k].

Proof. Since the total number of points in A is 2k, each path must contain exactly two
points from A. It follows from Observation 5 that any such path contains a subpath of the
form bx· λ[Ly, Ry]· cz. By construction, for any path P , that connects p with bx, P \ {p, bx}
induces a continuous set of points on the path graph with endpoints in M (see Figure 4). A
similar argument can be made for cz and q as well. Thus, the claim holds. ◀

Observation 6 indicates that from the disjoint paths in P, it is possible to construct a
disjoint set of 3-intervals J = {((xi, yi), (zi, wi), Ij)|1 ≤ i ≤ k} where xi, yi, zi, wi ∈ M and
Ij = (Lj , Rj). Next we prove that with high probability the interval (xi, yi) = Ia

yi
and the

interval (zi, wi) = Ib
yi

, which will give us the desired set of k disjoint 2-intervals.
Let a, b, c, d be any four points in M . Without loss of generality, assume that a < b < c < d.

Consider the 2-interval ((a, b), (c, d)) defined by a, b, c, d. Let JF be the set of all such intervals,
formally defined as JF = {((a, b), (c, d))|a, b, c, d ∈ and a < b < c < d}. Note that |JF | < n4.
From Lemma 1, we know that each 2-interval in JF contains a unique number of points

with probability at least 1 − (n4
2 )
N . If we set N = 3

(
n4

2
)
, with probability at least 2

3 every
2-interval in JF contains a unique number of points. Thus with probability at least 1

3 , for
every 1 ≤ j ≤ n, no other 2-interval except (Ia

j , Ib
j ) contains ℓ − V (Ij) − 4 many points where

V (I) denotes the number of points in the interval I. Therefore with probability at least 2
3 ,

for every 3-interval ((xi, yi), (zi, wi), Iyi
) in J , (xi, yi) = Ia

yi
and (zi, wi) = Ib

yi
. Hence we

have the following lemma.

▶ Lemma 7. If there are k vertex-disjoint (A, ℓ)-paths in G, then there are k disjoint
2-intervals in J .

The following conclusive theorem arises from the combination of Theorem 3, Lemma 4,
and Lemma 7.

▶ Theorem 8. Unless rETH fails, there is no randomized algorithm for (A, ℓ)-Path Packing
which runs in f(dtp(G) + |A|) · no(dtp(G)+|A|)-time correctly with probability at least 2/3.

4 (A, ℓ)-Path Packing Parameterized by cvd(G)+|A|

In this section, we design an FPT algorithm for the (A, ℓ)-Path Packing problem parame-
terized by combining the two following parameters: the size of a cluster vertex deletion set
and |A|. Our algorithm operates under the assumption that we are provided with a minimum
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16:10 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

size set M as input, satisfying the conditions A ⊆ M and G − M forms a cluster graph.
This assumption is justified by the fact that one can efficiently find the smallest size cluster
vertex deletion set of G − A in time 1.9102k · nO(1) [2]. We restate the problem definition
and illustrate a brief sketch of our algorithm.

ALPP Parameter: m = |M |
Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that A ⊆ M and G − M is a cluster graph.
Question: Does there exist k vertex-disjoint paths of length exactly ℓ that have
endpoints in A?

Overview of the Algorithm. Our algorithm starts by making an educated guess regarding
the precisely ordered intersection of each path within an optimal solution (P) with the
modulator set M . This involves exploring a limited number of possibilities, specifically on the
order of f(|M |) · nO(1) choices. Once we fix a choice, the problem reduces to finding subpaths
(of any given path in P) between modulator vertices satisfying certain length constraints. To
provide a formal description, let P ∈ P be a path of the form m1P1,2m2m3m4P4,5m5 (our
guess for P ∈ P) where each mi ∈ M and each Pi,i+1 is contained in G − M . Subsequently,
our algorithm proceeds to search for the subpaths P1,2 and P4,5 each contained in cliques
of G − M with endpoints adjacent to vertices m1, m2 and m4, m5 respectively. A collection
of constraints within our final integer linear program (ILP) guarantees that the combined
length of the paths P1,2 and P4,5 precisely matches ℓ − 5, satisfying the prescribed length
requirement. Before presenting the ILP formulation, we make informed decisions about the
cliques that are well-suited and most appropriate for providing these subpaths. Towards
that, we partition the at most |M | many subpaths (originating from all the paths in P), with
each partition containing subpaths exclusively from a single clique of G − M . Moreover, no
two subpaths in separate partitions come from the same clique. Once such a choice is fixed,
we apply a color coding scheme on the cliques in G − M where we color the cliques with the
same number of colors as the number of sets in the mentioned partition of subpaths into sets.
With a high probability, each clique involved in the formation of P is assigned a distinct color.
These assigned colors play a crucial role in determining the roles of the cliques in providing
subpaths and, consequently, in constructing the final solution P. We show that among all
the cliques colored with a single color, a largest size feasible clique is an optimal choice for
providing the necessary subpaths of P. A feasible clique is a clique that is able to provide
the necessary subpaths determined by its assigned color, barring the length requirements,
and, is identified by its adjacency relation with M . Therefore, we keep precisely one feasible
clique of the maximum size for each color and eliminate the others. Thus the number of
cliques in the reduced instance is bounded by a function f(m). Following these steps, our
problem reduces to finding required subpaths (with length constraints) for which we design
a set of ILP equations where the number of variables is a function of m. Below, we give a
detailed description of our algorithm.

Algorithm.

Phase 1: The Guessing Phase
1. Find a cluster vertex deletion set S of the minimum size in G − A. Then, set M = A ∪ S.
2. Generate all M ′ ⊆ M . For a fixed M ′, generate all its ordered partitions such that only the

first and last vertices of every set of the partitions are from A. Let M = {M ′
1, . . . , M ′

|M|}
be a fixed such partition of M ′.
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3. Without loss of generality, let M ′
i = (mg(i), mg(i)+1, . . . , ml(i)). For any two consecutive

vertices mj and mj+1 where j ∈ [g(i), l(i) − 1], we introduce a variable Pj,j+1. These
variables serve as placeholders representing subpaths within the optimal solution that we
are aiming to find. We use P to denote the collection of Pj,j+1.

4. We enumerate all partitions of P. Let XP = {P1, P2, . . . , Px} be a partition of P with
x = |XP|.

5. Additionally, we generate all valid functions h : P → {0, 1, > 1}, i.e., we guess whether
the length of each subpath is exactly 0, 1, or more than 1. The function h is valid if
h(Pj,j+1) = 0, implies mj and mj+1 are adjacent. The validity of h concerning the other
two values (1 and > 1) is inherently assured by the presence of a feasible clique.

6. We create a function T : XP → 22M as follows. For each part Pi ∈ XP, create the set
T (Pi) = {{mj , mj+1} : Pj,j+1 ∈ Pi and h(Pj,j+1) = 1} ∪ {{mj} ∪ {mj+1} : Pj,j+1 ∈
Pi and h(Pj,j+1) > 1}.

At the conclusion of Step 6, we have generated all the tuples denoted as τ =
(M ′, M,P, XP, h, T ). For each specific τ , we proceed to Phase 2 in order to bound the
number of cliques and subsequently generate a set of ILPs.

Phase 2: Bounding the number of Cliques Phase
1. We color all the cliques in G − M with x many colors uniformly at random. From a set of

cliques colored with color i, we choose a largest feasible clique Qi. A clique with color i is
feasible if and only if it has |T (Pi)| distinct vertices, each being a neighbor to a different
set in T (Pi). Also, we denote the above coloring function by Cτ .

2. Following the Algorithm, we construct the following set of ILPs.

ILP (τ, Cτ ) :
l(i)−1∑
j=g(i)

xj,j+1 = ℓ − |M ′
i |, ∀M ′

i ∈ M

∑
Pj,j+1∈Pi

xj,j+1 ≤ |Qi|, ∀Pi ∈ XP

xj,j+1 = 1, iff h(Pj,j+1) = 1

Correctness of The Guessing Phase (Steps 1 to 6). Let P = {P1, . . . , Pp} be an optimal
solution of size p where any ℓ-path in P by definition has both its endpoints in A. In the
above ILP, note that the variable xj,j+1 represents the path Pj,j+1. The M ′ generated in
the Step 2 is V (P) ∩ M . Each M ′

i is the ordered intersection of a path Pi with M ′ , i.e., the
sequence of vertices of V (Pi) ∩ M appearing in the path is given by M ′

i (Step 2). In Step 3,
we create the variables (corresponding to the subpaths of P) for each pair of consecutive
vertices from M ′

i for every M ′
i ∈ M (Step 3). Any such subpath with a non-zero length

is contained in exactly one of the cliques in G − M . The subpaths of P that come from
single cliques together are denoted by the partition XP, i.e., the subpaths (in P) in a part
of the partition are exactly the subpaths that are contained in a single clique of G − M

(Step 4). We further divide these subpaths into three groups (h−1(0), h−1(1), h−1(> 1))
based on whether their lengths are exactly 0, 1, or more than 1 (Step 5). If h(Pj,j+1) = 0,
then the corresponding subpath has length zero implying mj and mj+1 are adjacent in P . If
h(Pj,j+1) = 1, then the corresponding subpath has length exactly one and the lone vertex in
the subpath is adjacent to both mj and mj+1 in P . When h(Pj,j+1) > 1, the correcponding
subpath has length more than one and has two vertices, one is adjacent to mj while another is
adjacent to mj+1. The set T (Pi) basically stores the adjacency relations (required) between
the endpoints of non-zero length subpaths of P and M . The correctness of the first 6 steps
follows directly because of the fact that we exhaust all possible choices at each step.
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16:12 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

Correctness of Phase 2. We apply the color-coding scheme in the first step of second
phase of our algorithm. Each clique Qi ∈ {Q1, . . . , Qx} that contains vertices from P gets a
different color with high probability. Moreover, each Qi colored with color i exactly contains
the subpaths denoted by Pi. We compute this exact probability later in the runtime analysis
of our algorithm. Notice the role of the cliques in G − M is to provide subpaths of certain
lengths between the vertices from M . And, a feasible clique of color i is able to provide all
the subpaths in Pi between the vertices of M , barring the length requirements. Thus, given
a feasible clique Q′

i of maximum size, we can reconstruct an equivalent optimal solution P ′

in which all its paths within Pi are entirely contained within Q′
i, all the while sticking to the

specified length requirements. This reconstruction can be systematically applied to guarantee
the existence of an optimal solution where all its subpaths are derived from a collection of
feasible cliques with the largest size available from each color class. Let τ be a correctly
guessed tuple, Cτ be a correct coloring scheme (coloring each of the x cliques involved in the
solution distinctly), and Q′

i be a feasible clique of the largest possible size colored with color
i respecting the guessed tuple for each color i. Then, there exists an optimal solution that is
entirely contained in the subgraph G[

⋃x
i=1 Q′

i ∪ M ]. To obtain the desired solution for a YES
instance, we narrow our attention to the subgraph and formulate the specified ILP denoted
as ILP(τ, Cτ ). The primary objective of the ILP equations is to guarantee that every path
we are seeking has an exact length of ℓ. The first set of constraints enforces the specified
length requirements for the subpaths, ensuring that each subpath adheres to its designated
length. And the second set of constraints ensures that the combined total of all vertices to
be utilized from a clique (across all subpaths) in a solution to the ILP does not surpass the
total number of vertices within the largest feasible clique.

Runtime Analysis. The total number of ordered partitions generated in Step 2 is O(2m ·mm).
In Step 3, |M ′

i | can be of O(m). Hence for a fixed M, the number of permutations enumerated
is of O(m!) · m. Notice the number of Pj,j+1 (|P|) is bounded by m. Therefore in the next
step, XP can be partitioned in mm ways. In Step 5, each Pj,j+1 ∈ P takes one of the three
values. Thus there can be at most 3m assignments for a fixed P. Hence total number of tuples
generated at the end of Step 6 is bounded by O(2m · mm · m! · m · mm · 3m) ≡ 2O(m log m).
Since x ≤ m, the probability that we get a coloring that colors all the x cliques properly
and distinctly is at least 1

m! . Once we have a good coloring instance, we formulate the
ILP(τ, Cτ ) to solve the problem. Since both |M| and |XP| are bounded by O(m), the ILP can
be solved in time mO(m). This immediately implies a randomized FPT algorithm running
in time 2O(m log m). Notice the randomization step (Phase 2) can be derandomized using
(m, x)-universal family [7]. And we have the following theorem.

▶ Theorem 9. (A, ℓ)-Path Packing is FPT parameterized by cvd(G)+|A|.

5 (A, ℓ)-Path Packing Parameterized by cvd(G) + ℓ

In this section, we design an FPT algorithm for the instance (G, S, A, k, ℓ) of ALPP parame-
terized by the combined parameter cvd(G) + ℓ.

(A, ℓ)-Path Packing Problem Parameter: |M |(= m) + ℓ

Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that G − M is a cluster graph.
Question: Does there exist k vertex-disjoint paths of length exactly ℓ that have
endpoints in A?
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We denote the set of cliques in G − M by Q and the vertices in the cliques by VQ =
∪Q∈QV (Q). Let I = (G, M, A, k, ℓ) be a YES instance of ALPP and let P be any arbitrary
solution for I. We denote the set paths in P that contain at least one vertex from M by PM

and the set of paths in P that are completely inside a clique by PQ. Note that PM ∩ PQ = ∅
and P = PM ∪ PQ.

▶ Observation 10. The total number of vertices present in the paths PM is at most ℓ · m,
i.e. | ∪P ∈PM V (P )| ≤ ℓ · m.

Next, we present a marking procedure followed by a few reduction rules to bound the
size of each clique.

Marking Procedure.
1. For each vertex u ∈ M , mark ℓm + 1 many of its neighbors from both A ∩ V (Q) and

V (Q) \ A for each clique Q ∈ Q. If any clique does not contain that many neighbors
of u, we mark all the neighbors of u in that clique.

2. For each pair of vertices u, v in M , mark ℓm + 1 many common neighbors of u and v

outside A, in every clique of Q.
3. Additionally, mark ℓm + 1 many vertices from both A ∩ V (Q) and V (Q) \ A for each

clique Q ∈ Q.

In the marking procedure the upper bound on the number of marked vertices for each
clique Q from A (in A ∩ V (Q)) is f1(ℓ, m) = (m + 1)(ℓm + 1) and the number of marked
vertices outside A (in V (Q) \ A) is f2(ℓ, m) = (m2 + m + 1)(ℓm + 1).

Exchange Operation. Consider any two arbitrary paths P1, P2 ∈ P and < a1, a2, a3 > and
< b1, b2, b3 > be any two subsequences of vertices in P1 and P2 respectively. Let a2 be a
neighbour of b1 and b3 and b2 be a neighbour of a1 and a3. We define the operation exchange
with respect to P1, P2, a2, and b2 as follows. We create the path P ′

1 by replacing the vertex
a2 with b2, and we create the path P ′

2 by replacing the vertex b2 with a2. Observe that
P \ {P1, P2} ∪ {P ′

1, P ′
2} also forms a solution.

▶ Lemma 11. There exists a solution P for (G, M, A, k, ℓ) such that all the vertices in PM

are either from M or are marked.

Proof. Suppose there is a path P in PM that contains an unmarked vertex w. There are at
most two neighbors of w in P . We assume here that there are exactly two neighbors of w.
The case when w has only one neighbor in P can be argued similarly. Let the neighbors of w

in P be w1 and w2. We have the following three exhaustive cases.

w1, w2 ∈ V (Q): Recall that we have marked an additional ℓm + 1 many vertices from
outside A in each clique (vertices that w may be replaced with) and from Observation 10,
we know at most mℓ many of them are contained in PM. Thus, there is at least one
marked vertex, say, w′ in V (Q), that is not contained in any path of PM. If w′ is also not
contained in any path of PQ, we simply replace w by w′ in P . If it is in a path P ′ ∈ PQ,
we do an exchange operation with respect to P , P ′, w and w′ and reconstruct a new
solution.

w1 ∈ V (Q) and w2 ∈ M : Recall that we have marked ℓm+1 many vertices from N(w2)∩
V (Q) \ A. From Observation 10, at most mℓ many of them are contained in PM. Hence,
there is at least one marked vertex in V (Q) \ A that is not contained in any path from
PM. Similar to the arguments outlined in the previous case, we replace the vertex w by
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w′ when w′ is not contained in any path of PQ, or perform an exchange operation with
respect to P , P ′, w and w′ and reconstruct a new solution when w′ is contained in some
P ′ ∈ PQ.

w1, w2 ∈ M : Using arguments similar to the previous case, we can again replace an un-
marked vertex in PM with a marked vertex and reconstruct a new solution for this case
as well.

After exhaustively replacing unmarked vertices of PM (that are not in M), we derive a
solution P in which paths from PM do not include unmarked vertices from the cliques. ◀

Henceforth, we seek for a solution P for (G, M, A, k, ℓ) such that all the vertices in any
path of PM are either from M or marked. Next, we have the following reduction rule.

▶ Reduction Rule 1. If there exists a clique Q containing a pair of unmarked vertices
u, v ∈ A and a set X of (ℓ − 2) unmarked vertices outside A, then delete u, v along with X

and return the reduced instance (G − {X ∪ {u, v}}, M, A \ {u, v}, k − 1, ℓ).

We prove the safeness of the reduction rule below.

▶ Lemma 12. (G, M, A, k, ℓ) is a YES instance if and only if (G − {X ∪ {u, v}}, M, A \
{u, v}, k − 1, ℓ) is a YES instance.

Proof. If (G − {X ∪ {u, v}}, M, A \ {u, v}, k − 1, ℓ) is a YES instance with a solution PR,
then (G, M, A, k, ℓ) is also a YES instance as PR along with the path formed by X ∪ {u, v}
forms a solution to the instance.

Conversely, let (G, M, A, k, ℓ) be a YES instance with a solution P . Now, we will obtain a
solution P ′ for G−{X ∪{u, v}} of size at least k −1. We denote the paths in P that intersect
with X ∪ {u, v} by PX (with slight abuse of notation). If |PX | ≤ 1 then P ′ = P \ PX is
the desired solution. From now on, we assume that |PX | > 1. Observe that as the vertices
in X ∪ {u, v} are unmarked, PX ∩ PM = ∅ (from Lemma 11). We can reconstruct a new
solution P1 from P where exactly one path P in P1 intersects X ∪ {u, v}, and the rest of the
paths in P1 do not intersect with X ∪ {u, v}, by repeatedly utilizing the exchange operation
among the paths in PX . Observe that P ′ = P1 \ {P} is the desired solution. Thus, the claim
holds. ◀

Note that the upperbound on the number of marked vertices from A ∩ V (Q) is f1(ℓ, m) =
(m+1)(ℓm+1) and the number of marked vertices V (Q)\A is f2(ℓ, m) = (m2+m+1)(ℓm+1).
And, after exhaustive application of Reduction Rule 1, in any clique Q, either there are at
most ℓ − 3 unmarked vertices in V (Q) \ A or at most one unmarked vertex in A ∩ V (Q).

Case (i): There is at most one unmarked vertex in A ∩ V (Q).
Case (ii): There are at most ℓ − 3 unmarked vertices in V (Q) \ A.

Based on the aforementioned cases, we introduce two reduction rules – one for each case
– that help us limit the overall number of unmarked vertices in Q, thereby bounding the
size of each clique in G − M . First we consider the Case (i) when the number of unmarked
vertices form A ∩ V (Q) is bounded by one and bound the number of the unmarked vertices
in V (Q) \ A with the following reduction rule.

▶ Reduction Rule 2. If there exists a clique Q containing at most one unmarked vertex from
A and at least (f1(ℓ, m) + 1) · ℓ

2 + 1 unmarked vertices outside A, then delete one unmarked
vertex u ∈ V (Q) \ A and return the reduced instance (G − {u}, M, A, k, ℓ).
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Let G′ = G − {u} be the new graph following an application of Reduction Rule 2. We
prove the safeness of the reduction rule in the following lemma.

▶ Lemma 13. (G, M, A, k, ℓ) is a YES instance if and only if (G′, M, A, k, ℓ) is a YES
instance.

Proof. If (G′, M, A, k, ℓ) is a YES instance, then (G, M, A, k, ℓ) is a YES instance since G′ is
a subgraph of G. Conversely, suppose (G, M, A, k, ℓ) is a YES instance, and P is a solution. If
u does not belong to any path in P , then P is a solution to (G′, M, A, k, ℓ) as well. Otherwise,
let P ∈ PQ contain u. This is true since any unmarked vertex can only be used in a path
in PQ. But any such path uses exactly 2 vertices from V (Q) ∩ A. Hence we can upper
bound the number of unmarked vertices outside A that are contained in PQ and hence P
by (f1(ℓ, m) + 1) · ℓ

2 . Hence, there is at least one unmarked vertex u′ ̸= u in V (Q) \ A

which is not used by any path in P. We replace u with u′ in P to get a desired solution to
(G′, M, A, k, ℓ). ◀

For the Case (ii) when the number of unmarked vertices form V (Q) \ A is bounded by
l − 3 and we bound the number of the unmarked vertices in V (Q) ∩ A with the following
reduction rule.

▶ Reduction Rule 3. If there exists a clique Q containing at most ℓ−3 unmarked vertices from
V (Q) \ A and at least (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 + 1 many unmarked vertices in A, then delete
an unmarked vertex u ∈ A ∩ Q and return the reduced instance (G − {u}, M, A \ {u}, k, ℓ).

Proof. If (G − {u}, M, A \ {u}, k, ℓ) is a YES instance, then (G, M, A, k, ℓ) is trivially a
YES instance since G′ is a subgraph of G. Conversely, suppose (G, M, A, k, ℓ) is a YES
instance, and P is a solution. If u does not belong to any path in P , then P is a solution to
(G′, M, A, k, ℓ) as well. Otherwise, let P ∈ PQ contain u. This is true since any unmarked
vertex can only be used in a path in PQ. But any such path uses exactly ℓ − 2 vertices
from V (Q) ∩ A. Hence we can upper bound the number of unmarked vertices from A that
are contained in PQ and hence P by (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 . Hence, there is at least one
unmarked vertex u′ ̸= u in V (Q) ∩ A which is not used by any path in P . We replace u with
u′ in P to get a desired solution to (G′, M, A, k, ℓ). ◀

After exhaustive application of Reduction Rules 2 and 3, the upper bound on the number
of vertices of different types in each clique is as follows:

Marked vertices in A: f1(ℓ, m) = (m + 1)(ℓm + 1)
Marked vertices in V (Q) \ A: f2(ℓ, m) = (m2 + m + 1)(ℓm + 1)
Unmarked vertices in A: (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 + 2
Unmarked vertices in V (Q) \ A: (f1(ℓ, m) · ℓ + 1

Hence the total number of vertices in each clique is bounded by O(ℓ2m2 + ℓm3).

Equivalent cliques. Now we aim to bound the number of cliques by introducing the concept
of equivalent cliques. Two cliques Qi and Qj , are equivalent (belong to the same equivalent
class) if and only if the number of vertices from the cliques that are in A, and that are
outside A with an exact neighborhood of M ′ ⊆ M is same for each M ′ ∈ 2M . Two cliques
Qi, Qj in an equivalence class are essentially indistinguishable from each other, i.e., there is a
bijective mapping gij : V (Qi) 7→ V (Qj), so that N(u) ∩ M = N(g(u)) ∩ M , for all u ∈ V (Qi).
This fact is crucial in the construction of our next reduction rule. Observe that the number
of equivalence classes is at most O(ℓ2m2 + ℓm3)2m=f(ℓ, m). The following reduction rule
bounds the number of cliques in each equivalent class.
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▶ Reduction Rule 4. If there exists an equivalent class C with at least ℓm + 1 cliques,
then delete one of the cliques Qi ∈ C and return the reduced instance (G − Qi, M, A \ (A ∩
V (Qi)), k − xi, ℓ) where, xi = min

{
|A∩V (Qi)|

2 , |V (Qi)\A|
ℓ−2

}
.

▶ Lemma 14. (G, M, A, k, ℓ) is a YES instance if and only if (G−Qi, M, A\(A∩V (Qi)), k−
xi, ℓ) is a YES instance.

Proof. In the forward direction, let (G, M, A, k, ℓ) be a YES instance. Recall that the number
of the vertices contained in paths of PM for any optimal solution P is bounded by ℓs. Thus,
there are at most ℓm many cliques in total and also from any equivalence class that has vertices
in paths from PM . Let Qj be one such clique in the equivalence class C that does not contain
any vertex in the paths from PM . From the definition of an equivalence class, it is evident
that the two cliques Qi, Qj in the equivalence class C are indistinguishable from each other,
i.e., there is a bijective mapping gij : V (Qi) 7→ V (Qj), so that N(u) ∩ M = N(g(u)) ∩ M , for
all u ∈ V (Qi). Let Xi = V (P) ∩ V (Qi) and Xj = V (P) ∩ V (Qj), i.e, the set of vertices from
Qi and Qj that are used in paths from P, respectively. We construct an alternate solution,
P ′, where we replace Xi with gij(Xi) and Xj with g−1

ij (Xj) in P. Since Xj ∩ M = ∅, we
have g−1

ij (Xj) ∩ M = ∅. Therefore in P ′, there is no path that contain vertices from both
M and V (Qi). In other words, vertices in Qi can only be contained in paths from P ′ \ P ′

M

(paths that are completely contained inside the clique). And, the number of such paths is
bounded by xi = min

{
|A∩V (Qi)|

2 , |V (Qi)\A|
ℓ−2

}
. Hence (G − Qi, M, A \ (A ∩ V (Qi)), k − xi, ℓ)

is a YES instance.
In the reverse direction, let (G−Qi, M, A\(A∩V (Qi)), k−xi, ℓ) be a YES instance with a

solution P . But there are xi many paths (say Pi) that are completely contained in Qi.Hence,
P ∪ Pi is a set of k vertex-disjoint (A, ℓ)-paths contained in G, making (G, M, A, k, ℓ) a YES
instance. ◀

After exhaustively applying all the aforementioned reduction rules, the following bounds
hold.

The number of vertices in each clique is bounded by O(ℓ2m2 + ℓm3).
The number of equivalence classes is at most O(ℓ2m2 + ℓm3)2m .
The number of cliques in each equivalence class is at most ℓm + 1.

Consequently, the size of the reduced instance is upper-bounded by a computable function
of ℓ and m, thus directly implying the following theorem.

▶ Theorem 15. ALPP parameterized by cvd(G) + ℓ admits an algorithm running in FPT
time.

6 (A, ℓ)-Path Packing parameterized by vc(G)

In this section, we design a polynomial kernel for (A, ℓ)-Path Packing parameterized by
the size of a vertex cover of the graph.

ALPP Parameter: m = |M |
Input: An undirected graph G = (V, E), A, M ⊆ V (G) such that M is a vertex cover
of G and integers k and ℓ.
Question: Are there k vertex-disjoint A-paths each of length ℓ in G?

For a YES instance (G, M, A, k), a solution P contains at most 3m vertices. This limitation
arises because there are no consecutive vertices from I = V (G) − M in any path within P.
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▶ Observation 16. Any solution P to a YES instance of (G, M, A, k, ℓ), has at most 3m

vertices.

Our kernelization approach comprises the following marking process followed by a reduc-
tion rule that bounds the instance size by a polynomial function of m.

Marking Procedure.
1. For each vertex u ∈ M , mark 3m + 1 many of its neighbors in I ∩ A. If any vertex

u ∈ M has less than 3m + 1 neighbors, we mark all of them.
2. For each pair of vertices u, v ∈ M , mark 3m + 1 many common neighbors in I \ A

for each clique. If any pair u, v ∈ M has less than 3m + 1 common neighbors, we
mark all of them.

Now we apply the following reduction rule to eliminate unmarked vertices in I.

▶ Reduction Rule 5. We delete any unmarked vertex u ∈ I from G, and return the reduced
instance (G − {u}, M, A, k, ℓ).

Let G′ = G − {u} be the new graph obtained after an application of Reduction Rule 5.
The safeness of the reduction rule is not very difficult to see and will be provided in the full
version.

Following the exhaustive application of the Reduction Rule 5, there are 3m + 1 vertices
marked in I for each pair of vertices as well as each individual vertex in M . Consequently, in
the reduced instance, |I| is bounded by O(m3). As a result, we have the following theorem.

▶ Theorem 17. ALPP parameterized by vc(G) admits a kernel with O(m3) vertices.

7 Conclusion

Our results have extended the works of Belmonte et al. [1] by addressing the parameterized
complexity status of (A, ℓ)-Path Packing (ALPP) across numerous structural parameters.
It was known from Belmonte et al. [1] that ALPP is W[1]-complete when parameterized by
pw + |A|. We prove an intractability result for a much larger parameter of dtp(G) + |A|.
Also, the parameterized complexity of ALPP when parameterized by the combined parameter
of cliquewidth and ℓ was an open question [1]. While that problem still remains open,
we have been successful in making slight progress by obtaining an FPT algorithm for the
problem when parameterized by the combined parameter of cvd(G) and ℓ. Another direction
to explore would be to determine the fixed-parameter tractability status of the problem
when parameterized by cvd(G) only. It would be interesting to explore if this FPT result
can be generalized to the combined parameter of cograph vertex deletion set size and ℓ

since cographs are graphs of cliquewidth at most two. We believe that the positive results
presented in this paper are not optimal and some of those results can be improved with more
involved structural analysis. Therefore, improving the efficiency of our positive results are
exciting research direction for future works.
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