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Abstract
In this paper, we investigate confluence and the Church-Rosser property – two well-studied properties
of rewriting and the λ-calculus – from the viewpoint of proof complexity. With respect to confluence,
and focusing on orthogonal term rewrite systems, our main contribution is that the size, measured
in number of symbols, of the smallest rewrite proof is polynomial in the size of the peak. For the
Church-Rosser property we obtain exponential lower bounds for the size of the join in the size of
the equality proof. Finally, we study the complexity of proving confluence in the context of the
λ-calculus. Here, we establish an exponential (worst-case) lower bound of the size of the join in the
size of the peak.
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1 Introduction

Confluence and the Church-Rosser property are two (very) well-known properties of rewriting
that have been studied for several decades. Confluence expresses that if we have terms s, t,
t′, where s can be successively rewritten to t, as well as to t′, then t and t′ have a common
descendent in the rewriting relation, cf. Figure 1 i). In short, if there is a peak: t ∗← s→∗ t′,
we conclude the existence of a rewrite proof : t→∗ · ∗← t′. The Church-Rosser property –
illustrated in Figure 1 ii) – expresses that from the equality between t and t′ (t↔∗ t′), we
conclude the existence of a rewrite proof: t →∗ · ∗← t′. It is a folklore result that both
properties are equivalent. And, as indicative in the name, their intensive study goes back to
work by Church and Rosser [8].

Despite the large body of work on confluence and the Church-Rosser property, it seems
that the, to us, natural question about the inherent proof complexities has only received
scarce attention. A noteworthy exception is work by Ketema and Grue Simonsen [11].
Focusing on orthogonal term rewrite systems and employing the number of reductions as
measure of proof complexity, they obtain in the context of confluence optimal exponential
upper bounds on the size of the rewrite proof in relation to the size of the peak. With
respect to the Church-Rosser property only a non-elementary upper bound can be shown.
Related results have been obtained for the λ-calculus, where again non-elementary bounds
are obtained for both properties, cf. [10].

If, however, proof complexity is measured more in the tradition of computational com-
plexity, that is, as the number of symbols occurring in a proof, then more tractable results
are possible. For example for orthogonal term rewrite systems, we prove that for confluence
the size of the least rewrite proof is always polynomially bounded in the size of the peak.
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i confluence ii Church Rosser

Figure 1 Confluence and Church-Rosser property.

Motivation. These results may open the way for the application of rewriting techniques in
complexity theoretic studies, in particular in the context of Bounded Arithmetic [6]. A major
open problem in Bounded Arithmetic is the separation of its fragments, which has deep
connections to similar questions about the separation of computational complexity classes
like the Polynomial Time Hierarchy, including the P vs. NP problem. Consider equational
theories, restricted to term equations that define functions symbols exclusively by recursion.
As established in [5] by the first author, consistency of such equational theories can be
proved in the fragment of Bounded Arithmetic S1

2 . This is remarkable, as it disproves the
general impression in Bounded Arithmetic, that consistency statements cannot be used for
separation arguments - consistency of equational theories with a richer set of axioms are
usually unprovable in Bounded Arithmetic [7].

In the proof in [5], the given equational proof is reconstructed in S1
2 using a technically

involved process of “approximation” and “calculation”. An alternative, much more elegant,
proof could employ the Church-Rosser property of the induced term rewrite system. To our
best knowledge it is, however, unclear whether this property (or confluence) is formalisable
in S1

2 . The results of this paper are conceivable as a first step towards this direction.

Contributions. In summary, we make the following contributions, where we are only
concerned with orthogonal term rewrite systems.
1) Our main result, Theorem 17, shows that the size – measured in the number of symbols –

of the smallest possible rewrite proofs is in the worst-case polynomially bounded in the
size of the peak, cf. Figure 1. This shows that confluence properties are polynomial time
computable, hence are formalisable in Bounded Arithmetic.
The polynomial (in fact biquadratic) upper bound stems from a quadratic bound on the
number of reductions in the rewrite proof in the size of the peak, and a quadratic bound
on the size of each term in the rewrite proof.

2) For the Church-Rosser property we give an exponential worst-case lower bound to the
size of the join in the size of the equality proof, cf. Theorem 19. This shows that it is
not possible to formalise Church-Rosser properties directly in Bounded Arithmetic. The
(worst-case) bound is precise.

3) We give matching (worst-case) upper and lower bounds based on different complexity
measures. For confluence, we show that the size of the join is linear in the size of the
product of the end terms in the peak, cf. Corollary 15 and Proposition 10. For the Church-
Rosser property, we show that the size of the join is polynomial in the product of the sizes
of the intermediary terms in the equational proof, cf. Theorem 22 and Proposition 21.

4) Finally, we study the complexity of proving confluence in the context of the λ-calculus.
We obtain that the size of the join is at least exponential in the size of the peak. Hence,
confluence is also not formalisable directly in Bounded Arithmetic.
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Outline

The next section introduces basic notions and results. In Section 3 we establish the mentioned
lower bound results for rewriting. Section 4 introduces technical notions that underly the
methodology of our main results, to be presented in Section 5. In Section 6 we study lower
and upper bounds on the complexity of Church-Rosser proofs. The lower bound of confluence
proofs is established in Section 7. Section 8 discusses related works. Finally, in Section 9, we
conclude and present future work.

2 Preliminaries

We assume (at least nodding) acquaintance with term rewriting [2, 12], however recall basic
definitions and notations for ease of readability.

General. Let R be a binary relation. We write Rn for the n-fold iteration of R and R∗ for
the reflexive and transitive closure of R. Let V denote a countable infinite set of variables,
and F a countable infinite set of function symbols (also called signature). The set of terms
over F and V is denoted by T (F ,V).

Let t be a term (over F and V). A position p is a finite sequence of positive integers. Via
positions, we uniquely identifying subterms of t, denoted as t|p. We write p∥q to indicate
parallel positions, generalising the notions suitably to sets of positions. We write Var(t) to
denote the set of variables occurring in t, ie. Var t = {x | t|p is a variable for some position p}
and we write rt(t) to denote its root symbol. For example, for {x, y} ⊆ V , Var(x + y) = {x, y}
and rt(x + y) = +. The size |t| of term t is defined as the number of symbol occurrences
in t, for example, |x + y|= 3. A term t is linear if every variable in t occurs only once.

Term Rewriting. A rewrite rule is a pair l→ r of terms, such that (i) the left-hand side l

is not a variable and (ii) Var(l) ⊇ Var(r). A term rewrite system (TRS) over F is a finite set
of rewrite rules R; it will be denoted by the pair (F ,R). If the signature F is clear from
context, we simply denote a TRS by its set of rules R. If l → r is a rewrite rule and σ a
renaming, then the rule lσ → rσ is called a variant of l→ r. A TRS is said to be variant-free,
if it does not contain rewrite rules that are variants. In the following we assume that TRSs
are variant-free.

The rewrite relation based on R is denoted as →R and its transitve and reflexive closure
as →∗

R. If the TRS is clear from context, we will simply write → and →∗ respectively. Let s

be a redex in term t. Here a redex is an occurrence of a term s that is an instance of the
left-hand side l of a rule l→ r ∈ R. We write t s−→R t′ to indicate that redex s is contracted
in the rewrite step. A term t over T (F ,V) is in normal form with respect to a TRS R, if t

does not contain any redex. We call a substitution σ normalised (with respect to R), if all
terms in the range of σ are in normal form. The innermost rewrite relation i−→R of a TRS
R is defined as follows: s i−→R t if there exists a rewrite rule l → r ∈ R, a context C, and
a substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal
forms of R.

An overlap for R is a triple ⟨l→ r, p, l′ → r′⟩, such that (i) l→ r, l′ → r′ are rules in R,
whose variables are disjoint, (ii) p is not a variable position in l′, (iii) l and l′|p are unifiable,
(iv) if p = ε, then l → r, l′ → r′ are not variants. A TRS is left-linear if the left-hand
sides of all rules are linear. A TRS R without overlap is called non-ambiguous; a left-linear,
non-ambiguous TRS is called orthogonal.

MFCS 2024
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Let s and t be terms. Then an (innermost) derivation D : s →∗
R t with respect to a

TRS R is a finite sequence of (innermost) rewrite steps. Given an equational system E , we
can define, as usual, a TRS R such that

s =E t iff s↔∗
R t .

(See [2, 12] for the straightforward construction.) A finite sequence of equational steps:
t1 ↔R t2 · · · ↔R tn is called an equational proof.

A term s ∈ T (F ,V) is confluent, if for all t, t′ ∈ T (F ,V) with t ∗← s→∗ t′, there exists
a common reduct v, that is, t→∗ v ∗← t′. A TRS (F ,R) is confluent if all terms in T (F ,V)
are confluent. We call the equational proof t ∗← s →∗ t′ a peak, the term v the join and
the derivations t→∗ v ∗← t′ a rewrite proof. A peak is local, if it consists of one step each:
t← s→ t′. Confluence is equivalent to the Church-Rosser property, which states that for
any equational proof t ↔∗ t′ there is a rewrite proof t →∗ v ∗← t′. A rewrite relation →
has the diamond property, if any local peak over → can be joined immediately, that is, if
← · → ⊆ → · ← holds.

Descendants and Residuals. Let (F ,R) be a TRS and let L be a set of labels. The
labelled TRS (FL,RL) is defined by setting (i) FL := F ∪ {f ℓ | f ∈ F and ℓ ∈ L}, (ii) the
projection ⟨t⟩ of a term t ∈ T (FL,V) removes all labels, and (iii)RL := {l→ r | ⟨l⟩ → r ∈ R}.
The next proposition is from Terese [12, Proposition 4.2.3].

▶ Proposition 1. Consider a left-linear TRS (F ,R) and a set of labels L. Let s ∈ T (F ,V)
and let s′ be a labelled term such that ⟨s′⟩ = s. Then each reduction step s→ t can be lifted
to a reduction step s′ → t′ in the labelled TRS (FL,RL) such that ⟨t′⟩ = t.

In the following, we write RL in short for the labelled TRS (FL,RL), if the (labelled)
signature is clear from context.

▶ Definition 2. Let t be a term in a TRS R, let s be a redex and let f be a function symbol
occurring at position p in t, ie. f = rt(t|p). Let tf denote the term that results from t by
labelling this occurrence of f with label ℓ ∈ L. Then the reduction step t s−→ t′ (contracting
redex s) is lifted to a reduction step tf → t′′ in RL.

The occurrences of f in t′ that have label ℓ in t′′ are the descendants of the original symbol
occurence of f in t. Conversely, the original f is called the ancestor of its descendants.

The descendant/ancestor relation is extended to subterm occurrences via their root
symbols. The descendant of a redex is called a residual. For a set of redexes S, we call the
set of residuals of redexes in S simply the set of residuals of S. The descendant/ancestor
relation naturally generalises to sequence of rewrite steps, that is, derivations. Note that the
ancestor relation is unique, that is, for any derivation D : s→∗ t the ancestor of a subterm u

in t is given as a unique occurrence of a subterm u′ in s, if it exists, cf. [12, Chapter 4].

Orthogonality. It is well-known that every orthogonal TRS is confluent, which can for ex-
ample be verified by repeated applications of the Parallel Moves Lemma, cf. [12, Lemma 4.3.3].

▶ Lemma 3 (Parallel Moves Lemma). In an orthogonal TRS, let t→∗ t2 be given. Let t s−→ t1
be a one-step reduction by contraction of redex s. Then a common reduct t3 of t1 and t2 can
be found by contracting in t2 of all residuals of redex s. Observe that all residuals will be
pairwise disjoint.
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In order to prove the Parallel Moves Lemma, one makes use of the parallel rewriting
relation, formalising the notion of contraction of pairwise disjoint redexes.

▶ Definition 4. Let R be a TRS. We define the parallel rewriting relation ⇒R as follows
1. x⇒R x for any variable x,
2. f(s⃗)⇒R f (⃗t) for any function symbol f , if for all i si ⇒R ti, and
3. lσ ⇒R rσ, if l→ r ∈ R and σ a substitution.

We often omit R and simply write s =⇒ t, if the TRS is clear from context.

Note that →R ⊆ ⇒R ⊆ →∗
R, in particular we have that →∗

R = ⇒R
∗. Making use

of parallel rewriting, we can state the Parallel Moves Lemma succinctly as follows. A
strengthening of the lemma has been stated and proven in [11].

▶ Lemma 5. Parallel rewriting has the diamond property for every orthogonal TRS R, that
is, if t⇐R s⇒R t′, then there exists a join t′′ such that t′ ⇒R t′′ ⇐R t.

Let TRS R be fixed and let s =⇒ t denote a paralel rewriting step with respect to R.
Suppose the (occurrences of) disjoint redexes contracted are collected in set S. Then
we succinctly write s

S
=⇒ t. Due to the Parallel Moves Lemma, we obtain the following

proposition, cf. [12, Proposition 4.5.6].

▶ Proposition 6. Let R be an orthogonal TRS, and let t ∈ T (F ,V). Let S, T be sets of
pairwise disjoint redexes in t and let t

S
=⇒ t′. Then the set of residuals of T in t′ is unique,

that is, independent of the order in which redexes in S are contracted.

Proof. This is a direct consequence of the diamond property of =⇒. Actually a stronger results
holds. The single parallel rewriting step employed, is generalisable to a complete development
step, without affecting the validity of the proposition, cf. [12, Proposition 4.5.6]. ◀

Based on Proposition 6 we denote with T/S the (unique) set of residuals of T in t′ that
are obtained by the parallel rewriting step t

S
=⇒ t′. With Lemma 3 we observe that T/S

consists of pairwise disjoint redexes in t′.
Following the definition of the functions cvsR and vsR in [11], we define functions that

compute the worst case of joining derivations based on peaks, resp. equation proofs, of a
given size in the most effective way. Let ∥D∥ denote the number of symbol occurrences in D.

▶ Definition 7. Let R be an orthogonal term rewrite system. With jR(t, t′) we denote the
minimal size of a joining derivation of terms t and t′, if it exist:

jR(t, t′) =
{

min{∥D′∥ : D′ : t→∗
R · ∗←R t′} if t and t′ have a joining derivation

∞ otherwise

The worst case join complexities for confluence Conf and Church-Rosser CR are defined as

Conf(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t←∗
R · →∗

R t′, R orthogonal TRS }
CR(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t↔∗

R t′, R orthogonal TRS } .

In the following we will give some (worst-case) upper and (worst-case) lower bounds to
those functions. Our main result will be a polynomial upper bound to Conf in Corollary 18.
We also provide an exponential lower bound to CR in Corollary 20.

For the remainder of the paper, we restrict to orthogonal TRSs.

MFCS 2024
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3 Lower Bounds for Confluence

For our lower bound considerations we use the following big-O facts, which follow easily from
definitions.

▶ Lemma 8.
1. If e1(n) = O(e(n)) and e2(n) = Ω(e(n)) then e2(n) = Ω(e1(n)).
2. If e1(n) = e(n)O(1) and e2(n) = e(n)Ω(1), then e2(n) = e1(n)Ω(1).

We first give a linear lower bound to the number of steps for joining a peak in the size of
the splitting sequence. We will provide a corresponding upper bound in Corollary 16.

▶ Proposition 9. There is an orthogonal TRS R satisfying the following: Let D1 : a→∗ b

and D2 : a→∗ c be derivations over R, such that b→k d, and c→l d holds for numbers k, l,
and term d. Then k + l = Ω(∥D1∥+ ∥D2∥), that is, k + l is at least linear in the number of
symbols in D1 and D2 together.

Proof. Consider the TRS R1 given by

f(x)→ g(x, x) a(x)→ b(x, x) . (1)

We define meta term symbols via A(T ) := a(T ), B(T ) := b(T, T ), F (T ) := f(T ), G(T ) :=
g(T, T ). For a meta term symbol T let T (n) denote its n-fold iteration.

We define

Sn = F (n)(A(n)(0)) Un = F (n)(B(n)(0))

Vn = G(n)(A(n)(0)) Wn = G(n)(B(n)(0)) ,

and compute

|Sn|= O(n) |Un|= O(2n) |Vn|= O(n2n) .

Consider the following peak in R1, rewriting innermost redexes first.

D1 : Sn
a−→ F (n)(A(n−1)(B(0))) a−→ F (n)(A(n−2)(B(2)(0))) a−→ · · · a−→ Un

D2 : Sn
f−→ F (n−1)(G(A(n)(0))) f−→ F (n−2)(G(2)(A(n)(0))) f−→ · · · f−→ Vn .

To discern ambiguity, we have identified the root symbol of the redex above the rewrite
relation.

The size of each term in the first derivation is O(2n), hence the overall size of D1 is
O(n2n). The size of the k-th term in the second derivation is O(n2k), so adding them up
for k ⩽ n gives a bound of O(n2n) for the overall derivation length of D2 as well. Hence
(∥D1∥+ ∥D2∥) = O(n2n).

The ’fastest’ join of Un and Vn is given by rewriting innermost redexes first:

Un
f−→1 F (n−1)(G(B(n)(0))) f−→1 F (n−2)(G(2)(B(n)(0))) f−→1 · · · f−→1 Wn

Vn
a−→2n

G(n)(A(n−1)(B(0))) a−→2n

G(n)(A(n−2)(B(2)(0))) a−→2n

· · · a−→2n

Wn .

The length of the first derivation is n, and of the second n2n, respectively.
Thus, a lower bound to the number of steps Sjoin of any derivations that join Un and Vn

is n2n: Sjoin = Ω(n2n). Together with (∥D1∥+∥D2∥) = O(n2n) and Lemma 8.(1), we obtain
Sjoin = Ω(∥D1∥+ ∥D2∥). Hence, Sjoin must be at least linear in the size of the derivations
D1 and D2 constituting the peak. ◀
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We also give a linear lower bound to the size of the join of the diamond in the product
of the sizes of meet-able terms in a peak. The corresponding upper bound will be given in
Corollary 15.

▶ Proposition 10. There is an orthogonal TRS R satisfying the following: Let b ∗← a→∗ c

be a peak over R with consequent join d such that b→∗ d and c→∗ d. Then |d|= Ω(|b|·|c|),
that is, the size |d| of d is at least linear in |b|·|c|.

Proof. Fix n. We will basically follow the example from the proof of Proposition 9, with a
slight modification to obtain optimal bounds.

With the notation from the proof of Proposition 9, expand TRS R1, cf. (1), with the rule
h→ A(n)(0). Let the resulting TRS be denoted as R2. We define

S′
n = F (n)(h) Un = F (n)(B(n)(0))

V ′
n = G(n)(h) Wn = G(n)(B(n)(0)) ,

and compute

|Un|= O(2n) |V ′
n|= O(2n) |Wn|= Ω(22n) .

Consider the following peak:

S′
n

h−→ F (n)(A(n)(0)) a−→∗ Un

S′
n

f−→ F (n−1)(G(h)) f−→ F (n−2)(G(2)(h)) f−→∗ V ′
n .

The ’smallest’ join of Un and Vn is given by rewriting only residuals:

Un
f−→∗ Wn

V ′
n

h−→∗ G(n)(A(n)(0)) a−→∗ Wn .

We compute |Un|·|V ′
n|= O(22n). Together with |Wn|= Ω(22n) and (1) we obtain |Wn|=

Ω(|Un|·|V ′
n|). Hence, the size of any join must be at least linear in the product of the sizes

of Un and V ′
n. ◀

4 Injectivity

For the sequel, we fix an orthogonal TRS R. Let t′ ∗← s→∗ t denote a peak over R.
Consider the tiling diagramme in Figure 2 obtained by repeated applications of Lemma 5.

We assume that H0,ν denotes a singleton set of one redex in s0,ν , for ν = 0 . . . , i−1, and that
Vµ,0 denotes a singleton set of one redex in sµ,0, for µ = 0 . . . , j−1. Note that this implies
|H0,ν |= 1 and |Vµ,0|= 1. Further, we obtain

Vµ,ν+1 = Vµ,ν/Hµ,ν Hµ+1,ν = Hµ,ν/Vµ,ν ,

as sets of residuals using Proposition 6. Moreover, using Proposition 6, we have that Hµ,ν

and Vµ,ν are sets of pairwise disjoint redexes in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1.
Recall that a redex is an occurrence of a term t that is an instance of the left-hand side l of
a rule l→ r ∈ R.

MFCS 2024
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Figure 2 The tiling situation.

Generalised Ancestors

Given a sequence of rewrite steps

t→s′ t′ →s′′ t′′ → . . .→s(n−1) t(n−1) →s(n) t(n)

we generalise the notion of ancestor to trace any subterm in the sequence back to t – we
denote this generalised ancestor, or short g.-ancestor.

Ancestors are also g.-ancestors. Consider a subterm uj in t(j), and its ancestors uj−1 in
t(j−1), etc., until ui in t(i) cannot be extended any further. Let f denote the root symbol of
ui in t(i). As f does not have an ancestor in t(i−1), we must be in the following situation:
There exist a context C[∗], substitution σ, and rule l → r in R, such that t(i−1) = C[lσ],
t(i) ≡ C[rσ], and f occurs in r. We now define the generalised ancestor of f in t(i) as the root
symbol of l in C[lσ] = t(i−1). Continue until t is reached.

▶ Proposition 11. In the tiling diagramme in Figure 2, the generalised ancestors of any
symbol occurrence are unique, that is, independent of the path chosen to compute them.

Proof. Arguing inductively, it suffices to prove the statement for a single square:

sµ,ν
Hµ,ν===⇒ sµ,ν+1

⇓Vµ,ν ⇓Vµ,ν+1

sµ+1,ν
Hµ+1,ν=====⇒ sµ+1,ν+1 .

Recall that using Proposition 6, we have that Hµ,ν and Vµ,ν are sets of disjoint redexes
in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1. Thus, in proof of the claim, we can assume
without loss of generality that |Hµ,ν | = |Vµ,ν | = 1.

Let u be a subterm of sµ+1,ν+1. First, suppose u has an ancestor in sµ,ν . Then, this
ancestor is unique, as mentioned above.
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Second, suppose u has only generalised ancestors in sµ,ν . Then, we distinguish cases on
the relative positioning of redexes in Hµ,ν and Vµ,ν , respectively. Recall, that by assumption
the redexes in Hµ,ν and Vµ,ν are pairwise disjoint.

Case. Suppose Hµ,ν∥Vµ,ν , that is, the redexes in Hµ,ν ∪Vµ,ν are all pairwise disjoint. Then
the claim is obvious.












































































































L L r r

i i i
Sm SMHv v v

I r I r

criticalcasesof subterm
occurrenceswhichrequire

l r g ancestorsl r

r r I
Sman Smartv v v v v v

r u L v

Figure 3 Critical cases where generalised ancestors occur.

Case. Suppose there exists rules l → r, l′ → r′ ∈ R, and substitutions σ, σ′ such that
lσ ∈ Hµ,ν and l′σ′ ∈ Vµ,ν . Further l′σ′ ◁ lσ. (The case lσ = l′σ is trivial, because we must
have (l→ r) = (l′ → r′) due to orthogonality of R.) As u does not have an ancestor in sµ,ν ,
rt(u) either occurs in r or in r′. The situation of this case is depicted in Figure 3.

Wlog. rt(u) occurs in r′ and thus u occurs in any of the occurrences of r′σ′ in sµ+1,ν+1.
By assumption on lσ and l′σ′, u has an ancestor in sµ+1,ν and a generalised ancestor in
sµ,ν+1, which are both unique and consequently their join in sµ,ν is unique, too. ◀

▶ Definition 12. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i. Let f
be a function symbol occurrence in sµ,ν , and let µ′ ⩽ µ, ν′ ⩽ ν. We define gaµ,ν

µ′,ν′(f) as the
g.-ancestor of f in sµ′,ν′ .

We now formulate the main result of this section.

▶ Lemma 13. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i, and µ′ ⩽ µ,
ν′ ⩽ ν. The mapping of function symbol occurrences f in sµ,ν to the pair (gaµ,ν

µ,ν′(f), gaµ,ν
µ′,ν(f))

is an injection.

Proof. This claim can be proven by induction on ν − ν′. The case for ν = ν′ is obvious,
because gaµ,ν

µ,ν is the identity, which is injective.
For the induction step from ν′ + 1 to ν′ we can assume by induction hypothesis that the

claim is true for (µ′, ν′ + 1). We then show the claim for (µ′, ν′), depicted as follows.

MFCS 2024



21:10 On Complexity of Confluence and Church-Rosser Proofs

By assumption I gain
F goin G is the ancestor of F and G

in Suio

e r

Eg vs is

e r

ing T
eg rg

A
Said Spiti

w̅ Haig x ̅ ñ

Said Smith

l n
r

E
Hun

y

(a) Case A.

B
Spp Smits

Hm
w̅ x ̅ ñ

Said Smriti
e r

r Hun
y

r s a r

i(b) Case B.

Figure 4 Cases A and B in proof of Lemma 13.
 

Smit Smith syogafiflgaf.is

Smit Smith Smid

ga i f I got f c f

ga i g i ga g 19

I

For sake of contradiction assume the claim is wrong for (µ′, ν′). That is, there are f, g
occurring in sµ,ν with f, g different symbol occurrences, such that gaµ,ν

µ′,ν(f) = gaµ,ν
µ′,ν(g) and

gaµ,ν
µ,ν′(f) = gaµ,ν

µ,ν′(g). By i.h. we must have gaµ,ν
µ,ν′+1(f) ̸= gaµ,ν

µ,ν′+1(g). Let r1 = gaµ,ν
µ,ν′+1(f),

r2 = gaµ,ν
µ,ν′+1(g), and r0 = gaµ,ν

µ,ν′(f) = gaµ,ν
µ,ν′(g). This situation is depicted below. 

Hair fSmit Smith is Smir
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Hun
Smit Smith Said
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f

I K 19

We must be in the following situation: There are rule l → r in R, substitution ρ,
terms u1, . . . , uk, context C[∗1, . . . , ∗k], such that Hµ,ν′ = {u1, . . . , uk}, u1 = lρ, sµ,ν′ =
C[u1, . . . , uk], and r1 and r2 occur in rρ in sµ,ν′+1 = C[rρ, . . . ], and either

the roots of r1 and r2 occur already in r in C[rρ, . . . ], hence their joint g.-ancestor r0 is
the root of l in C[lρ, u2, . . . , uk], see Figure 4a;
or we have a variable x occuring in l which occurs multiple times in r, e.g. as Cr[∗1, ∗2]
with r = C[x, x] – hence rρ = Crρ[xρ, xρ] – and r1 occurs in the first xρ, r2 occurs in
the second xρ, and their joint ancestor r0 occurs in xρ in lρ in sµ,ν′ , see Figure 4b.

Let r̂ = gaµ,ν
µ′,ν(f) = gaµ,ν

µ′,ν(g) be the g.-ancestor of f and g in sµ′,ν . Hµ,ν′ are residuals of
Hµ′,ν′ , hence the ancestors r̃0 of r0 in sµ′,ν′ and r̃1, r̃2 of r1, r2 in sµ′,ν′+1 will occur in lρ′

and rρ′ for some ρ′. In particular in A), the roots of r̃1 and r̃2 are in r, and r̃0 is at the root
of l. In case B) we have that rρ′ = Crρ′[xρ′, xρ′] with r̃1 occuring in 1st and r̃2 in 2nd of xρ′.
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In both cases we have that r̃1 and r̃2 are two distinct g.-ancestors of f and g in sµ′,ν′+1,
resp., by following from sµ,ν the derivation first to sµ,ν′+1 and then to sµ′,ν′+1. However, by
following from sµ,ν the derivation to sµ′,ν , f and g have a joint ancestor r̂, hence can only
have one joint ancestor in sµ′,ν′+1 when following the derivation from sµ′,ν to sµ′,ν′+1 to the
left. This contradicts Proposition 11 that g.-ancestors are unique. ◀

▶ Lemma 14. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i.
Assuming |H0,ν |= 1, the mapping of each redex in Hµ,ν to their generalised ancestors in

sµ,ν′ for ν′ < ν is an injection.
Similar for Vµ,ν : Assuming |Vµ,0|= 1, the mapping of each redex in Vµ,ν to their generalised

ancestors in sµ′,ν for µ′ < µ is an injection.

Proof. We only consider the first assertion, the second is dual. Ie., we are in the following
situation. 

Son So 9 f How

Hur
Said i Said

got f a i f

Let s be a term, H a set of redexes in s, and f a function symbol occurrence in s. We
succinctly write f ∈ H to indicate that f is the occurrence of the root symbol of some redex
in H.

By Lemma 13 we have that the mapping

f ∈ Hµ,ν 7→ (gaµ,ν
µ,ν′(f), gaµ,ν

0,ν (f))

is an injection. By assumption we have that |H0,ν |= 1, hence H0,ν = {r̂} for some r̂. This
implies that gaµ,ν

0,ν (f) = r̂ for all f ∈ Hµ,ν . Hence

f ∈ Hµ,ν 7→ gaµ,ν
µ,ν′(f)

must be injective. ◀

5 Upper Bounds on Confluence

In this short section, we state and prove our main result that the size, that is, the number of
symbols, of a rewrite proof is polynomial in the size of the peak, cf. Figure 1. First, we draw
two easy corollaries from Lemma 13 and Lemma 14, respectively.

▶ Corollary 15. Consider the tiling diagramme in Figure 2. The size of the join t′′ is bounded
by the product of the sizes of t and t′:

|t′′| ⩽ |t|·|t′| .

Proof. This is a direct consequence of Lemma 13. ◀
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▶ Corollary 16. Consider the tiling diagramme in Figure 2, assuming |H0,ν |= 1 and |Vµ,0|= 1.
In this situation, the number of (sequential) reduction steps needed to join t and t′ via t′′, is
bounded by the square of the size of the initial sequence. More precisely:

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ⩽ i · |t′|+j · |t| ⩽

( j∑
µ=0
|sµ,0|+

i∑
ν=1
|s0,ν |

)2 .

Proof. For the first inequality, observe that by Lemma 14, we have that |Hj,ν |≤ |sj,0| for
ν < i and |Vµ,i|≤ |s0,i| for µ < j. Thus, |Hj,ν |≤ |t′| and |Vµ,i|≤ |t| by definition. Then, the
second inequality follows by elementary calculations. Finally, observe that if the set of redex
S is disjoint then

S
=⇒ ⊆→S , from which the claim follows. ◀

Now, our main result follows with ease.

▶ Theorem 17. Let R be an orthogonal TRS and assume the existence of a peak D : t′ ∗←
s →∗ t. Then there exists a rewriting proof D′ : t′ →∗ t′′ ∗← t whose size is polynomially
bounded in the size of D. In fact, the size of D′ is biquadratic in the size of D.

Proof. This is a consequence of Corollaries 15 and 16. Let D′ be the joining derivation given
by the tiling diagram in Figure 2, where s0,0 = s, s0,ν is the ν-th term in s→i t, and sµ,0
the µ-th term in s→j t′. Employing the notation of that figure, we obtain

∥D∥ =
j∑

µ=0
|sµ,0|+

i∑
ν=1
|s0,ν | .

Recall that ∥D∥ denotes the number of symbol occurrences in D. Due to Corollary 15, we
have, for each µ, ν (0 ⩽ µ ⩽ j, 0 ⩽ ν ⩽ i), that

|sµ,ν | ⩽ |sµ,0|·|s0,ν | ⩽ ∥D∥2 . (2)

Moreover, due to Corollary 16, the number of joining steps in D′ is bounded by ∥D∥2:

number of
joining steps ⩽

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ≤ ∥D∥2 . (3)

Combining (2) and (3), we conclude that ∥D′∥ ⩽ ∥D∥4. ◀

▶ Corollary 18. Conf is biquadratically bounded, i.e. Conf(n) = O(n4).

A closer inspection of the example in the proof of Proposition 10 establishes a cubic lower
bound, i.e. Conf(n) = Ω(n3).

6 Lower and Upper Bounds for the Church-Rosser Property

In the case of the Church-Rosser property, we first give an exponential lower bound to the size
of the join, which in particular gives an exponential lower bound to the join complexity CR.

▶ Theorem 19. There is an orthogonal TRS R satisfying the following: Let D be a derivation
of a ↔∗ b over R, such that a →∗ c and b →∗ c holds, then |c| is exponential in ∥D∥ in
general, i.e. |c|= 2∥D∥Ω(1) .
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Proof. Consider the TRS R3 given by

fi(x)→ ai(x, x) gi(x)→ ai(x, x) (i = 1, . . . , k) . (4)

We define meta term symbols via Ai(T ) := ai(T, T ), define

Sk
i = g1(. . . gi−1(gi(fi+1(. . . fk(0) . . . ))) . . . ) Uk = A1(. . . Ak(0) . . . )

T k
i = g1(. . . gi−1(Ai(fi+1(. . . fk(0) . . . ))) . . . ) ,

and compute

|Sk
i | = O(k) |T k

i | = O(k) Sk
i

gi−→ T k
i Sk

i
fi+1−−−→ T k

i+1 .

Consider the following derivation:

D := T k
1 ← Sk

1 → T k
2 ← Sk

2 → T k
3 . . . T k

k−1 ← Sk
k−1 → T k

k

The unique Church-Rosser join is given by T k
i →∗ U for all i = 1, . . . , k. From now on we

drop the superscript k.
Let SD = ∥D∥ and SU = |U |. We compute SD = O(n2) and SU = Ω(2n). Thus SD ⩽ ck2

for some c > 0, hence k ⩾
√

1
c SD ⩾ SD

ϵ for small ϵ > 0. Thus SU ⩾ 2k ⩾ 2SD
ϵ . ◀

▶ Corollary 20. CR(n) is exponential in n, i.e. CR(n) = 2nΩ(1) .

Inspecting our upper bounds, Corollaries 15 and 16, establishes that this bound is optimal
up to the degree, i.e. CR(n) = 2nO(1) .

We now show that the size of the join in the case of Church-Rosser is polynomially related
to the product of the sizes of the terms in the starting derivation. We first state the lower
bound.

▶ Proposition 21. There is an orthogonal TRS R satisfying the following: Let a1 ↔ a2 ↔
· · · ↔ ak be a derivation over R such that a1 →∗ b and ak →∗ b for some b. Then |b| is
polynomial in |a1|·|a2|· · · · · |ak| in general, i.e. |b|= (|a1|·|a2|· · · · · |ak|)Ω(1).

Proof. We modify the TRS from the previous proof so that the starting terms are of constant
size: Expand the TRS from the proof of Theorem 19 by

f̄k
i → fi(̄fk

i+1) ḡk
i (x)→ ḡk

i−1(gi(x)) (i = 1, . . . , k) (5)

where f̄k
k+1 represents 0. We define

S̄k
i = ḡk

i (̄fk
i+1) T̄ k

i = ḡk
i−1(Ai(̄fk

i+1)) ,

and compute

|S̄k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) ḡk
i−→ ḡk

i−1(gi(̄fk
i+1)) gi−→ ḡk

i−1(Ai(̄fk
i+1)) = T̄ k

i

|T̄ k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) f̄k
i+1−−→ ḡk

i (fi+1(̄fk
i+2)) fi+1−−→ ḡk

i (Ai+1(̄fk
i+2)) = T̄ k

i+1 .

From now on we will drop the superscript k. Consider the following derivation:

D̄ := T̄1 ←2 S̄1 →2 T̄2 ←2 S̄2 →2 T̄3 . . . T̄k−1 ←2 S̄k−1 →2 T̄k .

The unique Church-Rosser join is again given by T̄i →∗ r for all i = 1, . . . , k.
Let S̄ = Πt∈D̄|t| and Sr = |r|. We compute S̄ = c2k for some c = O(1) which is an upper

bound on the size of terms occurring in D̄. Hence S̄ = (2k)O(1). We also have Sr = (2k)Ω(1).
Hence Sr = S̄Ω(1) using Lemma 8(2). ◀
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We also have a corresponding upper bound.

▶ Theorem 22. Let R be an orthogonal TRS. Given a derivation a1 ↔ a2 ↔ · · · ↔ ak over
R, there is a join a1 →∗ b ∗← ak for some b, such that |b| is bounded by |a1|·|a2|· · · · · |ak|.

Proof. The upper bound is obtained by induction on k using the related upper bound for
confluence, Corollary 15: Assume a1 ↔ · · · ↔ ak ↔ ak+1. By induction hypothesis there are
some b, a1 →∗ b and ak →∗ b such that |b| is bounded by |a1|·|a2|· · · · · |ak|. If ak+1 → ak

then b is also the join for a1 and ak+1 and we are already done. Otherwise, ak → ak+1.
Using that ak →∗ b, we can join this peak with some c of size ⩽ |b|·|ak+1| using Corollary 15.
Thus |c| ⩽ |b|·|ak+1| ⩽ |a1|·|a2|· · · · · |ak|·|ak+1|. ◀

7 A Lower Bound for the Lambda Calculus

For this section, we assume(at least nodding) acquaintance with the (untyped) λ-calculus [3, 4].
While we refrain from re-stating (hopefully) well-known notions, the result should be easy to
understand.

We show that for confluence in λ-calculus, the size of the join is exponential in the product
of the sizes of the starting terms in general.

▶ Proposition 23. Given a peak D : b ←∗
λ a →∗

λ c, and a joining derivation b →∗
λ d ←∗

λ c.
Then |d| is exponential in ∥D∥ as well as in |b|·|c| in general: |d| = 2∥D∥Ω(1) and |d| =
2(|b|·|c|)Ω(1) .

Proof. Let f, g, h, x, y be variables. Let A := λx.((λy.hyy)(gx)) and B := λx.(h(gx)(gx)).
We have A λy−→λ B, |A|= Θ(1), |B|= Θ(1).

Define terms T k, Uk, V k, W k as follows: Let T 0 = U0 = V 0 = W 0 = f , and inductively

T k+1 = (A T k), Uk+1 = (B Uk), V k+1 = (λy.hyy)(gV k), W k+1 = h(gW k)(gW k) .

Then |T k|= O(k), |Uk|= O(k), |V k|= O(k), and |W k|= Ω(2k). We have

T k λy−→k
λ Uk T k λx−−→k

λ V k Uk λx−−→k
λ W k V k λy−→k

λ W k

by induction on k. Let D be Uk ←∗
λ T k →∗

λ V k. Then ∥D∥ = O(k2), hence k ⩾ (∥D∥)ϵ

for some ϵ > 0, hence |W k| = Ω(2k) = Ω(2(∥D∥)ϵ). As |b|·|d|= O(k2) as well, the same
calculation applies in this case as well. ◀

8 Related Works

Ketema and Grue Simonsen have studied similar properties in [11]. For a given TRS R,
they define functions cvsR and vsR, estimating the least number of reduction steps necessary
in a rewrite proof, assuming an equational proof or a peak, respectively. More precisely,
cvsR(m, n) denotes the least number of reduction steps required to complete a rewrite proof,
given an equational proof involving at most n steps between two terms t, t′ of size at most m.
Likewise, vsR(m, n) denotes the least number of reduction steps in a rewrite proof, given a
peak t ∗← s→∗ t′, where the size of s is at most m and the reduction lengths are at most of
size n. For orthogonal TRSs R they obtain optimal exponential upper bound on vsR and
an upper bound on cvsR that belongs to the 4th-level of the Grzegorczyk hierarchy. I.e. the
upper bound on cvsR is at least non-elementary. Wrt. the λ-calculus, confluence already
requires an non-elementary upper bound. In subsequent work, Fujita proved that for the
λ-calculus cvsR is upper bounded in the 4th-level of the Grzegorczyk hierarchy, cf. [10]. Only
optimality of the bound on vsR for orthogonal rewrite systems has been established.
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We emphasise that these results are orthogonal to our contributions, as we make use
of a different notion of proof complexity: the number of symbols, rather than the number
of reduction steps. While this measure is natural in the context of rewriting (or even the
λ-calculus), it is less so in the context of computational complexity, from our point of view.
In short, for orthogonal TRSs, this change allows us to provide (optimal) polynomial upper
bounds on confluence proofs and (optimal) exponential upper bounds on Church-Rosser
proofs, while we establish an exponential lower bound on confluence proofs for the λ-calculus.
Note that our changed notion of size not only allows tractable upper bounds, but also
differentiates precisely between the expressivity of (first-order) term rewrite systems and
(higher-order) λ-calculus, a difference that got somewhat blurred in related works.

To the best of our knowledge, confluence or Church-Rosser properties in term-rewriting
have not been studied in general in Bounded Arithmetic (though they have been used as
tools in the analysis of related artefacts, as in work by Das [9]). The closest we are aware of
are the results by the first author [5] that formalises a restricted and very involved property
the resembles elements of Church-Rosser, and which are used to prove the consistency of any
equational theory that exclusively is based on recursive defining equations, in a weak theory of
bounded arithmetic. These results were improved by Yamagata [13] by also allowing rules for
substituting terms into equations in the equational reasoning while proving consistency in a
weak theory of bounded arithmetic. However, Yamagata formalised ideas from programming
semantics with no connection to rewriting.

9 Conclusion

In this paper, we have investigated two well-studied properties of rewriting and the λ-calculus,
namely confluence and the Church-Rosser property, through the lens of proof complexity. In
particular, for orthogonal TRSs, we have shown that the shortest rewrite proof obtained in a
confluence argument is polynomially related to the size of the peak.

This is in contrast to earlier results on upper bounds on the size of confluence and
Church-Rosser proofs that used the number of steps as size measure. While this measure
is natural in the context of rewriting (or even the λ-calculus), it is less so in the context of
computational complexity, from our point of view. We emphasise that our changed notion of
size not only allows tractable upper bounds, but also differentiates precisely between the
expressivity of (first-order) term rewrite systems and (higher-order) λ-calculus, a difference,
that got somewhat blurred in related works.

We have established preliminary steps towards our motivation to study consistency proofs
in weak theories of arithmetic through the lens of rewriting technologies. In future work
we want to expand this direction. It seems natural to us to employ techniques from graph
rewriting [12, Chapter 13] (see also [1]) to overcome the exponential lower bound on the size
of the join that we have established for the Church-Rosser property. Due to the succinct
encoding of multiple occurrences in graph rewriting it could be possible to allow an alternative
encoding of the join and of the rewrite proof, altogether. The latter could potentially give
rise to a polynomial encoding. These investigations are left to future work.
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