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Abstract
A recent result by Bodirsky and Guzmán-Pro gives a complexity dichotomy for the following class
of computational problems, parametrized by a finite family F of finite tournaments: given an
undirected graph, does there exist an orientation of the graph that avoids every tournament in F?
One can see the edges of the input graphs as constraints imposing to find an orientation. In this
paper, we consider a more general version of this problem where the constraints in the input are not
necessarily about pairs of variables and impose local constraints on the global oriented graph to
be found. Our main result is a complexity dichotomy for such problems, as well as a classification
of such problems where the yes-instances have bounded treewidth duality. As a consequence, we
obtain a streamlined proof of the result by Bodirsky and Guzmán-Pro using the theory of smooth
approximations due to Mottet and Pinsker.
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1 Introduction

1.1 Completion Problems

For every fixed finite family F of tournaments, the F-free orientation problem consists in
deciding whether an undirected graph G admits an orientation G∗ such that no tournament
from F is contained in G∗. The complexity of such problems was systematically studied
recently in [5], where it is shown that every such problem is solvable in polynomial time or
NP-complete.

We extend this result by considering the following variation of the problem. Fix an r ≥ 2
and let R be a set of tournaments on r vertices, labelled with the numbers 1, . . . , r. An input
in our problem is a set V of vertices where some r-tuples are marked. The yes-instances
to this problem are those where there exists an F-free digraph on V such that whenever
(x1, . . . , xr) is marked, then the labelled subdigraph induced on {x1, . . . , xr} is isomorphic
to an element of R.

This is an extension of the F-free orientation problem, as can be seen by taking r = 2
and R consisting of the two possible tournaments on 2 (labelled) vertices. We call this the
(F , R)-orientation problem, see Figure 1 for an example. One can view F as imposing global
constraints (find a directed graph on V that globally avoids every tournament in F), and R

as imposing local constraints (find a directed graph on V that satisfies the local restrictions
on the marked tuples). Our more general result is a P versus NP-complete complexity
dichotomy for such problems.
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Figure 1 Example of an instance of (F , R)-orientation where F consists of the transitive tourna-
ment on 4 vertices, and R contains the oriented graphs on 3 vertices inducing a transitive tournament.
The markings are given by hyperedges. Note that due to the symmetry of R we do not need to
specify the order of the vertices in the hyperedges. To solve such an instance, one needs to determine
whether there exists an oriented graph on the given vertices, not inducing a transitive tournament
on any four vertices, while all marked triples of vertices induce a transitive tournament.

▶ Theorem 1. Let F be a finite set of finite tournaments and let R be a set of labelled
r-vertex tournaments. Then the (F , R)-orientation problem is solvable in polynomial time or
NP-complete.

1.2 Constraint Satisfaction Problems

Given a finite family F of tournaments, Fraïssé’s theorem asserts that there exists a count-
ably infinite digraph DF whose finite subgraphs are exactly the oriented graphs avoiding
every tournament in F . Moreover, DF satisfies a certain model-theoretic condition called
homogeneity, which defines DF uniquely up to isomorphism (see Section 2 for the detailed
definitions). The following observation by Bodirsky and Guzmán-Pro in [5] is crucial for
their complexity result. Consider the symmetric closure of DF , i.e., the undirected graph
HF obtained by forgetting about the directions of arcs in DF . Then it can be observed that
given an undirected graph G, one has a homomorphism G→ HF if, and only if, G admits
an F-free orientation. Thus, the F-free orientation problem coincides with the constraint
satisfaction problem for the graph HF , denoted by CSP(HF ). The complexity of this CSP
can then be investigated using standard methods.

In order to obtain a generalization of [5] for the (F , R)-orientation problem, we start with
a similar observation. In DF , consider the subset R′ ⊆ V r containing all tuples (v1, . . . , vr)
inducing in DF a tournament from R. The structure A = (V ; R′) is a so-called first-order
reduct of DF . Note that if R consists of the two labelled tournaments on 2 vertices, then A
thus defined coincides with HF . An input to the (F , R)-orientation problem can then be seen
as a structure in the same signature as A. One obtains that an input to the (F , R)-orientation
problem admits a solution if, and only if, it admits a homomorphism to the structure A. The
structure A obtained in this way moreover satisfies two important properties:
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Provided R contains more than one tournament, the symmetric closure U of the edge
relation of DF is invariant under the higher-order symmetries of A, called polymorphisms.
In particular, the group of automorphisms of A is a subgroup of Aut(HF ).
A has a particular type of binary injective polymorphism that we call an injective
projection.

Theorem 1 then follows from the following technical result. The notion that “A pp-
constructs every finite structure” appearing in the statement is defined in Section 2; for now,
the reader can view this as a natural condition allowing to reduce the boolean satisfiability
problem to the constraint satisfaction problem of A, which is then NP-hard.

▶ Theorem 2. Let F be a finite set of tournaments, and let A be a first-order reduct of
DF that admits injective projections and such that U is invariant under Pol(A). One of the
following holds:

A pp-constructs every finite structure and CSP(A) is NP-complete, or
CSP(A) is solvable in polynomial time.
The proof follows the smooth approximations approach introduced in [25] and uses the

refinements thereof from [22, 26]. This provides a streamlined proof and an extension of the
dichotomy result from [5].

Another consequence of our proof is the following. Say that the class of F -free orientable
graphs has bounded treewidth duality if there exists a set G of undirected graphs of bounded
treewidth such that for every finite graph G, there exists an F-free orientation of G if, and
only if, no graph from G admits a homomorphism to G. This notion can be extended to
structures with an (F , R)-orientation by generalizing the notion of treewidth for relational
structures in general, we refer the interested reader to [15] for precise definitions. Any class of
structures corresponding to a CSP and having bounded treewidth duality can be recognized
in polynomial time by a Datalog program, giving a particularly simple algorithm recognizing
the class.

As a by-product of our proof, we obtain a characterization of the sets F , R for which the
class of structures with an (F , R)-orientation has bounded treewidth duality. As above, this
characterization is phrased in terms of the algebraic properties of a first-order reduct of DF .
Using the recent results from [22], this also allows us to obtain a bounded on the treewidth
in a possible duality depending on the size of the tournaments in F and R.

▶ Theorem 3. Let F be a finite set of tournaments, and let A be a first-order reduct of DF
that admits injective projections and such that U is invariant under Pol(A). Let r be the
maximal arity of a relation of A and ℓ be the maximal size of a tournament in F . Then, the
following are equivalent:
1. Pol(A) contains an Aut(DF )-canonical pseudo-majority polymorphism modulo Aut(DF ),
2. The class of finite structures admitting a homomorphism to A has a duality of treewidth

at most max(6, r, ℓ).
In particular, when the class of F -free orientable graphs has a bounded treewidth duality,

then Theorem 3 implies that the duality G can be chosen to consist of graphs of treewidth at
most max(6, ℓ).

1.3 Related Work
The approach we follow here shows an equivalence between (F , R)-completion problems and a
subclass of constraint satisfaction problems (CSPs). A P/NP-complete complexity dichotomy
is known for CSPs with a finite template [14, 29], while for CSPs with infinite templates in
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general it is known that the complexity varies greatly [4, 17, 18]. For a subclass of infinite
structures, so-called first-order reducts of finitely bounded homogeneous structures, Bodirsky
and Pinsker have conjectured that a dichotomy similar to that of finite-domain CSPs exists.
The templates DF studied here are in the scope of that conjecture. The conjecture has
been proved for a variety of finitely bounded homogeneous structures (e.g., all homogeneous
undirected graphs [8], certain homogeneous hypergraphs [26], the universal homogeneous
tournament [25], (Q; <) [7], and the universal homogeneous poset [20]). There exist natural
subclasses of the Bodirsky-Pinsker class for which the conjecture is still open; this is the
case for example for first-order reducts of finitely bounded homogeneous directed graphs,
or for first-order reducts of homomorphically bounded homogeneous structures. It can be
shown that if D is a homogeneous homomorphically bounded homogeneous directed graph,
then D = DF for some finite family F of finite tournaments. Thus, our result can be seen as
making progress on the Bodirsky-Pinsker conjecture for both mentioned subclasses.

1.4 Organization of the paper

We recall some elementary notions from graph theory and the universal-algebraic approach
to the complexity of infinite-domain CSPs in Section 2. In Section 3, we prove some
elementary properties of the templates A arising from (F , R)-completion problems. Due
to space restrictions, we only describe a high-level proof strategy for Theorems 2 and 3
in Section 4, focusing on making the presentation accessible to a non-expert.

2 Definitions and Notations

2.1 Elementary model-theoretic notions

For the purposes of this paper, a structure is a tuple A = (A; RA
1 , . . . , RA

k ) consisting of a
set A (the domain) together with finitely many relations RA

i ⊆ Ari on A. The signature of
A is the list (r1, . . . , rk) containing the arities of the relations of A. We assume the reader
is familiar with the standard notions of homomorphisms, embeddings, and isomorphisms
between structures. As is standard in model theory, all substructures and subgraphs in this
paper are induced substructures and subgraphs.

An oriented graph is a directed graph G = (V, E) where at most one of (u, v) ∈ E or
(v, u) ∈ E holds for all u, v ∈ V , and where (u, u) ̸∈ E for all u ∈ V . A tournament is an
oriented graph such that the symmetric closure of its edge relation induces a complete graph.
For a (finite) set F of finite tournaments we say that an oriented graph is F -free if it contains
no F ∈ F as an induced subgraph.

Let F be a finite set of finite tournaments. Let CF be the class of all F-free oriented
graphs. It can be seen that this class has the so-called amalgamation property: given two
F -free oriented graphs, their union is also F -free due to F consisting of tournaments only. By
the classical result of Fraïssé [16], there exists an oriented graph DF = (V, E) on a countable
set whose finite subgraphs are exactly the graphs isomorphic to a graph in CF . Moreover,
this graph is homogeneous, in the sense that for every finite subset S ⊆ V and every partial
isomorphism f : S → V , there exists an automorphism α of DF such that f |S = α|S . These
two properties describe DF uniquely up to isomorphism. We write HF = (V, U) for the
undirected graph whose edge set is the symmetric closure of E. We note that HF is in
general not homogeneous, and in fact we will focus in this paper on the case where HF is
not homogeneous for reasons that are made clear below.
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A first-order reduct of A is a structure B with the same domain as A and whose relations
all have a first-order definition in A. For example, HF is a first-order reduct of DF , because
the symmetric closure U of E is definable by (v, w) ∈ E ∨ (w, v) ∈ E, which is a first-order
definition of U in DF . An expansion of A is a structure B obtained from A by adding new
relations.

An example of a natural expansion of DF is obtained as follows. Consider the class C<
F

of all structures (V ′, E′,≺) where (V ′, E′) ∈ CF and where ≺ is an arbitrary linear order on
V ′. This class also has the amalgamation property as described above, and its Fraïssé limit
can be taken to be (V, E, <), an expansion of DF by a linear order.

Let G be a group of permutations on a set A. Let ≡k be the equivalence relation on
Ak containing the pairs (a, b) of tuples such that there exists α ∈ G such that α(ai) = bi

for all i ∈ {1, . . . , k}. We call the equivalence classes of ≡k the orbits of G . The orbit of a
pair (a, b) ∈ V 2 under Aut(DF ) is given, by the homogeneity of DF , by the isomorphism
type of the labelled graph induced by {a, b}. There are therefore 4 orbits, corresponding to
whether a = b, whether a ̸= b are connected by an edge, and if they are whether (a, b) ∈ E

or (b, a) ∈ E. We denote the orbit containing the pairs (a, b) such that a ̸= b and (a, b) ̸∈ U

by N, the orbit of all (a, b) ∈ E by →, and the orbit of all (a, b) such that (b, a) ∈ E by ←.
Let A,B be structures with B = An. We say B is a pp-power of A if every relation in B

is definable by a primitive positive formula over A, that is a formula only using ∃ and ∧. For
arbitrary structures A,B we say A pp-constructs B if there is a pp-power C of A such that B
and C are homomorphically equivalent.

2.2 Clones, naked and affine sets
A relation R ⊆ Am is said to be invariant under a function f : An → A if for every
a1, . . . , an ∈ R, then f(a1, . . . , an), the tuple obtained by applying f componentwise to the
tuples a1, . . . , an, is also in R. A function f : An → A is a polymorphism of a structure
A if all the relations of A are invariant under f . In particular, every automorphism and
endomorphism of A is a polymorphism of A. The set Pol(A) of all polymorphisms of A forms
a clone: it contains all the projections pk

i : (a1, . . . , ak) 7→ ai for 1 ≤ i ≤ k and it is closed
under composition. We write P for the clone consisting of only the projections on the set
{0, 1}. This clone is relevant in the theory of constraint satisfaction because it is exactly the
clone of polymorphisms of a structure S with domain {0, 1} and having all ternary relations
on {0, 1} as its relations, whose CSP corresponds to the problem CNF-3SAT.

If S ⊆ Ak is invariant under a clone C , and θ is an equivalence relation on S that is
also invariant under C , then the operations in C naturally induce a clone of functions on
the set S/θ, where f ∈ C of arity n induces the function ([s1], . . . , [sn]) 7→ [f(s1, . . . , sn)].
We use the notation C ↷ S/θ to denote this clone and if θ has at least two equivalence
classes we call (S, θ) a subfactor of C . A subfactor is minimal if for all a, b ∈ S that are not
θ-equivalent, the smallest C -invariant set containing a, b is equal to S.

A subfactor (S, θ) of C is called a naked set if C ↷ S/θ only consists of projections.
Similarly, if S/θ is finite and can be endowed with a structure of a module over a ring R,
in a way that C ↷ S/θ consists of affine functions, of the form (x1, . . . , xn) 7→

∑
λi · xi for

λ1, . . . , λn ∈ R such that
∑

λi = 1, then we call (S, θ) an affine set for C . Note that every
naked set is a particular example of an affine set: if (S, θ) is a naked set of C , then the maps
induced by C on S/θ have exactly one non-zero λi, which is equal to 1.

For a clone C on a 2-element set (in this paper, the 2-element set is {←,→}), the notions
of having a naked set or an affine set can be rephrased using Post’s classification of such
clones [28]:
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C has a naked set if, and only if, every operation in C is essentially unary, of the form
(x1, . . . , xn) 7→ e(xi) for some permutation e of {←,→} and i ∈ {1, . . . , n}. If C does not
have a naked set, then it contains an operation f satisfying the equation

f(x, y, z) = f(y, z, x)

for all x, y, z ∈ {←,→}. Such an f is called a ternary cyclic operation.
C has an affine set if, and only if, every operation in C is of the form

(x1, . . . , xn) 7→
∑

λi · xi + µ

where λ1, . . . , λn, µ ∈ {0, 1} are such that
∑

λi = 1, addition and multiplication are
understood modulo 2, and after choosing an arbitrary bijection between {←,→} and
{0, 1}. If C does not have an affine set, then it contains an operation m satisfying the
identities

m(x, x, y) = m(x, y, x) = m(y, x, x) = x

for all x, y ∈ {←,→} or a binary operation s that is associative, commutative, and
satisfies s(x, x) = x for all x ∈ {←,→}. Such an m is called a majority operation, while
s is called a semilattice.

For an ω-categorical structure A it is known that the complexity of CSP(A) is captured
by the polymorphisms of A. For our purposes, we need the following two special cases:

▶ Theorem 4 ([21]). Let A be an ω-categorical structure. The following hold:
If Pol(A) has a naked set, then A pp-constructs every finite structure and CSP(A) is
NP-hard.
If Pol(A) has an affine set, then the class of structures admitting a homomorphism to A
does not have bounded treewidth duality.

2.3 Canonical Functions
Let S ⊆ Ak be invariant under a function f : An → A. We say that f : An → A is
canonical on S with respect to a permutation group G if whenever a1 ≡k b1, . . . , an ≡k bn

for a1, b1, . . . , an, bn ∈ S, then f(a1, . . . , an) ≡k f(b1, . . . , bn). In other words, f is canonical
on S if the restriction of ≡k to S is invariant under f ; in particular, the set of functions f

that are canonical on S with respect to G forms a clone C , and this clone has an action
C ↷ S/≡k. If f(a1, . . . , an) ≡k f(αa1, . . . , αan) holds for all α ∈ Aut(A) and all a1, . . . , an,
we call f diagonally canonical. In order to simplify notation and to make the dependence on
the group clearer, we write S/G for the set of orbits of S induced by G .

Let k ≥ 1. We write Ik ⊆ V k for the set of tuples with pairwise distinct entries, and
K ⊆ Ik for the set of tuples whose components induce a clique in HF . We will be considering
the following clones:

C K
(DF ,<) is the clone of polymorphisms of A that are canonical on K with respect to

Aut(DF , <).
C K

DF
the clone of polymorphisms of A that are canonical on K with respect to Aut(DF ),

C I
A the clone of polymorphisms of A that are, for all k ≥ 1, canonical on Ik with respect

to Aut(A).
Note that since canonicity is considered with respect to different groups, the clones above
are not necessarily comparable with respect to inclusion.
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2.4 Smooth approximations
Central to our proof of Theorem 2 is the theory of smooth approximations, further developed
in [23]. It relies on comparing two clones C ⊆ D and whether a naked set (resp. affine set)
for C can be lifted to a naked set (resp. affine set) for D . The lifting is formalized by smooth
approximations.

▶ Definition 5 (Smooth Approximations). Let A be a set, k ≥ 1, and ∼ be an equivalence
relation on S ⊆ Ak. An equivalence relation η on some set S′ with S ⊆ S′ ⊆ Ak approximates
∼ if the restriction of η to S is a possible (non-proper) refinement of ∼; in that case, η is an
approximation of ∼.

Suppose that the ∼-equivalence classes as well as η are invariant under a group G of
permutations on A. We say that the approximation is

presmooth with respect to a group G if each equivalence class C of ∼ intersects some
equivalence class C ′ of η such that C∩C ′ contains two disjoint tuples in the same G -orbit;
very smooth with respect to a group G if ≡k is a (possibly non-proper) refinement of η;
in other words, if any two k-tuples in the same orbit must be η-equivalent.

The equivalence relations∼ for which we want to find approximations come from subfactors
of C . If D contains C , it might not act at all on S/∼ (if S or ∼ is not invariant under D),
and even in the case that it does, its action might contain operations that are not from
C ↷ S/∼. However, the theory of smooth approximations gives us that we can (under
certain conditions) find a D-invariant set S′ ⊇ S and an equivalence relation η on S′ that
approximates ∼, and such that D ↷ S′/η is not “richer” than C ↷ S/∼.

One of the central results from [25] is the so-called loop lemma of smooth approximations.
We do not give the general formulation of the loop lemma here and rather phrase it directly
the way we apply it in our proof.

▶ Theorem 6 (Consequence of Theorem 11 and Lemma 14 in [25]). Let k ≥ 1, and suppose
that C I

A ↷ Ik/Aut(A) has a naked (resp. affine) set. Then there exists a naked (resp. affine)
set (S,∼) of C I

A with S ⊆ Ik and Aut(A)-invariant ∼-classes such that one of the following
holds:
1. ∼ is approximated by a Pol(A)-invariant equivalence relation that is presmooth with

respect to Aut(DF );
2. there exists f ∈ Pol(A) such that f(a, b) ∼ f(b, a) holds for all disjoint injective tuples

a, b ∈ V k such that f(a, b), f(b, a) ∈ S.

▶ Lemma 7. Let f : V n → V be an arbitrary operation defined on V . There exists g : V n → V

that is canonical with respect to Aut(DF , <) and that is locally interpolated by f , i.e.,
for every finite S ⊆ V there exist α1, . . . , αn, β ∈ Aut(DF , <) such that g(a1, . . . , an) =
βf(α1a1, . . . , αnan) holds for all a1, . . . , an ∈ S.

Proof. By the theorem of Nešetřil and Rödl [27], the class of all F-free oriented graphs
endowed with a linear order is a so-called Ramsey class. The conclusion is then obtained by
applying [13, Lemma 14], see also [12, Theorem 5] for an alternative presentation. ◀

In particular, if A is a first-order reduct of DF , then for every f ∈ Pol(A) there exists
g ∈ C K

(DF ,<) that is locally interpolated by f . Similarly, for every f : V n → V , there exists
g : V n → V that is diagonally canonical with respect to Aut(DF , <) and that is diagonally
interpolated by f , that is, for every finite S ⊆ V there exist α, β ∈ Aut(DF , <) such that
g(a1, . . . , an) = βf(αa1, . . . , αan) holds for all a1, . . . , an ∈ S.
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3 Injective Projections and Preliminary Results

We define here the notion of injective projections appearing in Theorem 2.

▶ Definition 8 (Injective projections). An injective projection is a function qn
i : V n → V such

that for all a1, . . . , an ∈ V 2, at least one of which is not a constant pair, the following hold:
qn

i (a1, . . . , an) ∈ N if aj ̸∈ U for some j ∈ {1, . . . , n},
qn

i (a1, . . . , an) and ai are in the same orbit under Aut(DF ) otherwise.
If A is a reduct of DF and qn

i ∈ C I
A for all 1 ≤ i ≤ n then we say A has injective projections.

Note that injective projections are canonical with respect to DF . Indeed, suppose that
a1, b1, . . . , an, bn are tuples of the same length m such that aj and bj induce the same graph
in DF , for all j ∈ {1, . . . , n}. Then by definition, qn

i (a1, . . . , an) and qn
i (b1, . . . , bn) induce

the same directed graph in DF , and thus they are in the same orbit under Aut(DF ) by
homogeneity of DF .

▶ Proposition 9. Let F be a finite set of finite tournaments, and let A be a first-order reduct
of DF whose relations only contain tuples inducing tournaments in DF . Then qn

i ∈ Pol(A)
for all 1 ≤ i ≤ n. If one of the relations of A contains tuples inducing different tournaments,
then U is invariant under Pol(A).

Proof. Let R be a relation of A that contains two tuples inducing different tournaments
in DF . In particular the arity n of R must be at least 2. Since R contains tuples a, b

inducing different tournaments, there exist distinct i, j ∈ {1, . . . , n} such that (ai, aj) and
(bi, bj) induce different tournaments, i.e., they form edges in opposite directions. Thus, the
projection of R onto the coordinates i, j is equal to U , and it follows that U is invariant
under Pol(A).

Let 1 ≤ i ≤ n. We define a directed graph D = (V n, E′) by (x, y) ∈ E′ if, and only if,
(xj , yj) ∈ U for all j ∈ {1, . . . , n} and (xi, yi) ∈ E.

We prove that D is F-free. Assume for contradiction otherwise. Then there is a finite
V ′ ⊆ V n inducing a tournament from F in D. By definition, the projection

{v ∈ V | ∃x1, . . . , xi−1, xi+1, . . . , xn ∈ V : (x1, . . . , xi−1, v, xi+1, . . . , xn) ∈ V ′}

of V ′ onto its ith coordinate induces the same tournament in DF . But this contradicts the
fact that DF is F-free. Thus, since DF is universal for the class of F-free digraphs, there
exists an embedding qn

i : D ↪→ DF .
We can then view qn

i as an n-ary function on V . We prove that it is a polymorphism of A.
Let R be a relation of A, and let r1, . . . , rn ∈ R. By assumption on R, all r1, . . . , rn induce
tournaments in DF . Thus, qn

i (r1, . . . , rn) induce the same tournament as ri, and therefore
qn

i (r1, . . . , rn) ∈ R. ◀

As a consequence of Proposition 9, we obtain that all templates A arising from a
(F , R)-completion problem in the way outlined in the introduction satisfy the assumptions
of Theorem 2.

We now prove that the injective projections are canonical with respect to Aut(A), for any
first-order reduct A of DF such that Aut(A) ⊆ Aut(HF ). The proof of this fact is the only
place where the classification of first-order reducts of DF due to Agarwal and Kompatscher [1]
is needed.

▶ Lemma 10. Let A be a first-order reduct of DF with Aut(A) ⊆ Aut(HF ). The injective
projections are canonical with respect to Aut(A) and are therefore elements of C I

A .
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Proof. Let 1 ≤ k ≤ n and let a1, b1, . . . , an, bn be such that ai and bi are injective tuples
that are in the same orbit under Aut(A), for all i ∈ {1, . . . , n}. We need to show that
qn

k (a1, . . . , an) and qn
k (b1, . . . , bn) are in the same orbit under Aut(A).

The Aut(DF )-orbit of qn
k (a1, . . . , an) is the orbit of n-tuples c such that for all i ̸= j,

either (ci, cj) ∈ N whenever for some ℓ, (aℓ
i , aℓ

j) ∈ N, and otherwise (ci, cj) is in the same
Aut(DF )-orbit as (ak

i , ak
j ). Since aℓ and bℓ are in the same orbit under Aut(A) for all

ℓ ∈ {1, . . . , n}, for all i ̸= j we have (aℓ
i , aℓ

j) ∈ N if, and only if, (bℓ
i , bℓ

j) ∈ N. Therefore, the
indices i, j where the restrictions of the tuples qn

k (a1, . . . , an) and qn
k (b1, . . . , bn) are in N

coincide.
By the classification of all first-order reducts A of DF such that Aut(DF ) ≤ Aut(A) ≤

Aut(HF ) due to Agarwal and Kompatscher [1], the tuple bk can be obtained from ak by a
sequence of switching steps and reversing steps defined as follows. Given a directed graph, a
switching step consists in choosing a vertex of the graph and reversing the direction of every
edge incident to that vertex; a reversing step consists in reversing the direction of all edges.
Note that if the directed graph induced by b can be obtained by finitely many such operations
starting from the directed graph induced by a, then the same is true if one removes in a

and b edges at the same position. It follows that qn
k (a1, . . . , ak) and qn

k (b1, . . . , bk) are in the
same orbit under Aut(A). ◀

4 Description of the proof strategy

We describe here the strategy for the proof of Theorem 2 on a relatively high level.

4.1 Preprocessing of the Reducts of DF

A structure A is a model-complete core if for every finite S ⊆ A and every endomorphism
f : A→ A, there exists an automorphism α ∈ Aut(A) such that f |S = α|S . It is often very
convenient for studying the complexity of CSP(A) and the polymorphisms of A to work with
a structure that is a model-complete core; as an example of an important application for us,
if A is a model-complete core, then for all n ≥ 1 and a ∈ An, the orbit of a under Aut(A) is
invariant under all the polymorphisms of A.

While not every structure is a core, it is known that every ω-categorical structure, and in
particular every first-order reduct A of DF , is homomorphically equivalent to a structure
B that is a model-complete core, i.e., such that there exist homomorphisms A → B and
B → A [3, 2]. Moreover, this structure is unique up to isomorphism and is called the
model-complete core of A.

If A is a first-order reduct of DF , it is a priori not guaranteed that the model-complete
core of A is a first-order reduct of DF . The following statement that we prove first establishes
this property and relies on a recent result by Mottet and Pinsker [24].

▶ Lemma 11. Let A be a first-order reduct of DF , and let A′ be the model-complete core of
A. Then A′ is either isomorphic to A, or a 1-element structure, or a first-order reduct of a
homogeneous undirected graph or the universal homogeneous tournament.

In the following statement, a function g : A→ A with respect to a group G of permutations
on A is range-rigid if for every α ∈ G and every finite S ⊆ A, there exists β ∈ G such that
g|S = β ◦ g ◦α ◦ g|S . In words, this means that g essentially behaves like a retraction (modulo
elements of G ) on every orbit of G that intersects the range of g.
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While the first outcome in Theorem 6 only yields a presmooth approximation, it is a very
smooth approximation that is needed in Proposition 21. As in [25], the step from presmooth
to very smooth is achieved by leveraging a certain primitivity property of the automorphism
group of the base structure under consideration, in this case DF .

For n ≥ 1, we call a permutation group G acting on a set A n-primitive if for every orbit
O ⊆ An of G , every G -invariant equivalence relation on O containing a pair (a, b) where a, b

are disjoint is full. We say an ω-categorical structure A has no algebraicity if none of its
elements are first-order definable using other elements as parameters.

▶ Lemma 12. For all n ≥ 1, Aut(DF ) is n-primitive and has no algebraicity.

Proof. Let n ≥ 1 and O an orbit of n-tuples under Aut(DF ) and a ∼ b for some equivalence
relation ∼ on O with a, b disjoint, and c, d arbitrary tuples in O. We define a digraph X on
5n vertices, partitioned into five n-tuples x, y, z, u, v ∈ V n such that the entries of x, u and
v, z induce the same graph as the entries of a, b in DF . Similar let u, y and y, v induce b, a.
Finally let x, z induce c, d. Then X is F-free as all induced tournaments in X contain only
vertices belonging to at most two tuples which are neighbors in the cycle x, u, y, v, z, x. By
definition these two tuples induce a graph isomorphic to the graph induced by a, b or c, d in
DF respectively, so X is F -free. Then there is an embedding f : X→ DF with f(x) = c and
f(z) = d by homogeneity. Also by transitivity of ∼ we have c = f(x) ∼ f(z) = d.

The class C of F -free oriented graphs has the free amalgamation property, i.e., given any
two such oriented graphs D = (W, F ), D′ = (W ′, F ′) inducing the same directed graph on
W ∩W ′, then the union (W ∪W ′, F ∪ F ′) is an F-free oriented graph. This implies (see,
e.g., [19]) that the Fraïssé limit of C, which is exactly DF , has no algebraicity. ◀

▶ Lemma 13. Let A be a first-order reduct of DF that is a model-complete core and such
that Aut(A) ⊆ Aut(HF ). Then ̸= and N are invariant under Pol(A).

Proof. Since Aut(A) ⊆ Aut(HF ), N is a single orbit under Aut(A) and is therefore invariant
under Pol(A) since A is a model-complete core. Now, let O be another orbit of injective pairs.
Then every pair (a, b) with a ̸= b satisfied the formula φ(x, y) := ∃z((x, z) ∈ O ∧ (y, z) ∈ N).
This is a primitive positive formula, and since both O and N are invariant under Pol(A),
then so is the relation defined by φ. ◀

Let us call a first-order reduct A of DF a proper reduct if the following conditions are
satisfied:

A is a model-complete core, i.e., if every homomorphism A → A locally resembles an
automorphism an automorphism of A (the precise definition is given in Section 4.1),
Aut(A) ⊆ Aut(HF ),
if Aut(A) = Aut(HF ), then HF is not homogeneous.

Our next step is to show that A can without loss of generality be assumed to be proper.
Indeed, if A is not a model-complete core, then by Lemma 11 the model-complete core
of A is a 1-element structure, or is a first-order reduct of a homogeneous graph, or is a
first-order reduct of the universal homogeneous tournament; Theorem 2 is known to hold for
all such structures [8, 25]. Since replacing A by its model-complete core does not change
the outcome of Theorem 2, we are immediately done if A is not a model-complete core. If
Aut(A) ̸⊆ Aut(HF ), then by Theorem 2.2(i) of [1] we have Aut(HF ) ⊊ Aut(A), in which
case either HF is a homogeneous undirected graph, or HF is not homogeneous and then
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Does C K
DF

↷ {←,→}
have a naked set?

C I
A ↷ Ik/Aut(A)

has a naked set for
some k ≥ 2

Pol(A) contains a certain
symmetric operation

CSP(A) is in P

C K
DF

↷ {←,→} contains
a majority operation

There exists a presmooth
approximation of a naked
set for C I

A ↷ Ik/Aut(A)
A pp-constructs every finite structure

Proposition 21

Yes (Lemma 16)

No [9]

Theorem 6 [25] Proposition 22

Figure 2 A simplified overview of the proof strategy of Theorem 2 after the preprocessing step.

Aut(A) is the full symmetric group by Theorem 2.2(iii) of [1]. Both of these cases can be
handled by [25].1 Finally, if Aut(A) = Aut(HF ) and HF is homogeneous, then we are again
done by [25].

4.2 An Algebraic Dichotomy for Proper Reducts
After this “preprocessing” step, the main technical result is the following.

▶ Theorem 14. Let F be a finite set of finite tournaments. Let A be a proper reduct of DF
that admits injective projections and such that U is invariant under Pol(A). Then exactly
one of the following holds:
1. Pol(A) has a naked set,
2. Pol(A) contains a ternary operation f that is canonical with respect to Aut(DF ) and

u, v ∈ Aut(DF ) such that u ◦ f(x, y, z) = v ◦ f(y, z, x) holds for all x, y, z ∈ V .
Note that Theorem 14 is indeed a refined version of Theorem 2: the first item of Theorem 14

implies the first item of Theorem 2 by [11], and the second item of Theorem 14 implies the
second item of Theorem 2 by [9].

The proof strategy is represented in Figure 2 and is based on distinguish upon whether
C K

DF
↷ {←,→}, which is a clone of functions on the two-element set {←,→}, has a naked

set. If C K
DF

↷ {←,→} does not have a naked set, then we show that Pol(A) contains an
operation f as in the second item of Theorem 14.

▶ Proposition 15. Let A be a proper reduct of DF that admits injective projections. The
following hold:
1. If C K

DF
↷ {←,→} does not have a naked set, then there exists f ∈ Pol(A) and u, v ∈

Aut(DF ), canonical with respect to Aut(DF ), and such that the identity

u ◦ f(x, y, z) = v ◦ f(y, z, x)

holds for all x, y, z ∈ V ;

1 The first proof in the first case was given in [8], while the first proof in the case of the full symmetric
group is due to [6].
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2. If C K
DF

↷ {←,→} does not have an affine set, then there exists f ∈ Pol(A) such that
for all n ≥ 1 and a, b ∈ V n, the tuples a, f(a, a, b), f(a, b, a), f(b, a, a) are all in the same
orbit under Aut(DF ).

Proof. If C K
DF

↷ {←,→} does not have a naked set, then it contains a tern-
ary function f ′ that acts as a cyclic operation on {←,→}. Then f(x, y, z) :=
f ′(q3

1(x, y, z), q3
1(y, z, x), q3

1(z, x, y)) is a canonical polymorphism of A which is pseudo-cyclic
modulo Aut(DF ). If C K

DF
↷ {←,→} does not have an affine set, then it contains a

ternary function m that induces a majority operation on {←,→} (note that any bin-
ary operation f ∈ C K

DF
induces on {←,→} a function such that f(→,←) ̸= f(←,→),

so that C K
DF

↷ {←,→} cannot contain a semilattice operation). Then f(x, y, z) :=
m(q3

1(x, y, z), q3
1(y, z, x), q3

1(z, x, y)) is a canonical polymorphism of A that satisfies the state-
ment. ◀

Then CSP(A) can be solved in polynomial time by reducing it to a tractable finite-domain
CSP [10]. Otherwise, C K

DF
↷ {←,→} has a naked set and one can prove in this case that

C I
A ↷ Ik/Aut(A) also has a naked set for some k ≥ 1.

▶ Lemma 16. Let A be a proper reduct of DF that admits injective projections and such
that U is invariant under Pol(A). Assume C K

DF
↷ {←,→} has a naked (resp. affine) set.

Then C I
A ↷ Ik/Aut(A) has a naked (resp. affine) set for some k ≥ 2.

In other words, there exist S ⊆ Ik invariant under C I
A and a C I

A -invariant equivalence
relation ∼ on S with Aut(A)-invariant equivalence classes such that C I

A ↷ S/∼ only contains
projections. The loop lemma of smooth approximations applies (Theorem 6), giving us two
possible outcomes.

4.2.1 First Case: Presmooth Approximation
In the first case, there exists a presmooth approximation for a naked set of C I

A ↷ I/Aut(A).
We first show how to “upgrade” this approximation into a very smooth approximation,
applying general principles from the theory of smooth approximations.

▶ Proposition 17. Let A be a first-order reduct of DF that is a model-complete core and
such that Aut(A) ⊆ Aut(HF ). If (S,∼) is a minimal subfactor of C I

A such that ∼ has
Aut(A)-invariant classes, and η is a presmooth approximation of ∼ with respect to Aut(A),
then η is very smooth with respect to Aut(DF ).

Proof. We show that η is presmooth with respect to Aut(DF ). Let C be an equivalence class
of ∼. By assumption, there exists an equivalence class C ′ of η and a, b ∈ C ∩ C ′ that are
disjoint. By Lemma 12, Aut(DF ) has no algebraicity. Thus, there exists an automorphism
α ∈ Aut(DF , a) such that α(b) and b are disjoint. Note that b and α(b) are ∼-equivalent,
since the equivalence classes of ∼ are Aut(A)-invariant. Moreover, b and α(b) are η-equivalent,
since (a, b) ∈ η and η is Aut(A)-invariant. Thus, we have disjoint elements b, α(b) in C ′ ∩ C

and in the same orbit under Aut(DF ), i.e., η is presmooth with respect to Aut(DF ).
By Lemma 13, ̸= is invariant under Pol(A), and by Lemma 12, Aut(DF ) is n-primitive

for all n. By [25, Lemma 8], we obtain that η is very smooth with respect to Aut(DF ). ◀

We show that this can be used to obtain a naked set for Pol(A), which implies by Theorem 4
that A pp-constructs every finite structure. We are in the situation where the original theorem
from [25, Theorem 13] used to extend a naked set (or affine set) does not apply. Indeed,
this result would require that C I

A be locally interpolated by Pol(A), which we do not have.
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However, we do have that C K
DF

is locally interpolated by Pol(A). Indeed, we already know
that any f ∈ Pol(A) locally interpolates an operation g that is canonical with respect to
Aut(DF , <). If g is not an element of C K

DF
, we show that C K

DF
↷ {←,→} must contain a

majority operation, a contradiction to our assumption that C K
DF

↷ {←,→} has a naked set.
The proof of the following lemma is similar to the proof of Lemma 34 in [25].

▶ Lemma 18. Let A be a proper reduct of DF such that U is invariant under Pol(A). Suppose
that:

Pol(A) contains a binary injection acting like a projection on {←,→},
there is a function in C K

(DF ,<) that is not in C K
DF

.
Then C K

DF
↷ {←,→} contains a majority operation and in particular does not have an affine

set.

We can then proceed as in [26] and use Lemma 18 and the injective projections to
circumvent the original limitation from [25, Theorem 13]. In the following, the “lifting”
operation, which gives us that Pol(A) has a naked set, is performed by exhibiting a uniformly
continuous clone homomorphism from Pol(A) to C I

A ↷ S/∼, i.e., an arity-preserving map
ξ such that ξ(f ◦ (g1, . . . , gk)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gk)) for all f, g1, . . . , gk ∈ Pol(A) of
appropriate arities, and where the value of ξ(f) for an n-ary f ∈ Pol(A) is only determined
by the restriction f |S of f onto a finite subset S of A that does not depend on f . The
existence of such a map shows that Pol(A) is not “richer” than C I

A ↷ S/∼; in particular, if
C I
A ↷ S/∼ has a naked (resp. affine) set, then so does Pol(A). We refer the reader to [11]

and in particular to Theorem 1 therein for more details.

▶ Corollary 19. Let A be a proper reduct of DF that admits injective projections and such that
U is invariant under Pol(A). If C K

DF
↷ {←,→} has an affine set, we have C K

(DF ,<) ⊆ C K
DF

.
In particular, every f ∈ Pol(A) locally interpolates a function in C K

DF
.

Proof. Lemma 18 applies since A admits injective projections and U is invariant under
Pol(A). For the second part, we know by Lemma 7 that every f ∈ Pol(A) locally interpolates
an operation that is canonical with respect to (DF , <). Such operations are in particular in
C K

(DF ,<). Since C K
(DF ,<) ⊆ C K

DF
, we are done. ◀

▶ Lemma 20. Let A be a proper reduct of DF such that U is invariant under C I
A . Let

(S,∼) be an affine set of C I
A such that S ⊆ Ik and where the ∼-equivalence classes are

Aut(A)-invariant. Then for all a, b ∈ S, a and b induce the same undirected graph in HF .

Proof. Suppose first that there exist a, b ∈ S with a ̸∼ b and such that a, b induce the same
undirected graph in HF . Since both N and U are invariant under C I

A , the set generated by
{a, b} under C I

A only consists of tuples all inducing the same undirected graph as a and b in
HF . By minimality of (S,∼), such a set must be equal to S itself, so we are done.

Otherwise, whenever a ̸∼ b, then a, b induce different undirected graphs. In other
words, any tuples in S inducing the same undirected graph are in the same ∼-equivalence
class. By assumption, (S,∼) is an affine set for C I

A , and therefore there exists a ring R

and a finite R-module M on S/∼ such that all operations in C I
A ↷ S/∼ are of the form

(x1, . . . , xn) 7→
∑

λi · xi, where λ1, . . . , λn ∈ R are such that
∑

λi = 1. Let a ∈ S be a tuple
whose ∼-equivalence class is an arbitrary non-zero element of the module M , and let b ∈ S

be a tuple whose ∼-equivalence class is the zero element of M . Since M is finite, a (more
precisely, its ∼-equivalence class [a]), has a finite order n ≥ 2, that is, n[a] = [b]. Note that
the tuples qn

1 (a, b, . . . , b), qn
1 (b, a, b, . . . , b), . . . , qn

1 (b, . . . , b, a) all induce the same undirected
graph, and they are all in S since qn

1 ∈ C I
A by Lemma 10. By our assumption, all these tuples
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are in the same ∼-equivalence class. Since C I
A ↷ S/∼ is affine, the action of qn

1 on S/∼ is an
affine function of the form (x1, . . . , xn) 7→

∑
λi · xi, where λ1, . . . , λn are elements of R and

such that
∑

λi = 1. If a is in the ith position, then qn
1 (b, . . . , b, a, b, . . . , b) is ∼-equivalent to

λi · [a]. Thus, we get that λi · [a] = λj · [a] for all i, j ∈ {1, . . . , n}. We call this element λ · [a].
Thus, the equivalence class of qn

1 (a, . . . , a) is
∑n

i=1 λ · [a] = n(λ · [a]) = λ · (n · [a]) = λ · [b] = [b].
However, qn

1 being affine, we also know that qn
1 (a, . . . , a) is ∼-equivalent to a, contradicting

our assumption that a ̸∼ b. ◀

▶ Proposition 21. Let A be a proper reduct of DF that admits injective projections and such
that U is invariant under Pol(A). Assume that C K

DF
↷ {←,→} has an affine set. Suppose

that there exists an affine set (S,∼) of C I
A with S ⊆ Ik and ∼ having Aut(A)-invariant

classes. Suppose further that ∼ admits a Pol(A)-invariant very smooth approximation with
respect to Aut(DF ). Then Pol(A) admits a uniformly continuous clone homomorphism to
C I
A ↷ S/∼.

Proof. Without loss of generality, we can assume that S is minimal with the property of
intersecting two equivalence classes of ∼. Let η be a presmooth approximation of ∼ with
respect to Aut(DF ). By [25, Lemma 8] and Lemmas 12 and 13, every Pol(A)-invariant
presmooth approximation of this naked set must be very smooth with respect to Aut(DF ).

Let f ∈ Pol(A) an n-ary function. Let f ′ ∈ C K
DF

be locally interpolated by f ; such an
operation exists by Corollary 19. Let qn

i be the i-th injective projection. By Lemma 10,
qn

i ∈ C I
A . We define f ′′(x1, . . . , xn) = f ′(qn

1 (x1, . . . , xn), . . . , qn
n(x1, . . . , xn)) and show that

f ′′ ∈ C I
A . For this let a1, a′

1, . . . , an, a′
n be injective tuples of an arbitrary length such that

ai, a′
i are in the same Aut(A)-orbit for all 1 ≤ i ≤ n. Since Aut(A) ⊆ Aut(HF ), every pair

ai, a′
i induce the same undirected graph in HF . As qn

i ∈ C I
A we know that bi := qn

i (a1, . . . , an)
and b′

i := qn
i (a′

1, . . . , a′
n) are in the same Aut(A)-orbit, too, and for the same reason as above,

each pair bi, b′
i induce the same undirected graph in HF . Moreover, the pairs of coordinates

where the projection of bi is in N are exactly the pair of coordinates where the projection of b′
i

is in N. Now let c := f ′′(a1, . . . , an) = f ′(b1, . . . , bn) and c′ := f ′′(a′
1, . . . , a′

n) = f ′(b′
1, . . . , b′

n).
Since f ′ ∈ C K

DF
, since Pol(A) preserves N, and since the operation induced by f ′ on {←,→}

is an affine map, we know that c and c′ are in the same orbit under Aut(A). Thus, f ′′ ∈ C I
A

and therefore it acts on Ik/Aut(A).
We define ξ(f) as the action of f ′′ on S/∼. As in [25, Theorem 13], for all a1, . . . , an ∈ S,

and any f ′ that is locally interpolated by f , we have f(a1, . . . , an)(η ◦ ∼)f ′(a1, . . . , an). It
follows that

f(qn
1 (a1, . . . , an), . . . , qn

n(a1, . . . , an))(η ◦ ∼)f ′′(a1, . . . , an)

holds for all a1, . . . , an ∈ S. In particular, the definition of ξ(f) does not depend on the choice
of f ′ in the construction. Moreover, if a1, . . . , an induce the same undirected graph in HF ,
then qn

i (a1, . . . , an) and ai are in the same orbit under Aut(DF ), for all i ∈ {1, . . . , n}. It
follows that f ′′(a1, . . . , an) and f ′(a1, . . . , an) are in the same orbit with respect to Aut(DF ),
as f ′ is canonical with respect to Aut(DF ). Since Aut(DF ) ⊆ Aut(A), they are in the same
orbit with respect to Aut(A), and therefore there are ∼-equivalent. Finally, this implies that
f(a1, . . . , an)(η ◦ ∼)f ′′(a1, . . . , an) holds, whenever all a1, . . . , an induce the same undirected
graph in HF , which is the case for all a1, . . . , an ∈ S by Lemma 20.

Now we show that ξ is a uniformly continuous clone homomorphism. It clearly preserves
arities so we need to show it also preserves compositions. Let f ∈ Pol(A) be n-ary, g1, . . . , gn ∈
Pol(A) be m-ary. Let u1, . . . , um ∈ S. Since gi(u1, . . . , um)(η ◦ ∼)g′′

i (u1, . . . , um) for all i,
there exists vi ∈ S such that gi(u1, . . . , um) η vi. Then
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f(g1(u1, . . . , um), . . . , gn(u1, . . . , um)) η f(v1, . . . , vn)
(η ◦ ∼)f ′′(v1, . . . , vn)
(η ◦ ∼)f ′′(g1(u1, . . . , um), . . . , gn(u1, . . . , um)).

from which we conclude that

ξ(f(g1, . . . , gn))(u1, . . . , um) = ξ(f)(ξ(g1)(u1, . . . , um), . . . , ξ(gn)(u1, . . . , um)).

To prove that ξ is uniformly continuous fix n ∈ N and let a ̸∼ b be any two k-ary tuples in
S and define F =

⋃
0≤i≤k{ai, bi}n. Observe that if f, g agree on all x ∈ {ai, bi}n for each

i ≤ k, then they also agree on all y ∈ {a, b}n as f(y)i and g(y)i are fully determined by the
values of f, g on a certain subset of {ai, bi}n. Therefore they induce the same action on S/∼
as in that case f(x) ∼ g(x) for all x ∈ {a, b}n. Then it is clear that if f, g agree on F we
also have ξ(f) = ξ(g). This completes the proof. ◀

4.2.2 Second Case: Weakly Commutative Polymorphism

In the second case of Theorem 6, Pol(A) contains a well-behaved binary operation, which
implies that C K

DF
↷ {←,→} contains a majority operation; this contradicts our assumption

that C K
DF

↷ {←,→} has a naked set. The proof of Proposition 22 below is similar to that
of Lemma 39 in [25] and is omitted due to space restrictions.

▶ Proposition 22. Let A be a proper reduct of DF with injective projections and such that U

is invariant under Pol(A). Let (S,∼) be a minimal affine set of C I
A with S ⊆ Ik and where ∼

has Aut(A)-invariant equivalence classes. Suppose that there exists a binary f ∈ Pol(A) such
that f(a, b) ∼ f(b, a) holds for all disjoint injective tuples a, b ∈ V k with f(a, b), f(b, a) ∈ S.
Then C K

DF
↷ {←,→} contains a majority operation.

4.2.3 Classifying Problems with Bounded Treewidth Dualities

Finally, we briefly describe the proof strategy for Theorem 3. It is very similar to the one
outlined above and shares all the intermediate steps. Only the starting distinction changes,
where we distinguish between whether C K

DF
↷ {←,→} has an affine set or not.

If C K
DF

↷ {←,→} does not have an affine set, then the second item in Proposition 15
states that Pol(A) contains a so-called canonical pseudo-majority operation, and A has
bounded relational width by [9]. Moreover, since DF is homogeneous in a binary language,
[22, Theorem 2] entails that A has relational width at most (4, max(6, ℓ)), where ℓ is the
maximal size of a tournament in F . It follows from general principles [15] that there exists
a duality for the class of structures admitting a homomorphism to A that has treewidth
bounded by max(6, ℓ, r), where r is the maximal arity of a relation of A.

If C I
A ↷ Ik/Aut(A) has an affine set for some k ≥ 1 (by Lemma 16), either we get an

affine set for Pol(A) (by Proposition 21) or C K
DF

↷ {←,→} contains a majority operation
(by Proposition 22), again a contradiction since a majority operation cannot be represented
as an affine map over any module.
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