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Abstract
The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting
each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate
that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding
to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the
NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple
is not between the other two. We show that this problem remains NP-complete even when the Hasse
diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm
for the problem when parameterized by the width of the partial order. Furthermore, we show that –
under the assumption of the Exponential Time Hypothesis – the running time of this algorithm is
asymptotically optimal.
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1 Introduction

In the realm of computational combinatorics, one of the primary challenges is to determine a
feasible configuration based on incomplete information. This paper aims to elucidate the
relationships between two notable instances of this problem category: recognition of search
trees of graph searches and total ordering with constraints. Specifically, our focus will be
on exploring the last-in-tree recognition in the context of generic search and the intermezzo
problem.

Graph Searches. Graph searches like Breadth First Search (BFS) or Depth First Search
(DFS) are among the most basic algorithms in computer science. Their simplicity belies
their significance as they form the backbone of more complex algorithms used to compute
key properties of graphs. For instance, DFS can be employed to test for planarity as
demonstrated by Hopcraft and Tarjan [17] and Lexicographic Breadth First Search (LBFS)

© Jesse Beisegel, Ekkehard Köhler, Fabienne Ratajczak, Robert Scheffler, and Martin Strehler;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jesse.beisegel@b-tu.de
https://orcid.org/0000-0002-8760-0169
mailto:ekkehard.koehler@b-tu.de
mailto:fabienne.ratajczak@b-tu.de
https://orcid.org/0000-0002-5823-1771
mailto:robert.scheffler@b-tu.de
https://orcid.org/0000-0001-6007-4202
mailto:martin.strehler@fh-zwickau.de
https://orcid.org/0000-0003-4241-6584
https://doi.org/10.4230/LIPIcs.MFCS.2024.22
https://arxiv.org/abs/2404.18645
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Graph Search Trees and the Intermezzo Problem

aids in the recognition and minimum coloring of chordal graphs through a perfect elimination
ordering [22]. Notably, all the above mentioned algorithms operate in linear time, underscoring
their efficiency.

In this context, Generic Search (GS) represents the most general form of a graph search,
with connectivity being its sole constraint: To elaborate, starting from a root vertex r,
every subsequently visited vertex merely needs to be adjacent to a previously visited vertex.
Consequently, GS can yield any total order of the vertices, provided each prefix is connected.
A search methodology that bears a close resemblance to GS is the Maximum Neighborhood
Search (MNS) [8], which can be perceived as a lexicographic variant of GS. Similarly, BFS
and DFS can be implemented by using a queue and a stack, respectively, to store vertices
that have not yet been visited.

Recognizing the significance of basic graph search algorithms such as BFS or DFS, recent
efforts have been directed towards a deeper understanding of these algorithms. The primary
focus of these studies revolves around two structures: end vertices and search trees (for a
summary of known results see [26, Tables 1 and 2]). Given a graph G and a specific search
rule (e.g., BFS or DFS), the End Vertex Problem aims to identify potential final vertices of
the search. For GS, solving the end vertex problem is relatively straightforward. As long
as a vertex v is not an articulation point, i.e., G − v remains connected, v can serve as an
end vertex of GS [5]. However, the end vertex problem is NP-complete for all other common
search rules on general graphs [1, 5, 9, 31]. By restricting to special graph classes, linear-time
algorithms have been developed to solve this problem, e.g., for BFS on split graphs [5], for
DFS on interval graphs [1], and for MNS on chordal graphs [1].

Given a graph G and a spanning tree T , the Tree Recognition Problem seeks to determine
whether T can be derived as a search tree. In essence, it questions the feasibility of
reconstructing a linear order of vertices from the tree. This problem is typically studied in
two variants: first-in-trees and last-in-trees [2]. In first-in-trees, each vertex is connected to its
neighbor that appears first in the search order. Conversely, in last-in-trees (or L-trees), each
vertex v is a child of its neighbor that appears last before v in the search order. Normally,
first-in-trees are used for BFS and last-in-trees for DFS, with existing linear-time algorithms
capable of recognizing the corresponding trees in both cases [15, 16, 18, 20]. Interestingly,
the problem becomes NP-complete when the search-tree paradigms are swapped between
these searches, i.e., using last-in-trees for BFS and first-in-trees for DFS [24]. Furthermore,
Scheffler [26] shows that the first-in-tree recognition problem of GS can be solved in linear time.

Total Ordering. A well-known theorem in order theory states that any partial order can
be extended to a linear order. This holds true even for infinite sets, as demonstrated by
Szpilrajn (Marczewski) through the use of the axiom of choice [28].1 The process simplifies
considerably for finite sets, where topological sorting algorithms can determine such an
extension in linear time [7].

While partial orders are typically defined by a binary relation, total order problems offer
a more general perspective. Here, one is given a set A, a family B of subsets Ai ⊆ A, and
for each Ai ∈ B one or more valid orderings of the elements within Ai. The objective is to
ascertain a total order of the elements in A that adheres to all these constraints.

Among the problems, the Betweenness Problem and the Cyclic Ordering Problem are
particularly noteworthy. These two problems have already been discussed in the seminal
textbook by Garey and Johnson [13]. In the betweenness problem, we are presented with

1 He also references unpublished proofs by Banach, Kuratowski, and Tarski.
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triples (a, b, c), and the only valid configurations are a < b < c or c < b < a. In simpler
terms, b must be positioned between a and c. The cyclic ordering problem involves given
triples (a, b, c) for which there are three feasible orderings: a < b < c, b < c < a, or c < a < b.
As the appearance in Garey and Johnson’s book already suggests, both of these problems
are indeed NP-complete.

In [14], Guttmann and Maucher systematically categorized total ordering problems based
on pairs and triples. They also introduced the term Intermezzo to describe a specific variant:
given pairs (b, c) where b < c, and triples (a, b, c) where either a < b < c or b < c < a,
implying that a is not placed between b and c. Note that a partial order is defined by
both pairs and triples through the relation b < c. This problem has been proven to be
NP-complete.

Interconnections. In this context, the problems of identifying end vertices and search trees
are interconnected with the total ordering problem, given the underlying vertex order. The
end vertex problem asks if a vertex can be the maximal element within this order. On the
other hand, the correct search order offers a certificate for the search tree problem that can
be checked in linear time. However, the constraints, which include all valid search orders
and could potentially be exponential in number, are not explicitly given. Instead, they are
implicitly defined by the underlying search paradigm.

Recently, Scheffler [23] introduced the more general problem of linearizing partial orders
where the resultant total order must serve as a search order of a specified graph G. He
presents polynomial-time algorithms for this problem for several searches and graph classes.
In particular, he shows that the problem can be solved for GS on general graphs using a
simple greedy algorithm. These results generalize the polynomial-time algorithms for the
end vertex problem, given that the partial order can be selected to determine the end vertex.

Our Contribution. After providing the necessary notation, we prove NP-completeness of
the L-tree problem for Generic Search (GS) in Section 3. It is worth noting that two aspects
of this result may appear surprising: Firstly, for GS all other problems considered so far can
be solved in polynomial time with straightforward methods. Secondly, until now, for any
given combination of a search rule (such as BFS, DFS, etc.) and a graph class (like chordal,
interval, split, etc.), both tree recognition problems have not been harder than the end vertex
problem. Thus, GS on general graphs represents the first known instance where the end
vertex problem is simpler than a tree-recognition problem. We use the NP-completeness of the
L-tree problem of GS in Section 4 to show that the Intermezzo Problem is also NP-complete
even if the partial order π is a cs-tree or the height of π is bounded. In contrast, we give an
XP-algorithm for the problem when parameterized by the width of π. Under the assumption
of the Exponential Time Hypothesis, we show that the running time of this algorithm is
asymptotically optimal. Proofs omitted due to space constraints can be found in the full
version [3].

2 Preliminaries

All the graphs that we consider are simple, finite, non-empty and undirected. Given a
graph G, we denote by V (G) the set of vertices and by E(G) the set of edges.

A path P of G is a non-empty subgraph of G with V (P ) = {v1, . . . , vk} and E(P ) =
{v1v2, . . . , vk−1vk}, where v1, . . . , vk are all distinct. We will sometimes denote such a path
by v1 − v2 − . . . − vk−1 − vk. A graph G is called a tree if it is connected and does not contain
a cycle. A spanning tree T is a subgraph of a graph G which is a tree with V (T ) = V (G). A

MFCS 2024



22:4 Graph Search Trees and the Intermezzo Problem

tree together with a distinguished root vertex r is said to be rooted. In such a rooted tree a
vertex v is an ancestor of vertex w if v is an element of the unique path from w to the root r.
In particular, if v is adjacent to w, it is called the parent of w. Furthermore, a vertex w is
called the descendant (child) of v if v is the ancestor (parent) of w. We define the height of a
rooted tree as the maximum number of edges of a path from the root r to any other vertex. A
graph is a split graph if its vertex set can be partitioned into a clique and an independent set.

Given a set X, a (binary) relation R on X is a subset of the set X2 = {(x, y) | x, y ∈ X}.
The set X is called the ground set of R. The reflexive and transitive closure of a relation R is
the smallest relation R′ such that R ⊆ R′ and R′ is reflexive and transitive. A partial order
π on a set X is a reflexive, antisymmetric and transitive relation on X. The tuple (X, π) is
then called a partially ordered set. We also denote (x, y) ∈ π by x ≺π y if x ̸= y. A minimal
element of a partial order π on X is an element x ∈ X for which there is no element y ∈ X

with y ≺π x. A chain of a partial order π on a set X is a set of elements {x1, . . . , xk} ⊆ X

such that x1 ≺π x2 ≺π . . . ≺π xk. The height of π is the number of elements of the largest
chain of π. An antichain of π is a set of elements {x1, . . . , xk} ⊆ X such that xi ̸≺π xj for
any i, j ∈ {1, . . . , k} . The width of π is the number of elements of the largest antichain of π.

A linear ordering of a finite set X is a bijection σ : X → {1, 2, . . . , |X|}. We will often
refer to linear orderings simply as orderings. Furthermore, we will denote an ordering by a
tuple (x1, . . . , xn) which means that σ(xi) = i. Given two elements x and y in X, we say
that x is to the left (resp. to the right) of y if σ(x) < σ(y) (resp. σ(x) > σ(y)) and we denote
this by x ≺σ y (resp. x ≻σ y).

A vertex ordering of a graph G is a linear ordering of the vertex set V (G). A vertex
ordering σ = (v1, . . . , vn) is called connected if for any i ∈ {1, . . . , n} the graph G[v1, . . . , vi]
is connected. In this paper, a graph search is an algorithm that, given a graph G as input,
outputs a connected vertex ordering of G. The graph search that is able to compute any
such ordering is called Generic Search (GS).

3 Complexity of the L-tree Recognition Problem

The definition of the term search tree varies between different paradigms. However, typically,
it consists of the vertices of the graph and, given the search ordering (v1, . . . , vn), for each
vertex vi exactly one edge to a vj ∈ N(vi) with j < i. By specifying to which of the previously
visited neighbors a new vertex is adjacent in the tree, we can define different types of graph
search trees. For example, in DFS trees a vertex v is adjacent to the rightmost neighbor to
the left of v. This motivates the following definition.

▶ Definition 3.1. Given a search ordering σ := (v1, . . . , vn) of a graph search on a connected
graph G, we define the last-in tree (or L-tree) to be the tree consisting of the vertex set V (G)
and an edge from each vertex vi to its rightmost neighbor vj in σ with j < i.

As explained above, for a classical DFS the tree T is an L-tree with respect to σ. Given this
definition, we can state the following decision problem.

▶ Problem 1 (L-Tree Recognition Problem of graph search A).
Instance: A connected graph G and a spanning tree T of G.
Question: Is there a graph search ordering of A such that T is its L-tree of G?

Note that we have defined the L-tree recognition problem without a given start vertex for the
search. It is also possible to define this problem with a fixed start vertex and we call this the
rooted L-tree recognition problem. Obviously, a polynomial-time algorithm for the rooted tree
recognition problem yields a polynomial-time algorithm for the general problem by simply
repeating the procedure for all vertices. The other direction, however, is not necessarily true.
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Figure 1 On the left is an example of a hook configuration. On the right is an example of a
U-bend. The yellow edges symbolize edges of the spanning tree, the black edges are non-tree edges of
the graph and the wavy line represents a directed path in the spanning tree.
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r

. . .

Figure 2 Family of graphs where the rooted spanning trees (yellow edges) are not L-trees of GS.

The L-tree recognition problem of GS raised in [24] and [27] is an open problem and in
the following we will show that it is in fact NP-complete. This result will also answer another
open question, as Scheffler showed in [24] that the L-tree recognition problem of BFS for
split graphs is at least as hard as that of GS.

An important property of L-trees of GS can be derived from the non-tree edges that
connect vertices of different branches of the tree.

▶ Lemma 3.2. Let T be a spanning tree of a graph G rooted in r. Let xy be an edge in
E(G) \ E(T ) and let x′ and y′ be the parents of x and y in T , respectively. If T is an
L-tree of a GS ordering σ starting with r, then it either holds that x′ ≺σ x ≺σ y′ ≺σ y or
y′ ≺σ y ≺σ x′ ≺σ x.

The configuration described in Lemma 3.2 will be called a U-bend configuration (see Figure 1
on the right).

Before we begin with our main results, we should analyze examples of some rooted
spanning trees that cannot be L-trees of GS. One of the smallest examples can be found
to the left in Figure 2. The example on the right is a generalization with arbitrary many
branches of the spanning tree. These examples can be easily described using a concept called
hook configuration. This is a special case of a U-bend where the parent of one vertex is an
ancestor of the others.

▶ Definition 3.3. Let T be a spanning tree of a graph G rooted in r ∈ V (G). We say that a
triple of vertices x, y, and z forms a hook configuration or a hook if z is the parent of x in
T , xy ∈ E(G) \ E(T ) and y is a descendant of z but y is not a descendant of x (see Figure 1
on the left). We call x the point and y the eye of the hook.

These hook configurations have a strong a priori effect on the sequence of any search ordering
corresponding to that tree.

▶ Lemma 3.4. Let x and y be part of a hook configuration of T rooted in r ∈ V (G) with
point x and eye y. Then for any GS ordering σ starting in r with L-tree T it holds that
x ≺σ y.

MFCS 2024



22:6 Graph Search Trees and the Intermezzo Problem

For the examples shown in Figure 2, it is possible to see that the hook configurations create
something like a cycle in the ordering using Lemma 3.4: We see that a ≺ d and b ≺ c and
these contradict each other because of the tree edges.

In the special case that the graph together with its spanning tree does not contain any
hooks, it is trivial to decide the L-Tree Recognition Problem.

▶ Theorem 3.5. Let T be a spanning tree of a graph G rooted in r ∈ V (G). If there is
no hook configuration, then any DFS ordering of T starting in r is a GS ordering of G

with L-tree T . Therefore, any such tree together with G is a Yes-instance for the L-Tree
Recognition Problem of Generic Search.

Proof. Let σ be a DFS ordering of T starting in r. This ordering σ fulfills the following
property also called four point condition (see for example [8]): If a ≺σ b ≺σ c and ac ∈ E

and ab /∈ E, then there exists a vertex d with a ≺σ d ≺σ b such that db ∈ E.
Suppose that σ does not induce the L-tree T for G. Let w be the leftmost vertex in σ

such that there exist u and v with u ≺σ v ≺σ w with uw ∈ E(T ) and vw ∈ E(G) \ E(T ).
If uv is an edge in the tree T , then u, v and w form a hook configuration; a contradiction
to the assumption. Therefore, we can assume that uv /∈ E(T ). Now we can apply the four
point condition to vertices u, v and w (note that the DFS was executed on T ). A result of
the four point condition, is the fact that there must exist a u-v-path u = d1 − · · · − dk = v

with u ≺σ d2 ≺σ · · · ≺σ dk−1 ≺σ v (Corollary 2.6 in [8]). In particular, we see that v is a
descendant of u. Together with the fact that uw ∈ T and vw ∈ E(G) \ E(T ), we see that
u, v and w form a hook configuration; a contradiction to the assumptions of the theorem.
This implies that each vertex in the search is connected to its correct parent in T , proving
that T is an L-tree of GS in G. ◀

This theorem could lead to the assumption that deciding whether a given spanning tree is an
L-tree of GS only amounts to an analysis of all the hook configurations. In fact, it is easy to
see that we can find all hook configurations in polynomial time. However, it is not always so
simple. In fact, we show in the following that in general the L-Tree Recognition Problem of
GS is NP-complete. We describe a reduction from 3-SAT, i.e., we are given an instance I of
3-SAT and derive an instance (G(I), T (I)) for the L-Tree Recognition Problem of GS.

Let I be an instance of 3-SAT with variable set {X1, . . . , Xn} and clause set {C1, . . . , Cm}.
For ease of notation, we define the positive literal Xj as Xj(1) and the negative literal ¬Xj

as Xj(0). First we define the spanning tree T (I) and then we add the edges missing to
give the full graph G(I). For each variable Xj of I we add two vertices xj(0) and xj(1)
(representing the two literals of Xj) to V (G(I)). These vertices are all adjacent to a common
root vertex r. Furthermore, r is adjacent to the clause-hub-vertex C. Now we add a vertex
ci for each clause Ci and connect it to C (see Figure 3 for a depiction of this setup.).
Furthermore, for each occurrence of a literal associated with vertex xj(p) in a clause Ci we
add a vertex xi

j . As we may assume that only one of the literals appears in a clause, we do
not have to use an index to mark whether the vertex belongs to a negated variable or not.
This sums up the basic setup concerning the variables and clauses. However, for technical
reasons we need several more vertices (see Figure 4):

For each ci we add the vertices ai
0, ai

1, ai
2, bi

0, bi
1, bi

2 in T (I). These are called the technical
vertices of ci.
These vertices form the paths ci − ai

0 − bi
0, ci − ai

1 − bi
1 and ci − ai

2 − bi
2 in T (I).

For each xi
j we add vertices di

j , ei
j , f i

j . These are called the technical vertices of xi
j .

These vertices form the path xi
j − di

j − ei
j − f i

j in T (I).

This concludes the definition of the tree T (I), to which we will now add the remaining edges
for G(I) (see Figure 3 and Figure 4):
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r

xj(1) xj(0) C

xi
j xℓ

j ci

xk(1) xk(0)

xs
k xr

kcℓ

Figure 3 This figure illustrates the variable gadget. The yellow edges are the tree edges, and the
vertices marked in gray appear again in the clause gadget. The literal Xj appears in clause Ck, the
literal ¬Xj appears in clause Cℓ. Note that for the xi

j vertices we do not need to denote whether
they belong to Xj or its negation, as each clause only contains either Xj or ¬Xj .

xi
j0

xi
j2

xi
j1

di
j0

di
j2

di
j1

ei
j0

ei
j2

ei
j1

fi
j0

fi
j2

fi
j1

C

ci

ai
2

ai
1

ai
0

bi
2

bi
1

bi
0

Figure 4 This figure illustrates the clause gadget. The tree edges are colored yellow and the
gray vertices mark the vertices that can be found in the variable gadget. Note that we have drawn
this figure horizontally to make the embedding cleaner. The directions of the tree edges denote the
direction from the root of the tree.

For each Xj we add edges xj(0)ci and xj(1)ci for i ∈ {1, . . . , m}.
For each xi

j adjacent to xj we add an edge xi
jxk

j if both Xj occurs in clause Ci and ¬Xj

occurs in literal Ck.
For any clause Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} we add the edges:

Cei
jp

for p ∈ {0, 1, 2}.
ciei

jp
for p ∈ {0, 1, 2}.

ai
pf i

jp
for p ∈ {0, 1, 2}.

bi
pei

jp
for p ∈ {0, 1, 2}.

bi
pdi

j(p+1) mod 3
for p ∈ {0, 1, 2}.

The modulo operation applied to the indices to define the edges in the clause gadget illustrates
the circularity inherent in that gadget. Visiting one of the branches below ci effectively
unlocks one of the branches below an xi

j . Conversely, visiting an xi
j before ci blocks a

corresponding branch of ci. This effect is what leads to the property that we will show
in Lemma 3.7.

The first step in our reduction is to check whether we can use a search ordering that
achieves T (I) to construct an assignment of the 3-SAT instance I. For each variable we will
choose the assignment that corresponds to the literal vertex chosen second, i.e., if xj(1) is

MFCS 2024



22:8 Graph Search Trees and the Intermezzo Problem

chosen first we assign Xj the value 0 and if xj(0) is chosen first we assign Xj the value 1.
The following lemma shows that the children of the literal vertex that is chosen first are
visited before the clause vertices.

▶ Lemma 3.6. If T (I) is an L-tree of some GS ordering σ of G(I) starting in r, then it
holds for every variable xj that all the children of xj(1) or all the children of xj(0) are to
the left of vertex C in σ. In particular, if xj(p) ≺σ xj(q), then the children of xj(p) are all
to the left of xj(q).

Proof. The sets of vertices {xj(1), ci, r} and {xj(0), ci, r} form hook configurations with
eye ci and point xj(1) or xj(0), respectively. By Lemma 3.4, it holds that xj(1) ≺σ ci and
xj(0) ≺σ ci. Furthermore, with Lemma 3.2 we see that xj(1) ≺σ C and xj(0) ≺σ C, as for
example r, xj(1), ci and C form a U-bend. W.l.o.g., we may assume that xj(1) ≺σ xj(0). Let
u be an arbitrary child of xj(1) and let v be an arbitrary child of xj(0). By construction of
G(I) and T (I), we know that uv ∈ E(G(I)) \ E(T (I)). Then, due to Lemma 3.2 and our
assumption, we see that u ≺σ xj(0) ≺σ ci. Therefore, the children of xj(1) are to the left
of xj(0) and thus also to the left of the clause hub vertex C, proving the statement of the
lemma. ◀

The next lemma motivates how the choice of the variable assignment is used to check whether
a given clause is fulfilled.

▶ Lemma 3.7. If T (I) is an L-tree of G(I) for the search ordering σ, then for each clause
Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} it holds that ci ≺σ xi

jq
for some q ∈ {0, 1, 2}.

Proof. Assume for contradiction that ci is to the right of xi
jq

for all q ∈ {0, 1, 2}. Using the
hook and U-bend rules from Lemmas 3.2 and 3.4, we can show that T (I) is not an L-tree
for σ. For all q ∈ {0, 1, 2}, the set {C, ei

jq
, r} forms a hook with point C and eye ei

jq
and,

thus, C ≺σ ei
jq

. Now the U-bend induced by the edge ei
jq

ci implies that ci ≺σ ei
jq

. For any
q ∈ {0, 1, 2}, the vertex di

jq
is adjacent to some vertex bi

q′ and the corresponding edge induces
a U-bend. Since all three vertices xi

jq
are to the left of all three vertices ai

q′ , these U-bends
imply that at least one vertex di

jq
is to the left of all ai

q′ . Fix that vertex di
jq

. Now the
edge bi

qei
jq

implies that ei
jq

≺σ ai
q. Summarizing, ci ≺σ ei

jq
≺σ ai

q. However, this contradicts
Lemma 3.2 as the edge f i

jq
ai

q induces a U-bend where both parents (ci and ei
jq

) are to the
left of both children (ai

q and f i
jq

). This concludes the proof. ◀

This lemma shows that for each clause there is one literal for which the corresponding child
belonging to that clause has to be chosen after the clause vertex. This will be the literal that
satisfies the clause in a fulfilling assignment. On the other hand, if there is a literal whose
child is chosen after the clause vertex, then the corresponding clause gadget can be correctly
traversed. Combining these results proves the main result of this section.

▶ Theorem 3.8. The rooted L-tree recognition problem of Generic Search is NP-complete
for rooted spanning trees of height 5.

Proof. Let σ be a GS ordering with L-tree T (I). We define an assignment A by setting any
variable to false if and only if the positive literal appears before its negative literal in σ. We
claim that this is a fulfilling assignment. Clearly we only need to show that for each clause
at least one literal was chosen to be true. In particular, by Lemma 3.7 we see that for each
Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} at least one vertex xi

jq
is to the right of ci and, thus, to

the right of the vertex C. Due to Lemma 3.6, the parent of xi
jq

is to the right of the vertex
of variable. This implies that at least one literal contained in Ci is fulfilled in A.
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Figure 5 Example of an ordering of the technical vertices for a clause where two literals (1 and 2)
were chosen to be false. Compare with Figure 4.

Let A be a fulfilling assignment of I. We now show that in this case we can construct
a GS ordering of G(I) which has the L-tree T (I). The broad idea is to choose the literals
that are false for A first followed by their children. Then we choose the literals that are true,
followed by the clause hub vertex C and then the clause vertices. Finally, we need to visit
the technical vertices in the correct order, followed by the descendants of the true literals.
In the following, we define several suborders that need to be combined into the final linear
ordering σ.

As explained above, we begin the search ordering σ by visiting the root r and then all
literals that are set to false by A in arbitrary order. Next we visit all children of these vertices.
In the next phase, we visit all remaining literal vertices in an arbitrary order. At this point,
we can visit the clause hub vertex C (see Lemma 3.6) followed by the clause vertices in
arbitrary order. Let Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} be some clause. If all literals of Ci

were chosen to be true (i.e., all the vertices xi
j0

, xi
j1

, and xi
j2

are to the right of ci), then we
can visit the technical vertices of ci in the order ai

0, ai
1, ai

2, bi
0, bi

1, bi
2 (or any other order that

conforms with GS) followed by the literal vertices and their technical vertices following the
order that is implied by the tree edges. If exactly one of the literals, say w.l.o.g. Xj0(p0), is
chosen to be false by A, then we use the order xi

j0
, ci, ai

0, bi
0, di

j0
, ei

j0
, f i

j0
. Then we visit the

remaining technical vertices of ci followed by xi
j1

, xi
j2

and their technical vertices.
If exactly two of the literals, say w.l.o.g. Xj0(p0) and Xj1(p1), are chosen to be false

by A, then we use the order xi
j0

, xi
j1

, ci, ai
1, bi

1, di
1, ei

1, f i
1, ai

0, bi
0, di

0, ei
0, f i

0. Then we visit the
remaining technical vertices of ci followed by xi

j2
and its technical vertices (see Figure 5 for

an illustration).
Because A is a fulfilling assignment, we know that each clause has at most two literals

that are set to false. Therefore, we can combine all of these orderings to a comprehensive GS
ordering σ and confirm that T (I) is in fact an L-tree of σ. ◀

Using [24, Theorems 21 and 23], we can strengthen Theorem 3.8 to the case of split graphs
and give a similar result for Breadth First Search.

▶ Corollary 3.9. The rooted L-tree recognition problems of Generic Search and Breadth First
Search are NP-complete even if the input is restricted to split graphs and to rooted spanning
trees of height 12.

Note that these results are all for the rooted L-tree recognition problem. Using a small gadget,
we can also extend the hardness of the GS L-tree recognition to the unrooted problem.

▶ Corollary 3.10. The L-tree recognition problem of Generic Search is NP-complete.
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Proof. Let G be some graph and T be a spanning tree of G with root r. We add three
vertices a, b, c to G in the following way to form a new graph G′: Let V (G′) = V (G)∪{a, b, c}.
Furthermore, E(G′) = E(G) ∪ {ab, ac, bc, ar}. Finally, we define a spanning tree T ′ of G′

with V (T ′) = V (G′) and E(T ′) = E(T ) ∪ {ar, ab, ac}.
Due to the conflicting hooks among a, b, c, either b or c must be visited before a, if T ′ is to

be an L-tree of G′. This makes r the de facto root of T ′ − {a, b, c}, showing that the rooted
L-tree recognition problem for G and T is equivalent to the unrooted one for G′ and T ′. ◀

4 The Intermezzo Problem

Given a rooted spanning tree T , the basic property that has to be fulfilled by a vertex
ordering σ for it to have T as an L-tree is the following: If there is a vertex z with parent
y and z has a non-tree edge to vertex x, then x is not allowed to be between y and z in
the vertex ordering. These constraints are similar to those used in the following problem
introduced by Guttmann and Maucher [14].

▶ Problem 2 (General Intermezzo Problem).
Instance: Finite set A, set C of triples of distinct elements of A

Question: Is there an ordering of A such that for all (x, y, z) ∈ C it holds that x ≺σ y ≺σ z

or y ≺σ z ≺σ x?

We call an ordering that fulfills the constraints of C an intermezzo ordering. Note that
Guttmann and Maucher do not give a name for the general problem as they introduce it as
one case of a large family of constrained ordering problems. We derived the name from the
more restricted Intermezzo problem. This problem additionally forces the triples in C to be
pairwise disjoint.

▶ Problem 3 (Intermezzo Problem [14]).
Instance: Finite set A, set B of pairs of A, set C of pairwise disjoint triples of distinct

elements of A.
Question: Is there an ordering of A such that for all (x, y) ∈ B it holds that x ≺σ y and for

all (x, y, z) ∈ C it holds that x ≺σ y ≺σ z or y ≺σ z ≺σ x?

Besides the tuples in B, in both problems the second and the third entry of the triples
in C imply simple order constraints on the elements of A. Therefore, we can define the
relations π(B, C) and π(C), respectively, as the reflexive and transitive closure of the relation
R ⊆ A × A where (y, z) ∈ R if and only if (y, z) ∈ B or there is some tuple (x, y, z) ∈ C.
If (A, C) is a positive instance of the General Intermezzo problem, then π(C) must form
a partial order and every intermezzo ordering of (A, C) forms a linear extension of π(C).
The same properties hold for positive instances (A, B, C) of the Intermezzo problem and
the partial order π(B, C). Thus, we also can interpret the (General) Intermezzo problem
as a special kind of linear extension problems with additional non-betweenness constraints.
This motivates the consideration of restricted problems where the partial order has to fulfill
certain properties.

4.1 The Intermezzo Problem for CS-trees
Following the terminology of Trotter [29], we call a partial order a cs-tree (short for computer
science tree) if its Hasse diagram forms a tree rooted in the unique minimal element. Using
the terminology in [25], we call a leaf of a rooted tree a branch leaf if it is not equal to the
root of the tree. Recall that the height of a cs-tree and the height of the tree that is formed
by its Hasse diagram differ by one.



J. Beisegel, E. Köhler, F. Ratajczak, R. Scheffler, and M. Strehler 22:11

▶ Lemma 4.1.
1. The rooted L-tree recognition problem of Generic Search for rooted spanning trees of fixed

height h ≥ 2 is polynomial-time reducible to the General Intermezzo problem for instances
(A, C) where π(C) is a cs-tree of height h + 1.

2. The General Intermezzo problem for instances (A, C) where π(C) is a cs-tree of fixed
height h ≥ 2 is polynomial-time reducible to the rooted L-tree recognition problem of
Generic Search for rooted spanning trees of height 2h − 1.

3. The rooted L-tree recognition problem of Generic Search for rooted spanning trees having
k branch leaves is polynomial-time equivalent to the General Intermezzo problem for
instances (A, C) where π(C) is a cs-tree of width k.

Proof. First, we reduce the L-tree recognition problem of GS to the General Intermezzo
Problem. Let G be a graph and T be a spanning tree of G rooted in r of height h ≥ 2. Let
A = V (G) ∪ {s} where s /∈ V (G). Let C be the set containing the following triples:
(C1) (r, t, s), for some child t of r in T ,
(C2) (s, u, v), for any vertex v ∈ V (G) \ {r} and its parent u in T ,
(C3) (w, u, v), for any vertex v ∈ V (G) \ {r}, its parent u in T and any vertex w with

vw ∈ E(G) \ E(T ).

It is easy to see that π(C) is a cs-tree of height h+1. We claim that there is an intermezzo
ordering of A fulfilling the constraints given by C if and only if T is a rooted GS L-tree of G.

First assume that there is an intermezzo ordering σ fulfilling the constraints of C. We
delete s from σ and call the resulting ordering σ′. The following claim is implied by the
constraints given in (C2).

▷ Claim 1. If u is the parent of v in T , then u ≺σ′ v.

This claim implies directly that σ′ is a GS ordering of G starting in r. Now assume for
contradiction that the L-tree T ′ of σ′ is not equal to T . Then there is a vertex v whose parent
u′ in T ′ is different from its parent u in T . By Claim 1, it holds that u ≺σ′ v. Therefore,
it must hold that u ≺σ′ u′ ≺σ′ v. This implies that u′ is not a child of v in T , due to
Claim 1. Hence, the edge u′v is not part of T but part of G. Then, the set C contains the
triple (u′, u, v) (see (C3)). This is a contradiction because σ′ and, thus, σ does not fulfill the
constraint given by that triple.

Now assume that T is the L-tree of the GS ordering σ starting with r. Then let σ′ be
the ordering constructed by appending s to the end of σ. The ordering fulfills the constraint
(r, t, s) given in (C1). Furthermore, as parents are to the left of their children in σ, the
ordering σ′ also fulfills the constraints given by (C2). Assume for contradiction that some
triple (w, u, v) of (C3) is not fulfilled in σ′, i.e., u ≺σ′ w ≺σ′ v. Then u is not the parent of v

in the L-tree of σ since w is a neighbor of v and w lies between u and v in σ′; a contradiction.
This proves the first statement of the lemma. To prove the same direction for the third

statement, we slightly change the set C. Instead of the triple (r, t, s) given in (C1), we add
the triple (t, s, r). It is easy to see that then the width of π(C) is equal to the number of
branch leaves of T . The rest of the proof works analogously with the only difference that we
append s to the beginning and not to the end of the GS ordering of G.

Now we reduce the General Intermezzo problem where π(C) is a cs-tree to the rooted
L-tree recognition problem of GS. Let (A, C) be an instance where π(C) is a cs-tree of height
h and width k. We define the vertex set to be V (G) := {v1, v2 | v ∈ A}. Let H be the Hasse
diagram of π(C). The set of edges of T is defined as E(T ) := {v1v2 | v ∈ A} ∪ {u2v1 | uv ∈
E(H) ∧ (u, v) ∈ π(C)}. Let (x, y, z) ∈ C and let y = w0, w1, . . . , wℓ = z be the elements of
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22:12 Graph Search Trees and the Intermezzo Problem

the path between y and z in the Hasse diagram of π(C). We add a non-tree edge to G from
x2 to any vertex w1

i and w2
i with i ≥ 1. It is obvious that the constructed tree T has height

2h − 1 and k branch leaves if it is rooted in the minimal element of π(C).
First assume that there is an intermezzo ordering σ for (A, C). Then let σ′ be the ordering

that is constructed by replacing every element v ∈ A in σ by the ordering (v1, v2). Then we
claim that σ′ is a GS ordering of G having L-tree T . Let T ′ be the L-tree of σ′. Obviously,
it holds for σ′ that any vertex is to the right of its parent in T since σ′ is constructed from a
linear extension of π(C). Therefore, σ′ is a GS ordering of G. Furthermore, any vertex v2

has parent v1 both in T and T ′ since these two vertices are consecutive in σ′. Assume for
contradiction that there is a vertex v1 whose parent in T is u2 but the parent of v1 in T ′ is
tp with u2 ̸= tp. By construction it holds that tp = t2 since v1 has no neighbor with index 1.
It holds that u2 ≺σ′ t2 ≺σ′ v1 and t2v1 is an edge in E(G) \ E(T ). This non-tree edge has
been added to E(G) because of some triple (t, a, b) ∈ C where a is an ancestor of v and b is
a descendant of v in the Hasse diagram of π(C) (or b = v). However, by construction of σ′,
it holds that a2 ≺σ′ u2 ≺σ′ t2 ≺σ′ v1 ≺σ′ b2. Hence a ≺σ t ≺σ b; a contradiction to the fact
that σ is an intermezzo ordering of C.

Now assume that there is a GS ordering σ of G having T as its L-tree. We construct the
ordering σ′ of A as follows. Consider the subordering of σ containing only the vertices v2 for
any v ∈ A and replace v2 by v. We claim that σ′ is an intermezzo ordering of (A, C). Let
(x, y, z) be a triple in C. It holds that y ≺σ z since y2 is an ancestor of z2 in T . Assume
for contradiction that y ≺σ′ x ≺σ′ z. Consider the w0, . . . , wℓ as defined above. Note that
these vertices appear by ascending index in σ′. Let wi be the leftmost of these vertices in σ′

that is to the right of x. Then it holds that y ⪯σ′ wi−1 ≺σ′ x ≺σ′ wi ⪯σ′ z. This implies
that w2

i−1 ≺σ x2 ≺σ w2
i . Now we consider two cases. If w1

i ≺σ x2, then it must hold that
w2

i−1 ≺σ w1
i ≺σ x2 ≺σ w2

i as w2
i−1 is the parent of w1

i in T . However, by construction x2 is
adjacent to w2

i and, hence, w1
i cannot be the parent of w2

i in the L-tree of σ. If x2 ≺σ w1
i ,

then it must hold that w2
i−1 ≺σ x2 ≺σ w1

i ≺σ w2
i as w1

i is the parent of w2
i in T . However,

by construction x2 is adjacent to w1
i and, hence, w2

i−1 cannot be the parent of w1
i in the

L-tree of σ. This contradicts the choice of σ. ◀

Combining the first statement of the lemma with Theorem 3.8 yields the following result.

▶ Theorem 4.2. The General Intermezzo problem is NP-complete even if the input is
restricted to instances (A, C) where π(C) is a cs-tree of height 6.

We can extend this result to the Intermezzo problem as follows.

▶ Lemma 4.3. The General Intermezzo Problem for instances (A, C) where π(C) is a cs-tree
of width k is polynomial-time reducible to the Intermezzo Problem for instances (A′, B′, C ′)
where π(B′, C ′) is a cs-tree of width k.

This lemma implies the following complexity result.

▶ Theorem 4.4. The Intermezzo problem is NP-complete even if the input is restricted to
instances (A, B, C) where π(B, C) is a cs-tree.

As was shown by Wolk [30], cs-trees have dimension 2. Combining this with Theorems 4.2
and 4.4, we get the following result.

▶ Corollary 4.5. The (General) Intermezzo problem is NP-complete even if π(B, C) or π(C),
respectively, has dimension at most 2.
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Note that – in difference to Theorem 4.2 – we were not able to bound the height of the partial
order in Theorem 4.4 since in the proof of Lemma 4.3 the height of the constructed partial
order depends on the number of elements in A. We can adapt the proof of that lemma such
that the height of the partial order increases only by a constant factor. However, in this case,
we then loose the property that the partial order is a cs-tree.

▶ Corollary 4.6. The Intermezzo problem is NP-complete even if the input is restricted to
instances (A, B, C) where π(B, C) has height 36.

The complexity of the Intermezzo problem for cs-trees of bounded height remains open.

4.2 The Intermezzo Problem for Partial Orders of Bounded Width
As we have seen in the section above, the (General) Intermezzo problem is NP-complete even
if the height or the dimension of the partial order is bounded. One may ask whether this
also holds for another notable parameter of partial orders, the width. Adapting an idea of
Colbourn and Pulleyblank [6] (explained in more detail in [4]), we can show that – unless
P = NP – this is not the case as we can give an XP-algorithm for the General Intermezzo
problem parameterized by the width of π(C).

▶ Theorem 4.7. The General Intermezzo problem can be solved in time O(k · nk+2) on any
instance (A, C) where n = |A| and k is the width of π(C).

Proof. We only sketch the idea of the algorithm; for a comprehensive description and analysis
of a similar algorithm see [4]. Using Dilworth’s Chain Covering Theorem [11], we can partition
the set A into k disjoint chains of π(C). Now the set of elements of any prefix σpre of a
linear extension of π(C) can be represented by a tuple (a1, . . . , ak) ∈ {0, . . . , |A|}k where
ai represents the number of elements of chain i that are part of σpre. Since all elements of
a chain are strictly ordered, the number of used elements of the chain directly implies the
elements of the chain that are part of the prefix set.

Now the algorithm uses dynamic programming to compute whether a given prefix set
can be reached in such a way that it fulfills all conditions of C. To this end, we have a table
M with 0-1-entries for every tuple representing a prefix. We fill the entries of this table
inductively, starting with those tuples whose entries sum up to 1. Such a tuple gets a 1-entry
in M if and only if the minimal element of the respective chain is a minimal element of the
partial order. For tuples γ = (a1, . . . , ak) with larger entry sums we check for any tuple γ′

that is constructed by decrementing exactly one non-zero entry of γ, say ai, the following:
1. Is the M -entry of tuple γ′ equal to 1?
2. Is the ai-th element x of the i-th chain minimal in π(C) restricted to those elements that

are not part of the prefix set encoded by γ′?
3. Is there no triple (x, y, z) with y is an element of the prefix set encoded by γ′ and z is

not such an element?
If the answer to all three question is yes, then we set the M -entry of γ to 1. It is easy to
check that M has O(nk) entries and for any entry we can answer the three questions above
for all triples γ′ in time O(kn2). This leads to the claimed running time. ◀

Lemma 4.1 implies an XP-algorithm for the rooted L-tree recognition of GS parameterized
by the number of branch leaves of the given spanning tree.

▶ Corollary 4.8. The rooted L-tree recognition problem of Generic Search can be solved in
time O(k · nk+2) on a graph G and a rooted spanning tree T of G where n = |V (G)| and k is
the number of branch leaves of T .
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One may ask whether this rather poor running time bound given in Theorem 4.7 can be
improved significantly and whether there is an FPT algorithm for the (General) Intermezzo
problem parameterized by the width of the partial order. We will show that – under certain
assumptions – this is not the case.

▶ Theorem 4.9. The (General) Intermezzo problem is W[1]-hard if it is parameterized by the
width k of π(C) or π(B, C), respectively, even if that partial order is a cs-tree. Furthermore –
under the assumption of the Exponential Time Hypothesis – there is no algorithm that solves
the problem in time f(k) · no(k) for any computable function f where n = |A|.

We prove this result by an FPT-reduction from the following problem, applying a technique
also used in [4].

▶ Problem 4 (Multicolored Clique Problem (MCP)).
Instance: A graph G with a proper coloring of k colors.
Question: Is there a clique in G that contains exactly one vertex of each color?

The MCP was shown to be W[1]-hard by Pietrzak [21] and independently by Fellows et al. [12].
In fact, in [10, 19] the authors show the following result.

▶ Theorem 4.10 (Cygan et al. [10], Lokshtanov et al. [19]). Under the assumption of the
Exponential Time Hypothesis, there is no f(k)no(k) time algorithm for the Multicolored Clique
Problem for any computable function f where n is the number of vertices of the given graph.

We give an FPT-reduction from the MCP to the General Intermezzo problem parameterized
by the width of π(C). Lemma 4.3 implies such a reduction also for the Intermezzo problem.

Let G be an instance of the MCP with k colors. W.l.o.g. we may assume that every color
class has exactly q elements, i.e., we assume that V (G) = {vi

p | 1 ≤ i ≤ k, 1 ≤ p ≤ q}. In the
following, we construct an equivalent instance (A, C) for the General Intermezzo problem.

First we describe the set A. For every i ∈ {1, . . . , k} and every p ∈ {1, . . . , q}, we define
the set U i

p := {ui
p,j | 0 ≤ j ≤ k}. The set U i is defined as U i :=

⋃
1≤p≤q U i

p. Now set A is
defined as follows.

A := {si | 1 ≤ i ≤ k + 1} ∪ {ci,j | 1 ≤ i ≤ j ≤ k} ∪
⋃

1≤i≤k

U i.

In the remainder of the section, we construct the set C by adding subsets of triples with
specific properties. We start with some simple order constraints. For the sake of convenience,
we only give a set B of tuples encoding these constraints. Note that these tuples can also be
encoded using triples by introducing a new element that is not allowed to be between any of
the elements of those tuples.

B :={(si, ui
p,j) | 1 ≤ i ≤ k, 0 ≤ j ≤ k, 1 ≤ p ≤ q} ∪

{(ui
p,j , ui

r,ℓ) | 1 ≤ i ≤ k, p < r or p = r and j < ℓ} ∪
{(ui

1,0, si+1) | 1 ≤ i ≤ k} ∪
{(ci,j , cℓ,m) | i < ℓ or i = ℓ and j < m} ∪
{(ci,k, ci+1,i+1) | i < k} ∪
{(sk+1, c1,1)}

▶ Lemma 4.11. The reflexive and transitive closure of B forms a cs-tree of width k + 1.
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In the following, we will present the rest of the triples of the set C. First note that the last
two elements of these triples will also be contained as a tuple in the reflexive and transitive
closure of B. Thus, they do not contribute any new tuples to π(C) and, hence, Lemma 4.11
implies that π(C) is a cs-tree of width k + 1.

We will present the new triples not all at once. Instead we present specific subsets of them.
Then we will give properties that are fulfilled by any intermezzo ordering of A that fulfills
the constraints of B and all triples presented up to that point. In any of these properties, the
ordering σ will be the respective intermezzo ordering of A. We divide this ordering into a
selection phase where we choose one vertex of every color to be part of the candidate clique.
In the verification phase, we check whether the chosen vertices indeed form a clique in G.
We start with the triples for the selection phase.

C1
sel :={(si+1, ui

p,j , ui
p+1,0) | 1 ≤ i ≤ k, 1 ≤ p < q, 1 ≤ j ≤ k}

C2
sel :={(ui

q,j , si, si+1) | 1 ≤ i ≤ k, 1 ≤ j ≤ k}
C3

sel :={(ui
p,j , si+1, c1,1) | 1 ≤ i ≤ k, 1 ≤ p ≤ q, 0 ≤ j ≤ k}

▶ Property 1. There exist indices p1, . . . , pk ∈ {1, . . . , q} such that the prefix σ′ of σ ending
in c1,1 fulfills the following conditions:
1. σ′ starts with s1 and does not contain any vertices ci,j with i ̸= 1 or j ̸= 1.
2. for all i ∈ {1, . . . , k} it holds:

a. vertex si and
⋃pi−1

r=1 U i
r are part of σ′,

b. U i
pi

∩ σ′ = {ui
pi,0},

c. none of the vertices of U i
r with r > pi are part of σ′.

We now present the first triples for the verification phase. They ensure that between certain
c-elements only some elements are allowed to be taken. By Property 1 we assume in the
following that p1, . . . , pk are fixed.

C1
ver := {(x, ci,k, ci+1,i+1) | 1 ≤ i < k, x ∈ A \ {ci,k, ci+1,i+1}}

C2
ver := {(ui

p,j , cℓ,m, cℓ,m+1) | i ̸= ℓ and i ̸= m + 1 or i = m + 1 and j ̸= ℓ or
i = ℓ and j ̸= m}

▶ Property 2. There are at most two elements in σ between cℓ,m and cℓ,m+1, namely uℓ
pℓ,m

and um+1
pm+1,ℓ.

In the next step we want to ensure that uℓ
pℓ,m and um+1

pm+1,ℓ have to be taken between cℓ,m

and cℓ,m+1.

C3
ver :={(cℓ,m+1, uℓ

p,m−1, uℓ
p,m) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q} ∪

{(cℓ,m+1, um+1
p,ℓ−1, um+1

p,ℓ ) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q}

▶ Property 3. The elements uℓ
pℓ,m and um+1

pm+1,ℓ have to be between cℓ,m and cℓ,m+1 in σ.

Finally, we have to ensure that uℓ
pℓ,m and um+1

pm+1,ℓ can only be taken if vℓ
pvm+1

pm+1
∈ E(G). This

is ensured by the following triples.

C4
ver :={(um+1

r,ℓ , uℓ
p,m, uℓ

p,m+1) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q, 1 ≤ r ≤ q, vℓ
pvm+1

r /∈ E(G)} ∪

{(uℓ
p,m, um+1

r,ℓ , um+1
r,ℓ+1) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q, 1 ≤ r ≤ q, vℓ

pvm+1
r /∈ E(G)}

▶ Property 4. The elements uℓ
pℓ,m and um+1

pm+1,ℓ can be between cℓ,m and cℓ,m+1 in σ only if
vℓ

pℓ
vm+1

pm+1
∈ E(G).
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Using Properties 1–4, we can prove that the described instance of the General Intermezzo
problem is a feasible reduction from the MCP.

▶ Lemma 4.12. There is an intermezzo ordering σ for (A, C) if and only if G has a
multicolored clique of size k.

Proof. First assume that there is an intermezzo ordering σ. Let the pi be chosen as in
Property 1. Then, we define the set K ⊆ V (G) as follows: K := {vi

pi
| 1 ≤ i ≤ k}.

Properties 3 and 4 imply that the set K forms a clique in G.
For the other direction, assume that there is a multicolored clique K = {v1

p1
, . . . , vk

pk
}

in G. We start our intermezzo ordering in s1. Now we take all the elements of U1 following
their ordering implied by B up to u1

p1,0 and then we take s2. We repeat this process for all
i ∈ {2, . . . , k}. Now we take the c-elements following the ordering implied by B. Between
cℓ,m and cℓ,m+1, we take uℓ

pℓ,m and um+1
pm+1,ℓ which is possible due to Property 4 since K forms

a clique. Eventually, we take ck,k. Now we first take the remaining elements of U1 in their
order in B, followed by the remaining elements of U2 and so on. It is easy to check that this
ordering is an intermezzo ordering. ◀

Theorem 4.9 follows directly from Lemmas 4.3, 4.11, and 4.12, Theorem 4.10 as well as the
W[1]-hardness of the Multicolored Clique Problem [12, 21]. Furthermore, Theorem 4.9 and
Lemma 4.1 imply the following.

▶ Theorem 4.13. The L-tree recognition problem of Generic Search is W[1]-hard if it is
parameterized by the number k of leaves of the spanning tree. Furthermore, assuming the
Exponential Time Hypothesis, there is no algorithm that solves the problem in time f(k) ·no(k)

for any computable function f where n is the number of vertices of the given graph.

5 Conclusion

We have investigated two problems that extend a partial order to a total order while
maintaining certain additional constraints. In the first problem, a spanning tree of a graph
G is given, which is supposed to be the L-tree of Generic Search on G. Surprisingly, deciding
this problem turned out to be NP-complete, although numerous problems involving Generic
Search, such as the associated end vertex problem, are straightforward to solve in polynomial
time. This complexity result could be used in the investigation of the second problem. Here
we have shown that the General Intermezzo problem cannot be solved in polynomial time
even when the Hasse diagram of the given partial order forms a tree. With respect to the
width, we were able to specify an XP-algorithm and at the same time show W[1]-hardness.

Several questions remain unanswered. For the GS L-tree problem it is not clear whether
the bounds for the tree height in the NP-completeness results are best possible. We conjecture
that the problem is easy for height 2 and maybe even 3. Furthermore, we suspect that the
NP-completeness also holds for the class of bipartite graphs. While the problem is hard for
split graphs, it might be solved efficiently on the subclass of threshold graphs.

Similar questions arise for the (General) Intermezzo problem: We have not shown that
the height-bounds for the partial order are best possible. In particular, the bound of 36
in Corollary 4.6 seems very high. Restricting these partial orders in other ways, e.g. lattices
or interval orders, could also be used to find tractable instances of the problem. Furthermore,
the complexity status of the Intermezzo problem for cs-trees of bounded height remains open.
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