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Abstract
In the Equitable Connected Partition (ECP for short) problem, we are given a graph G = (V, E)
together with an integer p ∈ N, and our goal is to find a partition of V into p parts such that each
part induces a connected sub-graph of G and the size of each two parts differs by at most 1. On
the one hand, the problem is known to be NP-hard in general and W[1]-hard with respect to the
path-width, the feedback-vertex set, and the number of parts p combined. On the other hand,
fixed-parameter algorithms are known for parameters the vertex-integrity and the max leaf number.

In this work, we systematically study ECP with respect to various structural restrictions of the
underlying graph and provide a clear dichotomy of its parameterised complexity. Specifically, we
show that the problem is in FPT when parameterized by the modular-width and the distance to
clique. Next, we prove W[1]-hardness with respect to the distance to cluster, the 4-path vertex cover
number, the distance to disjoint paths, and the feedback-edge set, and NP-hardness for constant
shrub-depth graphs. Our hardness results are complemented by matching algorithmic upper-bounds:
we give an XP algorithm for parameterisation by the tree-width and the distance to cluster. We also
give an improved FPT algorithm for parameterisation by the vertex integrity and the first explicit
FPT algorithm for the 3-path vertex cover number. The main ingredient of these algorithms is a
formulation of ECP as N -fold IP, which clearly indicates that such formulations may, in certain
scenarios, significantly outperform existing algorithms based on the famous algorithm of Lenstra.
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1 Introduction

A partition of a set V into p ∈ N parts is a set π = {V1, . . . , Vp} of subsets of V such that for
every i, j ∈ [p] : Vi ∩ Vj = ∅ and

⋃p
i=1 Vi = V . In the Equitable Connected Partition

problem, we are given an undirected graph G = (V, E) together with an integer p, and our
goal is to partition the vertex set V into p parts such that the sizes of each two parts differ
by at most 1 and each class induces a connected sub-graph. Formally, our problem is defined
as follows.

Input: A simple undirected and connected n-vertex graph G = (V, E) and a positive
integer p ∈ N.

Question: Is there a partition π = {V1, . . . , Vp} of V such that every part G[Vi] is connected,
and ||Vi| − |Vj || ≤ 1 for every pair i, j ∈ [p]?

Equitable Connected Partition (ECP)

The Equitable Connected Partition problem naturally arises in many fields such
as redistricting theory [2, 50, 55], which is a subfield of computational social choice theory,
VLSI circuit design [7], parallel computing [5], or image processing [52], to name a few.

One of the most prominent problems in the graph partitioning direction is the Bisection
problem, where our goal is to split the vertex set into two parts A and B, each part of
size at most ⌈ n

2 ⌉, such that the number of edges between A and B is at most some given
k ∈ N. Bisection is NP-hard [36] even if we restrict the input to unit disc graphs [24] and
is heavily studied from the parameterised complexity perspective; see, e.g., [6, 13, 19, 30, 54].
The natural generalisation of the Bisection problem is called Balanced Partitioning
where we partition the vertices into p ∈ N parts, each of size at most ⌈ n

p ⌉. Balanced
Partitioning is NP-hard already on trees [27] and a disjoint union of cliques [4]. The
parameterised study of this problem is due to Ganian and Obdržálek [35] and van Bevern et
al. [6]. In all the aforementioned problems, we are given only the upper-bound on the size of
each part; hence, the parts are not necessarily equitable. Moreover, there is no connectivity
requirement for the parts. For a survey of graph partitioning problems, we refer the reader
to the monograph of Buluç et al. [14].

On the equitability side, the most notable direction of research is the Equitable k-
Colouring problem (EC for short). Here, we are given an undirected graph G and the
goal is to decide whether there is a proper colouring of the vertices of G using k colours such
that the sizes of each two colour classes differ by at most one. Note that the graph induced
by each colour class is necessarily an independent set, and hence is disconnected. As the
k-Colouring problem can be easily reduced to the Equitable k-Colouring, it follows
that EC is NP-hard. Polynomial-time algorithms are known for many simple graph classes,
such as graphs of bounded tree-width [9, 16], split graphs [15], and many others [31]. The
parameterised study was, to the best of our knowledge, initiated by Fellows et al. [28] and
continued in multiple subsequent works [26, 29, 40]. For a detailed survey of the results on
EC, we refer the reader to the monograph by Lih [51].

The Equitable Connected Partition problem then naturally brings the concepts
of equitability and connectivity of the vertex set together. It is known that ECP is NP-
complete [2]. Moreover, the problem remains NP-complete even if G is a planar graph or for
every fixed p at least 2 [23, 36]. Enciso et al. [26] were the first who studied ECP from the
viewpoint of parameterised complexity. They showed that ECP is fixed-parameter tractable
with respect to the vertex cover number and the maximum leaf number of G. On the negative
side, they showed that it is W[1]-hard to decide the problem for the combined parameter the
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Figure 1 An overview of our results. The parameters for which the problem is in FPT are
coloured green, the parameters for which ECP is W[1]-hard and in XP have an orange background,
and para-NP-hard combinations are highlighted in red. Arrows indicate generalisations; e.g., modular
width generalises both neighbourhood diversity and twin-cover number. The solid thick border
represents completely new results, and the dashed border represents an improvement of previously
known algorithms. All our W[1]-hardness results hold even when the problem is additionally
parameterized by the number of parts p. Additionally, we show that the results marked with ⋆

becomes fixed-parameter tractable if the size of a larger part ⌈n/p⌉ is an additional parameter.

path-width, the feedback-vertex set, and the number of parts p. Moreover, they gave an XP
algorithm for ECP parameterised by tree-width. Later, Gima et al. [38] showed that the
problem is fixed-parameter tractable when parameterised by the vertex-integrity of G. Very
recently, Gima and Otachi [39] proved that ECP is W[1]-hard when parameterised by the
tree-depth of G.

A more general variant of Equitable Connected Partition with parametric lower-
and upper-bounds on the sizes of parts was studied by Ito et al. [43], and Blažej et al. [8]
very recently introduced the requirement on the maximum diameter of each part.

It is worth pointing out that Equitable Connected Partition is also significant from
a theoretical point of view. Specifically, this problem is a very common starting point for
many W[1]-hardness reductions; see, e.,g., [6, 8, 20, 53]. Surprisingly, the graph in multiple of
the before-mentioned reductions remains the same as in original instance, and therefore our
study directly strengthens the results obtained in these works. Since the complexity picture
with respect to structural parameters is rather incomplete, many natural questions arise. For
example, what is the parameterised complexity of ECP when parameterised by the 4-path
vertex cover number? Or, is ECP in FPT when parameterised by the feedback-edge set?
Last but not least, is the problem easier to decide on graphs that are dense, such as cliques?

1.1 Our Contribution
In our work, we continue the line of study of the Equitable Connected Partition
problem initiated by Enciso et al. [26] almost 15 years ago. For an overview of our results,
we refer the reader to Figure 1; however, we believe that our contribution is much broader.
We try to summarise it in the following four points.

MFCS 2024
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First, directly following pioneering work on structural parameterisation of ECP, we
provide a complete dichotomy between tractable and intractable cases for structural paramet-
ers that are bounded for sparse graphs. Namely, we provide W[1]-hardness proofs for ECP
with respect to the 4-path vertex cover number and the feedback-edge set number, which
encloses a gap between structural parameters that were known to be tractable – the vertex-
cover number and the max-leaf number – and those that were known to be W[1]-hard– the
path-width and the feedback-vertex set. It should also be mentioned that our constructions
not only give much stronger intractability results but, at the same time, are much simpler
compared to the original construction of Enciso et al. [26].

Second, we also turn our attention to dense graphs, which have, so far, been completely
overlooked in the relevant literature. On our way to fixed-parameter tractable algorithms
for various structural parameters, we prove polynomial-time solvability of some specific
graph classes. Again, we provide a clear boundary between tractable and intractable cases.
However, it turns out that for dense graphs, the problem is much easier.

Third, we clearly show where the limits of the parameterized complexity framework in
the study of structural parameterisation of Equitable Connected Partition are. In
particular, we show that the problem is NP-hard already on graphs of shrub-depth equal
to 3, clique-width equal to 3, and twin-width equal to 2. Moreover, in some cases, our
complexity results are tight. For example, we give a polynomial-time algorithm for graphs of
clique-width 2.

Last but not least, in order to provide all the algorithms, we use multiple different
techniques. Naturally, some algorithms are based on standard techniques such as dynamic-
programming over decomposition or kernelisation; however, many of them still require deep
insights into the structure of the solution and the instances. However, some of them use
very careful branching together with formulation of the problem using N -fold integer linear
programming, which is, informally speaking, an integer linear program with specific shape of
the constraints. We are convinced that the technique of N -fold integer linear programming in
the design and analysis of fixed-parameter tractable algorithms deserves more attention from
the parameterised complexity community, as it in many scenarios significantly outperforms the
classical FPT algorithms based on the famous Lenstra’s algorithm; see, e.g., [3, 12, 45, 46, 47].

2 Preliminaries

We assume the reader to be familiar with the basic graph-theoretical notation as given by
Diestel [21] and with the basics of parameterised complexity [18].

Structural Parameters. In this sub-section, we provide definitions of less widespread
structural parameters we study in this work. Definitions of all the remaining parameters are
provided in the full version.

▶ Definition 1 (d-path vertex cover). Let G = (V, E) be an undirected graph and d ∈ N be an
integer. A d-path vertex cover is a set C ⊆ V such that the graph G \ C contains no path
with d vertices as a sub-graph. The d-path vertex cover number d-pvcn(G) is the size of a
minimum d-path vertex cover in G.

Note that the 2-path vertex cover number is, in fact, the standard vertex cover number
of a graph.
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▶ Definition 2 (Vertex integrity). Let G = (V, E) be an undirected graph. Vertex integrity,
denoted vi(G), is the minimum k ∈ N such that there is a set X ⊆ V of size at most k and
every connected component C of G \ X contains at most k vertices.

▶ Definition 3 (Distance to G). Let G be a graph, and G be a graph family. A set M ⊆ V (G)
is a modulator to G, if G \ M ∈ G. The distance to G, denoted distG(G), is the size of a
minimum modulator to G.

In our paper, we will focus on the distance to clique, denoted by dc(G), the distance to
disjoint union of cliques, which is usually referred to as the distance to cluster graph or the
cluster vertex deletion [22] and denoted dcg(G), and the distance to disjoint paths, denoted
by ddp(G).

▶ Definition 4 (Neighbourhood-diversity [48]). Let G = (V, E) be a graph. We say that
two vertices u, v ∈ V have the same type iff N(u) \ {v} = N(v) \ {u}. The neighbourhood
diversity of G is at most d, if there exists a partition of V into at most d sets such that all
vertices in each set have the same type.

Let T1, . . . , Td be a partition of V such that for each u, v ∈ Ti, i ∈ [d], it holds that u and
v are of the same type according to Definition 4. Observe that each type is either independent
set or a clique. We define type graph to be an undirected graph with vertices being the types
T1, . . . , Td and two vertices corresponding to some types Ti and Tj are connected by an edge
iff there exists an edge {u, v} ∈ E(G) such that u ∈ Ti and v ∈ Tj .

▶ Definition 5 (Modular-width [32]). Consider graphs that can be obtained from an algebraic
expression that uses only the following operations:
1. create an isolated vertex,
2. the disjoint union of two disjoint graphs G1 and G2 which is a graph (V (G1) ∪ V (G2),

E(G1) ∪ E(G2)),
3. the complete join of two disjoint graphs G1 and G2 which produces a graph (V (G1) ∪

V (G2), E(G1) ∪ E(G2) ∪ {{u, v} | u ∈ V (G1) and v ∈ V (G2)}).
4. the substitution with respect to some pattern graph P – for a graph P with vertices

p1, . . . , pℓ and disjoint graphs G1, . . . , Gℓ, the substitution of the vertices of P by the
graphs G1, . . . , Gℓ is the graph with vertex set

⋃ℓ
i=1 V (Gi) and edge set

⋃ℓ
i=1 E(Gi) ∪

{{u, v} | u ∈ V (Gi), v ∈ V (Gj), and {pi, pj} ∈ E(P )}.
The width of such an algebraic expression is the maximum number of operands used by any
occurrence of the substitution operation. The modular-width of a graph G, denoted mw(G),
is the least integer m such that G can be obtained from such algebraic expression of width m.

N-fold Integer Programming. In recent years, integer linear programming (ILP) has become
a very useful tool in the design and analysis of fixed-parameter tractable algorithms [37].
One of the best known results in this line of research is probably Lenstra’s algorithm, roughly
showing that ILP with bounded number of variables is solvable in FPT time [49].

In this work, we use the so-called N-fold integer programming formulation. Here, the
problem is to minimise a linear objective over a set of linear constraints with a very restricted
structure. In particular, the constraints are as follows. We use x(i) to denote a set of ti

variables (a so-called brick).

D1x(1) + D2x(2) + · · · + DN x(N) = b0 (1)

Aix
(i) = bi ∀i ∈ [N ] (2)

0 ≤ x(i) ≤ ui ∀i ∈ [N ] (3)

MFCS 2024
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Where we have Di ∈ Zr×ti and Ai ∈ Zsi×ti ; let us denote s = maxi∈[N ] si, t = maxi∈[N ] ti,
and let the dimension be d, i.e., d =

∑
i∈[N ] ti ≤ Nt. Constraints (1) are the so-called linking

constraints and the rest are the local constraints. In the analysis of our algorithms, we use
the following result of Eisenbrand et al. [25].

▶ Proposition 6 ([25, Corollary 91]). N -fold IP can be solved in ar2s+rs2 · d · log(d) · L time,
where

L is the maximum feasible value of the objective and
a = r · s · maxi∈[N ] (max(∥Di∥∞, ∥Ai∥∞)).

3 Algorithmic Results

In this section, we provide our algorithmic results. The first algorithm is for ECP para-
meterised by the vertex-integrity and combines careful branching with N -fold integer pro-
gramming. Specifically, Gima et al. [38] showed that ECP is in FPT with respect to this
parameter by giving an algorithm running in kkkO(k)

· nO(1) time, where k = vi(G). We
show that using an N -fold IP formulation, we can give a simpler algorithm with a doubly
exponential improvement in the running time.

▶ Theorem 7. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the vertex-integrity vi and can be solved in kO(k4) · n log n time, where
k = vi(G).

Proof. First, if it holds that p > k, we use the algorithm of Gima et al. [38] which, in this
special case, runs in time kO(k2) · n. Therefore, the bottleneck of their approach is clearly
the case when p ≤ k. In what follows, we introduce our own procedure for this case, which is
based on the N-fold integer programming. Note that the algorithm of Gima et al. [38] for
the case p ≤ k is based on the algorithm of Lenstra [49].

First, we guess (by guessing we mean exhaustively trying all possibilities) a partition of the
modulator vertices X in the solution. Let this solution partition be X1, . . . , Xp. Furthermore,
we guess which (missing) connections between the vertices in the modulator will be realised
through the components of G − X. Let E(X) be the set of these guessed connections.

Now, we check the validity of our guess using the (configuration) N -fold ILP. Each
component of G − X (call them pieces) has at most k vertices; therefore, it can be split
in at most k chunks (not necessarily connected) that will be attached to some modulator
vertices already assigned to the parts of the solution. Let P(G, X) be the set of all pieces
of G − X. Now, we want to verify if there exists a selection of chunks for every piece so
that when we collect these together the solution is indeed connected and contains the right
number of vertices. Thus, there are altogether at most kk configurations of chunks in a piece.
Let C(Z) be the set of all configurations of a piece Z. Let sZ

C,i be the number of vertices in
the chunk attached to the i-th part from a piece Z in the configuration C.Let Z be a piece
and C ∈ C(Z), we set eZ

C(u, v) = 1 if the chunk assigned by C to the part containing both
u, v ∈ X connects u and v.

Now, we have to ensure (local constraint) that each piece is in exactly one configuration∑
C∈C(Z)

xZ
C = 1 ∀Z ∈ P(G, X) . (4)

Observe that these constraints have no variables in common for two distinct elements
of P(G, X). The rest of the necessary computation uses global constraints. We ensure that
the total contribution of chunks assigned to the parts is the correct number (xi is a binary
slack such that

∑
i xi = n mod p):
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xi +
∑

Z∈P(G,X)

∑
C∈C(Z)

sZ
C,i · xZ

C = ⌈n/p⌉ − |Xi| ∀i ∈ [p] (5)

Next, we have to verify the connectivity of parts in X∑
Z∈P(G,X)

∑
C∈C(Z)

eZ
C(u, v) · xZ

C ≥ 1 ∀{u, v} ∈ E(X) (6)

It is not hard to verify, that the parameters of N -fold IP are as follows:
the number s of local constraints in a brick is exactly 1 as there is a single local
constraint (4) for each piece,
the number r of global constraints is in O

(
k2)

: there are p ≤ k constraints (5) and
(

k
2
)

constraints (6),
the number t of variables in a brick is |C(Z)| which is kO(k), and
a ∈ O

(
k3)

, since all coefficients in the constraints are bounded by k in absolute value.
Thus, using Proposition 6, the Equitable Connected Partition problem can be solved
in kO(k4) · n log n time. ◀

Using techniques from the proof of Theorem 7, we may give a specialised algorithm for
Equitable Connected Partition parameterised by the 3-path vertex cover. The core
idea is essentially the same, but the components that remain after removing the modulator
are much simpler: they are either isolated vertices or isolated edges. This fact allows us to
additionally speed the algorithm up.

▶ Theorem 8. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the 3-path vertex cover number and can be solved in kO(k2) · n log n time,
where k = 3-pvcn(G).

The next result is an XP algorithm with respect to the tree-width of G. It should be
noted that a similar result was reported already by Enciso et al. [26]; however, their proof
was never published1 and the only clue for the algorithm the authors give in [26] is that
this algorithm “can be proved using standard techniques for problems on graphs of bounded
treewidth”. Therefore, to fill this gap in the literature, we give our own algorithm.

▶ Theorem 9. The Equitable Connected Partition problem is in XP when parameter-
ized by the tree-width tw of G.

Proof sketch. The algorithm is, as is usual, a leaf-to-root dynamic programming algorithm
along a nice tree decomposition. The crucial observation we need for the algorithm is that
at every moment of the computation, there are at most O (tw) opened parts. This holds
because each bag forms a separator in G and therefore no edge can “circumvent” currently
processed bag.

The algorithm then proceeds as follows. In each node x of the tree-decomposition, we
remember all possible partitions of vertices into open parts and the sizes of each open cluster
including already forgotten vertices. We require that each open part is connected. Once a
new vertex v is introduced, we have three possibilities: create a new part consisting of only

1 In particular, in their conference version, Enciso et al. [26] promised to include the proof in an extended
version, which, however, has never been published. There is also a version containing the appendix of
the conference paper available from https://www.researchgate.net/publication/220992885_What_
Makes_Equitable_Connected_Partition_Easy; however, even in this version, the proof is not provided.

MFCS 2024
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v, put v into an existing opened part, or merge (via v) multiple already existing parts into a
new one. When a vertex v is forgotten we need to check whether v is the last vertex of its
part and, if yes, whether the part v is member of is of size ⌊n/p⌋ or ⌈n/p⌉. In join nodes, we
just merge two records from child nodes with the same partition of bag vertices, or we merge
different partitions whose connectivity is secured by the past vertices.

Once the dynamic table is correctly filled, we ask whether the dynamic table for the
root of the tree-decomposition stores true in its single cell. The size of each dynamic
programming table is twO(tw) ·nO(tw) = nO(tw), and each table can be computed in the same
time. Therefore, the algorithm runs in O (n · tw) · nO(tw) time, which is in XP. ◀

Observe that if the size of every part is bounded by a parameter ς, the size of each
dynamic programming table is twO(tw) ·ςO(tw) and we need the same time to compute each
cell. Therefore, the algorithm also shows the following tractability result.

▶ Corollary 10. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the tree-width tw and the size of a large part ς = ⌈n/p⌉ combined.

In other words, the Equitable Connected Partition problem becomes tractable if
the tree-width is bounded and the number of parts is large.

So far, we investigated the complexity of the problem mostly with respect to structural
parameters that are bounded for sparse graphs. Now, we turn our attention to parameters
that our bounded for dense graphs. Note that such parameters are indeed interesting for the
problem, as the problem becomes polynomial-time solvable on cliques. We were not able to
find this result in the literature, and, therefore, we present it in its entirety.

▶ Observation 11. The Equitable Connected Partition problem can be solved in linear
time if the graph G is a clique.

Proof. First, we determine the number of parts of size ⌈n/p⌉ as ℓ = (n mod p), and the
number of smaller parts of size ⌊n/p⌋ as s = p − ℓ. Now, we arbitrarily assign vertices to p

parts such that the first ℓ parts contain ⌈n/p⌉ vertices and the remaining s parts contain
exactly ⌊n/p⌋ vertices. This, in fact, creates an equitable partition. Moreover, every partition
is connected, since each pair of vertices is connected by an edge in G. ◀

Following the usual approach of distance from triviality [1, 41], we study the problem
of our interest with respect to the distance to clique. We obtain the following tractability
result.

▶ Theorem 12. The Equitable Connected Partition problem is fixed-parameter tractable
when parameterised by the distance to clique k.

Next, we prove polynomial-time solvability for a more general class of graphs than cliques.
Namely, we provide a tractable algorithm for co-graphs.

▶ Theorem 13. The Equitable Connected Partition problem can be solved in polynomial
time if the graph G is a co-graph.

Next structural parameter we study is the neighbourhood diversity, which is generalisation
of the famous vertex cover number that, in contrast, allows for large cliques to be present
in G. Later on, we will also provide a fixed-parameter tractable algorithm for a more general
parameter called modular-width; however, the algorithm for neighbourhood diversity will
serve as a building block for the later algorithm, and therefore we find it useful to present
the algorithm in its entirety.
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▶ Theorem 14. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the neighbourhood diversity nd(G).

Proof. We first observe that each connected sub-graph of G “induces” a connected graph of
the type-graph of G. More precisely, each connected sub-graph of G is composed of vertices
that belong to types of G that induce a connected sub-graph of the type-graph. Therefore,
the solution is composed of various realisations of connected sub-graphs of the type-graph
of G. Note that there are at most 2nd(G) connected sub-graphs of the type-graph of G. We
will resolve this task using an ILP using integral variables xt

H for a type t and a connected
sub-graph H of the type-graph of G. Furthermore, we have additional variables xH . That is,
the total number of variables is (upper-bounded by) nd(G) · 2nd(G) + 2nd(G). The meaning of
a variable xt

H is “how many vertices of type t we use in a realisation of H”. The meaning of
a variable xH is “how many realisations of H there are in the solution we find”. We write
t ∈ H for a type that belongs to H (a connected sub-graph of the type-graph). Let σ denote
the lower-bound on the size of parts of a solution, that is, σ = ⌊n/k⌋. In order for this to
hold we add the following set of constraints (here, ξG = 0 if n = k · σ and ξG = 1, otherwise):

σxH ≤
∑
t∈H

xt
H ≤ (σ + ξG)xH ∀H (7)

xH ≤ xt
H ∀H ∀t ∈ H (8)∑

H

xt
H = nt ∀t ∈ T (G) (9)

0 ≤ xt
H ≤ nt, xt

H ∈ Z ∀H ∀t ∈ H (10)
0 ≤ xH , xt

H ∈ Z ∀H (11)

That is, (9) ensures that we place each vertex to some sub-graph H. The set of conditions
(7) ensures that the total number of vertices assigned to the pattern H is divisible into parts
of sizes σ or σ + 1. The set of conditions (8) ensures that each type that participates in a
realisation of H contains at least xH vertices, that is, we can assume that each realisation
contains at least one vertex of each of its types. It is not difficult to verify that any solution
to the Equitable Connected Partition problem fulfils (7)–(11).

In the opposite direction, suppose that we have an integral solution x satisfying (7)–(11).
Let H be the collection of graphs H with multiplicities corresponding to x, that is, a graph H

belongs to H exactly xH -times. First, we observe that |H| = k. To see this note that

|G| =
∑
t∈H

nt =
∑
t∈H

∑
H∈H

xt
H =

∑
H∈H

∑
t∈H

xt
H ≥

∑
H∈H

σ · 1 ≥ σ
∑
H

xH = σ|H| .

Similarly, we have |G| ≤ (σ + ξG)|H| and the claim follows. Now, we find a realisation for
every H ∈ H. We know that there are xt

H ≥ σxH vertices allocated to H. We assign them
to the copies of H in H as follows. First, from each type t ∈ H we assign one vertex to each
copy of H (note that this is possible due to (8)). We assign the rest of the vertices greedily,
so that there are σ vertices assigned to each copy of H; then, we assign the leftover vertices
(note that there are at most xH of them in total) to the different copies of H. In this way,
we have assigned all vertices and gave a realisation of H.

As was stated before, the integer linear program has only parameter-many variables.
Hence, we can use the algorithm of Lenstra [49] to solve it in FPT time. ◀

With the algorithm from the proof of Theorem 14 in hand, we are ready to derive the
result also for the modular-width.
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▶ Theorem 15. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the modular-width mw(G).

Proof sketch. Clearly, the leaf-nodes of the modular decomposition of G have bounded
neighbourhood diversity. For the graph of a leaf-node, we employ the following ILP:

σxH ≤
∑
t∈H

xt
H ≤ (σ + ξG)xH ∀H (12)

xH ≤ xt
H ∀H ∀t ∈ H (13)∑

H

xt
H ≤ nt ∀t ∈ T (G) (14)

0 ≤ xt
H ≤ nt, xt

H ∈ Z ∀H ∀t ∈ H (15)
0 ≤ xH , xt

H ∈ Z ∀H (16)

Note the difference between (14) and (9); that is, this time we do not insist on assigning all
vertices and can have some leftover vertices. We add an objective function

max
∑
H

∑
t∈H

xt
H ,

that is, we want to cover as many vertices as possible already in the corresponding leaf-node.
Next, we observe that based on the solution of the above ILP, we can replace the leaf-node
with a graph of neighbourhood diversity 2. In order to do so, we claim that if we replace
the graph represented by the leaf-node by a disjoint union of a clique of size

∑
H

∑
t∈H xt

H

and an independent set of size
∑

H(nt −
∑

t∈H xt
H), then we do not change the answer to

the Equitable Connected Partition problem. That is, the answer to the original graph
was yes if and only if the answer is yes after we alter the leaf-node. The algorithm for
modular-width then follows by a repeated application of the above ILP. ◀

As the last result of this section, we give an XP algorithm for another structural parameter
called distance to cluster graph. The algorithm, in its core, is based on the same ideas as
our FPT algorithm for distance to clique. Nevertheless, the number of types of vertices is no
longer bounded only by a function of a parameter, and to partition the vertices that are not
in the neighbourhood of the modulator vertices, we need to employ dynamic programming.

▶ Theorem 16. The Equitable Connected Partition problem is XP parameterised by
the distance to cluster graph dcg(G).

4 Hardness Results

In this section, we complement our algorithmic upper-bounds from the previous section with
matching hardness lower-bounds. The results from this section clearly show that no XP
algorithm introduced in this paper can be improved to a fixed-parameter tractable one, or
pushed to a more general parameter.

First, we observe that ECP is W[1]-hard with respect to the feedback-edge set number
fes of G. This negatively resolves the question from the introduction of our paper. In fact,
the actual statement shows an even stronger intractability result.

▶ Theorem 17. The Equitable Connected Partition problem is W[1]-hard with respect
to the path-width pw(G), the feedback-edge set number fes(G), and the number of parts p

combined.
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Figure 2 An illustration of the construction used to prove Theorem 19.

Note that the result from Theorem 17 can be, following the same arguments as used
by [26], strengthened to show the same result for planar graphs.

▶ Corollary 18. The Equitable Connected Partition problem is W[1]-hard when
parameterised by the path-width, the feedback-edge set, and the number of parts combined,
even if G is a planar graph.

Next, we show that the d-pvcn parameter from Theorem 8 cannot be relaxed any more
while the problem is kept tractable. Our reduction2 is even more general and comes from
the Unary Bin Packing problem, which is defined as follows.

Input: A number of bins k, a capacity of a single bin b, and a multi-set of integers
A = {a1, . . . , an} such that

∑
a∈A

a = bk.
Question: Is there a surjective mapping α : A → [k] such that for every i ∈ [k] we have∑

a∈α−1(i) a = b?

Unary Bin Packing

The Unary Bin Packing problem is well-known to be W[1]-hard when parameterised by
the number of bins k and not solvable in f(k) · no(k/ log k) time for any computable function f ,
even if all numbers are given in unary [44].

▶ Theorem 19. For every graph family G such that it contains at least one connected
graph G with s vertices for every s ∈ N, the Equitable Connected Partition problem
is W[1]-hard parameterised by the distance to G referred to as distG(G) and the number of
parts p combined and, unless ETH fails, there is no algorithm running in f(ℓ) · no(ℓ/ log ℓ)

time for any computable function f , where ℓ = p + distG(G).

Proof sketch. Let I = (A, k, b) be an instance of the Unary Bin Packing problem. We
construct an equivalent instance J = (G, p) of the Equitable Connected Partition
problem as follows (see Figure 2 for an overview of the construction). For the sake of
exposition, we assume that G is a family containing all disjoint unions of stars; later we show
how to tweak the construction to work with any G satisfying the conditions from the theorem
statement.

For every number ai ∈ A, we create a single item-gadget Si which is a star with ai vertices.
Every Si will be connected with the rest of the graph G only via the star centre ci; we call
this special vertex a hub. Next, we create k bin-gadgets B1, . . . , Bk. Each of these gadgets

2 We would like to mention here that the construction used in the proof of Theorem 19 starts with
the same problem and share similarities with the independent hardness construction of Gima and
Otachi [39]; however, our construction is arguably easier and prove much more general hardness results.
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consists of a single vertex. Slightly abusing the notation, we call this vertex also Bi, i ∈ [k].
As the last step of the construction, we add an edge connecting every bin-gadget with every
item-gadget and set p = k. ◀

It is not hard to see that every graph G which is a disjoint union of stars has constant
4-path vertex cover number – 0, to be precise. Therefore, by Theorem 19 we obtain the
desired hardness result.

▶ Corollary 20. The Equitable Connected Partition problem is W[1]-hard parameterised
by the 4-path vertex cover number 4-pvcn and the number of parts p combined.

Now, a previous blind spot of our understanding of the Equitable Connected Par-
tition problem’s complexity with respect to the structural parameters that are bounded
mostly for sparse graphs is the distance to disjoint paths. We again obtain hardness as a
direct corollary of Theorem 19.

▶ Corollary 21. The Equitable Connected Partition problem is W[1]-hard parameterised
by the distance to disjoint paths ddp(G) and the number of parts p combined.

Enciso et al. [26] stated (and we formalized in Theorem 9) that there is an XP algorithm
for the Equitable Connected Partition problem parameterised by the tree-width of G.
A natural question is then whether this algorithm can be improved to solve the problem in
the same running-time also with respect to the more general parameter called clique-width.
We give a strong evidence that such an algorithm is unlikely in the following theorem.

▶ Theorem 22. The Equitable Connected Partition problem is NP-hard even if the
graph G has clique-width 3, and is solvable in polynomial-time on graphs of clique-width at
most 2.

Proof. To show the hardness, we reuse the reduction used to prove Theorem 19. Recall that
the construction can be done in polynomial time, thus, the reduction is also a polynomial
reduction. What we need to show is that the clique-width of the constructed graph G is
constant. We show this by providing an algebraic expression that uses 3 labels. First, we
create a graph G1 containing all bin-gadgets. This can be done by introducing a single vertex
and by repeating disjoint union operation. We additionally assume that all vertices in G1
have label 3. Next, we create a graph G2 containing all item-gadgets. Every item-gadget
is a star which can be constructed using two labels 1 and 2. Without loss of generality, we
assume that all item-gadgets’ centres have label 1 and all leaves have label 2. To complete
the construction, we create disjoint union of G1 and G2 and, then, we perform a full join of
vertices labelled 1 and 3. It is easy to see that the expression indeed leads to a desired graph.
Polynomial-time solvability follows from Theorem 13 and the fact that co-graphs are exactly
the graphs with clique-width at most 2 [17]. ◀

Using similar arguments, we can show para-NP-hardness also for a more restrictive
parameter called shrub-depth [32, 34, 33].

▶ Theorem 23. The Equitable Connected Partition problem is NP-hard even if the
graph G has shrub-depth 3.

As the last piece of the complexity picture of the Equitable Connected Partition
problem, we show that ECP is W[1]-hard with respect to the distance to disjoint cliques.
Recall that we give an XP algorithm for this parameter in Theorem 16.

▶ Corollary 24. The Equitable Connected Partition problem is W[1]-hard with respect
to the distance to cluster graph dcg(G) and the number of parts p combined.
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5 Conclusions

We revisit the complexity picture of the Equitable Connected Partition problem with
respect to various structural restrictions of the graph. We complement the existing results
with algorithmic upper-bounds and corresponding complexity lower-bounds that clearly show
that no existing parameterised algorithm can be significantly improved.

Despite that the provided complexity study gives us a clear dichotomy between tractable
and intractable cases, there still remain a few blind spots. One of the most interesting is the
complexity classification of the Equitable Connected Partition problem with respect to
the band-width parameter, which lies between the maximum leaf number and the path-width;
however, is incomparable with the feedback-edge set number.

An interesting line of research can target the tightness of our results. For example, we show
a clear dichotomy between the tractable and intractable cases of ECP when parameterised by
the clique-width. Using similar arguments, we can show the following result for the recently
introduced parameter twin-width [11].

▶ Theorem 25. The Equitable Connected Partition problem is NP-hard even if the
graph G has twin-width 2, and is solvable in polynomial-time on graphs of twin-width 0.

We conjecture that the problem is polynomial-time solvable also on graphs of twin-
width 1, which, unlike the twin-width 2 graphs, are additionally known to be recognisable
efficiently [10]. Similarly, we can ask whether the provided FPT algorithms are optimal
under some standard theoretical assumptions, such as the well-known Exponential-Time
Hypothesis [42].

Last but not least, the parameterised complexity framework not only gives us formal
tools for finer-grained complexity analysis of algorithms for NP-hard problems, but, at the
same time, equips us also with the necessary formalism for analysis of effective preprocessing,
which is widely known as kernelisation. A natural follow-up question is then whether the
Equitable Connected Partition problem admits a polynomial kernel with respect to
any of the studied structural parameters. We conjecture that there is a polynomial kernel
with respect to the distance to clique and 3-path vertex cover number.
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