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Abstract
The reachability problem is a central problem for various infinite state systems like automata with
pushdown, with different kinds of counters or combinations thereof. Despite its centrality and
decades of research the community still lacks a lot of answers for fundamental and basic questions
of that type. I briefly describe my personal viewpoint on the current state of art and emphasise
interesting directions, which are worth investigating in my opinion. I also formulate several easy to
formulate and understand challenges, which might be pretty hard to solve but at the same time
illustrate fundamental lack of our understanding in the area.
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Introduction

Since the early days of computer science the reachability problem is in its core interest.
One of the first known undecidable problems was the halting problem for Turing Machines
(TM), which is actually exactly the reachability problem for TM. We are given an initial
configuration and final configuration and we ask whether there is a path of the TM between
them. It is quite easy to come up with simpler automata models for which the reachability
problem is also undecidable. The undecidability will follow from the fact that the simpler
models can actually simulate TM, so are Turing powerful.

The first such a model is automaton with two pushdowns or in other words with two
stacks. It has two stacks and each transition can change a state and push or pop on the top
of the stacks. One can easily see that the transition of a TM can be simulated by automaton
with two stacks. Let us say that the TM has one tape. One stack keeps the part of the
tape of the TM to the left of the head and the other stack keeps the part of the tape to
the right of the head. The top elements of both stacks are the cells of the TM, which are
close to its head. To simulate a transition of a TM, say one step of the head to the left, the
first stack pops the top symbol and the second stack pushes the same symbol. It is rather
straightforward to see that this simulation indeed works well, which shows that automata
with two stacks have undecidable reachability problem.

One can however simplify further and show that the reachability problem is undecidable
already for the automaton with two counters, which can be zero-tested. Configuration of such
an automaton consists of a finite state and two nonnegative integer counters. A transition
can change the state and increase or decrease the counters. One can assume that increases
and decreases are just by one or by some arbitrary value, it does not change the strength of
the model. There are also special transitions called zero-tests. Such a transition can be fired
only if a specific counter (the first or the second one) equals exactly zero. This model was
shown to be undecidable by Marvin Minsky [19], so it is sometimes called a Minsky machine.
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2:2 Challenges of the Reachability Problem in Infinite-State Systems

The reduction from the automaton with two stacks to the automaton with two zero-tested
counters is not very complicated. A very brief sketch is the following: one stack can be
simulated easily by two counters with zero-tests, one keeping value of the stack as a B-ary
number (where B is the number of different stack symbols) and the other one being auxiliary.
Indeed, with the help of an auxiliary counter with zero-tests one can multiply or divide the
value of the first counter by B and this roughly speaking corresponds to a push or pop of a
symbol from the top of the stack. Thus one can simulate automaton with two stacks by an
automaton with four counters with zero-tests. Further, one can observe that the auxiliary
counter can be shared, so only three counters are needed for the simulation of two stacks.
Finally, one can simulate values of three counters x, y and z on two counters, one counter
keeping value 2x3y5z and the other one being an auxiliary counter, which helps simulating
incrementing and decrementing of the three counters. The above construction can be easily
made precise, and it shows that the reachability problem for automata with two zero-tested
counters is indeed undecidable.

Decidable models

Automata models with undecidable reachability problem are of not much use: even the
simplest fundamental problem cannot be decided for them. Therefore in order to understand
the computation better, the infinite-state community searched for decidable restrictions of the
above models. Of course there is plenty of ways one can restrict pushdowns or counters, but
there are a few natural ones, which were considered for decades. Quite natural restrictions
are in my opinion the following:
(1) disallow zero-tests and consider just nonnegative integer counters without zero-tests
(2) simplify the counters even further and allow them go to below zero
(3) consider nonnegative integer counters with just one counter being zero-tested or some

other restricted version of zero-tests
(4) consider one stack with possible other counters (nonnegative integer lub just integer),

but without zero-tests
Of course one can come up with other models, but it turns out that the above models were
widely considered.

Below we briefly discuss all the four options and also some other interesting models.
Along the way I share with you my personal feelings what seems to be interesting in my
opinion. I also list several challenges, which are easy to formulate, but I think require new
understanding of the models we work with. Solving them might be very hard or maybe easy,
but definitely would lead to new insights in the area.

Vector addition systems

An automaton with d counters, which cannot be zero-tested on each transition just increments
or decrements its counters by fixed values. It can be seen as an automaton adding vectors
from Zd. Indeed, a configuration of such an automaton consists of a state and values of the
d nonnegative integer counters, which can be seen as a vector in Nd. A transition just adds
a vector in Zd to the current vector, it can be fired if the result of the addition is still a
vector in Nd. Such automata are called Vector Addition Systems with States, shortly VASS.
If there is just one state they are called Vector Addition Systems, shortly VAS. It turns
out that the reachability problems for VASS, for VAS and for Petri nets, a popular model
of parallel computation are easily interreducible. The most robust model of out them is,
in my opinion, the VASS model, so I will refer to the reachability problem in VASS. The
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reachability problem was shown decidable in 1981 [18], but only recently its complexity was
settled to be Ackermann-complete. The upper bound was shown in 2019 [15], while the
Ackermann-hardness in 2021 [6, 17]. The complexity class Ackermann is roughly speaking
the class of problems, which can be solved in time around the Ackermann function. One
can define easily the Ackermann function (some version of it, there are different versions,
but they do not change the definition of the Ackermann complexity class as explained
in [21]) using the so called hierarchy of fast growing functions Fk. We write F1(n) = 2n

and Fk(n) = Fk−1 ◦ . . . ◦ Fk−1︸ ︷︷ ︸
n

(1) for any k ≥ 2. One can see that in particular F2(n) = 2n

and F3(n) = Tower(n). Then we define the Ackermann function A(n) = Fn(n). Notice that
A(1) = 2, A(2) = 4, A(3) = 16, while already A(4) = Tower(Tower(Tower(Tower(1)))) =
Tower(Tower(Tower(2))) = Tower(Tower(4)) = Tower(65536), which is an incredibly huge
number. It is hard to imagine how fast the Ackermann function grows. Based on the Fk

functions one can define the complexity classes Fk, which contain roughly speaking problems
solvable in time around Fk of the input size. Details can be found here [21].

Despite the fact that the complexity of the reachability problem for VASS have been
settled we still lack a lot of knowledge about the reachability properties in VASS. This can
be easily seen if we look into VASS with d counters, which we also call d-dimensional VASS
or shortly d-VASS. In general the complexity of the reachability problem for d-VASS is
known to be in Fd [10]. The best currently known lower bound is Fd-hardness in dimension
2d + 3 [4]. The gap does not look big till we look at d-VASS for some small fixed d. Notice
however, that the mentioned bounds give us Tower upper complexity bound for 3-VASS, but
Tower-hardness only for 9-VASS, which is quite a big gap in understanding.

Let us summarise what is known about the reachability problem for d-VASS for small
dimensions d. For small complexities it matters whether the numbers on transitions are
represented in unary or in binary. Clearly binary representation is more concise, so possibly
complexity of any problem for VASS with numbers represented in binary (shortly binary
VASS) can be higher than the complexity for VASS with numbers represented in unary
(shortly unary VASS). For dimension one it is rather easy to see that if there is a path in
unary 1-VASS then there is also a path of at most cubic length, which easily implies NL
algorithm and therefore also NL-completeness of the reachability problem. The complexity
for binary 1-VASS is known to be NP-complete since 2009 [13]. A few years later came a big
progress for 2-VASS. For binary 2-VASS it was shown in [2] that if there is a path between
two configurations then there is also a path of at most exponential length. This easily implies
existence of a PSpace algorithm, which just guesses this path step by step. Altogether the
problem was shown in [2] to be PSpace-complete. One year later authors of [9] have proved
that in unary 2-VASS if there is a path between two configurations then there is also a path
of at most polynomial length, which implies algorithm in NL and thus NL-completeness.

It is a major challenge to go beyond dimension two. One particular reason for that is that
reachability sets (and actually relations as well) are semilinear in 2-VASS, while it is not true
for 3-VASS [14]. Recall that a set is linear of it is of a form b + P ∗ for some vector b ∈ Nd

and finite set P ⊆ Nd and a set is semilinear if it is a finite union of linear sets. The following
example of a 3-VASS is probably the simplest way to see this and comes from the work of
Hopcroft and Pansiot [14], thus we call it the HP-example. One can check that the set of
configurations reachable from p(1, 0, 0) in state p is of a form {p(x, y, z) | 1 ≤ x + y ≤ 2z},
which is clearly not semilinear. Another challenge is that already in dimension three one can
get VASS with finite reachability set, but of size k-fold exponential, so it is hard to obtain
complexity bound below the size of the finite reachability set, so below Tower. To see that
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p q(−1, 1, 0) (2, −1, 0)

(0, 0, 0)

(0, 0, 1)

such 3-VASS exist consider an example of a composition of a bit modified (transition from q

to p now subtracts one, not adds one) two copies of the HP-example composed with itself.
One can quite easily check that the reachability set from p1(1, 0, n) is doubly-exponential in n.

p1 q1

r

p2 q2

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

(−1, 0, 1)

(1, 0, 0)

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

So see this notice that in particular any configuration of the form p2(x, y, 0) for x + y = 22n

can be reached from p1(1, 0, n). Compositing k copies of the HP-example in the same fashion
would result in getting (k − 1)-fold exponential size finite reachability set.

Unfortunately, not much upper or lower bounds are known for 3-VASS and for other
d-VASS for low fixed d ∈ N. I believe it is an important direction and I keep working in
this area since a few years. We have some partial results with co-authors. In [5] we have
shown that there exist a unary 3-VASS with two configurations such that the shortest path
between them is of an exponential length. This distinguishes the situation from the unary
2-VASS, where the shortest path is always polynomial. Therefore the same way of proving
membership in NL cannot work for unary 3-VASS. In fact recently together with Dmitry
Chistikov, Filip Mazowiecki, Łukasz Orlikowski, Henry Sinclair-Banks and Karol Węgrzycki
we have shown that the reachability problem for unary 3-VASS is NP-hard, it is a part of a
paper just accepted to FOCS 2024.

On the other hand together with Ismaël Jecker, Sławomir Lasota and Łukasz Orlikowski
we seem to have shown that in binary 3-VASS if there is a path between two configurations
then there is one of at most doubly-exponential length. This would imply an ExpSpace
membership for the reachability problem. However, the result is not yet written down, so
there might be some mistake there. But, even if this result is true it might not be optimal.
In every example of a 3-VASS we know, the shortest paths between two configurations are at
most exponential, which would suggest PSpace algorithm. The lowest dimension in which
we know that sometimes the shortest paths are of doubly-exponential length is four, in [5]
we have shown an example of a 4-VASS with shortest path between some two configurations
being doubly-exponential. Thus, I think that the following challenge is a very interesting
one and could lead to getting a tight complexity bound for 3-VASS, which are still quite a
simple and natural computation model.



W. Czerwiński 2:5

▶ Challenge 1. Find an example of a binary 3-VASS with doubly-exponential shortest path
between two configurations.

Another interesting challenge is to decide for which dimensions d reachability in d-VASS
is elementary, so below Tower. The paper [4] gives us Fd-hardness in dimension 2d + 3, so
Tower-hardness for 9-VASS. However, we have managed to show Tower-hardness already for
8-VASS in [7]. The question remains for d-VASS when d ∈ {4, 5, 6, 7} (and also for d = 3
if our supposed ExpSpace membership for 3-VASS would turn wrong). Of course to get
Tower-hardness for d-VASS we need to know examples of d-VASS with at least Tower-long
shortest paths between two configurations. However, we even know no example below
dimension eight with such a property. This leads to another interesting challenge.

▶ Challenge 2. Find an example of a binary d-VASS with at least tower-long shortest path
between two configurations for d ≤ 7.

Of course it might be that solving Challenges 1 and 2 is impossible, because there exist no
such examples. This would however be probably hard to show, as designing faster algorithms
is usually rather sophisticated. I list here challenges, which possibly might be resolved
positively during one afternoon. That is why I have formulated the challenges in such a form.

Another interesting open problem for reachability in VASS is the question for fixed VASS.
There is a conjecture that for every VASS V there is a constant CV such that if there is
a path from a configuration s to a configuration t then there is also one of length at most
CV times the sum of sizes of s and t [8]. Such a conjecture, if true, would imply a PSpace
algorithm for the reachability problem for any fixed binary VASS V . The PSpace-hardness
was already shown in [8]. I personally believe in this conjecture, but I might be wrong, so
there is another hard challenge.

▶ Challenge 3. Find an example of a binary VASS for which shortest paths in between its
configurations are longer than linear.

Integer VASS

Another way of relaxing infinite-state systems is to consider automata with integer counters,
which cannot be zero-tested and moreover can drop below zero. Such systems are called
Z-VASS or integer VASS. Even though it is not entirely obvious, it is easy to reduce the
reachability for Z-VASS to the reachability for VASS. Every Z-VASS counter can be simulated
as a difference of two VASS counters. However, the reachability of Z-VASS is much easier
than the reachability for VASS, it is known to be NP-complete [12].

The reachability problem for automata with only Z-counters have been well understood,
as seen above. However, the power of adding Z-counters to other systems is definitely not so
fully understood. Actually, it is not clear whether an automaton with d VASS-counters and
k integer-counters is closer in behaviour to a d-VASS or to (d + k)-VASS. One particularly
interesting model is a 2-VASS with many Z-counters. There are no known examples of these
systems for which the shortest path is longer than exponential, so it is very possible that
the reachability problem is in PSpace, thus PSpace-complete. On the other hand, to my
best knowledge, there is no known upper complexity bound below Ackermann. Thus it is a
natural challenge to investigate these systems.

▶ Challenge 4. Find an example of a binary 2-VASS with additional Z-counters with shortest
path being longer than exponential.

MFCS 2024
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My personal conjecture is that there exists no system as mentioned above in Challenge 4,
but I might be very wrong, it is always hard to imagine sophisticated examples. Notice that
in the HP-example the third counter can be treated as a Z-counter (as it never drops below
zero), so reachability sets in 2-VASS with Z-counters are not necessarily semilinear.

VASS with zero-tests

As mentioned at the beginning of this text, automata with two zero-tested counters already
have undecidable reachability problem. But maybe we can allow for one zero-tested counter?
If we have just an automaton with one zero-tested unary-encoded counter it is easy to
show that if there is a path between two configurations then there is also a path of at
most polynomial length. This means that the reachability problem is NL-complete for such
automata. But, if we add more VASS-counters on top of the zero-tested counter then the
situation is more sophisticated. However, in 2008 Klaus Reinhard have shown that the
reachability problem for VASS with one zero-tested counter is decidable [20]. Actually, he
has shown even more: decidability for VASS with hierarchical zero-tests. A d-VASS with
hierarchical zero-tests (hierarchical VASS) have the following zero-tests: for each k ≤ d one
can test whether all the first k counters are equal to zero at the same time. Interestingly, this
model also has decidable reachability problem, even though it is so closed to the automaton
with two zero-tested counters. Unfortunately, the proof of Reinhard was very complicated and
hard to understand, so there were other tries to explain the nature of VASS with zero-tests.
In 2011 Bonnet reproved the result using other techniques [3], but his work considered only
VASS with one zero-test, not a hierarchical VASS. Very recently Guttenberg came up with
another proof of decidability of the reachability problem for hierarchical VASS [11], this time
hopefully more understandable.

Even though the decidability status of the reachability problem for hierarchical VASS
is resolved its complexity is unclear. It cannot be better than Ackermann, as already the
reachability problem for VASS is Ackermann-hard. However, it is interesting whether the
problem is in Ackermann or maybe much higher. In particular, it would be interesting to
know whether hierarchical zero-tests add anything to the power of VASS, namely whether
hierarchical d-VASS are harder at some dimensions than the classical d-VASS. Interestingly,
it was shown that in dimension two both models are very similar and the reachability problem
for hierarchical 2-VASS is in PSpace [16]. Could this be true also in higher dimensions? It is
an interesting challenge to find this out.

Pushdown VASS

Similarly as for zero-tests one can consider automata with just one stack. Reachability in
a pushdown automaton is easy and can be performed in polynomial time, for example by
the famous CYK algorithm. However, things become much harder if we add additional
VASS-counters to this stack. An automaton with a stack and d VASS-counters is called a
d-dimensional Pushdown VASS (d-PVASS). Similarly as pushdown automata are equivalent
to context-free grammars the PVASS are equivalent to Grammar VAS (GVAS), which are
just context-free grammars with terminals being vectors in Zd. A derivation of a GVAS is
correct if starting in the initial vector in Nd and reading leaves in the prefix order one never
drops below zero and finally reaches the target vector in Nd.

Little is known about the reachability problem for PVASS. It is conjectured to be
decidable, but there is no known algorithm even for 1-dimensional PVASS. An interesting
result was shown by Atig and Ganty [1]. They have proved that for so called finite-index
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GVAS the reachability problem is decidable. Concretely speaking they have reduced the
reachability problem for finite-index d-GVAS with k nonterminals to the reachability problem
for hierarchical dk-VASS, which is known to be decidable [20, 11].

Recently with Clotilde Bizière we have considered the reachability problem for 1-GVAS
and we have an impression that we can show decidability by a reduction to the finite-index
case. However, this result is also not confirmed and may contain a flaw. Even if it is correct
the complexity of the problem for 1-GVAS remains open. We do not know any example of a
1-GVAS in which a path of length longer than exponential is needed, which would suggest
low complexity. On the other hand even very simple 1-GVAS may have finite, but huge
reachability sets. For example this 1-GVAS with just three nonterminals have a reachability
set of Tower-size

X −→ 0, X −→ −1X2; and
Y −→ 1, Y −→ −1Y X; and
Z −→ 1; Z −→ −1ZY .

Indeed, with the starting nonterminal Z and starting value n we might reach up to Tower(n)
values. To see this observe that nonterminal X with starting value n might output value up
to 2n. It turn the nonterminal Y with starting value n may produce up to n variables X

and output value up to 2n. Therefore nonterminal Z with starting value n may produce up
to n variables Y and output value up to Tower(n). Similar grammars with d nonterminals
may have finite reachability sets of size up to Fd(n). So it looks interesting that we do not
have any example of 1-GVAS with longer than exponential shortest path.

▶ Challenge 5. Find an example of a 1-GVAS such that shortest derivations are longer than
exponential.

Other models

There are also other very interesting and natural models of infinite-state systems. One
popular such system is Branching VAS (BVAS), for which the reachability problem is
open in general, but was recently shown decidable in 2-dimensional BVAS. The results are
not yet published, but they were referred here by Clotilde Bizière: https://youtu.be/
aKIxlgQAa2w?si=V7yWXsj8_JaoiBHv.

Another interesting model, which illustrated how much we are in trouble with automata,
which have both additive and multiplicative (or recursive) behaviour is a model about which I
have heard from Anthony Lin. Consider a model, let us call it the Lin automaton, which is an
automaton with one counter. A transition can increase or decrease this counter, as normally,
but it can also multiply it or divide by two. Then it is unclear whether the reachability
problem for such a simple automaton is decidable. Together with Moses Ganardi, Łukasz
Orlikowski and Georg Zetzsche we think about this problem and we have some partial results.
However, we still do not have any example of a Lin automaton, which has a path longer than
exponential. Thus the following might be an interesting challenge.

▶ Challenge 6. Find an example of a Lin-automaton such that shortest derivations are
longer than exponential.

To summarise, it seems that there are still many fundamental and natural challenges
in the field of infinite-state systems, some of which are asking about deep properties of the
computation. It might be that we are still at the beginning of our way to understand the
computation even from this very high level perspective.
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