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Abstract
Detecting location-correlated groups in point sets is an important task in a wide variety of applications
areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In
this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically,
given a radius r, we say a line segment is representative of a point set P of n points if it is within
distance r of each point p ∈ P . We aim to find the shortest such line segment. This problem is
equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an
algorithm to find the shortest representative segment in O(n log h + h log3 h) time, where h is the
size of the convex hull of P . Additionally, we show how to maintain a stable approximation of the
shortest representative segment when the points in P move.
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1 Introduction

Studying location-correlated groups or clusters in point sets is of interest in a wide range of
research areas. There are many algorithms and approaches to find such groups; examples
include the well-known k-means clustering [23] or DBSCAN [18]. In addition to the mere
existence of such groups, the group’s characteristics can carry important information as
well. In wildlife ecology, for example, the perceived shape of herds of prey animals contains
information about the behavioral state of animals within the herd [30]. Since shape is an
abstract concept that can get arbitrarily complex, it is often useful to have a simplified
representation of group shape that can efficiently be computed. The simplest shape (besides
a point) that may represent a group is a line segment, suggesting that the group is stretched
in a single direction.

When the points move in the plane, as is the case for animals, the representing line
segment may change orientation and length. Also, it may disappear if the shape of the points
is no longer captured well by a line segment. Conversely, it can also appear when the points
form a segment-like shape again.

© Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann,
and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.a.c.v.beusekom@tue.nl
https://orcid.org/0000-0003-1813-5299
mailto:m.j.vankreveld@uu.nl
https://orcid.org/0000-0001-8208-3468
mailto:m.j.m.v.mulken@tue.nl
https://orcid.org/0000-0001-6609-2057
mailto:m.j.m.roeloffzen@tue.nl
https://orcid.org/0000-0002-1129-461X
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:j.j.h.m.wulms@tue.nl
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.MFCS.2024.26
https://arxiv.org/abs/2402.12285
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Capturing the Shape of a Point Set with a Line Segment

Let us concentrate on the static version of the problem first. There are a few simple ways
to define a line segment for a set of points. We can use the width of the point set to define a
narrowest strip, put tight semi-circular caps on it, and use the centers of these semi-circles as
the endpoints of the line segment. We can also use the focal points of the smallest enclosing
ellipse, and use them as the endpoints. We can also use a maximum allowed distance from
the points to the line segment, and use the shortest line segment possible. The first and
third option are based on a hippodrome shape (the Minkowski sum of a line segment and a
disk). We note that the second and third option still need a threshold distance to rule out
that points are arbitrarily far from the defining line segment. In particular, the case that a
line segment is not a suitable representation should exist in the model, and also the case
where the line segment can become a single point. There are multiple other options besides
the three given, for example, by using the first eigenvector of the points, or the diameter.

In this paper we study the model given by the third option: given a set P of n points
in general position, we want to find the shortest line segment q1q2 such that all points
are within distance r. This model has several advantages: (i) It is a simple model. (ii) It
naturally includes the case that no line segment represents the points, or a single point already
represents the points. (iii) It guarantees that all points are close to the approximating line
segment. (iv) It has desirable properties when the points move: in the first two options, there
are cases where the points intuitively remain equally stretched in the direction of the line
segment, but points moving orthogonally away from it yields a shorter(!) line segment. This
issue does not occur in the chosen model. Moreover, it was studied before in computational
geometry, and we can build on existing algorithmic methods and properties.

The first algorithm published that solves the optimization version of the static problem (in
fact, the first option) uses O(n4 log n) time, for a set of n points [24]. This was improved by
Agarwal et al. [1] to O(n2α(n) log3 n), where α(n) is the extremely slowly growing functional
inverse of Ackermann’s function. The first subquadratic bound was given by Efrat and
Sharir [17], who presented an O(n1+ε) time algorithm, for any constant ε > 0. They use
the fixed-radius version as a subroutine and then apply parametric search. Their fixed-
radius algorithm already has the bound of O(n1+ε), as it uses vertical decompositions of
a parameter space in combination with epsilon-nets. They remark that their methods can
solve the shortest stabber problem for unit disks within the same time, which is our problem.

In this paper we present an improved static result and new kinetic results. We solve the
static version in O(n log3 n) time by exploiting the geometry of the situation better, which
allows us to avoid the use of parametric search and epsilon-nets. Our new algorithm uses a
rotating calipers approach where we predict and handle events using relatively simple data
structures. We still use a key combinatorial result from [17] in our efficiency analysis. For
the kinetic problem, we are interested in developing a strategy to maintain a “stable” line
segment that does not frequently appear and disappear, and whose endpoints move with
bounded speed. To accomplish this, we must relax (approximate) the radius around the line
segment in which points can be. We show that with constant speeds and a constant factor
approximation in radius, the endpoints of the line segment move at a speed bounded by a
linear function in r, while also avoiding frequent (dis)appearances of the line segment. These
results complement recent results on stability.

Related work. A number of shape descriptors have been proposed over the years. A few
popular ones are the alpha shape of a point set [15] and the characteristic shape [12], both of
which generate representative polygons. Another way to generate the shape of a point set is
to fit a function to the point set [6, 22, 32]. Bounding boxes and strips are much closer related
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Figure 1 The line segment (blue) must hit every circle of radius r, centered at the points in P .

to the line segment we propose. In the orientation of the first eigenvector, bounding boxes
(and strips) have been shown to not capture the dimensions of a point set well [11]. Optimal
bounding boxes and strips, of minimum area and width, respectively, align with a convex hull
edge and can be computed in linear time given the convex hull [19, 31]. Problems of finding
one or more geometric objects that intersect a different set of geometric objects are known
as stabbing problems [16], and several variants have been studied [5, 10, 29]. As mentioned,
stabbing a set of unit circles with the shortest line segment was studied in [17]. The inverse
variant, line segments stabbed by one or more circles, has also been studied [7, 25].

Recently, considerable attention has been given to stability of structures under the
movement of a set of points or motion of other objects. Stability is a natural concern in,
for example, (geo)visualization and automated cartography: In air traffic control planes
may be visualized as labeled points on a map, and the labels are expected to smoothly
follow the locations of the moving points [8]. Similarly, for interactive maps that allow, for
example zooming and panning, labels should not flicker in and out of view [2, 20, 21, 28]. In
computational geometry, only the stability of k-center problems was studied [3, 9, 13, 14],
until Meulemans et al. introduced a framework for stability analysis [26]. Applying the
framework to shape descriptors, they proved that an O(1)-approximation of an optimal
oriented bounding box or strip moves only a constant-factor faster than the input points [27].

2 Computing the Shortest Representative Segment

Given a set P of n points and a distance bound r, we show how to construct the shortest
segment q1q2 with maximum distance r to P . See Figure 1 for an example. Omitted proofs
can be found in the full version.

Our algorithm uses the rotating calipers approach [31]. We start by finding the shortest
representative segment for fixed orientation α, after which we rotate by π while maintaining
the line segment, and return the shortest one we encounter. Note that, even though a
representative segment does not exist for every orientation, we can easily find an initial
orientation α for which it does exist using rotating calipers; these are the orientations at
which the rotating calipers have width ≤ 2r. Although our input point set P can be of any
shape, the following lemma shows that it suffices to consider only its convex hull CH(P ).

▶ Lemma 1. If a line segment q1q2 intersects all circles defined by the points in the convex
hull CH(P ), then q1q2 also intersects all circles defined by the points in P .

We can compute CH(P ) in O(n log h) time, where h is the size of the convex hull [4].

MFCS 2024



26:4 Capturing the Shape of a Point Set with a Line Segment

τ1
τ2

Figure 2 Two extremal tangents τ1 and τ2 for horizontal orientation α. The shortest line segment
of orientation α that intersects all circles, ends at the boundary of the gray regions.

2.1 Fixed orientation
We describe how to find the shortest representative segment with fixed orientation α. Using
rotating calipers [31], we can find all orientations in which a representative segment exists,
and pick α such that a solution exists. For ease of exposition and without loss of generality,
we assume α to be horizontal. Let the left and right half-circle of a circle C be the half-circle
between π/2 and 3π/2 and between 3π/2 and 5π/2, respectively. Lemma 1 permits us to
consider only points of P on the convex hull, thus for the remainder of this paper we use CP

to indicate the set of circles of radius r centered at the points of P in CH(P ).
Observe that every horizontal line that lies below the bottom-most top horizontal tangent

τ1 and above the top-most bottom horizontal tangent τ2 of all circles crosses all circles (see
Figure 2). If τ1 lies below τ2, then there exists no horizontal line that crosses all circles.

To place q1q2 in the strip between τ1 and τ2, we can define regions R1, R2 in which
endpoints q1 and q2 must be placed such that q1q2 intersects all circles (see Figure 2).

The region R1 is defined as the set of points below or on τ1 and above or on τ2 and right or
on the right-most envelope of all left half-circles. The region R2 is defined analogously using
the left envelope of right half-circles. We use S1 and S2 to denote the envelope boundary of
R1 and R2 respectively. Note that S1 and S2 are convex and consist of circular arcs from
the left and right half-circles respectively. If R1 and R2 intersect, then we can place a single
point in their intersection at distance at most r from all points in P . Otherwise, note that q1
and q2 must be on the convex sequences S1 and S2, respectively; otherwise, we can move the
endpoint onto the convex sequence, shortening q1q2 and still intersecting all circles.

We will show that we can compute S1 and S2 in O(h) time. First, we show that the
half-circles on a convex sequence appear in order of the convex hull.

▶ Lemma 2. The order of the circular arcs in S1 or S2 matches the order of their corres-
ponding centers in CH(P ).

Now we can compute the convex sequences in linear time, given the tangents τ1 and τ2,
which can easily be found in linear time.

▶ Lemma 3. Given tangents τ1 and τ2, and CH(P ), we can construct S1 and S2 in O(h).

Proof. We assume that a solution exists, which can easily be checked in O(h) time. We
describe only the construction of S1, as S2 can be constructed symmetrically. Without loss
of generality, assume that τ1 denotes the start of S1 in clockwise order. We can find the
first arc on S1 by checking all intersections between τ1 and the relevant half-circles, and



N. van Beusekom et al. 26:5

τ1

τ2

Figure 3 Two convex sequences between τ1 and τ2. There are multiple points on the left convex
sequence that have the same tangent as the right yellow vertex. Still, there is only one line segment
in horizontal orientation for which the tangents of its endpoints are equal (blue).

identifying the most extremal intersection in O(h) time (see Figure 2) We add the part of
the circle that lies between τ1 and τ2 to S1. We then process each point pi along the convex
hull in clockwise order from the point defining our initial arc.

Next, let ⌢
c 1, . . . ,

⌢
c k denote the circular arc pieces for S1 constructed so far. Let pi be

the next point on the convex hull that we process. Let ci denote the left half-circle centered
at pi and let ck be the support left half-circle of ⌢

c k. We find the intersection between ci

and ck. If there is no intersection, then ci must lie entirely to the left of ck and it cannot
contribute to S1. If the intersection point is below τ2 then between τ1 and τ2 we have that
ci lies left of ck and it cannot contribute to S1. If the intersection point lies within ⌢

c k then
we update S1 to switch at the intersection point from ck to ci as then ci must lie right of ck

below the intersection point. If the intersection point lies above ⌢
c k then the entirety of ⌢

c k

lies to the left of ci, therefore ⌢
c k cannot contribute to S1 and we can discard ⌢

c k. We then
continue by comparing ci to ck−1.

Whenever a half-circle is possibly added it is compared to at most O(|S1|) arcs. However,
when the half-circle is compared to i arcs, then i − 1 arcs would be removed from S1. Thus,
by an amortization argument, this happens O(h) times. ◀

Next, we must place q1 and q2 on S1 and S2, respectively, such that q1q2 is shortest. We
show that q1q2 is the shortest line segment of orientation α when the tangents of S1 at q1
and S2 at q2 are equal. Vertices on S1 and S2 have a range of tangents (see Figure 3).

▶ Lemma 4. Let S1 and S2 be two convex sequences of circular arcs, and let q1 and q2
be points on S1 and S2, respectively, such that line segment q1q2 has orientation α. If the
tangent on S1 at q1 is equal to the tangent on S2 at q2, then q1q2 is minimal.

Observe that the length of q1q2 is unimodal between τ1 and τ2. We can hence binary
search in O(log h) time for the optimal placement of q1 and q2. By Lemmata 3 and 4 we can
compute the shortest representative segment of fixed orientation α in O(h) time.

2.2 Rotation
After finding the shortest line segment for a fixed orientation α, as described in the previous
section, we sweep through all orientations α while maintaining τ1, τ2, S1, S2, and the shortest
representative segment q1q2 of orientation α. We allow all of these maintained structures to
change continuously as the orientation changes, and store the shortest representative segment
found. Any time a discontinuous change would happen, we trigger an event to reflect these
changes. We pre-compute and maintain a number of certificates in an event queue, which
indicate at which orientation the next event occurs. This way we can perform the continuous
motion until the first certificate is violated, recompute the maintained structures, repair the
event queue, and continue rotation.

MFCS 2024



26:6 Capturing the Shape of a Point Set with a Line Segment

We distinguish five types of events:
1. q1 or q2 moves onto/off a vertex of S1 or S2;
2. τ1 or τ2 is a bi-tangent with the next circle on the convex hull;
3. τ1 and τ2 are the same line;
4. τ1 or τ2 is tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2;
5. τ1 or τ2 is not tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2.

Since the shortest line segment q1q2 in orientation α is completely determined by τ1, τ2,
S1, and S2, the above list forms a complete description of all possible events. Thus, we
maintain at most two certificates for events of type 1 (one for each convex sequence) and 2
(one for each tangent), and a single type-3 certificate. Additionally, there must be exactly
one type-4 or type-5 certificate for each endpoint of S1 and S2, so four in total. These are
stored in a constant-size event queue Q, ordered by appearance orientation. Insert, remove,
and search operations on Q can hence be performed in O(1) time.

We will describe below how all events over a full rotational sweep can be handled in
O(h log3 h) time in total. Combined with the computation of the convex hull of P this yields
the following theorem. Note that in the worst case P is in convex position, and n = h.

▶ Theorem 5. Given a point set P consisting of n points and a radius r, we can find the
shortest representative segment in O(n log h + h log3 h) time, where |CH(P )| = h.

Event handling. In the following descriptions, we assume that an event happens at orienta-
tion α, and that ε is chosen such that no other events occur between α −ε and α +ε. We also
assume that no two events happen simultaneously, which is a general position assumption.
We describe, for each event type, the time complexity of computing a new certificate of that
type, the time complexity of resolving the event, and the number of occurrences.

(1) q1/q2 moves onto/off of a vertex of S1/S2. We describe, without loss of generality,
how to handle the event involving q1 and S1; the case for q2 and S2 is analogous. See Figure 4
for an example of this event. First, observe that we can compute certificates of this type in
O(1) time, simply by walking over S1 to find the next vertex/arc q1 should move onto.

▶ Observation 6. We can construct a new certificate of type 1 in O(1) time.

Observe that, since vertices of S1 cover a range of tangents, there are intervals of
orientations at which q1 remains at a vertex of S1. As such, we describe two different cases
for this event: q1 moves onto or off a vertex of S1.

If q1 was moving over an arc of S1 at α − ε and encounters a vertex at α, then the
movement path of q1 is updated to remain on the encountered vertex. Additionally, we place
a new type-1 certificate into the event queue that is violated when q1 should move off the
vertex, when the final orientation covered by the vertex is reached.

If q1 is at a vertex at α−ε and orientation α is the final orientation covered by that vertex,
then the movement path of q1 must be updated to follow the next arc on S1. Additionally,
we place a new type-1 certificate into the event queue that is violated when q1 encounters
the next vertex, at the orientation at which this arc of S1 ends.

▶ Lemma 7. Throughout the full π rotation, type-1 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(1) time.



N. van Beusekom et al. 26:7

α− ε α α+ ε

Figure 4 When q1/q2 is at a vertex of S1/S2, it stops moving.

α− ε α α+ ε

Figure 5 When the defining circle of τ1/τ2 changes, τ1/τ2 is parallel to a convex hull edge.

(2) τ1 or τ2 is bi-tangent with the next circle on the convex hull. We describe, without
loss of generality, how to handle the event involving τ1; handling τ2 is analogous. See Figure 5
for an illustration. First, observe that we can compute certificates of this type in O(1) time,
since these certificates depend only on the orientation of the next convex hull edge.

▶ Observation 8. We can construct a new certificate of type 2 in O(1) time.

When τ1 is a bi-tangent of two circles defined by their centers u, v ∈ P then, by definition
of τ1, u and v must both be the extremal points in the direction θ perpendicular to α.
Therefore, (u, v) must be an edge on the convex hull. Suppose that, without loss of generality,
u was the previous extremal vertex in direction θ −ε, then v is extremal in direction θ +ε. As
such, τ1 belongs to u at α − ε, and to v at α + ε. When this happens, we insert a new type-2
certificate into the event queue that is violated at the orientation of the next convex hull
edge. Additionally, we must recompute the certificates of type 3, 4 and 5 that are currently
in the event queue, since these are dependent on τ1.

▶ Lemma 9. Throughout the full π rotation, type-2 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(3) τ1 and τ2 are the same line. When this event takes place, τ1 and τ2 are the inner
bi-tangents of their two respective defining circles. See Figure 6 for an example. First,
observe that we can compute certificates of this type in O(1) time by simply finding the
inner bi-tangent of the circles corresponding to τ1 and τ2.

▶ Observation 10. We can construct a new certificate of type 3 in O(1) time.

We distinguish two different cases for this event: either there is a solution at α − ε and
no solution at α + ε, or vice versa.

If there was a solution at α − ε and there is none at α + ε, we simply stop maintaining
q1q2, S1 and S2 until there exists a solution again. As such, we remove all type-1, type-5
and type-4 certificates from the event queue and place a new type-3 certificate into the event
queue that is violated at the next orientation where τ1 and τ2 are the same line.

MFCS 2024



26:8 Capturing the Shape of a Point Set with a Line Segment

α− ε α α+ ε

Figure 6 When τ1 and τ2 are the same line, they are an inner bi-tangent of their two defining circles.

If there was no solution at α − ε and there is a solution at α + ε, we must recompute S1,
S2, and q1q2 at orientation α. At orientation α, S1 and S2 are single vertices where τ1 and τ2
intersect the extremal half-circles of the arrangement. Then, q1q2 is the line segment between
these single vertices of S1 and S2. We place new type-1, type-4 and type-5 certificates into
the event queue reflecting the newly found S1, S2, q1 and q2. Additionally, we insert a new
type-3 certificate that is violated at the next orientation where τ1 and τ2 are the same line.

▶ Lemma 11. Throughout the full π rotation, type-3 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(4) τ1 or τ2 is tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2.
We describe, without loss of generality, how to handle the event involving τ1 and S1; the
case for τ2 and S2 is analogous. See Figure 7 for an example of this event. First, observe
that we can compute certificates of this type in O(1) time: Let Ci be the circle to which
τ1 is tangent. Then, to construct a certificate, we find the orientation at which τ1 hits the
intersection point of Ci and S1. Note that this intersection is part of S1 or will appear at τ1.

▶ Observation 12. We can construct a new certificate of type 4 in O(1) time.

Let vertex v be the vertex of the convex chain S1 that is intersected by τ1 at orientation α.
Then either vertex v is a vertex of S1 at orientation α − ε but not at α + ε, or vice versa.

In the prior case, at orientation α the arc to which τ1 is a tangent is completely removed
from S1. Vertex v becomes the endpoint of S1 and starts moving along the next arc of S1. If
the affected arc or vertex appeared in a type-1 certificate in the event queue, it is updated to
reflect the removal of the arc and the new movement of the vertex. Additionally, we place a
new type-5 certificate into the event queue.

In the latter case, at orientation α an arc of the incident circle to τ1 needs to be added to
S1. If the arc that was previously the outer arc of S1 appeared in a type-1 certificate in the
event queue, it may need to be updated to reflect the addition of the new arc. Additionally,
we place a new type-4 certificate into the event queue.

▶ Lemma 13. Throughout the full π rotation, type-4 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(5) τ1 or τ2 is not tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or
S2. We describe, without loss of generality, how to handle the event involving τ1 and S1;
the case for τ2 and S2 is analogous. See Figure 8 for an example of this event. The time
complexity of constructing a certificate of this type is stated in the following lemma.

▶ Lemma 14. We can construct a new certificate of type 5 in O(log2 h) time.
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α− ε α α+ ε

Figure 7 When τ1/τ2 hits an intersection of its defining circle that is also on S1/S2, an arc is
removed from S1/S2.

α− ε α α+ ε

Figure 8 When τ1/τ2 hits an intersection of two circles, an arc needs to be added to S1/S2.

Additionally, we get the following bounds on handling type-5 events.

▶ Lemma 15. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h log h) times, and we handle each occurrence of this event in O(log2 h) time.

We prove Lemmata 14 and 15 using an additional data structure in the following section.

2.3 Finding and maintaining the convex sequence
In this section, we describe an additional data structure necessary to maintain the convex
sequences S1 and S2 efficiently. We can use this data structure to construct and handle
violations of type-5 certificates efficiently, as well as to find new starting positions of S1 and
S2 after a type-3 event.

Let p1, . . . , ph be the vertices of the convex hull in clockwise order. At a given orientation α,
let pi be the point corresponding to the circle Ci to which τ1 is tangent. We use vτ to denote
the intersection point between τ1 and S1, if it exists, which is simultaneously an endpoint of
S1. Let pj be the point corresponding to the circle Cj on which vτ is located. This implies
that the arc on S1 intersected by τ1 belongs to circle Cj . Then, during our rotational sweep,
vτ is moving over Cj . A type-5 event takes place when vτ hits the intersection of Cj with
another circle Ck corresponding to point pk.

If, before a type-5 event, the arc of Cj on S1 was shrinking due to the movement of vτ ,
then Cj is fully removed from S1 at the event, and vτ continues moving over S1. Constructing
the certificate in this case is very easy, since all we need to do is walk over S1 from vτ to
find the next vertex. As such, for the remainder of this section, we consider only the more
complicated type-5 event, where the arc of Cj on S1 is growing due to the movement of vτ .

In that case, when the type-5 event happens, an arc of Ck is added to S1, and vτ starts
moving over Ck instead of Cj . As such, to construct a type-5 certificate, we must find the
intersection between Cj and another circle Ck belonging to a point pk ∈ P , such that the
intersection between Cj and Ck is the first intersection hit by vτ . To do this, we will first
state some characteristics of Ck and pk.

MFCS 2024
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pi

pk′

vτ

pj

pk

Figure 9 Point pk is placed on the red arc, which is a subset of the (blue dashed) convex
semi-circle centered at vτ , and disjoint from the (blue solid) concave semi-circle centered at vτ .

First, observe that finding the first intersecting circle Ck of Cj is not necessarily enough.
We are only interested in the semi-circles of all circles in CP that have the same “opening
direction” as the convex chain S1 for a given orientation α. As such, let the convex semi-circle
of a given circle C be the semi-circle of C that is convex with respect to S1. Conversely, let
the concave semi-circle of C be the opposite semi-circle of C. Then, circle Ck appears on S1
after a hit by vτ at orientation α if vτ is on the convex semi-circle of Ck at orientation α. If
this is not the case, Ck should be skipped. We show that, for this reason, we never have to
consider points pl such that l < i or j < l when constructing a type-5 certificate.

▶ Lemma 16. Let Ci be the circle defining τ1, and let Cj be the circle on which vτ is located,
for i ̸= j. Let Ck be the first circle hit by vτ during rotation at orientation α. If k < i or
j < k, then at orientation α, vτ lies on the concave semi-circle of Ck with orientation α.

Proof. Without loss of generality assume pi is positioned left of pj , then assuming that k < i

or j < k, pk must lie below the line through pi and pj (since i < j and the points are ordered
in clockwise order). See Figure 9 for the following construction.

Consider point pk′ placed on the line through pi and pj , such that vτ could be the bottom
intersection of Cj and a radius-r circle centered at pk′ . Let pk be a point placed on the circle
of radius r centered at vτ . If pk is placed on the other side of the line through vτ and pj ,
compared to pk′ , then vτ would enter Ck at orientation α, which does not induce an event.
As such, pk must be on the same side of the line through vτ and pj as pk′ . Additionally,
since k < i or j < k, pk must be below the line through pi and pj .

It is easy to see that all points on the convex semi-circle of vτ will have vτ on their
concave semi-circle. Since the arc on which pk is placed is a strict subset of the concave
semi-circle of vτ , any placement of pk must have vτ on its concave semi-circle. ◀

Lemma 16 implies that, while constructing a type-5 certificate, we need to consider only
candidate points pk such that i < k < j. Note that, if i = j, we get a type-4 event. Then, all
that is left is to find the first circle Ck with i < k < j that is intersected by vτ as it moves
over Cj . To this end, we describe a data structure that allows us to perform a circular ray
shooting query along Cj from the orientation at which the certificate must be constructed.

Data structure. Our data structure is essentially a balanced binary tree T on the vertices
of the convex hull in clockwise order, where each node stores an associated structure (see
Figure 10). For any i, let Di be the disk bounded by circle Ci. Suppose a node in T is
the root of a subtree with pi, . . . , pj in the leaves. Then its associated structure stores the
boundary of

⋂
i≤l≤j Dl as a sorted sequence of circular arcs. Given a range (i, j) we can
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pi pj

ℓ

ℓ

ℓ

ℓ

ℓ

Figure 10 A schematic representation of the data structure T and a query with ray ℓ.

query this data structure with a (circular) ray in O(log2 h) time to find the first intersection
of the ray with the boundary of

⋂
i≤l≤j Dl. A more detailed description of the data structure

can be found in the full version of this paper, along with the query algorithms needed to
handle certain events and find new certificates.

Event handling. Whenever a certificate of type 5 is violated at orientation α, it means
some circle Ck is hit by vτ at orientation α. It is still possible, however, that this hit happens
on the concave semi-circle of Ck. In that case, Ck should not be added to S1, and vτ should
simply continue moving over its original trajectory. We call these events, where a type-5
certificate is violated but S1 is not updated, internal events. To handle an internal event, we
merely need to construct another new type-5 certificate and continue our rotational sweep.
In this case, however, we do not have to search the entire range pi, . . . , pj when constructing
a new certificate, as shown in the following lemma.

▶ Lemma 17. Let pi be the point corresponding to τ1, and let vτ be at the intersection of
circles Cj and Ck, where Cj is the circle that defines the current trajectory of vτ and where
vτ is on the concave semi-circle of Ck. Then if the next circle hit by vτ is Cl for i < l < k,
this circle is hit on its concave semi-circle.

Proof. Let Cl be the next circle hit by vτ for i < l < k, and see Figure 11 for the following
construction. Since vτ is on the concave semi-circle of pk, pk must be on the convex semi-circle
of vτ . Furthermore, as Ck was hit by vτ , pk must lie on the same side of the line through pj

and vτ as pi. Let the endpoint of the concave semi-circle of vτ that lies clockwise from pk

be denoted vc, and observe that d(pk, pj) > d(vc, pj), where d(a, b) denotes the Euclidean
distance between a and b. Additionally, since we consider only points on the convex hull,
point pl must lie above line pipk but below line pkpj , resulting in a cone with its apex at pk.

Every point in this cone is further away from pj than pk: Since vτ is part of S1, placing
q1 at vτ must yield a valid solution for q1q2. This means that all points must be in the
Minkowski sum of a radius r disc and the ray with orientation α originating from vτ , and
hence pk lies below the line vcpi (see Figure 12). Finally, pj lies on the concave semi-circle
around vτ , and pk lies on the convex semi-circle around vτ , which shows that the cone lies
on the far side of pk with respect to pj . This implies that d(pl, pj) > d(pk, pj).
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pi

pj
pk

vτ

vc

Figure 11 pl must be located in the gray cone.

pi

pj

pk
vτ

Figure 12 All points in CH(P ) must be in the blue shaded area. When an internal event happens,
the red semi-circle is a witness that (pk, pj) is conjugate.

During our monotone rotational sweep, vc must continuously move closer to pj as we
continue our sweep. Therefore, when vτ intersects Cl, we must have d(pl, pj) > d(vc, pj):
This directly implies that vc must lie clockwise from pl on the radius r circle centered at vτ .
Thus, vτ lies on the concave semi-circle of Cl. ◀

Lemma 17 implies that, after an internal event with circle Cl, it is sufficient to consider
only points pk with l < k < j when constructing a new type-5 certificate.

When a type-5 certificate is violated and vτ is on the convex semi-circle of Ck, however,
we do need to update S1 to reflect vτ moving over the intersection between Ck and Cj .
Additionally, we must construct new certificates: We possibly need to compute a new type-1
certificate, as well as either a type-4 certificate or a new type-5 certificate using Ck as the
new trajectory of vτ and searching for the next hit with Cl for i < l < k. We are now ready
to prove Lemmata 14 and 15.

▶ Lemma 14. We can construct a new certificate of type 5 in O(log2 h) time.

Proof. Let pi be the point corresponding to τ1, Cj be the circle over which vτ is currently
moving, and α be the current orientation. To construct a type-5 certificate, we find the first
circle Ck with i ≤ l < k < j that is intersected by vτ . Here, if this certificate is constructed
during an internal event, l is the index of the circle Cl intersected by vτ during that event.
Otherwise, l = i. Since vτ moves over Cj , we can use the data structure described in the full
version of this paper to perform a circular ray shooting query on the sequence Cl, . . . , Cj−1
with starting point vτ to find Ck in O(log2 h). This gives us the point pk to include in the
certificate, and we can find the orientation at which pk is hit by drawing the tangent of Ci

through the intersection point between Cj and Ck. ◀

▶ Lemma 15. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h log h) times, and we handle each occurrence of this event in O(log2 h) time.
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Proof. To show that this event happens O(h log h) times during a π rotation, we need the
following definition. Let an ordered pair (pg, ph) of vertices of CH(P ) be conjugate if we can
place a semi-circle of radius r so that it hits pg and ph, ph lies clockwise from pg on this
semi-circle, and the semi-circle does not intersect the interior of CH(P ). Efrat and Sharir
prove that any convex polygon with n vertices has at most O(n log n) conjugate pairs if the
vertices are placed in general position [17]. We charge each occurrence of a type-5 event to a
conjugate pair, and prove that each pair is charged only a constant number of times. This
immediately yields the bound of O(h log h) on the number of type-5 events.

Consider an internal type-5 event. We charge these events to the pair (pk, pj). To this
end, we show that this pair of points must be conjugate. Consider orientation α at which this
event takes place. At that point, we can draw a circle of radius r, centered at vτ , through pk

and pj . Since, by definition of an internal event, vτ is on the concave semi-circle of pk, pk

must be on the convex semi-circle centered around vτ .
Now again observe that, since vτ is part of S1, placing q1 at vτ must yield a valid solution

for q1q2. This means that all points must be in the Minkowski sum of a radius r disc and
the ray with orientation α originating from vτ . See Figure 12. Therefore, the concave
semi-circle of radius r centered at vτ does not intersect CH(P ). If we rotate this semi-circle
counter-clockwise until one of its endpoints coincides with pk, we obtain a semi-circle through
pk and pj that does not intersect CH(P ). This means it is a witness that (pk, pj) is conjugate.

Next, consider a type-5 event that is not internal. The same argument as above holds,
except pk is already on the concave semi-circle of radius r centered at vτ . Since this semi-circle
does not intersect CH(P ), that semi-circle is a direct witness that (pk, pj) is conjugate.

Every conjugate pair only induces at most one type-5 event. In order for conjugate pair
(pk, pj) to induce a second type-5 event, vτ must again hit the intersection between pk and
pj while it is moving in the same angular movement direction. This can only happen if we
perform a full 2π rotational sweep, or if vτ first moves over this intersection in the opposite
direction. The prior is not possible in a π rotational sweep. The latter is only possible if
pk is first involved in a type-4 event. But then, k = i, and by construction pk can never be
involved in another type-5 certificate.

Handling a type-5 event consists of updating S1 and the movement trajectory of vτ , which
can be done in O(1) time. Additionally, we construct new type-1 certificate and either a
type-4 or type-5 certificate, which can be done in O(1) and O(log2 h) time by Observations 6
and 12 and Lemma 14. ◀

After analyzing all events that occur during the rotational sweep, we can prove Theorem 5.

▶ Theorem 5. Given a point set P consisting of n points and a radius r, we can find the
shortest representative segment in O(n log h + h log3 h) time, where |CH(P )| = h.

Proof. We initialize the algorithm by computing the convex hull CH(P ). By Lemma 1, it is
sufficient to consider only points in CH(P ) to find a representative segment of P . We use
rotating calipers to check that the shortest representative segment is not a point, and find
an orientation α in which a solution exists. For this fixed α we find τ1 and τ2, compute S1
and S2, as well as the shortest line segment q1q2 in orientation α. Computing the convex
hull can be done in O(n log h) [4]. By Lemma 3, S1 and S2 can be initialized in O(h), and
we can initialize q1q2 in O(log h) time. As such, initialization of the algorithm can be done
in O(n log h) time in total.

Next, we rotate orientation α over π in total, maintaining τ1, τ2, S1, and S2, as well as
q1q2. Note that a rotation of π is sufficient, since we consider orientations, which identify
opposite directions of a 2π rotation. Throughout the rotation we maintain the shortest
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(a) (c)(b)

Figure 13 Examples of representative segments (blue) for moving points. These show that a
representative segment may appear and disappear frequently (a) due to the motion of two points
(top left) or one point (top right) or (b) due to minor oscillations in a movement path. (c) Small
movements can trigger a discrete change of the representative segment.

representative segment, and return the shortest such line segment found over all orientations.
Over the full rotation, we encounter five different types of events. By Lemmata 7–15, these
events can be handled in O(h log3 h) time in total.

As we mentioned in Section 2.1, the shortest representative segment is defined by only
τ1, τ2, S1, and S2. Each tangent is defined by a circle. Hence, τ1 and τ2 can only change
when they are defined by a new circle. Thus, by Lemma 9, we correctly maintain τ1 and τ2
throughout the full π rotation. Furthermore, S1 and S2 can only exist when τ1 and τ2 appear
in the correct order. By Lemma 11 we correctly maintain when S1 and S2 exist. Finally, S1
and S2 can only make a discrete change as the tangents τ1 and τ2 hit intersections between
circles in CP . If the tangents do not touch a vertex, then S1 and S2 must change continuously
along the arcs that τ1 and τ2 cross. By Lemmata 13 and 15, we correctly maintain S1 and S2
when they exist. In conclusion, we correctly maintain τ1, τ2, S1, and S2 throughout the full π

rotation. Since we maintain the shortest line segment between S1, and S2 in any orientation
using Lemma 7, we also maintain the shortest representative segment for any orientation. ◀

3 Stable Representative Segments for Moving Points

In this section, we consider maintaining representative segment q1q2 while the points in P

move. We first show what can happen if we would maintain the optimal solution explicitly
under continuous motion of the points.

There are examples where a representative segment exists for a value of r for an arbitrarily
short duration. This can happen because one point moves towards a hippodrome shape
and another point moves out of it, giving a brief moment with a valid hippodrome. The
same effect can be caused by a single linearly moving point that grazes the hippodrome at a
join point. These examples are illustrated in Figure 13(a). It can also happen that a minor
oscillating movement of a point causes a quick sequence of changes between a valid and no
valid segment, see Figure 13(b).

Now, consider the point set P in which the points form a regular k-gon (see Figure 13(c)).
When r is equal to half the width of the k-gon, then we can force a discrete change in the
placement of q1 and q2, with very slow movement of points in P . In this case there is always
a valid representative segment, but its endpoints make a jump.

We see that continuously maintaining the optimal solution has two artifacts that are
undesirable to a human observer: (1) the segment can appear and disappear frequently within
an arbitrarily short time frame, and (2) a segment may jump to a new location, leading to
infinitely high speeds of the endpoints even if the points themselves move slowly.
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D(t)

q′1(t) q′2(t) E(t)
d1(t) d2(t)

Figure 14 The prospective segment q′
1q′

2 in relation to D, E, and diametrical line d1d2 at time t.

Our goal is therefore to ensure that the segment movement is stable over time: We
want q1 and q2 to move continuously and with bounded speed, preventing discrete or (near)
instantaneous changes. We accomplish this as follows. First, we will sample the positions of
the moving points only at integer moments, and then decide immediately to show or not
show a solution in the next time unit. This implies that existence and non-existence of a
solution lasts at least one time unit, and we avoid the solution (dis)appearing frequently.
Second, we make the assumption that the maximum speed of the points is unit. We have to
make some bounded speed assumption otherwise we cannot hope to get a bounded speed of
the endpoints either. Third, we allow more flexibility in when we have a solution. We do
this using a less strict regime on r, and by assuming that r ≥ 1. Whenever the real solution
exists (with the actual r), then we guarantee that we also have a solution. Whenever there is
no solution even for a radius of 2

√
2 · r + 4, then we never give a solution. When the radius

is in between these bounds, we may have a solution or not. Our algorithm can then ensure
that the speeds of the endpoints are bounded, and the length of our chosen segment always
approximates the true optimum (when it exists), at any moment in time, also between the
integer sampling moments.

So we assume that a point p ∈ P is described by a trajectory that is sampled at integer
timestamps. That is, each point in P is described by p(i) → R2 where i ∈ Z is the timestamp.
We also assign each endpoint of the representative segment a position as a function of
t ∈ R, which means that the representative segment at time t is now defined by q1(t)q2(t).
Furthermore, we use D(t) and W (t) as the diameter and width of the point set, which are
respectively the maximum pairwise distance of points in P and the width of the thinnest
strip containing P . Let d1(t), d2(t) ∈ P be a pair of points defining the diameter. Lastly, we
also use the extent E(t) of P in the direction orthogonal to the line segment d1(t)d2(t). For
all of the above definitions, we omit the dependence on t when it is clear from the context.

In the following, we describe how to specify q1(t) and q2(t) such that they move with
bounded speed, and such that the length of the segment q1(t)q2(t) as well as the proximity
of the segment to P can be bounded at any time t. In particular, we define such a segment
q1(t)q2(t) as an approximating segment, and prove that the length of an optimal representative
segment is approximated by an additive term l, and at the same time the maximum distance
from any point in P to the segment q1(t)q2(t) is at most h · r, for some constant h.

Algorithm. Our algorithm A(t) is state-aware. This means that the output of A(t) is
dependent only on the input at or before time t, but it has no knowledge of the input after
time t. At every integer timestamp i ∈ Z, we compute a canonical solution q′

1(i)q′
2(i). The

endpoints q′
1(i) and q′

2(i) of this canonical solution are placed on the lines orthogonal to the
diametric line through d1(i) and d2(i), respectively, such that q′

1(i)q′
2(i) lies in the middle of

the narrowest strip containing P in the diametric orientation, see Figure 14.
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Our algorithm is now a special kind of state-aware algorithm called a chasing algorithm [27]:
At at every integer time step i ∈ Z, the algorithm computes the canonical solution q′

1(i)q′
2(i)

and then linearly interpolates from q′
1(i − 1)q′

2(i − 1) to q′
1(i)q′

2(i), arriving there at time i + 1.
At that point, q′

1(i + 1)q′
2(i + 1) can be computed, and we continue in a similar manner.

However, if the maximum distance from P to the canonical solution becomes too large, we
no longer want the algorithm to output any solution. In this case, no (optimal) representative
solution exists, and we do not produce an approximating segment either.

Formally, for any timestamp t ∈ (i, i + 1), we linearly interpolate q1 and q2 between
their previous canonical placements as follows. We define α = (t − i) and set qj(t) =
α·q′

j(i−1)+(1−α)·q′
j(i), for j ∈ {1, 2}. Then, the output of our algorithm is A(t) = q1(t)q2(t)

if E(⌊t⌋) ≤ 2r
√

2 + 2 and ∅ otherwise.
The above algorithm yields the bounds stated in the following theorem. Detailed proofs

for these bounds can be found in the full version of this paper.

▶ Theorem 18. Given a set P of points moving with at most unit speed, algorithm A yields
a stable approximating segment with l = 2r + 4 and h = 2

√
2 + 4, for which speed of the

endpoints is bounded by (2r + 1)
√

2 + 2.

4 Conclusion

In this paper, we presented an O(n log h+h log3 h) time algorithm to find the shortest repres-
entative segment of a point set, improving the previous O(n1+ε) time solution. Additionally,
we showed how to maintain an approximation of the shortest representative segment in a
stable manner, such that its endpoints move with a speed bounded by a linear function in r.

There may be possibilities for improving the running time of our static solution to
O(n log h + h log2 h), or even O(n log h). The O(h log3 h) term comes from having to handle
O(h log h) type-5 events in O(log2 h) time each. However, it may be possible to show that
there are at most O(h) type-5 events, since the conjugate pairs used to bound the number of
internal events each have a unique starting point. Additionally, it may be possible to improve
the query time of the data structure described in the full version of this paper to O(log h)
time using ideas like fractional cascading, but there is no straightforward way to make this
work for the circular query.
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