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Abstract
Weighted automata (WA) are an extension of finite automata that define functions from words
to values in a given semiring. An alternative deterministic model, called Cost Register Automata
(CRA), was introduced by Alur et al. It enriches deterministic finite automata with a finite number
of registers, which store values, updated at each transition using the operations of the semiring. It
is known that CRA with register updates defined by linear maps have the same expressiveness as
WA. Previous works have studied the register minimization problem: given a function computable
by a WA and an integer k, is it possible to realize it using a CRA with at most k registers?

In this paper, we solve this problem for CRA over a field with linear register updates, using
the notion of linear hull, an algebraic invariant of WA introduced recently by Bell and Smertnig.
We then generalise the approach to solve a more challenging problem, that consists in minimizing
simultaneously the number of states and that of registers. In addition, we also lift our results
to the setting of CRA with affine updates. Last, while the linear hull was recently shown to be
computable by Bell and Smertnig, no complexity bounds were given. To fill this gap, we provide
two new algorithms to compute invariants of WA. This allows us to show that the register (resp.
state-register) minimization problem can be solved in 2-ExpTime (resp. in NExpTime).
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1 Introduction

Weighted automata (WA). WA are a quantitative extension of finite state automata and
have been studied since the sixties [17]. These automata define functions from words to a
given semiring: each transition has a weight in the semiring and the weight of an execution
is the product of the weights of the transitions therein; the non-determinism of the model is
handled using the sum of the semiring: the weight associated with a word is the sum of the
weights of the different executions over this word. Functions realized by weighted automata
are called rational series. This fundamental model has been widely studied during the last
decades [14]. While some expressiveness results can be obtained in a general framework (such
as the equivalence with rational expressions), the decidability status of important problems
heavily depends on the considered semiring. Amongst the classical problems of interest,
one can mention equivalence, sequentiality (resp. unambiguity), which aims at determining
whether there exists an equivalent deterministic (resp. unambiguous) WA, and minimization,
which aims at minimizing the number of states.

Weighted automata over a field (e.g. the field of rationals Q) enjoy many nice properties:
the equivalence of weighted automata is decidable and they can be minimized, and both
can be done efficiently (see e.g. [16, Theorem 4.10 and Corollary 4.17 (Chapter III)]). The

© Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yahia-idriss.benalioua@lis-lab.fr
mailto:nathan.lhote@lis-lab.fr
mailto:pierre-alain.reynier@lis-lab.fr
https://doi.org/10.4230/LIPIcs.MFCS.2024.23
https://arxiv.org/abs/2307.13505
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Minimizing Cost Register Automata over a Field

sequentiality and unambiguity are also decidable, as shown recently in [3, 4], with no
complexity bounds however. The most studied semirings which are not fields are the tropical
semirings and the semiring of languages, and in both cases equivalence is undecidable (see [9,
Section 3] and [6, Theorem 8.4]) and no minimization algorithm is known. Regarding
sequentiality, partial decidability results have been obtained for these semirings using the
notion of twinning property [7, 15].

Cost register automata (CRA). CRA have been introduced more recently by Alur et al.
[1]. A cost register automaton is a deterministic finite state automaton endowed with a
finite number of registers storing values from the semiring. The registers are initialized
by some values, then at each transition the values are updated using the operations and
constants of the semiring. Several fragments of CRA can be considered by restricting the
operations allowed. For instance, an easy observation is that WA are exactly CRA with
one state (however, one can observe that adding states does not extend expressiveness) and
linear updates, i.e. updates of the form X :=

∑k
i=1 Xi ∗ ci (intuitively, the new values of the

registers only depend linearly on the previous ones). Thus, the model of linear CRA is an
alternative to WA which allows to trade non-determinism for registers.

The register minimization problem. As CRA are finite state automata extended with
registers storing elements from the semiring, it is natural to aim at minimizing the number
of registers used. For a given class C of CRA, this problem asks, given a WA and a number
k, whether there exists an equivalent CRA in C with at most k registers. From a practical
point of view, reducing the number of registers allows to reduce the memory usage, since a
register can require unbounded memory. From a theoretical point of view, this problem can
be understood as a refinement of the classical problem of minimization of WA. Indeed, a WA
can be translated into a linear CRA with a single state, and as many registers as the number
of states of the WA. This problem has been studied in [2, 11, 10] for three different models
of CRA but in all these works, the additive law of the semiring is not allowed (i.e. updates
of the form X := Y + Z are forbidden). It is worth noticing that [11] encompasses the case
of CRA over a field, with only updates of the form X := Y ∗ c, with c an element of the field.

While the minimal number of registers needed to realise a WA (also known as the register
complexity) is upper bounded by the number of states of a minimal WA, it may be possible
to build an equivalent CRA with fewer registers, but more states. Hence there is a tradeoff
between the number of states and the number of registers. This leads to the following
state-register minimization problem for CRA which asks, for a class C of CRA, given a WA
and integers n, k whether an equivalent CRA in C with n states and k registers can be
constructed. In this framework, the classical minimization of WA corresponds to minimizing
the number of registers while using only one state, for the class of linear CRA.

The linear hull. As mentioned before, the case of fields is well-behaved to obtain decidability
results. In their recent work [3], Bell and Smertnig introduced the notion of linear hull of a
WA. This notion is inspired by the algebraic theory needed to study polynomial automata
but cast into a linear setting. A linear algebraic set (aka linear Zariski closed set) is a finite
union of vector subspaces: we later call them Z-linear sets. Given a Z-linear set S =

⋃p
i=1 Vi,

the dimension of S is the maximum of the dimensions of the Vis. In this work, the size of the
union, p, is called the length of S. Observe that such Z-linear sets were also used in [8] for a
category-theoretic approach to minimization of weighted automata over a field. We say such
a set is an invariant if it contains the initial vector and is stable under the updates of the
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automaton. Then the linear hull of a weighted automaton is the strongest Z-linear invariant.
In [3], Bell & Smertnig show that computing the linear hull of a minimal automaton allows
to decide sequentiality and unambiguity. In addition, in [4], they show that the linear hull
can effectively be computed, without providing complexity bounds however.

Contributions. In this work, we deepen the analysis of the linear hull of a WA in order to
solve the register and state-register minimization problems for linear CRA. In addition, we
also provide new algorithms to compute the linear hull which come with complexity upper
bounds, which can be used to derive complexity results for minimization problems as well as
for sequentiality and unambiguity of WA. More precisely, our contributions are as follows:

Firstly, we show that the register minimization problem for the class of linear CRA over
a field can be solved in 2-ExpTime. To this end, given a rational series f , we show that
the minimal number of registers needed to realize f using a linear CRA is exactly the
dimension of the linear hull of a minimal WA of f . We then show that the linear hull of
a WA can be computed in 2-ExpTime. We show that this complexity drops down to
ExpTime for the particular case of commuting transition matrices (which includes the
case of a single letter alphabet), with a matching lower bound.
As a consequence of the computation of the linear hull of a WA and of results proved in [3],
we obtain a 2-ExpTime upper bound for the problems of sequentiality and unambiguity
of weighted automata over a field, closing a question raised in [4].
Secondly, we prove that the state-register minimization problem for linear CRA can be
solved in NExpTime. More precisely, given a minimal WA A, we show a correspondence
between Z-linear invariants of A and linear CRA equivalent to A. This correspondence
maps the length (resp. dimension) of the invariant to the number of states (resp. registers)
of the equivalent linear CRA. We then provide a (constructive) NExpTime algorithm
that, given a minimal WA and two integers n, k, guesses a well-behaved invariant allowing
to exhibit a satisfying equivalent CRA.
Last, we actually present these results in a more general setting, by considering affine
CRA, which are a slight extension of linear CRA allowing to use affine maps in the
updates of the registers.

Outline of the paper. We present the models of weighted automata and cost register
automata in Section 2. We then formally define the two problems we consider, i.e. register
and state-register minimization problems, and state our main results in Section 3. In Section 4,
we introduce the necessary topological notions to define Z-linear/Z-affine set and invariants
of weighted automata, and detail our characterizations of the register and state-register
complexities of a rational series. Finally in Section 5, we present our algorithms, as well as
their consequences in terms of decidability and complexity for the two problems we consider.
Omitted proofs and more details for Sections 4 and 5 can be found in the appendix of the
full version of this paper [5].

2 Weighted Automata and Cost Register Automata

Basic concepts and notations. An alphabet Σ is a finite set of letters. The set of finite
words over Σ will be denoted by Σ∗, the empty word by ϵ and, for two words u and v, uv

will denote their concatenation. For two sets X and Y , we denote by X × Y their cartesian
product and by πX : X × Y → X and πY : X × Y → Y we denote the canonical projection on
X and Y respectively. The set nonnegative integers will be denoted by N. For two integers
i, j, we will denote by Ji, jK the interval of integers between i and j (both included).

MFCS 2024
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q1 q2

a : 2

a : 2

1

1

Figure 1 The WA of Example 2.

A semigroup (S, ∗) is a set S together with an associative binary operation ∗. If (S, ∗)
has an identity element e, (S, ∗, e) is called a monoid and if, moreover, every element has
an inverse, (S, ∗, e) is called a group. If there is no ambiguity, we will identify algebraic
structures with the set that they are defined on. A semigroup (or a monoid/group) is said
to be commutative if its law is. A sub-semigroup (or submonoid/subgroup) of S is a subset
of S that is a semigroup (or a monoid/group). Given E ⊆ S, the monoid generated by E,
denoted ⟨E⟩, is the smallest sub-monoid of S containing E.

A field (K, +, ·) is a structure where (K, +, 0) and (K \ {0} , ·, 1) are commutative groups
and multiplication distributes over addition. In this work, we will consider K as the field
of rational numbers Q, or any finite field extension of Q, to perform basic operations in
polynomial time. For all n ∈ N, Kn is an n-dimensional vector space over the field K. We
will work with row vectors and apply matrices on the right, and we will identify linear maps
(resp. linear forms) with their corresponding matrices (resp. column vectors). The set of n

by m matrices over K will be denoted by Kn×m, and K1×n (or simply Kn when there is no
ambiguity) will denote the set of n-dimensional vectors. For any matrix M (resp. vector v),
and indices i and j, Mi,j (resp. vi) will denote the value of the entry in the i-th row and the
j-th column of M (resp. the i-th entry of v). Matrix transposition will be denoted by M t.
A vector subspace of Kn is a subset of Kn stable by linear combinations and for all subsets E

of Kn, span (E) will denote the smallest vector subspace of Kn containing E (if E contains a
single vector (x1, . . . , xn), span (E) will be denoted by span (x1, . . . , xn)).

Kn can also be seen as an n-dimensional affine space. Affine maps f : Kn → Km are maps
of the form f(u) = uf (l) + f (a) where f (l) ∈ Kn×m and f (a) ∈ K1×m. An affine subspace A

of Kn is a subset of Kn of the form A = p + V with p ∈ A and V a vector subspace of Kn.
They are stable by affine combinations (linear combinations with coefficients adding up to 1).
For all E ⊆ Kn, aff (E) will denote the smallest affine subspace of Kn containing E.

Weighted Automata. Let Σ be a finite alphabet and (K, +, ·) be a field.

▶ Definition 1 (Weighted Automaton). A Weighted Automaton (WA for short) of dimension
d, on Σ over K, is a triple R = (u, µ, v), where u ∈ K1×d, v ∈ Kd×1 and µ : Σ∗ → Kd×d

is a monoid morphism. We will call u and v the initial and terminal vectors respectively
and µ(a), for a ∈ Σ, will be called a transition matrix. A WA realizes a formal power
series over Σ∗ with coefficients in K (a function from Σ∗ to K) defined, for all w ∈ Σ∗, by
JRK (w) = uµ(w)v. Any series that can be realized by a WA will be called rational.

WA also have a representation in terms of finite-state automata, in which transitions are
equipped with weights. We then say that a WA is sequential (resp. unambiguous) when its
underlying automaton is. Formally, we say that a WA R = (u, µ, v) is sequential when u has
a single non-zero entry and, for each letter a, and each index i, there is at most one index j

such that µ(a)i,j ̸= 0.

▶ Example 2. We consider the WA, on the alphabet {a} and over the field of real numbers,

R = (u, µ, v) with u = (1, 0), v = (1, 0)t, and µ(a) =
(

0 2
2 0

)
. One can verify that the

function realized by this WA maps the word an to 2n if n is even, and to 0 otherwise. It can
be represented graphically by the automaton depicted on Figure 1.
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{
X := 1
Y := 0

X

a :
{

X := Y · 2
Y := X · 2

0

a : X := X · 2

a : X := X · 2

X := 1

X

Figure 2 Two CRA detailed in Example 5. Registers are denoted by letters X, Y .

A WA realizing a rational series f is said to be minimal if its dimension is minimal among
all the WA realizing f . We also have the following characterization of minimal WA (see [16,
Proposition 4.8 (Chapter III)]):

▶ Proposition 3. Let R = (u, µ, v) be a d-dimensional WA and let LR (R) = uµ(Σ∗) =
{uµ(w) | w ∈ Σ∗} be its (left) reachability set and RR (R) = µ(Σ∗)v be its right reachability
set.

R is a minimal WA if and only if span (LR (R)) = K1×d and span (RR (R)) = Kd×1.

Expressions, substitutions and Cost Register Automata. For a field (K, +, ·) and a finite
set of variables X disjoint from K, let Exp(X ) denote the set of expressions generated by
the grammar e ::= k | X | e + e | e · e, where k ∈ K and X ∈ X . A substitution over X is a
map s : X → Exp(X ). It can be extended to a map Exp(X ) → Exp(X ) by substituting each
variable X in the expression given as an input by s(X). By identifying s with its extension,
we can compose substitutions. We call valuations the substitutions of the form v : X → K.
The set of substitutions over X will be denoted by Sub(X ) and the set of valuations Val(X ).

▶ Definition 4 (Cost Register Automaton). A cost register automaton (CRA for short), on
the alphabet Σ over the field K, is a tuple A = (Q, q0, X , v0, o, δ) where Q is a finite set of
states, q0 ∈ Q is the initial state, X is a finite set of registers (variables), v0 ∈ Val(X ) is the
registers’ initial valuation, o : Q → Exp(X ) is the output function, and δ : Q×Σ → Q×Sub(X )
is the transition function. We will denote by δQ := πQ ◦ δ the transition function of the
underlying automaton of the CRA and δX := πSub(X ) ◦ δ its register update function.

A computes a function JAK : Σ∗ → K defined as follows: the configurations of A are
pairs (q, v) ∈ Q × Val(X ). The run of A on a word w = a1 . . . an ∈ Σ∗ is the sequence of
configurations (qi, vi)i∈J0,nK where, q0 is the initial state, v0 is the initial valuation and, for all
i ∈ J1, nK, qi = δQ(qi−1, ai) and vi = vi−1 ◦ δX (qi−1, ai). We then define JAK(w) = vn(o(qn)).

δ can be extended to words by setting, for all q ∈ Q, δ(q, ϵ) = (q, idX ), where idX is
the substitution such that idX (X) = X for all X ∈ X , and, for all a ∈ Σ and w ∈ Σ∗,
δQ(q, aw) = δQ(δQ(q, a), w) and δX (q, aw) = δX (q, a) ◦ δX (δQ(q, a), w). We then have

JAK(w) = v0 ◦ δX (q0, w)(o(δQ(q0, w)))

▶ Example 5 (Example 2 continued). Two CRA are depicted on Figure 2. They are both on
the alphabet {a} and over the field of real numbers, and both realize the same function as
the WA considered in Example 2.

An expression is called linear if it has the form
∑k

i=1 αiXi, for some family of αi ∈ K
and Xi ∈ X , and if it has the form

∑k
i=1 αiXi + β, for some β ∈ K, it is called affine. We

will denote by Expℓ(X ) (resp. Expa(X )) the set of linear (resp. affine) expressions.

MFCS 2024



23:6 Minimizing Cost Register Automata over a Field

▶ Definition 6 (Linear/Affine CRA). A CRA A = (Q, q0, X , v0, o, δ) is called linear if,
δX (q, a)(X) ∈ Expℓ(X ) and o(q) ∈ Expℓ(X ), for all q ∈ Q, a ∈ Σ and X ∈ X , and if
δX (q, a)(X) ∈ Expa(X ) and o(q) ∈ Expa(X ), the CRA is called affine.

Linear CRA are a particular case of affine CRA and, given an affine CRA it is always
possible to define an equivalent linear CRA using one more register with a constant value of
1 to realize affine register updates in a linear way, thus :

▶ Remark 7. Linear and affine CRA have the same expressiveness.

The added cost of a register will however become relevant when we will consider minimization
problems in the next sections.

Observe that we can assume that X = {X1, . . . , Xk} is ordered, and identify any linear
expression e =

∑k
i=1 αiXi (with the αi not present in the expression assumed to be 0) with

the linear form e : Kk → K defined by the column vector (α1, . . . , αk)t. We can then identify
any linear substitution s : X → Expℓ(X ) with the linear map s : Kk → Kk defined by the
block matrix (s(X1)| · · · |s(Xk)), and we can identify any valuation v : X → K with the vector
v = (v(X1), · · · , v(Xk)) of the vector space Kk.

In the following, we will drop the underline notation and make the identifications implicitly.
Thanks to these observations, the registers of a linear CRA and their updates can be

characterized by the values of the vector associated with v0, and the linear maps associated
with the δX (q, a) and o(q), for all q ∈ Q and a ∈ Σ, and we can check that

JAK(w) = v0 δX (q0, w) o(δQ(q0, w))

We can also identify affine expressions with affine forms and affine substitutions with
affine maps to simplify dealing with affine CRA. We define and use these identifications in
Appendix A.2 of the full version of this paper [5].

▶ Proposition 8 ([1]). There is a bijection between WA and linear CRA with a single state.

Given a WA, one can build an equivalent CRA with as many registers as states of the
WA: for each letter a, the transition matrix µ(a) can be interpreted as a (linear) substitution,
associated with the self-loop of label a. The converse easily follows from the previous
observations when the CRA has a single state.

▶ Example 9 (Example 2 continued). The CRA depicted on the left of Figure 2 is obtained
by the translation of the WA of Figure 1 into CRA with a single state.

▶ Remark 10. Sequential WA are exactly linear CRA with a single register.

Indeed, both sequential WA and linear CRA with only one register are deterministic finite
automata that can also store a single value updated at each transition using only products.
They can then be identified.

3 Problems and Main Results

▶ Definition 11 (Register minimization problem). Given a class C of CRA, we ask:
Input: a rational series f realized by a given WA, and an integer k ∈ N
Question: Does there exist a CRA realizing f in the class C with at most k registers?

We will show this problem is decidable for the classes of linear and affine CRA:

▶ Theorem 12. The register minimization problem is decidable for the classes of linear and
affine CRA in 2-ExpTime. Furthermore, the algorithm exhibits a solution when it exists.
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For a rational series f , the minimal number of registers needed to realize f using CRA in
some class C is called its register complexity with respect to class C. Dually, if one wants to
minimize the number of states, then we know we can always build a linear (hence affine) CRA
with a single state (Proposition 8). A more ambitious goal is to try to reduce simultaneously
the number of states and of registers, in some given class C of CRA. Observe that, in general,
there is no CRA with minimal numbers of both states and registers (see Example 5). Given
a rational series f , we say that a pair (n, k) is optimal if f can be realized by a CRA in class
C with n states and k registers and no CRA of C realizing f with at most n states can have
strictly less than k registers and vice-versa.

Formally, we call the state-register complexity with respect to class C of a rational series
f , the set of optimal pairs of integers (n, k).

This leads to the definition of a second minimization problem:

▶ Definition 13 (State-Register minimization problem). Given a class C of CRA, we ask:
Input: a rational series f realized by a given WA, and two integers n, k ∈ N
Question: Does there exist a CRA realizing f in the class C with at most n states and
at most k registers?

In the sequel, we solve this problem for linear and affine CRA:

▶ Theorem 14. The state-register minimization problem is decidable for the classes of linear
and affine CRA in NExpTime. Furthermore, the algorithm exhibits a solution when it exists.

▶ Remark 15. The complexities we give are valid for fields where it is possible to perform
elementary operations efficiently (e.g. Q). See Remark 40 for a more detailed discussion on
the matter.

4 Characterizing the state-register complexity using invariants of WA

4.1 Zariski topologies and invariants of WA
Let K be a field and n ∈ N. The Zariski topology on Kn is defined as the topology whose
closed sets are the sets of common roots of a finite collection of polynomials of K[X1, . . . , Xn].
A linear version of this topology, called the linear Zariski topology, was introduced by Bell
and Smertnig in [3]. Its closed sets, which we will call Z-linear sets, are finite unions of vector
subspaces of Kn.

A set S ⊆ Kn is called irreducible if, for all closed sets C1 and C2, such that S ⊆ C1 ∪ C2,
we have either S ⊆ C1 or S ⊆ C2. The Zariski topologies defined above are Noetherian
topologies in which every closed set can be written as a finite union of irreducible components.
We then define the dimension of a Z-linear set as the maximum dimension of its irreducible
components and their number will be called its length.

For a set S ⊆ Kn, S
ℓ will denote its closure in the linear Zariski topology. In this

topology, closed irreducible sets are vector subspaces of Kn and linear maps are continuous
and closed maps (mapping closed sets to closed sets). In particular, for all S ⊆ Kn and linear
map f : Kn → Kn,f(S)

ℓ
= f(Sℓ). Moreover, if S ⊆ Kn is irreducible and f : Kn → Kn is

continuous, then f(S) is irreducible. These properties will be used implicitly in the following
(see [3, Lemma 3.5] for more details and references).

We will also define an affine version of this topology that enjoy the same properties in
Subsection 4.4.

MFCS 2024



23:8 Minimizing Cost Register Automata over a Field

▶ Definition 16. Let Σ be a finite alphabet and let R = (u, µ, v) be a d-dimensional WA on
Σ over K. A subset I ⊆ Kd is called an invariant of R if u ∈ I and, for all w ∈ I and a ∈ Σ,
wµ(a) ∈ I. For two invariants I1 and I2, we say that I1 is stronger than I2 if I1 ⊆ I2. In
particular, the strongest invariant of R is its reachability set LR (R) = uµ(Σ∗).

An invariant that is also a Z-linear set will be called a Z-linear invariant. The strongest
Z-linear invariant of R is the closure of LR (R) in the linear Zariski topology (which is
well-defined since the topology is Noetherian).

▶ Example 17 (Example 2 continued). The reachability set of the WA considered in Example 2
is LR (R) =

{
(22n, 0)

∣∣ n ∈ N
}

∪
{

(0, 22n+1)
∣∣ n ∈ N

}
. Its strongest Z-linear invariant is then

the union of the two coordinate axes of the plane LR (R)
ℓ

= span (1, 0) ∪ span (0, 1).
Indeed, the inclusion ⊆ comes from the fact that u = (1, 0) ∈ span (1, 0) and span (1, 0) ∪

span (0, 1) is stable by multiplication by µ(a) and the inclusion ⊇ comes from the fact that, for
the linear Zariski topology, {(1, 0)} is dense in span (1, 0) and {(0, 2)} is dense in span (0, 1).

▶ Remark 18. In the previous example, the strongest Z-linear invariant is actually the
strongest algebraic invariant (i.e. closed in the Zariski topology). Of course, this is not
always the case.

The Z-linear invariants of two WA realizing the same function do not necessarily coincide
but, since K is a field, it is well-known that for every rational series f , there exists a
(computable) minimal WA realizing f that is unique up to similarity in the following sense
(see [16, Proposition 4.10 (Chapter III)]):

▶ Definition 19. Let R = (u, µ, v) and R′ = (u′, µ′, v′) be two d-dimensional WA over K.
R and R′ are said to be similar if there exists an invertible (change of basis) matrix

P ∈ Kd×d such that u′ = uP , µ′(a) = P −1µ(a)P for all a ∈ Σ and v′ = P −1v.

▶ Remark 20. The Z-linear invariants of two similar WA R and R′ only differ by a change
of basis. i.e. there is a bijection between the Z-linear invariants of R and those of R′ that, in
particular, preserves the length and dimension.

4.2 Strongest invariants and characterization
The notion of strongest Z-linear invariant was introduced by Bell and Smertnig in [3], under
the name “linear hull”. They showed, in [4], that it is computable and can be used to decide
whether a WA is equivalent to a deterministic (or an unambiguous) one.

▶ Theorem 21 ([3, Theorem 1.3]). A rational series f can be realized by a sequential WA iff
the strongest Z-linear invariant of a minimal WA realizing f has dimension at most 1.

The following result generalizes this theorem by linking linear CRA to Z-linear invariants.
It constitutes the key characterization that will allow us to solve the minimization problems.

▶ Theorem 22 (Characterization). Let f be a rational series. Then f can be realized by a
linear CRA with n states and k registers iff there exists a minimal WA realizing f that has a
Z-linear invariant of length at most n and dimension at most k.

As we will see in Subsection 4.4, this theorem can also be extended to affine CRA.
Observe that, thanks to Remark 20, the property of the above characterization is actually

valid for every minimal WA realizing f . Moreover, since the dimension of the strongest
Z-linear invariant is minimal, finding this dimension allows to solve the register minimization
problem for linear CRA. This is formalized in the following result, which generalizes
Theorem 21 thanks to Remark 10.
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▶ Corollary 23. The register complexity of a rational series f w.r.t. the class of linear CRA
is the dimension of the strongest Z-linear invariant of any minimal WA realizing f .

An immediate consequence of this result is that computing the strongest invariant allows
to decide the register minimization problem.

▶ Example 24 (Example 2 continued). As we have seen in Example 17, LR (R)
ℓ

is 1-
dimensional and has two irreducible components, thus JRK can be realized by a CRA with
two states and one register (depicted on the right of Figure 2).

4.3 Invariants of minimal WA and correspondence with CRA
▶ Proposition 25. Let R be a WA realizing a rational series f . If R has a Z-linear invariant
of length n and dimension k, then every minimal WA realizing f has a Z-linear invariant of
length ≤ n and dimension ≤ k.

Thanks to Remark 20, it suffices to show the existence of one minimal WA verifying
the proposition, since they are all similar. It is known (see Proposition 3) that a minimal
WA can be obtained from a WA by alternating between two constructions which reduce the
dimension to make it match the one of the span of the left (resp. right) reachability set. The
result then follows from the next lemma, which states that both constructions decrease the
length and dimension of the invariants. We prove it by considering an adequate change of
basis, and verifying that it preserves invariants.

▶ Lemma 26. Let R be a WA realizing a rational series f , let SR be a Z-linear invariant
of R of length n and dimension k and let r = dim(span (LR (R))). We can construct an
r-dimensional WA R′ realizing f , with a Z-linear invariant SR′ of length ≤ n and dimension
≤ k. The same holds with r = dim(span (RR (R))).

The next proposition allows to go from Z-linear invariants of WA to CRA. This construc-
tion builds on the one of [3, Lemma 3.13], in which they build an equivalent WA from the
strongest Z-linear invariant of a WA. We show that an analogous construction is valid for any
Z-linear invariant, and that we can use states of CRA to represent the different irreducible
components of the invariant, thus reducing the number of registers used to the dimension of
the invariant.

▶ Proposition 27. Let R be a WA. If R has a Z-linear invariant of length n and dimension
k, then there exists a linear CRA A, with n states and k registers, such that JAK = JRK.

The next proposition shows the converse direction, from CRA to invariants of WA. The
construction is the classical one from CRA to WA. The existence of the adequate invariant
follows from the determinism of the CRA which ensures that in any reachable configuration,
only coordinates associated with the reachable state of the CRA can be non-zero.

▶ Proposition 28. Let A be a linear CRA. If A has n states and k registers, then there
exists a WA R, with a Z-linear invariant of length n and dimension k, such that JAK = JRK.

Using the three previous propositions, we can finally prove the main characterization:

Proof of Theorem 22. Given a linear CRA with n states and k registers, we can construct,
thanks to Proposition 28, an equivalent WA with a Z-linear invariant of length n and
dimension k. Then the desired minimal WA exists thanks to Proposition 25.

Reciprocally, applying the construction of Proposition 27 to any minimal WA gives the
desired linear CRA. ◀

MFCS 2024



23:10 Minimizing Cost Register Automata over a Field

As we will discuss in the next subsection below, the three propositions we used for this
proof can also be adapted to yield the same result for affine CRA.

4.4 Z-affine invariants and affine CRA
All the results of Section 4 can actually be extended to affine CRA using the affine Zariski
topology instead of the linear one. It is a slight generalization of the linear Zariski topology
where closed sets, called Z-affine sets, are finite unions of affine spaces instead of vector
spaces, with lengths and dimensions defined like in the linear case. It is still a Noetherian
topology coarser than the Zariski topology, affine maps are continuous and closed maps in
this topology and, more broadly, it enjoys the same properties as the linear Zariski topology
we considered throughout this section. For a set S ⊆ Kn, we will denote by S

a it closure
in the affine Zariski topology and, similarly to the linear case, for a WA R = (u, µ, v), we
will call any invariant of R that is a Z-affine set a Z-affine invariant of R. Of course, the
strongest Z-affine invariant of R is still the closure of its reachability set i.e. its “affine hull”
LR (R)

a
and Remark 20 is still true for Z-affine invariants.

We obtain the same characterization of Theorem 22 in the affine setting :

▶ Theorem 29 (Characterization). Let f be a rational series. Then f can be realized by an
affine CRA with n states and k registers iff there exists a minimal WA realizing f that has a
Z-affine invariant of length at most n and dimension at most k.

We can show that Propositions 25, 27 and 28 are also true if we replace Z-linear invariants
by Z-affine ones and linear CRA by affine ones. So, the proof of Theorem 29 remains the
same as Theorem 22. All the details can be found in Appendix A.2 of the full version of this
paper [5].

Of course, this theorem has the same consequences of its linear counterpart and we obtain
an affine version of Corollary 23

▶ Corollary 30. The register complexity of a rational series f w.r.t. the class of affine CRA
is the dimension of the strongest Z-affine invariant of any minimal WA realizing f .

Working in the affine Zariski topology instead of the linear one can decrease the dimension
of the strongest invariant by one, as shown in the following example.

▶ Example 31. On the alphabet Σ = {a}, let R = (u, µ, v), where u = (1, 2), µ(a) =
(

1 0
1 2

)
and v = (1, 0)t, be a WA (over R) realizing the rational series f defined by f(an) =

∑n
i=0 2i =

2n+1 − 1.
The reachability set of R is LR (R) =

{ (∑n
i=0 2i, 2n+1) ∣∣ n ∈ N

}
.

For the linear Zariski topology, LR (R) is dense in R2. So the strongest Z-linear invariant
LR (R)

ℓ
= R2 is two-dimensional. However, note that, for all (x, y) ∈ LR (R), y = x + 1. So,

by an argument of density in the affine Zariski topology, the strongest Z-affine invariant
LR (R)

a
is the affine line y = x + 1, which is one-dimensional.

Thus, in the case where the dimensions of the affine and linear hulls doesn’t match, using
affine CRA instead of linear CRA can allow to save one register :

▶ Example 32 (Example 31 continued). The two CRA depicted on Figure 3 both realize the
function of Example 31. On the left we have a linear CRA with two registers and, on the
right, an affine CRA with only one register. The characterization theorems show that both
have the minimal number of registers for their respective classes of CRA.
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{
X := 1
Y := 2

X

a :
{

X := X + Y

Y := Y ∗ 2 X := 2 X − 1

a : X := X ∗ 2

Figure 3 Two CRA detailed in Example 32.

5 Algorithms and complexity for the minimization problems

We present two original algorithms to solve the minimization problems we consider. It is
worth observing the difference between the two characterizations we have obtained: while
the register complexity can be computed from a canonical object (the strongest Z-linear
invariant of the WA), the state-register complexity is based on the existence of a particular
Z-linear invariant. This explains why we derive a non-deterministic procedure for the latter,
and a deterministic for the former.

5.1 Algorithm for the state-register minimization problem
We provide here a NExpTime algorithm for the state-register minimization problem, hence
proving Theorem 14. The algorithm runs in NPTime in n, k, and the size of the automaton.
The fact that n is given in binary explains the exponential discrepancy.

Small representations of Z-affine sets. Let R = (u, µ, v) be a WA of dimension d over an
alphabet Σ. Let L = A1 ∪ · · · ∪ An be a Z-affine set of length n of Kd.

An R-representation R of L is a set of n finite sets of words S1, . . . , Sn such that
aff ({uµ(w)| w ∈ Si}) = Ai for all i ∈ {1, · · · , n}. The size of R is the sum of the lengths of
all words appearing in R. The following key lemma shows that all Z-affine invariants of R
have small R-representations, up to considering stronger invariants.

▶ Lemma 33. Let R be a WA. Let I be a Z-affine invariant of R of length n and dimension
k. There exists an R-representation R of size ≤ n2k2 of a Z-affine invariant J ⊆ I, of
dimension ≤ k and length ≤ n.

This property allows to derive the non-deterministic algorithm. First, minimization of a
WA over a field can be performed in polynomial time (see e.g. [16, Corollary 4.17]). Then,
let R be a minimal WA and let k, n be positive integers. From Lemma 33, we know that
a Z-affine invariant of dimension k and length n can be represented in size O(k2n2) (up to
finding a stronger invariant with smaller dimension and length). The algorithm works thusly:
first step is to guess an R-representation R of a Z-affine set. The second step is to check
that R represents an invariant, which can be done easily using basic linear algebra. From
this one can compute an affine CRA with k registers and n states. Moreover, if we require
that R is Z-linear, we obtain a linear CRA. If R is not an invariant, the computation rejects.
Note that different accepting computations may give rise to different invariants and thus
different CRAs.

5.2 Algorithm for the computation of Z-affine invariants
We describe a deterministic procedure which, given a WA R and an integer c, returns a
Z-affine invariant J which is stronger that any Z-affine invariant I of R of length at most c.
When c is chosen large enough, this procedure returns the strongest Z-affine invariant of R.
A similar procedure works as well for the computation of Z-linear invariants.
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Algorithm 1 Computing a Z-affine invariant.

Require: A WA R = (u, µ, v) of dimension d, an integer c

Ensure: A Z-affine invariant J of R stronger than Ic(R)
1: J := {u}
2: while J is not an invariant of R do
3: Pick some component A of J , and some matrix M of R s.t. A · M ̸⊆ J

4: J := J ∪ A · M

5: if length(J) > cd then
6: J := reduce(J)
7: end if
8: end while
9: return J

Intuitively, this procedure will build a Z-affine set J as follows: it starts with a set
containing only the initial vector of R, and incrementally extends it until it forms an
invariant. During this process, it should ensure that J is included in every Z-affine invariant
I of R of length at most c. This relies on the following easy observation: if such an invariant
I contains at least c + 1 points on the same affine line (i.e. a 1-dimensional affine space,
denoted D), then I must have a component that contains D. Indeed, as I has length at most
c, one of its components contains two such points. As this component is irreducible, it is
an affine subspace, hence contains D. This reasoning can be lifted to higher dimensions as
follows.

Given a WA R, and c ∈ N, we denote by Ic(R) =
⋂

length(I)≤c I the intersection of all
Z-affine invariants of R with at most c components.

▶ Lemma 34. Let R be a WA and let c, k ∈ N. Let A1, . . . , Ack+1 ⊆ Ic(R) be affine spaces
such that: for any P ⊆ J1, ck + 1K with |P | ≥ ck−1 + 1, aff (∪i∈P Ai) has dimension k. Then
aff

(
∪i∈J1,ck+1KAi

)
⊆ Ic(R).

Using this lemma, we derive an effective procedure to simplify a Z-affine set J =
A1 ∪ · · · ∪ Acd+1 by “merging” two components. We denote by reduce(J) the resulting set.

▷ Claim 35. Let R = (u, µ, v) be a WA of dimension d, let c ∈ N. Let A1, . . . , Acd+1 ⊆ Ic(R)
be affine spaces. One can find 1 ≤ i < j ≤ cd + 1 such that aff (Ai ∪ Aj) ⊆ Ic(R), in time
O(cp(d)), for some fixed polynomial p.

▶ Theorem 36. Algorithm 1 is correct and terminates in time O(cp(d)).

Proof. Let us first discuss termination. Because of line 5-7, the length of J is at most cd + 1.
Moreover J is an increasing Z-affine set, thus its value can be modified at most (d+1) ·(cd +1)
times, thus from Claim 35 the algorithm terminates in time O(cp(d)).

We now discuss correctness. We need to show that J is stronger than Ic(R). Initially,
this holds. Moreover, if A ⊆ Ic(R) is an affine set, then for any M ∈ µ(Σ), A · M ⊆ Ic(R),
since Ic(R) is invariant. Thus, line 4 preserves the property that J is stronger than Ic(R).
Using Claim 35, the Reduce subroutine also preserves this property, since it only merges
components whose affine span is contained in Ic(R). ◀
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5.3 Complexity of the register minimization problem
In order to compute the strongest Z-linear and Z-affine invariants of a WA using Algorithms 1,
it is sufficient to be able to bound their lengths. The following result gives such bounds.

▶ Theorem 37. Let R = (u, µ, v) be a d-dimensional WA on a finite alphabet Σ. We have
the following upper bounds :

The lengths of LR (R)
ℓ

and LR (R)
a

are at most doubly-exponential in d.
If ⟨µ(Σ)⟩ is commutative (e.g. Σ is unary), then the length of LR (R)

ℓ
is at most

exponential in d.
We also have the following lower bound (which also hold for WA over a unary alphabet):

For all d > 0, there exist a d-dimensional WA having strongest Z-linear and Z-affine
invariants with lengths exponential in d.

Proof sketch. The first item is shown in [4], where the authors sketch a proof of a double-
exponential upper bound on the length of the strongest Z-linear invariant of a WA, using
tools from algebraic geometry, which holds for Q in particular and for any field K where
there is a double-exponential bound on the maximal order of finite groups of invertible
matrices (see [4, Proposition 48 and Remark 41]). Their proof can be adapted to LR (R)

a
.

The proof of the second item relies on basic linear algebra and on results and ideas from [4]
for invertible matrices (see [4, Lemma 13 and Theorem 10]). Last, the lower bound is shown
using a family of WA (Ri)i∈N whose dimension is polynomial in i and strongest Z-linear
invariant has a length that is exponential in i. It is defined, using permutation matrices of
dimension p, for some prime number p, which generate cyclic groups. The family is obtained
by using block matrices composed of such permutation matrices. All the details are given in
Appendix B.4 of the full version of this paper [5]. ◀

Thanks to this theorem, using Algorithm 1 with a large enough c (at most doubly-
exponential in the dimension of the given WA), and thanks to Theorem 36, we can prove the
following result:

▶ Theorem 38. The strongest Z-linear/affine invariant of a WA is computable in 2-ExpTime.

This allows us to prove Theorem 12. Indeed, given a WA R, we first compute an
equivalent minimal WA, which can be done in polynomial time (see e.g. [16, Corollary 4.17]).
Then, using Algorithm 1, we compute the strongest Z-linear (resp. Z-affine) invariant of R.
Corollary 23 (resp. Corollary 30) ensures that its dimension is the register complexity of f

w.r.t. the class of linear (resp. affine) CRA, and the effectiveness follows from Proposition 27
(resp. its affine version).

Moreover, thanks to Theorem 38 and the results of [3], we also have:

▶ Theorem 39. The sequentiality and unambiguity of a rational series are in 2-ExpTime.

Note that the complexities of the last two theorems drop down to ExpTime when we
have a simply exponential bound on the length of the strongest invariant. This is the case
when one considers unary alphabets or WA with commuting transition matrices in the linear
setting, as stated in Theorem 37. In these cases, the bound is sharp. It is still not clear
however whether it is possible to close the gap between the bounds in the general case.

▶ Remark 40. It is also worth noting that, while the characterizations that we obtained
are valid for any field, the complexities of the algorithms are given in terms of number of
elementary operations over the considered field. Which means that they hold for fields where
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we can perform basic operations in polynomial time (such as Q or its finite extensions).
Moreover, the general upper bounds on the lengths given by Theorem 37 were proven only
for fields verifying a specific property (which is verified by Q). See the proof for more details.

5.4 State/register tradeoff
Reducing the number of registers may increase the number of states and vice-versa. The
following theorem summarizes what we know on this tradeoff.

▶ Theorem 41. Let f be a rational series realized by some d-dimensional WA R. Consider
some pair of integers (n, k) optimal for f w.r.t. the class of linear CRA. The inequalities
1 ≤ n ≤ length(LR (R)

ℓ
) = O(22d) and dim(LR (R)

ℓ
) ≤ k ≤ d hold true.

(They are valid in the affine setting as well)

▶ Remark 42. Building the CRA from the strongest invariant is not always optimal. There
are some cases where it is possible to reduce the number of states of a CRA exponentially,
while keeping the minimal number of registers, by choosing an invariant that is weaker than
the strongest Z-linear/Z-affine invariant but shorter.

6 Conclusion

We have shown how to decide variants of CRA minimization problems, and have given
complexity for the respective algorithms. There are several ways in which these algorithms
could be improved. First, it would be worth reducing the gap between the lower and the upper
bounds on the length of the strongest Z-linear invariant. Second, identifying a canonical
invariant associated with the state-register minimization problem would allow to derive a
deterministic algorithm for this problem. Third, one could hope for better complexity if
one only considers the existence of equivalent CRA. For instance, in [13] the authors give a
PSpace algorithm for the determinization problem (i.e. 1-register minimization problem) in
the case of a polynomially ambiguous automaton, via a quite different approach.

Another line of research consists in trying to use the techniques we developed to solve
the register minimization problem for other classes of CRA, for instance copyless CRA
(which correspond to multi-sequential WA). Another ambitious goal is to consider register
minimization in the context of different semirings, but there all the linear algebra tools
which are crucial to solving these problems completely break down. Similarly, it seems that
register minimization for polynomial automata would be very difficult: it was shown recently
in [12] that the strongest algebraic invariant of a polynomial automaton is not computable.
One possibility may be to bound the “degree” of the invariants, where Z-affine sets would
correspond to algebraic sets of degree one.
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