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Abstract
A sequence d = (d1, d2, . . . , dn) of positive integers is graphic if it is the degree sequence of some
simple graph G, and planaric if it is the degree sequence of some simple planar graph G. It is known
that if

∑
d ≤ 2n − 2, then d has a realization by a forest, hence it is trivially planaric. In this paper,

we seek bounds on
∑

d that guarantee that if d is graphic then it is also planaric. We show that
this holds true when

∑
d ≤ 4n − 4 − 2ω1, where ω1 is the number of 1’s in d. Conversely, we show

that there are graphic sequences with
∑

d = 4n − 2ω1 that are non-planaric. For the case ω1 = 0,
we show that d is planaric when

∑
d ≤ 4n − 4. Conversely, we show that there is a graphic sequence

with
∑

d = 4n − 2 that is non-planaric. In fact, when
∑

d ≤ 4n − 6 − 2ω1, d can be realized by a
graph with a 2-page book embedding.
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1 Introduction

Background. In a graph G with n vertices, the degree of a vertex is the number of edges
incident to it. Let deg(G) denote the sequence of length n of vertex degrees of G. The
Degree Realization problem concerns deciding, given a sequence d of n positive integers,
whether d has a realizing graph, namely, a graph G with n vertices such that deg(G) = d,
and finding such a graph if exists. A graphic sequence is one admitting a realizing graph. A
full characterization of graphic degree sequences was given by Erdös and Gallai [7]. Havel
and Hakimi [11, 12] described an algorithm that, given a sequence d, generates a realization,
or verifies that d is not graphic.

The realizability characterization of [7] for general graphs takes into account all the
elements of the sequence d. In contrast, the realizability of degree sequences by some special
graph classes can be characterized more economically. An extreme example is realizability by a
forest (cycle-free graph). Here, a single parameter suffices, namely, the volume

∑
d =

∑n
i=1 di

of d. Concretely, if
∑

d ≤ 2n− 2, then d can be realized by a forest, and if
∑

d ≥ 2n then
it cannot [10]. A slightly more involved and less economical characterization applies for
realizations by cacti graphs. A cactus graph is a connected graph in which every edge occurs
on at most one cycle, namely, different cycles do not share edges (but may share one vertex).
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18:2 Sparse Graphic Degree Sequences Have Planar Realizations

The paper [16] gives a full characterization for sequences that can be realized by a cactus
graph based only on the volume of the sequence, the number of 2’s in the sequence, and the
number of odd degrees in the sequence.

In this paper, we are interested in realizability by planar graphs, which turns out to be a
challenging task that is still an open problem after more than half a century. A sequence
d = (d1, d2, . . . , dn) of positive integers is planaric if it is the degree sequence of some planar
graph G. Planaric sequences were studied in, e.g., [13, 1, 18, 8, 9, 17] and more. At the
moment, however, a complete characterization for planaric sequences is not yet available.

Contributions. Let d be a sequence with n positive integers and let ωi be the multiplicity of
i in d. This paper investigates the impact of the volume

∑
d and the multiplicity parameters

ω1 and ω2 of the sequence d on its realizability by a planar graph. One direction follows
from [18] which implies that if

∑
d > 6n− 12− 2ω2 − 4ω1 then d is not planaric. (This is

tight in the sense that there are planaric sequences with
∑

d ≤ 6n − 12 − 2ω2 − 4ω1.) In
this paper, we focus on the converse direction, i.e., we seek bounds on these parameters that
guarantee that if d is graphic then it is also planaric. A simple bound is obtained by recalling
the above-mentioned known fact that if

∑
d ≤ 2n− 2, then d has a a realization by a forest

with (2n −
∑

d)/2 components, hence it is planaric [10]. Here, we give stronger bounds
for this problem, depending on

∑
d and ω1. It turns out that most of the technical effort

involves handling the leaf-free case (the case in which d does not contain 1s). We establish
the following.

▶ Theorem 1. Every graphic sequence d with ω1 = 0 and
∑

d ≤ 4n− 4 is planaric.

This in turn enables us to prove our more general main result.

▶ Theorem 2. Every graphic sequence d with
∑

d ≤ 4n− 4− 2ω1 is planaric.

In fact, when
∑

d ≤ 4n− 6− 2ω1, our constructed realizing graphs are not only planar
but also enjoy a 2-page book embedding, yielding the following corollary.

▶ Corollary 3. Every graphic sequence d with
∑

d ≤ 4n− 6− 2ω1 can be realized by a graph
with a 2-page book embedding.

This corollary can be interpreted as saying that the family D of all graphic sequences d

such that
∑

d ≤ 4n− 6− 2ω1 enjoy a 2-page book embedding realization. In comparison,
the main result of [2] gives a partition of D into non-outerplanaric sequences and sequences
enjoying a 2-book embedding realization. Moreover, by [2] if d is outerplanaric and

∑
d ≥ 2n,

then
∑

d ≤ 4n − 6 − 2ω1. Therefore, this corollary can be seen as an alternative way to
obtain the main result of [2].

Conversely, we show that there are graphic sequences with
∑

d ≤ 4n − 2ω1 that are
non-planaric. For the case of ω1 = 0, there is a known graphic but non-planaric sequence
with

∑
d = 4n− 2. The gap between the bounds for ω1 > 0 is left for future study.

Note that the parameters
∑

d, ω1 and ω2 are insufficient for charting the borderline
between planaric and non-planaric sequences, and leave a “grey area” in between our upper
and lower bounds, in which some sequences are planaric and some are not. This hints that a
full characterization may require using additional parameters, and perhaps involve all the
degrees, as is the case with realizability by general graphs.

Related work. Planaric sequences for regular planar graphs were classified in [13], and
planaric bipartite biregular degree sequences were studied in [1]. In [18], Schmeichel and
Hakimi determined which graphic sequences with d1 − dn = 1 are planaric, and presented
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similar results for d1 − dn = 2 with a small number of unsolved cases. Some of the sequences
left unsolved in [18] were later resolved in [8, 9]. Some additional studies on special cases of
the planaric degree realization problem are discussed in Rao’s survey [17].

An economical characterization is given in [5] for the class of 2-trees, which is a sub-
family of planar graphs, that is based on

∑
d, ω2, and ωodd. For the Outerplanar

Degree Realization problem, a full characterization of forcibly outerplanar graphic
sequences (namely, sequences each of whose realizations is outerplanar) was given in [6]. A
characterization of the degree sequence of maximal outerplanar graphs having exactly two
2-degree nodes was provided in [5]. A characterization of the degree sequences of maximal
outerplanar graphs with at most four vertices of degree 2 was given in [15]. In [3] it is shown
that a nonincreasing n-element graphic sequence d is outer-planaric if either ω1 = 0 and∑

d ≤ 3n− 3, or ω1 > 0 and
∑

d ≤ 3n− ω1 − 2. Conversely, there are graphic sequences
that are not outer-planaric with ω1 = 0 and

∑
d = 3n− 2, as well as ones with ω1 > 0 and∑

d = 3n− ω1 − 1

2 Preliminaries

Given a sequence d = (d1, . . . , dn) of n integers, we assume that it is non-increasing, namely
that di+1 ≤ di, for every i ∈ {1, . . . , n− 1}. Given two sequences d and d′, denote by
d⊖ d′ = (d1 − d′

1, . . . , dn − d′
n) their componentwise difference. For a nonincreasing sequence

d of n nonnegative integers, let pos(d) denote the prefix consisting of the positive integers of
d. We use the shorthand ak to denote a subsequence of k consecutive a’s. For any graph G,
let E(G) be the edge set of G.

Euler’s theorem implies that if d is planaric, where n ≥ 3, then
∑

d ≤ 6n− 12. Call d a
maximal Euler sequence if

∑
d = 6n− 12.

Known planaric sequences. A sequence d is called a k-sequence if d1 − dn = k. Schmeichel
and Hakimi [18] divided the analysis for 2-sequences into maximal and non-maximal 2-
sequences. They left a few open cases, some of which were resolved by Fanelli [8, 9].

▶ Lemma 4 ([9, 18]). Every graphic non-maximal Euler 2-sequence is planaric except for
(45, 2), (55, 33), (511, 3), (513, 3), (6n−7, 47) for n > 7, (7, 515), (7, 517), and possibly (73, 517),
whose status is unresolved.

The following lemma describess another (relatively small1) class of degree sequences
known to be planaric.

▶ Lemma 5 ([18],Theorem 5(a)). For n ≥ 3, if d such that d1 ≥ d2 ≥ · · · ≥ dn is graphic,∑
d ≤ 6n− 12 and d3 ≤ 3, then d is planaric.

▶ Observation 6. If G is a planar graph, then adding a parallel edge to E(G) maintains the
planarity of the resulting graph.

Minimum pivot Havel-Hakimi algorithm. The minimum pivot version of the Havel-Hakimi
algorithm [12, 11] for realizing a degree sequence d = (d1, . . . , dn) associated with the
vertices v1, . . . , vn, presented explicitly in [19] is based on repeatedly performing the following
operation, hereafter referred to as the MP-step, until all the vertices reach their required
degrees. Suppose that the current sequence of residual degrees is δ = (δ1, · · · , δh).

1 The condition d3 ≤ 3 implies that the number of sequences in the class is upper bounded by n4.
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18:4 Sparse Graphic Degree Sequences Have Planar Realizations

Figure 1 Realization of the forestic sequence (45, 116) by an alternating caterpillar and a matching.
The spine is depicted by bold black vertices and edges.

The MP-step.
Pick as a pivot one of the vertices with the minimum non-zero residual degree vi whose
degree is δi (break ties arbitrarily).
Set vi’s neighbors to be the δi vertices with the highest residual degrees vi1 , vi2 , . . . , viδi

(break ties arbitrarily).
Set δi ← 0 and reduce by 1 the residual degrees of its selected neighbors. That is, set
δij ← δij − 1 for j ∈ {1, . . . , δi}.

The Minimum pivot Havel-Hakimi algorithm terminates when all the n residual degrees are
zero, that is, when δj = 0 for j ∈ {1, . . . , n}. The key observation is that, whenever the
MP-step transforms the residual degree sequence δ into δ′, the following holds: δ is graphic
if and only if δ′ is graphic.

Caterpillar-based realizations. It is known that if
∑

d ≤ 2n− 2, then d can be realized by
a cycle-free graph (forest). In this case, d is called a forestic sequence. If

∑
d = 2n− 2, then

d can be realized by a tree and the sequence is called a treeic sequence. The following lemma
concerns the realization of forestic sequences. We make use of a special type of realizations
of forestic and treeic sequences by caterpillar trees. In a caterpillar tree G = (V, E), all the
non-leaves vertices are arranged on a path, called the spine.

▶ Lemma 7. A forestic sequence d = (d1, d2, . . . , dn) of positive integers can be realized by a
union of a caterpillar tree and a matching. Moreover, the order of the vertices on the spine
may be chosen arbitrarily.

For the sake of our later constructions, let us outline the way the realization of Lemma 7
is obtained. Run the minimum pivot version of the Havel-Hakimi algorithm while applying
the MP-step until all the degrees in the residual sequence are at most 2. Then realize the
residual sequence with a path (of arbitrary order) and a matching. The interior of the path
is the spine of the caterpillar while the pivots and the two end vertices of the path are the
leaves of the caterpillar. Our later constructions make critical use of the “arbitrary ordering”
property. It is convenient to illustrate a caterpillar tree with its spine drawn horizontally (in
a zigzagged fashion), and its groups of leaves drawn alternately above and below the spine.
We refer to this representation as an alternating caterpillar. (See Figure 1.)

Outer-planar graphs. An outer-planar graph is a graph that has a planar embedding in
which all the vertices occur on the outer face. A maximal outer-planar (MOP) graph is an
outer-planar graph such that adding any new edge to it results in a non-outer-planar graph.
Given a planar embedding in which all the vertices occur on the outer face, an external edge
is an edge residing on the outer face. If d = (d1, . . . , dn) is an outer-planaric degree sequence
where n ≥ 2, then

∑
d ≤ 4n− 6, with equality if and only if d is maximal outer-planaric [20].

A (directed) circuit in G is an ordered set of vertices C = {v0, v1, . . . , vk−1} such that
vi ̸= v(i+1) mod k and (vi, v(i+1) mod k) ∈ E for every i = 0, . . . , k − 1. In a directed circuit,
vertices may appear more than once while each edge may appear at most once. Note that



A. Bar-Noy, T. Böhnlein, D. Peleg, Y. Ran, and D. Rawitz 18:5

e = (u, w) is an external edge if u and w are neighbors on a circuit which is part of the
outer face. All other edges of G are internal. An internal triangle in G is a triangle all of
whose edges are internal. Jao and West [14] show that the number of internal triangles in a
maximal outer-planar graph (MOP) is related to ω2.

▶ Lemma 8 ([14]). Let G be a MOP on n vertices, let d = deg(G), and let t be the number
of internal triangles. If n ≥ 4, then t = ω2 − 2.

Given a graph G = (V, E), let E = E1 ∪ . . . ∪ Ep be a partition of its edges such that
each subgraph Gi = (V, Ei) is outerplanar. For a book embedding of G, think of a book
in which the pages (half-planes) are filled by outerplanar embeddings of the Gi’s such that
the vertices are embedded on the spine of the book and in the same location on each page.
This constraint is equivalent to requiring that the vertices appear in the same order along
the cyclic order of each of the outerplanar embeddings of the Gi’s. The book thickness or
pagenumber [4] is the minimal number of pages for which a graph has a valid book embedding.
Note that a graph is outerplanar if and only if it has pagenumber 1, and it is known that the
pagenumber of planar graphs is at most 4 [21].

▶ Lemma 9 ([4]). A graph G has a 2-book embedding if and only if G is a subgraph of a
Hamiltonian planar graph.

3 Tools and sufficient conditions for OP and MOP realizations

3.1 Leaf-free sequences with ∑
d ≤ 4n − 6 and ω2 = 2 are

outer-planaric
We start with a special class of sequences for which we present a basic construction of an
outerplanar realization. A number of our later constructions of planar realizations start from
this basic construction (typically applied to a sub-sequence) and modify it in various ways
in order to derive the required planar realization. In many of these cases, the modification
requires adding a few more edges. For each additional edge, this requires finding a pair of
vertices u, w such that

(i) the edge (u, w) does not appear in the construction, and
(ii) adding it preserves planarity.

We make use of the following lemma, established in [2].

▶ Lemma 10 ([2]). Let d be a graphic sequence such that d1 ≥ d2 ≥ · · · ≥ dn with ω1 = 0,
ω2 = 2, and

∑
d ≤ 4n− 6. Then d is outer-planaric.

We outline the construction of the realizing graph, since it will be instrumental in what
follows. Let d′ = pos(d⊖ (2n)). Then n′ = n− 2 and

∑
d′ ≤ 2n′ − 2 because∑

d′ =
∑

d− 2n ≤ 2n− 6 = 2(n′ + 2)− 6 = 2n′ − 2 .

By Lemma 7, d′ can be realized by a graph G′ = (V ′, E′) composed of a union of an
alternating caterpillar T ′ and a matching M ′. Next, construct an outer-planar realization G

for d based on G′ as follows.
Let S = (x1, . . . , xs) be the vertices on the spine of T ′, and let Xi = {ℓi,1, . . . , ℓi,ki

} ⊆
V ′ be the leaves adjacent to the spine vertex xi, for i ∈ {1, . . . , s}. Note that in T ′,
deg(xi) = ki + 1 for i ∈ {1, s} and deg(xi) = ki + 2 otherwise. Assume that the matching is
M ′ = {(y1, z1), (y2, z2), . . . , (yt, zt)}. To construct an outer-planar realization of d, add to

MFCS 2024



18:6 Sparse Graphic Degree Sequences Have Planar Realizations

G′ a set of edges that form a Hamiltonian cycle (including two additional new vertices of
degree 2). The construction consists of two steps. We describe it for s = 0 and for an odd s;
an analogous construction applies for a positive even s.
(1) Construct two paths

P1 =(x1, ℓ2,1, . . . , ℓ2,k2 , x3, ℓ4,1, . . . , ℓ4,k4 , . . . , xs−2, ℓs−1,1, . . . , ℓs−1,ks−1 , xs, y1, y2, . . . , yt),
P2 =(zt, . . . , z2, z1, ℓs,ks

, . . . , ℓs,1, xs−1, . . . , ℓ3,k3 , . . . , ℓ3,1, x2, ℓ1,k1 , . . . , ℓ1,1),
connecting the spine vertices in odd and even positions, respectively. If s = 0, then
P1 = (y1, . . . , yt) and P2 = (zt, . . . , z1).

(2) Add two new vertices x0 and xs+1. If s > 0 and t > 0, then connect x0 with x1 and ℓ1,1
and connect xs+1 with yt and zt. If s = 0 and t > 0, then connect x0 with y1 and z1
and connect xs+1 with yt and zt. If t = 0 and s > 0, then connect x0 with x1 and ℓ1,1
and connect xs+1 with xs and ℓs,ks

. These two vertices form a cycle C together with P1
and P2. The new edges added to G′ to construct G are the edges of the cycle C (E(C))
which are the edges from the two paths P1 (E(P1)) and P2 (E(P2)) and the four edges
that connect x0 and xs+1 to these paths.

Observe that after adding the cycle to G′, the degree of each one of the n′ vertices is
increased by 2. Together, with the two new vertices of degree 2 the modified graph G is
an outer-planar realization of the original sequence d. For an illustration of the resulting
outer-planar graph G for s = 5 and t = 2, see Figure 2.

x1

x2

x3

x4

x5

x0 x6

y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

ℓ5,1 ℓ5,2 ℓ5,3

Figure 2 Illustration for the outer-planar construction described in Lemma 10.

3.2 Leaf-free sequences with ∑
d = 4n − 6 and ω2 = 3 are

outer-planaric
The following lemma is used in our analysis for sequences in which

∑
d = 4n− 4, w1 = 0

and w2 = 3.

▶ Lemma 11. Let d, such that d1 ≥ d2 ≥ · · · ≥ dn, be a degree sequence such that
(i)

∑
d = 4n− 6,

(ii) d1 ≥ 5,
(iii) d3 ≥ 4,
(iv) dn = 2, and
(v) ω2 = 3.

Then
(a) d can be realized by a maximal outer-planaric graph G,
(b) A vertex v ∈ V cannot be adjacent to three vertices of degree 2 in G.

Proof. Let d be as in the lemma. By (iii) and (v), n ≥ 6. Moreover, if n = 6 then d4 = 2 by
(iv) and (v), and combining it with (i) we get

∑
d = 18 = d1 +d2 +d3 +6, so d1 +d2 +d3 = 12,

which contradicts (ii) and (iii). Therefore, n ≥ 7. Also note that if d4 = 2 then n ≤ 6 by (iv)
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and (v), leading to the same contradiction. Hence, d4 ≥ 3. Due to Lemma 8, if d has a MOP
realization G, then G has exactly one internal triangle because ω2 − 2 = 1. To prove the
lemma, we construct a MOP realization of d in which the internal triangle is formed by the
vertices whose degrees are d1, d2, and d3. We divide the sequences satisfying the conditions
of the lemma into three (possibly overlapping) families, named A, B and C, a nd show the
realizations of sequences that belong to each class separately.

Family A. This family contains all the sequences that satisfy the requirements of the lemma
with the additional requirement that d1 + d2 < 10. Since d1 ≥ 5 and d3 ≥ 4, it follows that
in these sequences d1 = 5 and d2 = d3 = 4. Therefore, A contains all the sequences of the
type (5, 4ω4 , 3ω3 , 23) for ω4 ≥ 2. To satisfy the

∑
d = 4n− 6 requirement of the lemma, it

must be the case that ω3 = 1 as shown below.∑
d = 5 + 4ω4 + 3ω3 + 6 = 4ω4 + 3ω3 + 11

4n− 6 = 4(ω4 + ω3 + 4)− 6 = 4ω4 + 4ω3 + 10

This implies that ω3 = 1. To summarize, A contains all the sequences of the type

a(ω4) = (5, 4ω4 , 3, 23)

of length n = ω4 + 5 for ω4 ≥ 2.
The following describes how to construct a MOP graph with one inner triangle, denoted

by G(ω4), realizing the sequence a(ω4) for ω4 ≥ 3. Let the n = ω4 + 5 vertices of G(ω4) be

(u1, u2, u3, t0, t1, . . . , tω4−3, tω4−2, tω4−1, r1, r2)

and associate them respectively with the degrees (5, 4, 4,

ω4−2︷ ︸︸ ︷
4, . . . , 4, 3, 2, 2, 2). Note that the

ω4 vertices of degree 4 are u2, u3, t0, t1, . . . , tω4−3 while the degrees of tω4−2 and tω4−1
are 3 and 2 respectively. Let the 2ω4 + 7 (=

∑
d/2) edges of G(ω4) be the three edges

of the triangle (u1, u2, u3), the six edges (u1, t0), (u1, r1), (u2, r1), (u2, r2), (u3, r2), and
(u3, t0), the ω4 − 1 edges forming the path (t0, t1, . . . , tω4−2, tω4−1), and the ω4 − 1 edges
forming the two paths (t0, t2, t4 . . .) and (u1, t1, t3, . . .) of length ⌊(ω4 − 1)/2⌋ and ⌈(ω4 − 1)/2⌉
respectively. For an odd ω4 the first path is (t0, t2, t4 . . . , tω4−3, tω4−1) and the second path
is (u1, t1, t3, . . . , tω4−4, tω4−2) while for an even ω4 the first path is (t0, t2, t4 . . . , tω4−4, tω4−2)
and the second path is (u1, t1, t3, . . . , tω4−3, tω4−1).

Figure 3 illustrates the outer-planar layout of G(5). Observe that for an odd ω4 the outer
Hamiltonian cycle of G(ω4) that contains all of its vertices is

(u1, r1, u2, r2, u3, t0, t2, . . . , tω4−3, tω4−1, tω4−2, tω4−4, . . . , t3, t1, u1)

and for an even ω4 it is

(u1, r1, u2, r2, u3, t0, t2, . . . , tω4−4, tω4−2, tω4−1, tω4−3, . . . , t3, t1, u1)

In both cases, (u1, u2, u3) is the only inner triangle.

Family B. This family contains all the sequences that satisfy the requirements of the
lemma with an additional requirement that d4 = 3. Hence, d1 = 4 + j for j ≥ 1 because
d1 ≥ 5, d2 = 4 + i and d3 = 4 + h for i, h ≥ 0 because d2 ≥ d3 ≥ 4, and j ≥ i ≥ h

because d is a non-increasing sequence. Therefore, B contains all the sequences of the type

MFCS 2024
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u1u2

u3 t0

t1

t2

t3

r1

r2 t4

Figure 3 The MOP realization G(5) of the sequence (5, 45, 3, 23).

b(j, i, h) = ((4 + j), (4 + i), (4 + h), 3ω3 , 23) for j ≥ i ≥ h ≥ 0 and j ≥ 1. To satisfy the∑
d = 4n− 6 requirement of the lemma, it must be the case that ω3 = (j + i + h) as shown

below.∑
d = (4 + j) + (4 + i) + (4 + h) + 3ω3 + 6 = (j + i + h) + 3ω3 + 18

4n− 6 = 4(ω3 + 6)− 6 = 4ω3 + 18

This implies ω3 = (j + i + h). To summarize, B contains all the sequences of the type

b(j, i, h) = ((4 + j), (4 + i), (4 + h), 3j+i+h, 23)

of length n = j + i + h + 6 for j ≥ i ≥ h ≥ 0 and j ≥ 1.
The following describes how to construct a MOP graph with one inner triangle, denoted by

G(j, i, h), realizing the sequence b(j, i, h) for j ≥ i ≥ h ≥ 0 and j ≥ 1. Let the n = j +i+h+6
vertices of G(j, i, h) be

(u1, u2, u3, p0, . . . , pj−1, q0, . . . , qi−1, r0, . . . , rh−1, pj , qi, rh)

and associate them respectively with the degrees

((4 + j), (4 + i), (4 + h),
j︷ ︸︸ ︷

3, . . . , 3,

i︷ ︸︸ ︷
3, . . . , 3,

h︷ ︸︸ ︷
3, . . . , 3, 2, 2, 2)

Let the 2(j + i + h) + 9 (=
∑

d/2) edges of G(j, i, h) be the three edges of the triangle
(u1, u2, u3), the three edges (u1, q0), (u2, r0), and (u3, p0), the j+1 edges (u1, pℓ) for 0 ≤ ℓ ≤ j,
the i + 1 edges (u2, qℓ) for 0 ≤ ℓ ≤ i, the h + 1 edges (u3, rℓ) for 0 ≤ ℓ ≤ h, the j edges
forming the path (p0, p1, . . . , pj), the i edges forming the path (q0, q1, . . . , qi), and the h edges
forming the path (r0, r1, . . . , rh),

Figure 4 illustrates the outer-planar layout of G(4, 3, 2). Observe that the outer Hamilto-
nian cycle of G(j, i, h) that contains all of its vertices is

(u1, pj , pj−1, . . . , p0, u3, rh, rh−1, . . . , r0, u2, qi, qi−1, · · · , q0, u1)

and that (u1, u2, u3) is the only inner triangle.

Family C. This family contains all the sequences that satisfy the requirements of the lemma
but do not belong to A∪B. That is, the requirement (iii) is modified and a new requirement
(vi) is added as follows,
(iii) d4 ≥ 4
(iv) d1 + d2 ≥ 10
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u1

u2

u3 p0

p1

p2

p3

p4
q0q1q2q3

r0

r1

r2

Figure 4 The MOP realization G(4, 3, 2) of the sequence (8, 7, 6, 39, 23).

The outline of the construction of the MOP realization of d that satisfies the new set of
six requirements is as follows. The construction is done in two phases. In the first phase, d is
modified to a shorter sequence d′ of length n′ = n−3 by contracting the three largest degrees
in d into one degree and eliminating one appearance of 2 in the sequence d. We will show
that the new sequence d′ satisfies all the requirements of Lemma 10. As a result, this lemma
will provide an outer-planar realization G′ of d′. In the second phase, the construction of the
realization G of the sequence d of length n will be completed by replacing the highest degree
vertex in G′ with a triangle of vertices and adding another vertex of degree 2 while making
sure that all the n = n′ + 3 vertices in G has the required degrees from the sequence d.

Formally, generate the sequence d′ such that d′
1 ≥ d′

2 ≥ · · · ≥ d′
n of length n′ = n− 3 by

removing dn and merging d1, d2 and d3 as follows.

d′
i =

{
d1 + d2 + d3 − 10, for i = 1,

di+2, for i = 2, . . . , n− 3.

Note that since d1 + d2 ≥ 10, it follows that d1 + d2 + d3 − 10 ≥ d3 ≥ d4 = d′
2 and therefore

since d is non-increasing it follows that d′ is also non-increasing.
Note that

∑
d = 4n− 6 by the assumptions of the lemma and that ω′

2 = 2 and d′
n′ = 2

by the definition of d′. Consequently,∑
d′ =

∑
d− 10− 2 = 4n− 18 = 4(n′ + 3)− 18 = 4n′ − 6 .

By Lemma 10, d′ is outer-planaric.
By the proof of Lemma 10, d′′ = pos(d′ ⊖ (2n′)) can be realized by a caterpillar T and

there exists an outer-planar realization G′ of d′ that is based on a caterpillar T with vertices
S = (x1, . . . , xs) forming its spine and a cycle C composed of two paths P1 and P2 and
two new vertices x0 and xs+1. (An illustration of this outer-planar graph can be found in
Figure 5.) Recall that in T , Xi = {ℓi,1, . . . , ℓi,ki} ⊆ V ′ is the set of leaves adjacent to the
spine vertex xi, for i ∈ {1, . . . , s}. This realization G′ does not have an internal triangle.
We continue referring to these vertices as the spine vertices and leaves although G′ is not a
caterpillar.

Transforming G′ into a realization G of d involves two steps. In the first step, x1 whose
degree is d′

1 will be replaced by three vertices u1, u2, and u3. Note that by Lemma 7, the
order of the vertices on the spine can be chosen arbitrarily. As a result, it can be assumed
that the degree of x1 is d′

1. In the second step, the outer cycle of G′ will be modified to cover
the new vertices with the addition of a new vertex of degree 2.

By the construction of G′ from the caterpillar T and since d′
2 = d4 ≥ 4 by the new

requirement (iv), it follows that the spine of T has at lease two vertices x1 and x2 and x1 is
connected in G′ to the two vertices x0 (one of the two vertices of degree 2 in G′) and x2. In

MFCS 2024



18:10 Sparse Graphic Degree Sequences Have Planar Realizations

r2

r1

u1

u2

u3

x2

x3

Figure 5 Realization of the sequence d = (7, 62, 5, 38, 23). (Red and black edges are part of the
original construction.)

addition, x1 is connected in G′ to the k1 leaves {ℓ1,1, . . . , ℓ1,k1} from the set X1, as well as
to ℓ2,1 (or to x3 in case x2 does not have leaves). Therefore,

k1 = d′
1 − 3 = d1 + d2 + d3 − 13 . (1)

The expansion of x1 into a triangle of vertices is done as follows. Remove x0, x1, and
the leaves of X1 from G′. Add the three vertices u1, u2, and u3, add a triangle of edges
connecting them, namely, the edges (u1, u2), (u1, u3) and (u2, u3), and add the edge (u1, x2).
(See the green edges in Figure 5.)

Next, split the k1 leaves in X1 between the vertices u1, u2, and u3 toward satisfying their
degrees d1, d2, and d3, respectively. Specifically, add a set U1 of d1 − 5 new leaves adjacent
to u1, and a set Ui of di − 4 new leaves adjacent to ui, for i = 2, 3. (See the blue edges in
Figure 5.) The split is perfect since

∑3
i=1 |Ui| = k1 by Equation 1. In summary,

u1 is adjacent to u2, u3, x2, and the d1 − 5 vertices in U1;
u2 is adjacent to u1, u3, and the d2 − 4 vertices in U2; and
u3 is adjacent to u1, u2, and the d3 − 4 vertices in U3 .

Therefore, at this point deg(ui) = di − 2, for i = 1, 2, 3.
Finally, add two more degree-2 vertices r1 and r2 to complete the outer cycle. One of

them replaces x0 while the other is an additional degree 2 vertex, as dn was removed in the
definition of d′. For i = 1, 2, 3, connect the leaves in Ui to form a path whose starting and
ending vertices (of degree 1) are us

i and ue
i respectively. Next, add the edges (x2, us

1) and
(ue

1, u2) if |U1| > 0, otherwise add the edge (x2, u2). Analogously, add the edges (u2, r1),
(r1, us

2), (ue
2, u3) if |U2| > 0, otherwise add edges (u2, r1) and (r1, u3). Add edges (u3, r2),

(r2, us
3), and (ue

3, u1) if |U3| > 0, otherwise add edges (u3, r2) and (r2, u1). Finally, add the
edge (u1, ℓ2,1), or (u1, x3) in case x2 does not have leaves. (See the violet edges in Figure 5.)
At this stage the degrees of u1, u2, u3 are d1, d2, and d3 respectively and the degrees of r1
and r2 are 2.

See Figure 5 for an illustration of the realization G of d. One can verify that the
construction is a realization of d. ◀

3.3 Degree-Two Removal (Procedure Deg_2_Remove)
As it turns out, sequences with a small number of 2 degrees are easier to realize directly.
Consequently, when dealing with a sequence d with many 2’s, a convenient approach is to
first transform it into a “similar” sequence d′ with only a few 2’s, construct a graph G′

realizing d′, and then transform G′ into a graph G realizing the original d. We next present a
procedure called Degree-Two Removal (Deg_2_Remove) that will be used to that end in some
of our constructions. The input to this procedure is a graphic sequence for which d3 ≥ 4,
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ω2 ≥ 3 and ω1 = 0. The procedure applies repeatedly the MP-step of the Havel-Hakimi
algorithm until in the residual sequence either ω2 < 3 or the second maximum degree is less
than 4. As a result, throughout its execution it is always the case that the residual sequence
is graphic. For any degree sequence d = (d1, d2, . . . , dn), let d(ℓ) be the ℓ’th largest degree in
d, for 1 ≤ ℓ ≤ n. (Note that possibly d(ℓ) = d(ℓ + 1) for some ℓ values.)

Procedure 1 Deg_2_Remove.

1 Set d̄← d

2 Set ω̄2 ← |{i | di = 2}|
3 while d̄(2) ≥ 4 and ω̄2 ≥ 3 do
4 Let j be such that d̄j = d̄(1) and let j′ be such that d̄j′ = d̄(2)
5 d̄j ← d̄j − 1
6 d̄j′ ← d̄j′ − 1
7 Change one degree-2 in d̄ to 0
8 set ω̄2 ← ω̄2 − 1
9 Set d̄s ← sort(d̄) /* The final d̄ sorted in non-increasing order */

Assume that Procedure Deg_2_Remove executes k iterations of its while-loop. Observe
that during the run of the Deg_2_Remove procedure, no new degree 2 vertices appear because
d̄(2) ≥ 4 is one of the conditions of the while-loop. As a result, ω̄2, which is initially the
number of degree-2 vertices in d, decreases by 1 after each iteration. Let ω̄i

2 be the value of
ω̄2 after the i’th iteration, for 0 ≤ i ≤ k. For 0 ≤ i ≤ k, let d̄i be the sequence d̄ after the i’th
iteration (note that d̄s is the sorted version of d̄k), and let n̄i be the length of pos(d̄i). We
make use of the set A indices of high degrees that were reduced by Procedure Deg_2_Remove
and the set B of indices of 2 degrees that were eliminated by the procedure. Formally,

A = {i | di > d̄i, di ≥ 4}, B = {i | di = 2, d̄i = 0}. (2)

▶ Observation 12.
(i) n̄i+1 = n̄i − 1,
(ii) ω̄i+1

2 = ω̄i
2 − 1,

(iii)
∑

d̄i+1 =
∑

d̄i − 4,

(iv) |B| = k,
(v)

∑
i∈A(di − d̄k

i ) = 2k,
(vi)

∑
d̄k − 4n̄k =

∑
d− 4n,

(vii) n̄k = n− k,

(viii) d̄i is graphic for 1 ≤ i ≤ k.

▶ Observation 13. When Procedure Deg_2_Remove terminates, the following properties hold.
(i) Either d̄k(2) ≥ 3 and ω̄2 = 2, or d̄k(2) = 3 and ω̄2 ≥ 3.
(ii) If d̄s

2 ≥ 5, then d̄k
i ≥ 4 for every i ∈ A.

The following lemma (whose proof is omitted) demonstrates the usefulness of Procedure 1
in reducing the number of degree 2 vertices to generate an outer-planar sequence. Later, it
will be shown how to add back the removed degree 2 vertices to get a planar realization for
the original sequence.

▶ Lemma 14. Applying Procedure Deg_2_Remove (Procedure 1) on a graphic sequence d

with
∑

d ≤ 4n − 6, ω1 = 0 and ω2 ≥ 3, the output sequence d̄k satisfies that pos(d̄k) is
outer-planaric.
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4 Main Result

This section presents our main result (Theorem 2). Specifically, Subsection 4.1 shows that
this theorem is implied directly by Theorem 1. The following two subsections establish
Theorem 1, where Subsection 4.2 handles the easy case of sequences with few 2 degrees
(ω2 ≤ 2) and Subsection 4.3 handles the more elaborate case of sequences with many 2
degrees (ω2 ≥ 3). Finally, Subsection 4.4 provides examples showing that our bounds are
almost tight.

4.1 The planarity of low-volume sequences with ω1 > 0
We first rely on Theorem 1 to prove our main result.

Proof of Theorem 2. If
∑

d ≤ 2n − 2, then d can be realized by a forest, hence it is
planaric [10]. For the case where

∑
d ≥ 2n, we prove the claim by induction on ω1. In the

base case, ω1 = 0, the claim follows by Theorem 1. Now assume that the claim holds for
ω1 ≤ i and consider ω1 = i + 1. Construct d′ by setting d′

1 = d1 − 1, d′
n = 0 and d′

i = di

for i ∈ {2, . . . , n− 1}. Since
∑

d ≥ 2n and ω1 > 0, we have that d1 ≥ 3 and hence d′
1 ≥ 2.

Let d′′ = pos(d′) and denote the number of 1-degrees in d′′ by ω′′
1 . Then ω′′

1 = ω1 − 1 and
n′′ = n− 1, implying that

∑
d′′ ≤ 4n′′− 4− 2ω′′

1 . Also note that when applying the MP-step
of the Havel-Hakimi method on d here, using dn as pivot, we get d′′, and hence d′′ is graphic.
Therefore, d′′ satisfies the conditions of induction hypothesis and hence can be realized by a
planar graph G′′. To complete the construction, add one leaf to the vertex with degree d′

1 in
G′′. This yields a planar graph G realizing d. The theorem follows. ◀

The following two subsections are dedicated to the leaf-free case (ω1 = 0), and prove
Theorem 1.

4.2 The planarity of leaf-free sequences with ∑
d ≤ 4n − 4 and ω2 ≤ 2

The case of “few degrees 2” is relatively easier, and is covered by the following lemma.

▶ Lemma 15. Every graphic sequence d such that d1 ≥ d2 ≥ · · · ≥ dn with ω1 = 0, ω2 ≤ 2,
and

∑
d ≤ 4n− 4 is planaric.

Proof. If d3 < 4, then d is planaric by Lemma 5. From now on assume in addition that
d3 ≥ 4. We consider three cases depending on ω2.

Case 1: ω2 = 0.
In this case, dn = 3 since dn ≥ 4 would imply

∑
d ≥ 4n. Let d′ = d ⊖ (2n). Then n′ = n

and
∑

d′ =
∑

d− 2n ≤ 2n′ − 4. Therefore, d′ is a forestic sequence. By Lemma 7, d′ can be
realized by a graph G′ = (V ′, E′) composed of a union of an alternating caterpillar T ′ and a
matching M ′. This matching contains at least one edge because when

∑
d′ ≤ 2n′ − 4, any

realization forest must contain at least two connected components.
Define the spine S, the leaf sets Xi in T ′ and the matching M ′ analogously to the proof

of Lemma 10. Observe that since d3 ≥ 4 and the spine contains all the vertices whose degree
in G′ is at least 2, it follows that the spine S contains at least three vertices.

To construct a planar realization of d, add to G′ a set of edges that form two disjoint
cycles. The construction consists of two steps. We describe it for odd s; an analogous
construction applies for even s.
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x1

x2

x3

x4

x5 y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

ℓ5,1 ℓ5,2 ℓ5,3

Figure 6 Illustration for a planar construction when ω2 = 0. This is essentially the outer-planar
graph of Figure 2 after omitting the vertices x0 and x6 with the addition of the green edges (x1, y2)
and (z2, ℓ1,1).

(1) Construct two paths P1 and P2 as in the proof of Lemma 10.
(2) Connect x1 with yt and ℓ1,1 with zt, thereby transforming the paths P1 and P2 into a

cycle.
For an illustration of the resulting outer-planar graph G for s = 5 and t = 2, see Figure 6.

Case 2: ω2 = 1.
In this case, dn = 2 and dn−1 = 3, since again dn−1 ≥ 4 would contradict the assumption∑

d ≤ 4n − 4. If d1 ≤ 4, then d = (4ω4 , 3ω3 , 2) with even ω3 ≥ 2 is planaric by Lemma 4.
Hereafter, we assume that d1 ≥ 5.

Define d′ by setting d′
1 = d1 − 1, d′

n−1 = 2 (replacing dn−1 = 3) and d′
i = di for all other

i ∈ {2, . . . , n − 2, n}. Then
∑

d′ ≤ 4n′ − 6 and n′ = n. Let d′′ = pos(d′ ⊖ (2n)). We have
n′′ = n′ − 2 and

∑
d′′ =

∑
d′ − 2n ≤ 2n′ − 6 = 2(n′′ + 2)− 6 = 2n′′ − 6. By Lemma 7, d′′

can be realized by a graph G′′ = (V ′′, E′′) composed of a union of an alternating caterpillar
T ′′ and a matching M ′′. Notice that d′′

1 ≥ 2 since d1 ≥ 5. Therefore, the vertex with degree
d′′

1 occurs on the spine of T ′′ and can be identified as x1 since by Lemma 7 the spine-vertices
may appear in any order.

Define the spine S, the leaf sets Xi in T ′′ and the matching M ′′ analogously to the proof
of Lemma 10. Since d3 ≥ 4, by the construction of d′ and d′′, there are at least two vertices
on the spine S and s ≥ 2. To construct a planar realization of d, we add a set of edges to
G′′ as done in the proof of Lemma 10 and one extra edge. The construction consists of two
steps. Again, we describe it only for odd s.
(1) Construct two paths P1, P2 and E(C) as in the proof of Lemma 10
(2) Connect xs+1 and x1 by an edge.

An illustration of the above steps is presented in Figure 7. Note that steps (1) and
(2) build an outer-planar graph G′ = (V, E′) with E(G′) = E(G′′) ∪ E(C) realizing d′.
Notice that (xs+1, x1) /∈ E(G′) since s ≥ 2. Therefore, step (3) yields a simple planar graph
G = (V, E) with E(G) = E(G′′) ∪ E(C) ∪ {(xs+1, x1)} realizing d.

Case 3: ω2 = 2 (i.e., dn = dn−1 = 2 and dn−2 ≥ 3).
In this case, for

∑
d ≤ 4n− 6, the result follows directly from Lemma 10.

Next consider
∑

d = 4n− 4. This case is divided into three sub-cases.

Case 3.1: d1 = 4.
In this case, d is a 2-sequence, i.e., it satisfies d1−dn = 2, and such d is known to be planaric,
see Lemma 4.
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x1
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x3

x4

x5

x0 x6

y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

ℓ5,1 ℓ5,2 ℓ5,3

Figure 7 Illustration for planar construction when ω2 = 1. This is essentially the outer-planar
graph of Figure 2 with the addition of the green edge (x1, x6).

Case 3.2: d1 = 5 and d2 = 4.
In this case,

∑
d = 4n−4 dictates that d = (5, 4ω4 , 3, 22) for ω4 ≥ 2 since d3 ≥ 4. The follow-

ing describes how to construct a planar graph, denoted by G(ω4), realizing the sequence d for
ω4 ≥ 2. Let the n = ω4 + 4 vertices of G(ω4) be (u, x1, x2, . . . , xω4 , r1, r2, r3), and associate

them respectively with the degrees (5,

ω4︷ ︸︸ ︷
4, . . . , 4, 3, 2, 2). Let the 2ω4 + 6 (=

∑
d/2) edges of

G(ω4) be the five edges (u, r1), (u, r2), (u, r3), (u, x1), (u, x2), the four edges (r1, xω4−1),
(r1, xω4), (r2, xω4), and (r3, x1), the ω4 − 1 edges forming the path (x1, x2, . . . , xω4−1, xω4),
and the ω4−2 edges forming the two paths (x1, x3, . . .) and (x2, x4, . . .) of length ⌈(ω4 − 2)/2⌉
and ⌊(ω4 − 2)/2⌋ respectively. For an even ω4 the first path is (x1, x3, . . . , xω4−1) and the
second path is (x2, x4, . . . , xω4) while for an odd ω4 the first path is (x1, x3, . . . , xω4) and the
second path is (x2, x4, . . . , xω4−1). Figure 8 illustrates the planar layout of G(6).

u

x1

x2

x3

x4

x5

x6

r1

r2

r3

Figure 8 The planar realization of the sequence G(6) = (5, 46, 3, 22).

Case 3.3: d1 ≥ 6 or d2 ≥ 5.
If dn−2 ≥ 4, then

∑
d ≥ 4n − 2, which contradicts with

∑
d = 4n − 4. Therefore,

dn−2 = 3. Construct d′ from d by letting d′
1 = d1 − 1, d′

n−2 = 2 and d′
i = di for all other

i ∈ {2, . . . , n− 3, n− 1, n}. Then pos(d′) = d′, n′ = n,
∑

d′ = 4n′ − 6 and ω′
2 = 3.

Combining d3 ≥ 4 and the condition of this case, the maximum degree in d′ is at least 5
and the third maximum degree is at least 4. Hence, d′ satisfies the conditions of Lemma 11,
and therefore it can be realized by an outer-planar graph G′. In the construction of G′, there
exists a vertex u of degree 2 not adjacent to the vertex v of degree d′

1 by (b) of Lemma 11.
Construct the planar graph G realizing d by adding the edge (u, v) to G′.

Summarizing the above three cases, d is planaric. ◀

4.3 The planarity of leaf-free sequences with ∑
d ≤ 4n − 4 and ω2 ≥ 3

This subsection handles the more complex case of “many degrees 2”. The analysis is separated
into two main parts. First (Lemma 16), we consider sequences of volume

∑
d ≤ 4n − 6.

Later (Lemma 17) we analyze the extremal case where
∑

d = 4n− 4.



A. Bar-Noy, T. Böhnlein, D. Peleg, Y. Ran, and D. Rawitz 18:15

▶ Lemma 16. Every graphic sequence d, such that d1 ≥ d2 ≥ · · · ≥ dn, with ω1 = 0, ω2 ≥ 3,
and

∑
d ≤ 4n− 6 is planaric.

For lack of space, we present an overview of the construction, deferring the complete
proof to the full version. The construction of this lemma involves four phases. Phase (1)
transforms d into a sequence d̄k with just two degrees 2 (or, d̄k(2) = 3). This is done by
using Procedure Deg_2_Remove. Phase (2) constructs an outer-planar graph Gk realizing d̄k,
which is illustrated in Figure 9(a). Phase (3) adds a multi-graph Ḡ with edges connecting
the vertices corresponding to indices in the set A defined in Eq. (2). It is illustrated in
Figure 9(b). For Phase (4) we need to use the vertex insertion operation, defined as follows.
For any multi-graph Ĝ, let I(Ĝ) denote the graph obtained from Ĝ by inserting one new
vertex zu,v into every edge e = (u, v) in E(Ĝ), namely, replacing e by the 2-edge path
(u, zu,v, v). Note that this operation cancels all parallel edges, so the resulting graph is simple.
Observe that if we transform Ḡ into I(Ḡ), then I(Ḡ) realizes pos(d⊖ d̄k) and the combined
graph I(Ḡ) ∪ Gk realizes d. Moreover, as Gk is outer-planar, if there are no cross edges
between vertices of Ḡ, then Gk ∪ I(Ḡ) is a planar realization for d, as shown in Figure 9(c).
However, the multi-graph Ḡ might contain crossing edges, as shown in Figure 9(b). In this
case, some preliminary processing is needed. At the beginning of Phase (4), apply procedure
Edge_Swap and replace Ḡ by a modified multi-graph GM with no edge crossings. Only then,
invoke the vertex insertion operation to insert k new vertices into the edges of GM and get
I(GM ). Since the inserted new vertices in I(GM ) do not exist in Gk, the graph Gk ∪ I(GM )
is simple. Consequently, Gk ∪ I(GM ) can be shown to be a simple planar graph realizing d,
as shown in Figure 9(d).

Figure 9 A schematic description of the realization process in Case 4. The preliminary step
involves separating the sequence d into a sequence d̄k with reduced high degrees and only two degrees
2 (depicted by the higher row of vertices in the figures, forming the spine of Gk), and k degrees 2
kept separately (the lower row in the figures).

Careful inspection of the proofs of Lemmas 5, 9 and 16 reveals that when
∑

d ≤
4n− 6− 2ω1, the constructed realizing graphs are not only planar but also enjoy a 2-page
book embedding, yielding Corollary 3.

The next lemma shows the case for
∑

d = 4n−4 and ω1 = 0, ω2 ≥ 3. A schematic descrip-
tion of the construction process in this case is as follows. First apply Procedure Deg_2_Remove
(Procedure 1 in Section 2) to create a modified degree sequence d̄k and sets A and B. Next
construct a simple graph Gk realizing d̄k, as a combination of an outer-planar graph G′ and
an edge (u, v), using the method described in the proof of Lemmas 10 and 11. Then, apply
procedure Deg_2_Recover on G′ and output a simple planar graph G. As a final step, con-
struct a graph G′′ with E(G′′) = E(G) ∪ {(u, v)}. Note that by Procedure Deg_2_Recover,
G′′ = Gk∪I(GM ). Since I(GM ) realizes pos(d⊖ d̄k), G′′ realizes d. Since (u, v) does not exist
in G, G′′ is a simple graph. Combining it with the fact that G is an “almost outer-planaric”
graph, if one can show that there are no cross edges between (u, v) and any edges in E(GM ),
then G′′ is a simple planar graph. The formal proof involves a rather complex case analysis,
and is omitted for lack of space.
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▶ Lemma 17. Every graphic sequence d with ω1 = 0, ω2 ≥ 3, and
∑

d = 4n− 4 is planaric.

Combining Lemmas 15, 16 and 17 yields the proof for our main Theorem 1.

4.4 Almost tight negative examples
We complement the positive result of Theorem 2 by almost tight negative examples. Consider
first the case of ω1 = 0, for which we present a tight example.

▶ Lemma 18. There exists a graphic sequence of volume 4n − 2 and ω1 = 0, which is
non-planaric.

Proof. The sequence d = (45, 2) is non-planaric by Lemma 4, and satisfies
∑

d = 4n− 2. ◀

However, we do not know non-planaric sequences for which ω1 = 0 and
∑

d = 4n − 2
for n > 6. Instead, the next lemma shows that for any n ≥ 5 there exists a non-planaric
sequence with ω1 = 0 and

∑
d = 4n.

▶ Lemma 19. For any non-negative integer k, the sequence d[k] = ((4 + k)2, 43, 2k), for
which

∑
d[k] = 4n, is graphic but not planaric.

Proof. See Figure 10a for the unique realization of the sequence d[k] = ((4 + k)2, 43, 2k).
This realization is non-planaric because it has a a K5 subgraph consisting of the two vertices
of degree 4 + k and the three vertices of degree 4. This is a unique realization becaus the
two degree 4 + k vertices each must be connected to all other n− 1 = 4 + k vertices. ◀

. . .

(a) The unique realization of ((4 + k)2, 43, 2k).

...

(b) The unique realization of (4 + k, 44, 1k).

Figure 10 Two non-planaric families of sequences.

Turning to sequences with ω1 > 0, there is again a small gap. The next lemma shows
that for any n ≥ 6 there exists a non-planaric sequence with ω1 > 0 and

∑
d = 4n− 2ω1.

▶ Lemma 20. For any non-negative integer k, the sequence d′[k] = (4 + k, 44, 1k), for which∑
d′[k] = 4n− 2ω1, is graphic but not planaric.

Proof. See Figure 10b for the unique realization of the sequence d′[k] = ((4 + k, 44, 1k). This
realization is non-planaric because it has a K5 subgraph consisting of the vertex of degree
4 + k and the four vertices of degree 4. This is a unique realization becaus the degree 4 + k

vertex must be connected to all other n− 1 = 4 + k vertices. ◀

Recall that Theorem 2 states that every graphic sequence d such that
∑

d ≤ 4n− 4− 2ω1
is planaric. In light of Lemma 19 and Lemma 20 it follows that the remaining gap for the
case ω1 = 0 involves sequences d with

∑
d = 4n− 2 while the remaining gap for the case

ω1 > 0 involves sequences d with
∑

d = 4n− 2− 2ω1.
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