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Abstract
We study Dominated Cluster Deletion. Therein, we are given an undirected graph G = (V, E)
and integers k and d and the task is to find a set of at most k vertices such that removing these
vertices results in a graph in which each connected component has a dominating set of size at most d.
We also consider the special case where d is a constant. We show an almost complete tetrachotomy
in terms of para-NP-hardness, containment in XP, containment in FPT, and admitting a polynomial
kernel with respect to parameterizations that are a combination of k, d, c, and ∆, where c and ∆ are
the degeneracy and the maximum degree of the input graph, respectively. As a main contribution,
we show that the problem can be solved in f(k, d) · nO(d) time, that is, the problem is FPT when
parameterized by k when d is a constant. This answers an open problem asked in a recent Dagstuhl
seminar (23331). For the special case d = 1, we provide an algorithm with running time 2O(k log k)nm.
Furthermore, we show that even for d = 1, the problem does not admit a polynomial kernel with
respect to k + c.
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24:2 Breaking a Graph into Connected Components with Small Dominating Sets

1 Introduction

Cluster Vertex Deletion is an important problem in theoretical computer science [3, 22].
Therein, one is given a graph and the task is to delete as few vertices as possible such that
the resulting graph is a cluster graph, that is, a graph in which each connected component
is a clique. However in many real-world applications, it is often too restrictive to require
that each connected component is a clique. For this reason, many generalizations (but
also special cases) of Cluster Vertex Deletion have been studied. Examples include
variants where each connected component in the resulting graph is an s-club (a graph of
diameter at most s) [12, 19] or an s-plex (a graph in which each vertex has degree at
least n − s) [15, 23]. The special case, where each clique in the solution graph has to be of
size one is Vertex Cover, one of the most studied problems in the entire field of theoretical
computer science [1, 16].

Different problems of this clustering type were explored in the recent Dagstuhl seminar
on “Recent Trends in Graph Decomposition” [2]. Starting from the observation that each
connected component of the resulting graph in Cluster Vertex Deletion contains a
dominating set of size 1, the participants introduced a problem that explores a generaliza-
tion in which the resulting connected components (clusters) satisfy other “simple integrity
requirements” (see Ajwani et al. [2]). The notion they came up with was the following.

Input: A graph G and positive integers k and d.
Question: Is there a set S of at most k vertices such that the domination number of

each connected component of G − S is at most d?

Dominated Cluster Deletion

In this work, we consider both Dominated Cluster Deletion as well as the special
case where d is a constant. We refer to the latter problem as d-Dominated Cluster
Deletion. A natural question to ask is whether Dominated Cluster Deletion is fixed
parameter tracatble (FPT) when parameterized by k + d? That is, can the problem be solved
in f(k, d) · nO(1), where f is a function that depends only on k and d. Unfortunately, even
for k = 0, the problem corresponds to the Dominating Set, and hence it is unlikely to be
FPT, as Dominating Set is W[2]-complete parameterized by solution size [10]. This led
the participants of the Dagstuhl seminar to ask for a parameterized tractability result, where
d is allowed to play an XP-role in the exponent of the polynomial. In particular, they ask
the following question, which we answer in the affirmative.

Can Dominated Cluster Deletion be solved in f(k, d) · nO(d) time?

Our Results. We study Dominated Cluster Deletion and d-Dominated Cluster
Deletion and show an almost complete tetrachotomy in terms of para-NP-hardness, con-
tainment in XP, containment in FPT, and admitting a polynomial kernel with respect to
parameterizations that are a combination of k, d, c, and ∆, where c and ∆ are the degeneracy
and the maximum degree of the input graph, respectively. As a main contribution and
using the framework of recursive understanding, we show that the problem can be solved
in f(k, d) · nO(d) time, that is, the problem is FPT when parameterized by k when d is a
constant. For the special case d = 1, we provide an algorithm with running time 2O(k log k)nm.
Furthermore, we show that even for d = 1, the problem does not admit a polynomial kernel
with respect to k + c using OR-cross-compositions. Our results are summarized in Figure 1.
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Figure 1 Overview over our results. Results for Dominated Cluster Deletion are shown
on the left and results for d-Dominated Cluster Deletion are shown on the right. Therein, k

and d are the input values and c and ∆ are the degeneracy and the maximum degree of the input
graph, respectively. An edge between two parameters α and β where β is above α indicates that
the value of β in any instance will always be larger than the value of α in that instance. Any
hardness result for β immediately implies the same hardness result for α and any positive result
for α immediately implies the same positive result for β. The red boxes indicate parameters that
lead to para-NP-hardness (NP-hardness for constant parameter values), an orange box indicates
that the problem is in XP and W[1]-hard, a yellow box indicates that the parameterized problem
is fixed-parameter tractable, but does not admit a polynomial kernel, and a green box indicated
that the problem admits a polynomial kernel. We remark that all negative results apply even if the
input graph is connected with the exception of k + d + ∆, which does not admit a polynomial kernel
in general but does so when the input graph is connected. We do not know whether Dominated
Cluster Deletion parameterized by k + d + c is fixed-parameter tractable or W[1]-hard.

2 Preliminaries and Basic Observations

We consider only undirected simple graphs and use the standard graph-theoretic terminology
(see, e.g., [9]). Throughout the paper, we use n and m to denote the number of vertices and
edges of G, respectively. For a set of vertices X ⊆ V (G), G[X] denotes the subgraph of G

induced by the vertices in X. We define G − X = G[V (G) \ X] and we write G − v instead
of G − {v} for a single vertex. For a vertex v, NG(v) denotes the open neighborhood of v,
that is, the set of vertices adjacent to v, and NG[v] = {v} ∪ NG(v) is the closed neighborhood.
For X ⊆ V (G), we define NG(X) =

( ⋃
v∈X NG(v)

)
\ X and NG[X] =

⋃
v∈X NG[v]. For a

vertex v, dG(v) = |NG(v)| denotes the degree of v. We write P = v0v1 . . . vℓ to denote the
path P with vertices v0, v1, . . . , vℓ and edges {vi−1, vi} for i ∈ {1, . . . , ℓ}. The vertices v0
and vℓ are the end-vertices of P . The length of P is the number of edges of P . For a path P
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24:4 Breaking a Graph into Connected Components with Small Dominating Sets

with end-vertices u and v, we say that P is a (u, v)-path. A (u, v)-path of minimum length is
a shortest (u, v)-path. We also say that P is a shortest path if P is a shortest (u, v)-path
for the end-vertices u and v of P . A graph G is connected if for every two vertices u and v,
G contains a path whose end-vertices are u and v. A connected component (or simply a
component) is an inclusion maximal induced connected subgraph of G. The diameter of a
connected graph G is the maximum length of a shortest (u, v)-path where the maximum is
taken over all pairs of vertices u and v. A vertex u dominates v ∈ V (G) if v ∈ NG[u]. A set
of vertices D ⊆ V (G) is a dominating set if every vertex v ∈ V (G) is dominated by some
vertex of D, that is, NG[D] = V (G). The minimum size of a dominating set is called the
domination number of G and is denoted by γ(G). For two distinct vertices u and v of a
graph G, a set S ⊆ V (G) is a (u, v)-separator if G − S has no (u, v)-path. A pair (A, B),
where A, B ⊆ V (G) and A ∪ B = V (G), is called a separation of G if there is no edge {u, v}
with u ∈ A \ B and v ∈ B \ A. In other words, A ∩ B is a (u, v)-separator for every u ∈ A \ B

and v ∈ B \ A. We consider only separations with A \ B ̸= ∅ and B \ A ̸= ∅. The order
of (A, B) is |A ∩ B|.

We refer to the books of Downey and Fellows [11] and Cygan et al. [7] for a detailed
introduction to parameterized complexity theory. Formally, a parameterized problem is a
language L ⊆ Σ∗ × N, where Σ∗ is a set of strings over a finite alphabet Σ. This means that
an input of a parameterized problem is a pair (x, k), where x is a string over Σ and k ∈ N is a
parameter. A parameterized problem is fixed-parameter tractable (or FPT) if it can be solved
in f(k) · |x|O(1) time for some computable function f . We also say that a parameterized
problem belongs to the class XP if it can be solved in |x|f(k) time for some computable
function f . The complexity class FPT contains all fixed-parameter tractable parameterized
problems.

A kernelization algorithm (or kernel) for a parameterized problem is a polynomial-time
algorithm that maps each instance (x, k) of a parameterized problem L to an instance (x′, k′)
of the same problem such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L, and (ii) |x′|+k′ ≤ f(k)
for some computable function f . A kernel is polynomial if f is polynomial. While it can be
shown that every decidable parameterized problem is FPT if and only if it admits a kernel,
it is unlikely that every problem in FPT has a polynomial kernel. In particular, the standard
cross-composition technique [4] can be used to show that a parameterized problem has no
polynomial kernel unless NP ⊆ coNP /poly.

In the conclusion of the section, we show a couple of simple observations. We start by
showing that Dominated Cluster Deletion is NP-complete. Notice that the property
that each connected component of a graph has a dominating set of size at most d is not
hereditary and we cannot use the general result of Lewis and Yannakakis [18] about deletion
problems.

▶ Proposition 1. For any constant d ≥ 1, d-Dominated Cluster Deletion is NP-
complete in graphs of maximum degree 4.

Proof. We reduce from Vertex Cover in graphs of maximum degree 3, which is known to
be NP-hard [14]. We remind that a set S of vertices in a graph G is a vertex cover if for each
edge {u, v} in G, u ∈ S or v ∈ S. Then, the task of Vertex Cover is the following. Given
a graph G and a positive integer k, decide whether G has a vertex cover of size at most k.

Let (G, k) be an instance of Vertex Cover where the maximum degree in G is 3. We
construct the graph G′ as follows:

construct a copy of G,
for each vertex v ∈ V (G), construct a path Pv on 3d vertices and identify one end-vertex
of Pv with v.

Note that the maximum degree in G′ is four. We claim that G has a vertex cover of size at
most k if and only if (G′, k) is a yes-instance of d-Dominated Cluster Deletion.
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If G has a vertex cover S of size at most k, then each connected component of G − S

is either Pv or Pv − v for v ∈ V (G). Observe that γ(Pv) = γ(Pv − v) = d. Thus, S is a
solution to the instance (G′, k) of d-Dominated Cluster Deletion, that is, (G′, k) is a
yes-instance.

For the opposite direction, assume that (G′, k) is a yes-instance of Dominated Cluster
Deletion, that is, there is a set S′ ⊆ V (G′) of at most k vertices such that for each
connected component C of G′ − S′, γ(C) ≤ d. We construct the set S ⊆ V (G) from S′

by replacing each vertex u ∈ S′ \ V (G) by the nearest vertex in G. This means that if u

is a vertex of Pv − v for some v ∈ V (G) then u is replaced by v. Clearly, |S| ≤ |S′| ≤ k.
We claim that S is a vertex cover of G. The proof is by contradiction. Assume that there
is an edge {u, v} of G such that u /∈ S and v /∈ S. By the construction of S, we have
that V (Pu) ∩S′ = ∅ and V (Pv) ∩S = ∅. This means that the vertices of Pu and Pv are in the
same component C of G′ − S′. However, any set Du dominating the vertices of Pu − u has
size at least d. Symmetrically, we need at least d vertices to dominate the vertices of Pv − v.
This implies that γ(C) ≥ 2d > d; a contradiction. We obtain that S is a vertex cover of G of
size at most k. This concludes the proof. ◀

We next observe that Dominated Cluster Deletion with k = 0 is equivalent to
Dominating Set on connected input graphs. In Dominating Set, we ask whether
a graph G has a dominating set of size at most d. It is well-known that Dominating
Set is W[2]-complete when parameterized by the solution size and hence, an algorithm
with running time f(d) · nO(1) would contradict the basic assumptions of parameterized
complexity that FPT ̸= W[2] [11]. Furthermore, the existence of an algorithm running
in f(k) · no(d) time would contradict the Exponential Time Hypothesis (ETH) of Impagliazzo,
Paturi, and Zane [17] (we refer to the textbook by Cygan et al. [7] for an introduction to
computational lower bounds based on the ETH). Finally, Dominating Set is NP-hard on
graphs of maximum degree 3 [5].

▶ Observation 2. Dominated Cluster Deletion with k = 0 is NP-hard on subcubic
graphs, W[2]-hard on general graphs, and any f(k)·no(d)-time algorithm for it would contradict
the ETH.

Finally, we show that Dominated Cluster Deletion is fixed-parameter tractable
when parameterized by k + d + ∆.

▶ Proposition 3. Dominated Cluster Deletion can be solved in O((d(∆ + 1) + 1)k ·
3d(∆+1) · (n + m)) time.

Proof. We construct a simple branching algorithm as follows. First, we find any connected
subgraph with d(∆ + 1) + 1 vertices. Note that any connected component in the graph
obtained after removing a solution S can contain at most d(∆ + 1) vertices as it has a
dominating set of size d and the maximum degree is ∆. Hence, each of the d vertices in the
dominating set can dominate at most (∆ + 1) vertices each. Thus, at least one vertex of the
chosen connected subgraph is contained in the solution S and we branch on that vertex and
reduce k by one. After reaching depth k in the search tree, we discard the current branch if
we can still find a connected subgraph with d(∆ + 1) + 1 vertices. Each remaining branch
represents a graph in which each connected component contains at most d(∆ + 1) vertices.
For each such component, we can compute an optimal solution in O(3d(∆+1)(n + m)) time
by trying all possible choices of assigning vertices in the subgraph to the solution S, the
dominating set, or the rest of the graph. We can then check in linear time whether the current
assignment is a valid solution and remember the solution that assigns a minimum number
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24:6 Breaking a Graph into Connected Components with Small Dominating Sets

of vertices to S. Finally, we sum up all the optimal values for k in each of the connected
components to check whether the current branch in the search tree leads to a solution. If any
branch leads to a solution, then we return yes and otherwise we return no. The correctness
follows from the fact that we exhaustively search for all possible solutions and the running
time is in O((d(∆ + 1) + 1)k · 3d(∆+1) · (n + m)). This concludes the proof. ◀

3 An FPT algorithm for d-Dominated Cluster Deletion

In this section, we show d-Dominated Cluster Deletion parameterized by k is fixed-
parameter tractable. This also shows that Dominated Cluster Deletion is contained
in XP.

▶ Theorem 4. For every positive integer d, d-Dominated Cluster Deletion can be
solved in f(k, d) · nO(d) time.

We remark that the exponential dependency on d of the polynomial part of the running
time seems unavoidable by Observation 2. We prove Theorem 4 by applying the recursive
understanding technique introduced by Chitnis et al. [6] and using the meta theorem of
Lokshtanov et al. [20]. The meta theorem considerably simplifies the arguments. However,
the proof becomes nonconstructive and we can only claim a nonuniform FPT algorithm.
Still, a uniform FPT algorithm may be given using the techniques of Chitnis et al. [6] or the
dynamic programming approach of Cygan et al. [8].

The meta theorem of Lokshtanov et al. [20] allows to reduce solving a graph problem on
general graphs to highly connected graphs. Let p, q be positive integers. A graph G is said to
be (p, q)-unbreakable if for every separation (A, B) of G of order at most q, either |A \ B| ≤ p

or |B \ A| ≤ p, that is, G has no separator of size at most q that partitions the graph into
two parts of size at least p + 1 each.

We remind that in monadic second-order logic (MSO) on graphs, we have logical con-
nectives ∨, ∧, ¬, and variables for vertices, edges, and sets of vertices and edges. We can
apply the quantifiers ∀ and ∃ to these variables and use the predicates (i) x ∈ X where x

is a vertex (respectively, edge) variable and X is a vertex (respectively, edge) set variable,
(ii) inc(u, e) where u is a vertex variable and e is an edge variable that denotes that u is
incident to e, (iii) adj(u, v) where u and v are vertex variables denoting the adjacency of u

and v, and (iv) the equality predicate for variables of the same type. The counting monadic
second-order logic (CMSO) extends MSO by allowing testing whether the cardinality of a set
is equal to p modulo q for integers 0 ≤ p < q with q ≥ 2. Given a CMSO sentence φ, the task
of the model-checking problem for φ (denoted by CMSO[φ]) is to decide whether G |= φ for
a graph G. Lokshtanov et al. [20] proved the following result.

▶ Proposition 5 ([20]). Let φ be a CMSO sentence. For all positive integers q, there
exists a positive integer p such that if there exists an algorithm that solves CMSO[φ]
on (p, q)-unbreakable graphs in O(nc) time for some c > 4 then there exists an algorithm that
solves CMSO[φ] on general graphs in O(nc) time.

To apply Proposition 5, we observe that Dominated Cluster Deletion can be
expressed in MSO.

▶ Observation 6. For given d ≥ 1 and k ≥ 0, there is a MSO sentence φ (depending on d

and k) such that G |= φ if and only if (G, k) is a yes-instance of Dominated Cluster
Deletion.
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Proof. For k = 0, (G, k) is a yes-instance of Dominated Cluster Deletion if and
only if every connected component C of G has a dominating set of size at most d, that
is, it holds that ∃v1 ∈ V (C) : . . . ∃vd ∈ V (C) : ∀w ∈ V (C) : (w = v1) ∨ · · · ∨ (w = vd) ∨
adj(w, v1) ∨ · · · ∨ adj(w, vd). Further, we have that C = G[X] for X ⊆ V (G) is a connected
component of G if and only if G[X] is connected and for any proper superset Y of X,
G[Y ] is not connected. It is standard to express the connectivity of G[X] as follows:
∀Z ⊂ X : ∃u ∈ Z : ∃v ∈ X \ Z : adj(u, v). This proves that the property that (G, 0) is a
yes-instance of Dominated Cluster Deletion can be expressed in MSO.

For k ≥ 1, (G, k) is a yes-instance of Dominated Cluster Deletion if and only if (G, 0)
is a yes-instance or ∃v1 ∈ V (G) . . . ∃vk ∈ V (G) such that every connected component C

of G − {v1, . . . , vk} has a dominating set of size at most d. It is straightforward to modify
the formula for k = 0 to get an MSO sentence for the case k ≥ 1. ◀

We next show that d-Dominated Cluster Deletion is fixed-parameter tractable for
unbreakable graphs. More precisely, we prove the following lemma.
▶ Lemma 7. Let p and k be positive integers. Then, d-Dominated Cluster Deletion
can be solved in (p + k)O(k+d) · nO(d) time on (p, k)-unbreakable graphs.
Proof. Let (G, k) be an instance of d-Dominated Cluster Deletion where G is (p, k)-
unbreakable.

Suppose that (G, k) is a yes-instance, that is, there is a set S ⊆ V (G) of at most k

vertices such that for each connected component C of G − S, γ(C) ≤ d. Because G is a (p, k)-
unbreakable graph, G − S has a connected component C with at least n − |S| − p ≥ n − k − p

vertices and the total number of vertices in the other connected components of G − S is
at most p. We call the component C big. Denote by C1, . . . , Cℓ the connected components
of G − S that are distinct from C and let D be a dominating set of C of size at most d.
Observe that V (C) ⊆ NG[D] ⊆ V (C) ∪ S and V (Ci) ⊆ V (G) \ NG[D] for all i ∈ {1, . . . , ℓ}.
Furthermore, if S′ = S \ NG[D] then S = S′ ∪ NG(

⋃ℓ
i=1 V (Gi)). These observations lead to

the following algorithm.
We guess a dominating set D of the (potential) big connected component by trying all

possible choices of at most d vertices of G. Let R = V (G) \ NG[D]. We immediately discard
the choice of D if |R| > p + k because such sets D cannot be dominating sets of the big
component. From now on, we assume that D is fixed and |R| ≤ p + k.

Next, we guess the set of at most k vertices S′ = R ∩ S for a potential solution S to (G, k)
by trying all possible choices of such a set. For each choice of S′, we consider H = G[R \ S′]
and find the connected components C1, . . . , Cℓ of H. For each i ∈ {1, . . . , ℓ}, we verify
whether Ci has a dominating set of size at most d and immediately discard the current
choice of S′ if this does not hold. Further, we construct S = S′ ∪ NG(

⋃ℓ
i=1 V (Ci)) and check

whether |S| ≤ k. If this holds then we conclude that S is a solution, return it, and stop.
Otherwise, we discard the current choice of S′.

If we do not find a solution for all choices of S′ for the given D, we discard the choice
of D. If all sets D are discarded, then we conclude that (G, k) is a no-instance.

Our structural observations about yes-instances immediately imply the correctness of
the algorithm. To evaluate the running time, observe that we have at most nd choices
of D that can be generated in nO(d) time. For each choice of D with |R| ≤ p + k, we
have at most (p + k)k possibilities to choose S′. We can find connected components of H

in O(p + k) time, and we can check in time (p + k)O(d) whether each connected component
can be dominated by at most d vertices. Thus, the total running time is (p + k)O(k+d) · nO(d).
This concludes the proof. ◀

Combining Observation 6 and Lemma 7, we obtain Theorem 4 as a direct corollary of
Proposition 5.
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24:8 Breaking a Graph into Connected Components with Small Dominating Sets

4 An FPT algorithm for 1-Dominated Cluster Deletion

In this section, we demonstrate a uniform algorithm for Dominated Cluster Deletion for
the special case d = 1, that is, for 1-Dominated Cluster Deletion. The crucial property
that makes the problem significantly easier for d = 1 is that each cluster is of diameter at
most two. We use a simple branching algorithm to reduce the input graph to a connected
graph of diameter at most two. Then we can exploit the following structural property of a
solution.

▶ Lemma 8. Let G be a graph of diameter at most two and let (A, B) be a separation
of G with X = A ∩ B. Suppose that for S ⊆ V (G), each connected component of G − S

is dominated by a single vertex and it holds that (i) (A \ B) \ S ̸= ∅, (ii) (B \ A) \ S ̸= ∅,
and (iii) X ∩ S = ∅. Then for every connected component C of G − S, any vertex v ∈ V (C)
dominating C is in X. Furthermore, the vertices of each connected component of G[X] are
in the same connected component of G − S and the vertices of distinct connected component
of G[X] are in separate components of G − S.

Proof. Let C be a connected component of G − S. Assume for the sake of a contradiction
that there is a vertex v ∈ V (C) that dominates C such that v ∈ A \ B. By (ii), there is a
vertex u ∈ (B \ A) \ S. Since the diameter of G is at most two, there is a (u, v)-path P of
length at most two. Since u and v are separated by X, P = uxv for some x ∈ X. Note that
(iii) implies that x /∈ S. Then, u ∈ V (C). However, u is not dominated by v; a contradiction.
This proves the first claim.

For the second claim, it is straightforward to see that the vertices of each connected
component of G[X] are in the same connected component of G − S because of (iii). Let C1
and C2 be distinct connected components of G[X]. Notice that any vertex of G adjacent to
some vertices in both connected components is either in A \ B or B \ A. According to the
first claim of the lemma, such vertices cannot be dominating vertices for the cluster. This
proves that the vertices of distinct connected components of G[X] are in separate components
of G − S and this concludes the proof. ◀

We are now in a position to prove the main theorem of this section.

▶ Theorem 9. 1-Dominated Cluster Deletion can be solved in O((k + 3)k+5/2 · nm)
time.

Proof. We use the method of bounded search trees to solve the problem. Our recursive
branching algorithm, called Cluster (Algorithm 1), takes as input a graph G and an
integer k, and returns either Yes or No depending on whether (G, k) is a yes- or a no-instance.
For simplicity, we solve the decision problem, but the algorithm can easily be modified to
output a solution if it exists.

We analyze the algorithm to show its correctness. Trivially, if k < 0 then (G, k) is a
no-instance. Hence, we correctly return No and quit in Line 2. Also, if the set of vertices
becomes empty then we should return Yes as is done in Line 3.

If G has a connected component C that can be dominated by one vertex, then this
component is already a required cluster and we can exclude it from the consideration. This
is done in Lines 4–5.

In Lines 7–14, we deal with disconnected graphs. In this case, we solve the problem
for each connected component separately, and for each component Ci, we find the min-
imum ki such that (Ci, ki) is a yes-instance. Notice that because of the previous step,
each connected component is not dominated by a single vertex. Thus, we consider only ki

satisfying 1 ≤ ki ≤ k − 1. Then, we verify whether the solutions for components can be
combined. From now on, we assume that G is connected.
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Algorithm 1 Cluster(G, k).

Input: A graph G and an integer k.
Result: Yes or No.

1 begin
2 if k < 0 then return No and quit;
3 if V (G) = ∅ then return No and quit;
4 if G has a connected component C with γ(G) = 1 then
5 call Cluster(G − V (C), k), return the result, and quit
6 end
7 if G is disconnected then
8 find connected components C1, . . . , Cℓ of G;
9 foreach i ∈ {1, . . . , ℓ} do

10 find minimum 1 ≤ ki ≤ k − 1 s.t. Cluster(Ci, ki) returns Yes and
11 set ki := k if Cluster(Ci, k − 1) returns No
12 end
13 return Yes if k1 + · · · + kℓ ≤ k and return No, otherwise, and quit
14 end
15 if there is a shortest path v1v2v3v4 then
16 foreach i ∈ {1, 2, 3, 4} do
17 call Cluster(G − vi, k − 1);
18 return Yes and quit if the algorithm returns Yes
19 end
20 return No and quit
21 end
22 if there is v ∈ V (G) s.t. |V (G) \ NG[v]| ≤ k then
23 return Yes and quit
24 end
25 find a separation (A, B) of G with the separator X = A ∩ B of size at most k

26 and return No and quit if such a separation does not exist;
27 foreach v ∈ X do
28 call Cluster(G − v, k − 1);
29 return Yes and quit if the algorithm returns Yes
30 end
31 call Cluster(G − (A \ B)|, k − |A \ B|) and
32 return Yes and quit if the algorithm returns Yes;
33 call Cluster(G − (B \ A)|, k − |B \ A|) and
34 return Yes and quit if the algorithm returns Yes;
35 if there is v ∈ V (G) \ X s.t. v has neighbors in distinct components of G[X] then
36 call Cluster(G − v, k − 1);
37 return Yes and quit if the algorithm returns Yes
38 end
39 return No
40 end
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In Lines 15–21, we analyze the case when G has a shortest path on four vertices. If v1v2v3v4
is a shortest (v1, v4)-path then the vertices v1, v2, v3, v4 cannot belong to the same cluster
because they cannot be dominated by the same vertex. This implies that at least one vertex
of such a path should be included in any solution. We branch on four possible options and
return Yes if we have a yes-instance for one of the branches. Otherwise, we return No and
stop. From this moment, we assume that G has no shortest paths of length three, that is,
the diameter of G is at most two.

Further, in Lines 22–24, we check whether the instance admits a trivial solution with one
cluster. This holds if there is v ∈ V (G) such that |V (G) \ NG[v]| ≤ k – we simply delete
all the vertices that are not dominated by v. Now, we can assume that for each solution S,
G − S has at least two components.

In Lines 25–26, we find a separation (A, B) of G with the separator X = A ∩ B of size at
most k (we remind that we only consider separations (A, B) where both A \ B and B \ A are
nonempty). If such a separation does not exist, then for each S ⊆ V (G) of size at most k,
G − X is connected. Hence, (G, k) may have only a solution with one cluster. However, this
case was already excluded. Thus, we correctly return No and stop in Line 26. From now on,
we assume that a separation (A, B) of order at most k exists.

In Lines 27–30, we branch on the possibility that X contains a vertex of a solution. We
return Yes and stop if we find such a solution. Next, in Lines 31–34, we check whether there
is a solution that includes either every vertex of A \ B or every vertex of B \ A.

Finally, we conclude that any solution to (G, k) excludes the vertices of X and, furthermore,
each solution contains at least one vertex of A \ B and at least one vertex of B \ A. Then
by Lemma 8, for any solution S to (G, S), it holds that for each connected component C

of G − S, any vertex v ∈ V (C) dominating C is in X and, furthermore, the vertices of
each connected component of G[X] are in the same connected component of G − S and
the vertices of distinct connected component of G[X] are in separate components of G − S.
Recall that we excluded the case when (G, k) has a solution with one cluster. Hence, if (G, k)
is a yes-instance then G[X] should have at least two connected components. Let C1 and C2
be two distinct connected components of G[X]. Because the diameter of G is at most two,
we have that for every u ∈ V (C1) and every v ∈ V (C2), there is a vertex x ∈ V (G) \ X such
that uxv is a path in G. Because u and v are in distinct connected components of G − S,
it holds that x ∈ S. We conclude that if (G, k) is a yes-instance then there is at least one
vertex v ∈ V (G) \ X which has neighbors in two distinct connected components of G[X] and
all such vertices are included in any solution S. We use this in Lines 35-39. We either find v

and obtain that that (G − v, k − 1) is a yes-instance or conclude that (G, k) is a no-instance.
This concludes the correctness proof.

To evaluate the running time, notice that in Lines 15–21, we have four recursive calls. If
we go to Lines 27-38, then we have at most |X| + 3 ≤ k + 3 branches. For each branch, we
reduce the parameter by at least one. Thus, the total number of leaves of the search tree is at
most (k+3)k. We can find connected components in O(n+m) time using standard techniques
and we can check in O(n) time whether a connected graph has a dominating vertex. A shortest
path on four vertices can be found in O(nm) time by performing a breadth-first search
from each vertex. The existence of a vertex v such that |V (G) \ NG[v]| ≤ k can be checked
in O(m) time. To verify whether G has a separation of order k, we can use the algorithm of
Gabow [13] with running time O((n + min(k5/2, kn3/4))m). In fact, for undirected graphs,
m can be replaced by kn, but we use the bound in the weaker form O(k5/2nm). Finally, note
that in Lines 9–11, for each i ∈ {1, . . . , ℓ}, we compute the minimum ki such that (Ci, ki) is
a yes-instance. For this, we can use binary search, which adds an additional log k-factor to
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G1 G2

u v

Figure 2 An illustration of the construction in the proof of Theorem 10.

the running time. However, ki ≤ k − 1 and this means that the steps in Lines 9–11 can be
executed in time O((k + 3)k+5/2 · nm). Summarizing, we obtain that the total running time
is in O((k + 3)k+5/2 · nm). This concludes the proof. ◀

5 (No) Polynomial Kernels

In this section, we show some results related to the existence of polynomial kernels. Our
main result here is that Dominated Cluster Deletion does not admit a polynomial
kernel with respect to k + c even if d = 1. We mention that the construction is identical
to a reduction by Figiel et al. [12] that shows that 2-Club Cluster Vertex Deletion
does not have a polynomial kernel with respect to the solution size k. The two problems are
loosely related as a graph with a universal vertex (a dominating set of size one) is a 2-Club.
However, the other direction is not true, that is, not every 2-club has a dominating set of
size one. The two results therefore do not directly follow from one another.

▶ Theorem 10. 1-Dominated Cluster Deletion does not admit a polynomial kernel
with respect to k + c unless NP ⊆ coNP / poly even if the input graph is connected.

Proof. We show this result by providing a OR-cross-composition (see [4]) for 1-Dominated
Cluster Deletion from itself. Recall that 1-Dominated Cluster Deletion is NP-
complete by Proposition 1. Without loss of generality, we start with T = 2t instances of
1-Dominated Cluster Deletion, where each instance has the same number n of vertices,
the same value of k < n − 1, and where each of the input graphs is connected.

The main ingredient for our proof is a construction to merge two instances I1 = (G1, k)
and I2 = (G2, k) into one instance I∗ = (G∗, k∗). We first prove that I∗ is a yes-instance if
and only if at least one of I1 and I2 is a yes-instance. Afterwards, we will show how to use
this construction to get a cross-composition for all t instances.

The construction is depicted in Figure 2 and works as follows. We take the disjoint union
of the two graphs G1 and G2 and add two vertices u and v. We make u adjacent to all
vertices in G1 and v adjacent to all vertices in G2. Moreover, we add the edge {u, v}. Finally,
we set the parameter k∗ = k + 1.

It remains to show that I∗ is a yes-instance if and only if at least one of I1 and I2 is
a yes-instance. First assume, that one of I1 and I2 is a yes-instance. Since both cases are
completely analogous, we assume without loss of generality that I1 is a yes instance. A
solution for I∗ consists of an optimal solution for I1 and the vertex u. Note that adding u

to the solution disconnects the graphs G1 and G2. Moreover, the connected component
including G2 also contains v and therefore has a domination number of one.

For the other direction, assume that the constructed instance contains a solution S of size
at most k + 1. Note that since we assume k < n − 1, we need to include either u or v in S

as otherwise we would need to include all n > k∗ vertices in either G1 or G2 into S as one
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vertex of each instance together with u and v induces a P4 and no vertex is adjacent to both
a vertex in G1 and a vertex in G2. We assume without loss of generality that u is included
in S. Note that this leaves the graph G1 as one connected component and since we already
know that u ∈ S, it holds that S contains at most k vertices from G1 which results in each
connected component of G1 being dominated by a single vertex. Thus I1 is a yes-instance.

To complete the reduction, we iteratively half the number of instances by partitioning
all instances into arbitrary pairs and merge the two instances in a pair into one instance.
Note that in each iteration, all of our assumption still hold as all instances have d = 1, the
number of vertices in I∗ is 2n + 2 > k∗ + 1, and G∗ is connected. After log(T ) iterations,
we are left with a single instance which is a yes-instance if and only if at least one of the T

original instances is a yes-instance. The time required to compute the cross composition is
in O(

∑
i∈[T ] |Gi| · log(T )) which is polynomial in

∑
i∈[T ] |Gi| as each graph Gi contains at

least one vertex. Moreover, the parameter k in the constructed instance is k + log(T ) and
the degeneracy of the instance is at most n + log(T ) as we can put all the vertices in the T

original instances first into the degeneracy ordering and afterwards add the newly added
vertices in increasing order of their degree. Note that each vertex in an original instance
has at most n + log(T ) neighbors and each of the newly added vertices has at most log(T )
neighbors “above themself”. Thus, all requirements of a cross-composition are met and the
proof is completed. ◀

We mention in passing that it is simple to generalize Theorem 10 to any constant d > 0.
In each step, we simply add the following graph to each of the two newly added vertices u

and v. We show the construction only for v. We start with a path (w1, w2, . . . , w3d−2)
with 3d − 2 vertices and make w1 adjacent to v. Next, we iteratively replace each vertex wi

by a clique of size k + log(T ) + 1 vertices, where each vertex has the same neighborhood as wi

had. Note that we cannot fully remove any of the cliques and hence whenever we remove
neither u nor v, then we are left with a connected graph which requires at least 2d > d

vertices to dominate. Whenever we remove one of the two vertices, say u, then we can
dominate the connected component of v by selecting v and one copy of each vertex in the
clique corresponding to the vertices w3, w6, . . . , w3(d−1). The rest of the proof is completely
analogous to the proof of Theorem 10.

We next show that d-Dominated Cluster Deletion parameterized by k + ∆ admits
a polynomial kernel.

▶ Proposition 11. d-Dominated Cluster Deletion parameterized by k + ∆ admits a
polynomial kernel of size O(k2∆3).

Proof. First, we check for each connected component of the input graph whether it contains
a dominating set of size d in O(nd+2) time. Note that since we assume d to be a constant,
this is a polynomial running time. Moreover, each such connected component can be removed
from the input graph to create a smaller equivalent instance. If afterwards, the number of
connected components in the graph is larger than k, then we return a trivial no-instance as
we need to include at least one vertex from each connected component into the solution S,
meaning that any solution has size at least k +1. Finally, we bound the size of each connected
component as follows. If the number of vertices in one connected component is larger
than k + (k(∆ − 1) + 1)d(∆ + 1) ∈ O(k∆2), then we again return a trivial no-instance as
removing any solution S of size at most k leaves at most k(∆ − 1) + 1 connected components
and hence by the pigeonhole principle, at least one connected component has size larger
than d(∆ + 1). Note that this connected component cannot contain a dominating set of size
at most d and hence the entire instance is a no-instance.
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The number remaining vertices is now at most k ·(k + (k(∆ − 1) + 1)d(∆ + 1)) ∈ O(k2∆2)
and since the maximum degree is ∆, the number of vertices and edges is in O(k2∆3). This
concludes the proof. ◀

Next, we show that the previous result cannot be generalized to Dominated Cluster
Deletion even if we include the parameter d to the kernel and restrict k to be 0.

▶ Observation 12. Dominated Cluster Deletion does not admit a polynomial kernel
with respect to d + ∆ even if k = 0 unless NP ⊆ coNP / poly.

Proof. We show a simple AND-composition from Dominating Set on connected input
graphs. Given t instances of Dominating Set where all instances are connected and all
instances ask for a dominating set of the same size d, we simply take the disjoint union of
all of these graphs and set k = 0. If all t instances are yes-instances, then each connected
component of the constructed graph has a dominating set of size at most d, that is, the
constructed instance is a yes-instance. If the constructed instance is a yes-instance, then also
each connected component of the constructed graph has a dominating set of size at most d

as k = 0. Thus, all t original instances are yes-instances. Note that k = 0, the value of d

is the same as in each input instance, and the maximum degree is at most the number of
vertices in one of the t input instances. Thus, we have provided an AND-cross-composition
and this concludes the proof. ◀

Note that the previous reduction produces a disconnected graph. We show that this is ne-
cessary as Dominated Cluster Deletion admits a polynomial kernel when parameterized
by k + d + ∆ if the input graph is connected.

▶ Observation 13. Dominated Cluster Deletion admits a kernel of size O(kd∆3) when
parameterized by k + d + ∆ if the input graph is connected.

Proof. If the number of vertices in the input graph is at most kd∆2 + k + d(∆ + 1) − kd,
then we return the input graph as a trivial kernel of size O(kd∆3). Otherwise we return
a trivial no-instance as a kernel. We next show that this is justified. Assume towards a
contradiction that the input instance has more vertices but is a yes-instance. Then, it contains
a set S of at most k vertices such that removing S from the graph results in connected
components which can each be dominated by at most d vertices. Note that removing a
set of k vertices of degree at most ∆ from a connected graph can result in a graph with
at most k(∆ − 1) + 1 connected components. Moreover, the dominating set of size d in
each of these can dominate at most d(∆) + 1 vertices. Thus, the entire graph contains at
most k + (k(∆ − 1) + 1)d(∆ + 1) = kd∆2 + k + d(∆ + 1) − kd vertices, a contradiction. ◀

6 Conclusion

In this work, we initiated the study of Dominated Cluster Deletion and showed an
almost complete tetrachotomy regarding its parameterized complexity when parameterized
by combinations of k, d, c, and ∆. We remark that we leave two questions unanswered.
First, is Dominated Cluster Deletion fixed-parameter tractable or W[1]-hard when
parameterized by k + d + c? We conjecture that it is fixed-parameter tractable and the
algorithm may be obtained by combining the recursive understanding technique [6, 20] and
the results of Telle and Villanger [21]. Second, does d-Dominated Cluster Deletion
parameterized by k admit a polynomial kernel when d and c are constants?
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