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Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a
proof system for first-order logic that is both purely equational and complete. This paper illustrates
a correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof,
we introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.
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1 Introduction

The first appearances of the characteristic features of first-order logic can be traced back
to the works of Peirce [54] and Frege [21]. Frege was mainly motivated by the pursuit of a
rigorous foundation for mathematics: his work was inspired by real analysis, bringing the
concept of functions and variables into the logical realm [18]. On the other hand Peirce,
inspired by the work of De Morgan [16] on relational reasoning, introduced a calculus in
which operations allow the combination of relations and adhere to a set of algebraic laws.
Like Boole’s algebra of classes [9], Peirce’s calculus of relations does not feature variables nor
quantifiers and its sole deduction rule is substituting equals by equals.

Despite several negative results [51, 28, 63, 22, 2, 60] regarding axiomatizations for the
calculus, its lack of binder-related complexities, coupled with purely equational proofs, has
rendered the calculus of relations highly influential in computer science, e.g., in the context of
database theory [13], programming languages [61, 27, 38, 1, 37] and proof assistants [58, 59, 36].
In logic, the calculus played a secondary role for many years, likely because it is strictly
less expressive than first-order logic [43]. This was until Tarski in [67] recognized its
algebraic flavour and initiated a program of algebraizing first-order logic, including works
such as [17, 26, 62]. Quoting Quine [62]:

“Logic in his adolescent phase was algebraic. There was Boole’s algebra of classes and
Peirce’s algebra of relations. But in 1879 logic come of age, with Frege’s quantification
theory. Here the bound variables, so characteristic of analysis rather than of algebra,

became central to logic.”
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Such a perspective, which regarded algebraic aspects and those concerning quantifiers as
separate entities, changed with the work of Lawvere.

Thanks to the recent development of a new branch of mathematics, namely category
theory, Lawvere introduced in [40, 41, 42] hyperdoctrines which enabled the study of logic from
a pure algebraic perspective. The crucial insights of Lawvere was to show that quantifiers, as
well as many logical constructs, can be algebraically captured through the crucial notion of
adjointness. Hyperdoctrines, along with many categorical structures related to logics, such
as regular, Heyting, and boolean categories [32, 33], align with Frege’s functional perspective:
arrows represent functions (terms), and relations are derived through specific constructions.

In the last decade, the paradigm shift towards treating data as a physical resource has
motivated many computer scientists to move from traditional term-based (cartesian) syntax
toward a string diagrammatic (monoidal) syntax [34, 65] (see e.g., [66, 4, 6, 8, 14, 19, 20, 24,
52, 56]). This shift in syntax enables an extension of Peirce’s calculus of relations that is as
expressive as first-order logic, accompanied by an axiomatization that is purely equational
and complete. The axioms are those of first-order bicategories [3]: see Figures 1, 3 and 4. In
essence, a first-order bicategory, or fo-bicategory, encompasses a cartesian and a cocartesian
bicategory [11], interacting as a linear bicategory [12], while additionally satisfying linear
versions of Frobenius equations and adjointness conditions.

In this paper, we reconcile Lawvere’s understanding of logic with Peirce’s calculus of
relations by illustrating a formal correspondence between boolean hyperdoctrines and first-
order bicategories.

To reach such a correspondence, we found convenient to introduce peircean bicategories:
these are cartesian bicategories with each homset carrying a boolean algebra where the
negation behaves appropriately with maps – special arrows that intuitively generalize functions.
Our first result (Theorem 27) states that peircean and fo-bicategories are equivalent.

While the definition of peircean bicategories is not purely equational, as in the case of fo-
bicategories, it is notably more concise. Moreover, it allows us to reuse from [7] an adjunction
between cartesian bicategories and elementary and existential doctrines [46, 45, 47], which are
a generalisation of hyperdoctrines, corresponding to the (∃,=,⊤,∧)-fragment of first-order
logic. Our main result (Theorem 32) reveals an adjunction between the category of first-order
bicategories and the category of boolean hyperdoctrines.

It is essential to note that our theorem establishes an adjunction rather than an equivalence.
The discrepancy can be intuitively explained by noting that, akin to first-order logic, terms
and formulas are distinct entities in hyperdoctrines. Thus for two terms t1 and t2, the
hyperdoctrine where the formula t1 = t2 is true differs from the hyperdoctrine where t1 and
t2 are equated as terms, a distinction not present in fo-bicategories. These issues, related to
the extensionality of equality, are thoroughly analyzed in the literature (see e.g. [45, 31]).

Leveraging another result from [7], we demonstrate (Theorem 37) that the adjunction
in Theorem 32 becomes an equivalence when restricted to well-behaved hyperdoctrines (i.e.,
those whose equality is extensional and satisfying the rule of unique choice [44]).

Synopsis. In § 2, we provide a review of (co)cartesian, linear and fo-bicategories. § 3
covers a recap of elementary and existential doctrines and boolean hyperdoctrines. The key
adjunction from [7] is recalled in §4. Our original contributions commence in § 5, where we
introduce peircean bicategories and establish their equivalence with fo-bicategories. This
result is used in § 6 to show the adjunction and in § 7 to establish the equivalence. Missing
proofs can be found in [5].
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Terminology and Notation. All bicategories considered in this paper are just poset-enriched
symmetric monoidal categories. For a bicategory C, we will write Cop for the bicategory
having the same objects as C but homsets Cop[X,Y ] def= C[Y,X]. Similarly, we will write
Cco to denote the bicategory having the same objects and arrows of C but equipped with
the reversed ordering ≥. The cartesian bicategories in this paper are called in [11] cartesian
bicategories of relations. We refer the reader to [3, Rem. 2] for a comparison with the
presentation of linear bicategories in [12]. In a category with finite products, we write ⟨f, g⟩
for the pairing of f and g and ∆X for ⟨id◦

X , id
◦
X⟩.

2 From (Co)Cartesian to First-Order Bicategories

In this section we recall the notion of first-order bicategory from [3]. To provide a preliminary
intuition, it is convenient to consider Rel, the first-order bicategory of sets and relations.

It is well known that sets and relations form a symmetric monoidal category, hereafter
denoted as Rel◦, with composition, identities, monoidal product and symmetries defined as

a ,◦ b
def= {(x, z) | ∃y ∈Y . (x, y) ∈ a ∧ (y, z) ∈ b} ⊆ X × Z id◦

X
def= {(x, y) |x = y}⊆X × X

a ⊗ c
def= {( (x, z), (y, v) ) | (x, y) ∈ a ∧ (z, v) ∈ c} ⊆ (X × Z) × (Y × V )

σ◦
X,Y

def= {( (x, y), (y′, x′) ) | x = x′ ∧ y = y′} ⊆ (X × Y ) × (Y × X)
(1)

for all sets X,Y, Z, V and relations a ⊆ X × Y , b ⊆ Y × Z and c ⊆ Z × V . As originally
observed by Peirce in [55], beyond ,◦ there exists another form of relational composition
that enjoys noteworthy algebraic properties. This different composition gives rise to another
symmetric monoidal category of sets and relations, hereafter denoted by Rel• and defined
as follows.

a ,• b
def= {(x, z) | ∀y ∈Y . (x, y) ∈ a ∨ (y, z) ∈ b} ⊆ X × Z id•

X
def= {(x, y) |x ̸= y}⊆X × X

a �× c
def= {( (x, z), (y, v) ) | (x, y) ∈ a ∨ (z, v) ∈ c} ⊆ (X × Z) × (Y × V )

σ•
X,Y

def= {( (x, y), (y′, x′) ) | x ̸= x′ ∨ y ̸= y′} ⊆ (X × Y ) × (Y × X)
(2)

Note that ⊗ and �× are both defined on objects as the cartesian product of sets and have as
unit the singleton set I def= {⋆}. Both Rel◦ and Rel• are poset-enriched symmetric monoidal
categories when taking as ordering the inclusion ⊆ and the complement ¬ : (Rel◦)co → Rel•

is an isomorphism. As we will explain in § 2.1, the relations defined for all sets X as

◀◦
X

def= {(x, (y, z)) | x = y ∧ x = z} ⊆ X × (X × X) ◀•
X

def= {(x, (y, z)) | x ̸= y ∨ x ̸= z} ⊆ X × (X × X)
▶◦

X
def= {((y, z), x) | x = y ∧ x = z} ⊆ (X × X) × X ▶•

X
def= {((y, z), x) | x ̸= y ∨ x ̸= z} ⊆ (X × X) × X

!◦X
def= {(x, ⋆) | x ∈ X} ⊆ X × I !•X

def= ∅ ⊆ X × I

¡◦
X

def= {(⋆, x) | x ∈ X} ⊆ I × X ¡•
X

def= ∅ ⊆ I × X

(3)
make Rel◦ a cartesian bicategory, while Rel• a cocartesian one.

Intuitively, a first-order bicategory C consists of a cartesian bicategory C◦, called the
“white structure”, and a cocartesian bicategory C•, called the “black structure”, that interact
by obeying the same laws of Rel◦ and Rel•. The name “first-order” is due to the fact that
such laws provide a complete system of axioms for first-order logic.

The axioms can be conveniently given by means of a graphical representation inspired by
string diagrams [34, 65]: composition is depicted as horizontal composition while the monoidal
product by vertically “stacking” diagrams. However, since there are two compositions ,◦ and
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Figure 1 Axioms of cartesian bicategories.

,• and two monoidal products ⊗ and �×, to distinguish them we use different colors. All white
constants have white background, mutatis mutandis for the black ones: for instance ◀◦

X and

▶•
X are drawn X

X
X and X

X
X , while for some arrows a, b, c, d of the appropriate

type, (a ⊗ c) ,• (b �× d) is drawn as on the right of (ν◦
l ) in Figure 3.

2.1 (Co)Cartesian Bicategories
We commence with the notion of cartesian bicategories by Carboni and Walters [11].

▶ Definition 1. A cartesian bicategory (C,⊗, I,◀◦, !◦,▶◦, ¡◦), shorthand (C,◀◦,▶◦), is a
poset-enriched symmetric monoidal category (C,⊗, I) and, for every object X in C, arrows
◀◦

X : X → X ⊗ X, !◦X : X → I, ▶◦
X : X ⊗ X → X, ¡◦

X : I → X such that
1. (◀◦

X , !
◦
X) is a comonoid and (▶◦

X , ¡
◦
X) a monoid, i.e., the equalities (◀◦-as), (◀◦-un),

(◀◦-co) and (▶◦-as), (▶◦-un), (▶◦-co) in Figure 1 hold;
2. every arrow c : X → Y is a lax comonoid homomorphism, i.e., (◀◦-nat) and (!◦-nat)

hold;
3. comonoids are left adjoints to the monoids, i.e., (η ◀◦), (ϵ ◀◦), (η!◦) and (ϵ!◦) hold;
4. monoids and comonoids form special Frobenius bimonoids, i.e., (F◦) and (S◦) hold;
5. monoids and comonoids satisfy the expected coherence conditions (see e.g. [7]).
C is a cocartesian bicategory if Cco is a cartesian bicategory. A morphism of (co)cartesian
bicategories is a poset-enriched strong symmetric monoidal functor preserving monoids and
comonoids. We denote by CB the category of cartesian bicategories and their morphisms.

As already mentioned, Rel◦ with ◀◦
X , !◦X , ▶◦

X and ¡◦
X defined in (3) form a cartesian

bicategory: the reader can easily check, using the definitions in (1) and (3), that all the laws
in Figure 1 are satisfied. Similarly, one can observe that the opposite inequality of (◀◦-nat)
holds iff the relation c ⊆ X × Y is single-valued (i.e., deterministic), while the opposite of
(!◦-nat) iff c is total. In other words, c is a function iff both (◀◦-nat) and (!◦-nat) hold as
equalities.

▶ Definition 2. Let c : X → Y be an arrow of a cartesian bicategory C. It is a map if

c
Y
Y

X ≥
c

c

Y
Y

X and cX ≥ X . (4)

Maps form a monoidal subcategory of C, denoted by Map(C), that has finite products [11].
In a cartesian bicategory C, each homset C[X,Y ] carries the structure of inf-semilattice,

defined for all c, d : X → Y as in (5) below. Furthermore, the equation (6) defines an
identity-on-objects isomorphism of cartesian bicategories (·)† : C → Cop.
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Figure 2 Axioms of cocartesian bicategories.

c ∧ d
def=

c

d
X Y ⊤ def= X Y (5) c† def= c

Y

X
(6)

The reader can check, using (1) and (3) that in Rel◦, c† : Y → X is the opposite of the
relation c, namely {(y, x) | (x, y) ∈ c}. It is well known that a relation c is a function iff it is
left adjoint to c†. More generally in a cartesian bicategory c is a map iff it is left adjoint to
c†. Summarising:

▶ Proposition 3. Let C be a cartesian bicategory and c : X → Y an arrow of C. The
following hold:
1. every homset carries the inf-semilattice structure, defined as in (5);
2. there is an isomorphism of cartesian bicategories (·)† : C → Cop, defined as in (6);
3. c is a map iff c is left adjoint to c†;
4. Map(C) is a category with finite products; moreover, a morphism of cartesian bicategories

F : C → D restricts to a functor F̃ : Map(C) → Map(D) preserving finite products.
Hereafter, we draw cY X for ( cX Y )

†
and cX Y for a map c : X → Y .

We mentioned that Rel• with ◀•
X , !•X , ▶•

X and ¡•
X defined in (3) forms a cocartesian

bicategory. To prove this, it is enough to observe that the complement ¬ is a poset-enriched
symmetric monoidal isomorphism ¬ : (Rel◦)co → Rel• preserving (co)monoids.

2.2 Linear Bicategories
We have seen that Rel◦ forms a cartesian bicategory, and Rel• a cocartesian bicategory. The
next step consists of merging them into one entity and studying their algebraic interactions.
However, the coexistence of two different compositions ,◦ and ,• on the same class of objects
and arrows brings us out of the realm of ordinary categories. The appropriate setting is
provided by linear bicategories [12] by Cockett, Koslowski and Seely.

▶ Definition 4. A linear bicategory (C, ,◦, id◦, ,•, id•) consists of two poset-enriched categories
(C, ,◦, id◦) and (C, ,•, id•) with the same class of objects, arrows and orderings (but possibly
different identities and compositions) such that ,◦ linearly distributes over ,•, i.e., (δl) and (δr)
in Figure 3 hold.

A symmetric monoidal linear bicategory (C, ,◦, id◦, ,•, id•,⊗, σ◦,�×, σ•, I), shortly
(C,⊗,�×, I), consists of a linear bicategory (C, ,◦, id•, ,•, id•) and two poset-enriched sym-
metric monoidal categories (C,⊗, I) and (C,�×, I) s.t. ⊗ and �× agree on objects, i.e.,
X ⊗ Y = X �× Y , share the same unit I and
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Figure 3 Axioms of closed symmetric monoidal linear bicategories.

2. there are linear strengths for (⊗,�×), i.e., the inequalities (ν◦
l ), (ν◦

r ), (ν•
l ) and (ν•

r ) hold;
3. �× preserves id◦ colaxly and ⊗ preserves id• laxly, i.e., (⊗•) and (�×◦) hold.
A morphism of symmetric monoidal linear bicategories F : (C1,⊗,�×, I) → (C2,⊗,�×, I)
consists of two poset-enriched symmetric monoidal functors F ◦ : (C1,⊗, I) → (C2,⊗, I)
and F • : (C1, �×, I) → (C2,�×, I) that agree on objects and arrows: F ◦(X) = F •(X) and
F ◦(c) = F •(c).

We omit the adjective symmetric monoidal, since all linear bicategories in this paper are
such. In linear bicategories one can define linear adjoints: for a : X → Y and b : Y → X, a
is left linear adjoint to b, or b is right linear adjoint to a, written b ⊩ a, if id◦

X ≤ a ,• b and
b ,◦ a ≤ id•

Y .

▶ Definition 5. A linear bicategory (C,⊗,�×, I) is said to be closed if every a : X → Y has
both a left and a right linear adjoint and, in particular, the white symmetry σ◦ is both left
and right linear adjoint to the black symmetry σ• (σ• ⊩ σ◦ ⊩ σ•), i.e. (τσ◦), (γσ◦), (τσ•)
and (γσ•) in Figure 3 hold.

Our main example is the closed linear bicategory Rel of sets and relations. The white
structure is the symmetric monoidal category Rel◦ and the black structure is Rel•. Observe
that the two have the same objects, arrows and ordering. The white and black monoidal
products ⊗ and �× agree on objects (they are the cartesian product of sets) and have common
unit object (the singleton set I). By (1) and (2), one can easily check all the inequalities in
Figure 3. Both left and right linear adjoints of a relation c ⊆ X × Y are given by ¬c†.

2.3 First-Order Bicategories
After (co)cartesian and linear bicategories, we can recall first-order bicategories from [3].

▶ Definition 6. A first-order bicategory C consists of a closed linear bicategory (C,⊗,�×, I),
a cartesian bicategory (C,◀◦,▶◦) and a cocartesian bicategory (C,◀•,▶•), such that
1. the white comonoid (◀◦, !◦) is left and right linear adjoint to black monoid (▶•, ¡•) and

(▶◦, ¡◦) is left and right linear adjoint to (◀•, !•) i.e., the 16 inequalities in the top of
Figure 4 hold;

2. white and black (co)monoids satisfy the linear Frobenius laws, i.e. (F•◦), (F◦•), (F ◦• ),
(F •◦ ) hold.
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Figure 4 Additional axioms for fo-bicategories.

A morphism of fo-bicategories is a morphism of linear bicategories and of (co)cartesian
bicategories. We denote by FOB the category of fo-bicategories and their morphisms.

We have seen that Rel is a closed linear bicategory, Rel◦ a cartesian bicategory and Rel• a
cocartesian bicategory. Given (3), it is easy to check the inequalities in Figure 4.

If C is a fo-bicategory, then Cco is a fo-bicategory when swapping white and black
structures. Similarly, Cop is a fo-bicategory when swapping monoids and comonoids.

In a fo-bicategory C, left and right linear adjoints of an arrow c coincide and are denoted
by c⊥. The assignment c 7→ c⊥ gives rise to an identity-on-objects isomorphism of fo-
bicategories (·)⊥ : C → (Cco)op. Similarly, (·)† : C → Cop in (6) is also an isomorphism of
fo-bicategories.

Since the following diagram commutes, one can define the complement as the diagonal of
the square, namely ¬(·) def= ((·)⊥)†.

C (·)† //

(·)⊥
��

Cop

(·)⊥
��

(Cco)op (·)† // Cco

Clearly ¬ : C → Cco is an isomorphism of fo-bicategories. Moreover, it induces a boolean
algebra on each homset of C.

▶ Proposition 7. Let C be a fo-bicategory. Then, every homset of C is a boolean algebra.

▶ Proposition 8. Let F : C → D be a morphism of fo-bicategories. For all arrows c,
¬F (c) = F (¬c).

The next property of maps (Definition 2) plays a key role in our work.

▶ Proposition 9. For all maps f : X → Y and arrows c : Y → Z, it holds that f ,◦ ¬c =
¬(f ,◦ c).

2.4 Freely Generated First-Order Bicategories
We conclude this section by giving to the reader a taste of how fo-bicategories relate to
first-order theories. First, we recall from [3] the freely generated fo-bicategory FOBΣ.

Given a monoidal signature Σ, namely a set of symbols R : n → m with arity n and coarity
m, FOBΣ is the fo-bicategory whose objects are natural numbers and arrows c : n → m are
string diagrams generated by the following rules:

MFCS 2024
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: 0 → 0 : 1 → 1 : 2 → 2

R : n → m ∈ Σ

R : n → m

c : n → m, d : m → o

c dn o : n → o

: 1 → 2 : 1 → 0 : 2 → 1 : 0 → 1

c : n → m, d : o → p

c

d

n m

o p
: n+ o → m+ p

: 0 → 0 : 1 → 1 : 2 → 2

R : n → m ∈ Σ

R : m → n

c : n → m, d : m → o

c dn o : n → o

: 1 → 2 : 1 → 0 : 2 → 1 : 0 → 1

c : n → m, d : o → p

c

d

n m

o p
: n+ o → m+ p

More precisely, arrows are equivalence classes of string diagrams w.r.t ≲ ∩ ≳, where ≲ is
the precongruence (w.r.t. ,◦,⊗, ,• and �×) generated by the axioms in Figures 1,2,3,4 (with
X,Y, Z,W replaced by natural numbers, and a, b, c, d by diagrams of the appropriate type)
and the axioms forcing R and R to be linear adjoints:

n n ≤ R Rn n R Rm m ≤ m m m m ≤ RR mm RR nn ≤ n n

To give semantics to these diagrams we need interpretations, i.e. pairs I = (X, ρ), where X
is a set and ρ is a function assigning to each R : n → m ∈ Σ a relation ρ(R) : Xn → Xm. Since
FOBΣ is the free fo-bicategory, for any interpretation I there exists a unique morphism of fo-
bicategories I♯ : FOBΣ → Rel such that I♯(1) = X and I♯( Rn m ) = ρ(R) ⊆ Xn ×Xm.
Intuitively, I♯ is defined inductively by (1), (2) and (3) with the free cases provided by I.

A diagrammatic first-order theory is a pair T = (Σ, I) where Σ is a monoidal signature and I
is a set of axioms: pairs (c, d) for c, d : n → m in FOBΣ, standing for c ≤ d. An interpretation
I is a model of T if and only if, for all (c, d) ∈ I, I♯(c) ⊆ I♯(d). As illustrated in [3], one can
generate the fo-bicategory FOBT and, in the spirit of Lawvere’s functorial semantics [39],
models of T are in one-to-one correspondence with morphisms F : FOBT → Rel.

▶ Example 10. Consider the theory T = (Σ, I), where Σ = {R : 1 → 1} and I be as follows:

{ ( , R ), ( R R , R ), ( R

R
, ), ( ,

R

R
) }.

An interpretation is a set X and a relation R ⊆ X × X. It is a model iff R is an order,
i.e., reflexive (id◦

X ⊆ R), transitive (R ,◦ R ⊆ R), antisymmetric (R ∩ R† ⊆ id◦) and total
(⊤ ⊆ R ∪R†).

▶ Remark 11. A direct encoding of traditional first-order theories into diagrammatic ones is
illustrated in [3]. Shortly, a predicate symbol P of arity n becomes a symbol P : n → 0 ∈ Σ,
drawn as Pn , and a n-ary function symbol f becomes f : n → 1 ∈ Σ, drawn as fn .
For instance, the formula ∃x.P (x) ∧Q(x, f(y)) is rendered as follows

Qf

P



F. Bonchi, A. Di Giorgio, and D. Trotta 30:9

where plays the role of ∃ and that of ∧. Note that both predicate and function
symbols of traditional first-order theories are regarded as symbols of the monoidal signature
Σ. Function symbols are constrained to represent functions by adding to I the axioms of
maps, i.e., the inequalities in (4).

3 From Elementary-Existential Doctrines to Boolean Hyperdoctrines

The notion of hyperdoctrine was introduced by Lawvere in a series of seminal papers
[40, 42]. Over the years, various generalizations and specializations of this concept have been
formulated and applied across multiple domains in the fields of logic and computer science.
In this work, we employ a generalization of the notion of hyperdoctrine introduced by Maietti
and Rosolini in [46, 45, 47], namely that of an elementary and existential doctrine.

▶ Definition 12. An elementary and existential doctrine is a functor P : Cop −→ InfSl from
the opposite of a category C with finite products to the category of inf-semilattices such that:

for every Y in C there exists an element δY in P (Y × Y ), called equality predicate,
such that for a morphism id◦

X × ∆Y : X × Y → X × Y × Y in C and every element α in
P (X × Y ), the assignment

∃id◦
X

×∆Y
(α) def= P⟨π1,π2⟩(α) ∧ P⟨π2,π3⟩(δY )

determines a left adjoint to the functor Pid◦
X

×∆Y
: P (X × Y × Y ) → P (X × Y );

for any projection πX : X × Y → X, the functor PπX
: P (X) → P (X × Y ) has a left

adjoint ∃πX
, and these satisfy the Beck-Chevalley condition and Frobenius reciprocity,

see [46, Sec. 2].

▶ Remark 13. In an elementary and existential doctrine, for every f : X → Y of C the
functor Pf has a left adjoint ∃f that can be computed as ∃πY

(Pf×id◦
X Y

(δY ) ∧ PπX
(α)) for α

in P (X), where πX and πY are the projections from X × Y . These left ajoints satisfy the
Frobenius reciprocity but not necessarily the Beck-Chevalley condition. See [48, Rem. 6.4].

▶ Definition 14. Let P : Cop −→ InfSl and R : Dop −→ InfSl be two elementary and existential
doctrines. A morphism of elementary and existential doctrines is given by a pair (F, b) where

F : C → D is a finite product preserving functor;
b : P → F op ,◦ R is a natural transformation;

satisfying the following conditions:

Cop

InfSl

Dop R

P

F op
b

1. for every object X of C, bX×X(δX) = δF X×F X ;
2. for every πX : X × Y → X of C and for every α in P (X × Y ), ∃F (πX )bX×Y (α) =

bX(∃πX
(α)).

We write EED for the category of elementary and existential doctrines and morphisms.

▶ Example 15. The powerset functor P : Setop −→ InfSl is the archetypal example of
an elementary and existential doctrine. More generally, for any regular category C, the
subobjects functor SubC : Cop −→ InfSl is an elementary and existential doctrine, see [45, 46].
This assignment extends to an inclusion of the category REG of regular categories into EED.

▶ Example 16. For a cartesian bicategory C, the functor C[−, I] : Map(C)op −→ InfSl is an
elementary and existential doctrine, where the actions of left adjoints is given ∃g(f) := f ,◦g† [7,
Thm. 20]. As we will see in §4, this assignment extends to an inclusion of CB into EED.
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Similarly to cartesian bicategories, elementary and existential doctrines have enough
structure to deal with the notion of functional (or single-valued) and entire (total) predicates.

▶ Definition 17 (From [44]). Let P : Cop −→ InfSl be an elementary and existential doctrine.
An element α ∈ P (X ×Y ) is said to be functional from X to Y if P⟨π1,π2⟩(α) ∧P⟨π1,π3⟩(α) ≤
P⟨π2,π3⟩(δY ) in P (X × Y × Y ). Also, α is said to be entire from X to Y if ⊤X ≤ ∃πX

(α) in
P (X).

▶ Remark 18. By definition, a morphism of elementary and existential doctrines preserves
both ∃πX

and δY . Therefore it preserves functional and entire elements.

▶ Example 19. In P : Setop −→ InfSl from Example 15, an α ∈ P(X × Y ) is functional iff it
defines a partial function from X to Y , while it is entire iff it is a total relation from X to Y .

▶ Example 20. In the doctrine C[−, I] : Map(C)op −→ InfSl from Example 16, functional
and entire elements are precisely maps of C. A detailed proof is in [5, Appendix E].

We can now recall the definition of boolean hyperdoctrine.

▶ Definition 21 (boolean hyperdoctrine). Let C be a category with finite products. A functor
P : Cop −→ Bool is a boolean hyperdoctrine if it is an elementary and existential doctrine.

A morphism (F, b) : P → R of boolean hyperdoctrines is a morphism of elementary and
existential doctrines such that bX is a morphism of boolean algebras for all objects X of C.
We denote by BHD the category of boolean hyperdoctrines and their morphisms.

It is well-known that in first-order logic the universal quantifier can be derived by the
existential quantifier and the negation. The same happens in boolean hyperdoctrines: for all
arrows f : X → Y , the functor ∀f (−) def= ¬∃f ¬(−) is a right adjoint to Pf (see [5, Appendix
B.1]).

▶ Example 22. The powerset functor P : Setop −→ Bool provides an example of a boolean
hyperdoctrine. This can be generalized to an arbitrary boolean category B, namely a coherent
category such that every subobject has a complement, see [33, Sec. A1.4, p. 38]. The
subobjects functor on B is a boolean hyperdoctrine SubB : Bop −→ Bool.

▶ Example 23. Given a standard first-order theory Th in a first-order language L (for
simplicity single sorted), one can consider the functor LTh : Vop −→ Bool. The base category
V is the syntactic category of L, i.e. the category where objects are natural numbers
and morphisms are lists of terms, while the predicates of LTh(n) are given by equivalence
classes (with respect to provable reciprocal consequence ⊣⊢) of well-formed formulae with
free variables in {x1, . . . , xn}, and the partial order is given by the provable consequences,
according to the fixed theory Th. In this case, the left adjoint to the weakening functor LTh

π

is computed by existentially quantifying the variables that are not involved in the substitution
induced by the projection π. Dually, the right adjoint is computed by quantifying universally.
The equality predicate is give by the formula x1 = x2.

▶ Example 24. Let A be a boolean algebra. The representable functor A(−) : Setop −→ Bool
assigning to a set X the poset AX of functions from X to A with the point-wise order is a
boolean hyperdoctrine.

We conclude this section with a result that, intuitively, is the analogous of Proposition 9.

▶ Lemma 25. Let P : Cop −→ Bool be a boolean hyperdoctrine and ϕ ∈ P (X × Y ) a
functional and entire element from X toY . For all ψ ∈ P (Y × Z), it holds that

∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(¬ψ)) = ¬( ∃πX×Z

(PπX×Y
(ϕ) ∧ PπY ×Z

(ψ)) ).
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4 An Adjunction and an Equivalence

In [7], cartesian bicategories and elementary existential doctrines are compared. The main
results of [7, Thm. 28] states that there exists the following adjunction.

CB EED
HmI

Rel

⊣ (7)

The embedding HmI : CB → EED maps a cartesian bicategory C into the hom-functor
C[−, I] : Map(C)op −→ InfSl that, as explained in Example 16, is an elementary existential
doctrine. The functor Rel : EED → CB is a generalisation to elementary and existential
doctrines of the construction of bicategory relations associated with a regular category (see
[11, Ex. 1.4]). For P : Cop −→ InfSl, the cartesian bicategory Rel(P ) is defined as follows:

objects are those of C; for objects X,Y , the homsets Rel(P )[X,Y ] are the posets P (X×Y );
the identity for an object X is the equality predicate δX in P (X ×X);
composition of ϕ : X → Y and ψ : Y → Z is given by ∃πX×Z

(PπX×Y
(ϕ) ∧ PπY ×Z

(ψ)).

The reader is referred to [7] or to [5, Appendix C] for further details on the adjunction in (7).

Another result in [7, Thm. 35] shows that the adjunction in (7) restricts to an equivalence

CB ≡ EED (8)

where EED is a full subcategory of EED whose objects are particularly well-behaved doctrines.
For the sake of readability, we will make clear in §7 what these doctrines are.

5 Peircean Bicategories

We now introduce peircean bicategories, an alternative presentation of fo-bicategories. The
name peircean is due to the fact that, like in Peirce’s algebra of relations [55], and differently
from fo-bicategories, the structure of boolean algebra is taken as a primitive.

▶ Definition 26. A peircean bicategory consists of a cartesian bicategory (C,◀◦,▶◦) such
that
1. every homset C[X,Y ] carries a Boolean algebra (C[X,Y ],∨,⊥,∧,⊤,¬);
2. for all maps f : X → Y and arrows c : Y → Z,

f ,◦ ¬c = ¬(f ,◦ c). (¬M)

A morphism of peircean bicategories is a morphism of cartesian bicategories F : C → D
such that F (¬c) = ¬F (c). We write PB for the category of peircean bicategories and their
morphisms.

By Propositions 7 and 9 every fo-bicategory is a peircean bicategory. By Proposition 8 every
morphism of fo-bicategories is a morphism of peircean bicategories.

Vice versa, every peircean bicategory (C,◀◦,▶◦) gives rise to a fo-bicategory. The black
structure (C,◀•,▶•) is defined as expected from the white one and ¬. Namely:

c ,• d
def= ¬(¬c ,◦ ¬d) id•

X
def= ¬id◦

X c �× d
def= ¬(¬c ⊗ ¬d) σ•

X,Y
def= ¬σ◦

X,Y

◀•
X

def= ¬◀◦
X !•X

def= ¬!◦X ▶•
X

def= ¬▶◦
X

¡•
X

def= ¬¡◦
X

(9)

With this definition, it is immediate to see that ¬ : (Cco,◀◦,▶◦) → (C,◀•,▶•) is an
isomorphism and thus to conclude that (C,◀•,▶•) is a cocartesian bicategory. Proving that
(C,◀◦,▶◦) and (C,◀•,▶•) give rise to a fo-bicategory is the main technical effort of this
paper.
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▶ Theorem 27. There is an isomorphism of categories FOB ∼= PB.

Proof (sketch). As mentioned above, most of the proof is devoted to showing that every
peircean bicategory is a fo-bicategory.

This is achieved by proving first that the relational operations on the homsets, like (·)†

defined in (6), are preserved by negation, e.g. ¬(c†) = (¬c)†. This is also where the property
on maps (¬M) mostly comes into play.

Then, to prove that the axioms of fo-bicategories are satisfied, one crucially exploits the
laws of boolean algebras.

Finally, to show that every morphism F of peircean bicategories is a morphism of fo-
bicategories, it suffices to observe that F preserves the strucure in (9), as it preserves negation
by definition.

The full diagrammatic proof can be found in [5, Appendix D]. ◀

Note that, differently from Definition 6, Definition 26 is not purely axiomatic, since (¬M)
requires f to be a map. However, the notion of a peircean bicategory is notably more succinct
than that of a fo-bicategory, making it more convenient for our purposes.

6 An Equational Presentation of Boolean Hyperdoctrines

The main purpose of this section is to establish a formal link between fo-bicategories and
boolean hyperdoctrines. In particular, we are going to show that the adjunction presented in
(7) restricts to an adjunction between FOB and BHD. Theorem 27 allows us to conveniently
work with peircean bicategories. We commence with the following result.

▶ Proposition 28. Let C be a peircean bicategory. Then HmI(C) is a boolean hyperdoctrine.

Proof. By (7), C[−, I] : Map(C)op −→ InfSl is an elementary and existential doctrine and, by
definition of peircean bicategories, C[X, I] is a boolean algebra for all objects X. To conclude
that C[−, I] : Map(C)op −→ Bool, one has only to show that, for all maps f : X → Y ,
C[f, I] : C[Y, I] → C[X, I] is a morphism of boolean algebras. Since, by (7), C[f, I] is a
morphism of inf-semilattices, it is enough to show that it preserves negation: for all c ∈ C[Y, I]

C[f, I](¬c) = f ,◦ ¬c (Definition of C[−, I])
= ¬(f ,◦ c) (¬M)
= ¬C[f, I](c) (Definition of C[−, I])

◀

The above proposition allows us to characterize peircean bicategories as follows:

▶ Corollary 29. Let C be a cartesian bicategory. Then it is a peircean bicategory if and only
if HmI(C) is a boolean hyperdoctrine.

To prove that, for any boolean hyperdoctrine P , Rel(P ) is a peircean bicategory, we need
to establish a formal correspondence between Definition 2 and Definition 17.

▶ Proposition 30. Let P : Cop −→ InfSl be an elementary and existential doctrine. Then
the maps of Rel(P ) are precisely the functional and entire elements of P .

▶ Proposition 31. Let P be a boolean hyperdoctrine. Then Rel(P ) is a peircean bicategory.
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Proof. By (7), Rel(P ) is a cartesian bicategory. Since P (X) is a boolean algebra for all
objects X, then each hom-set Rel(P )[X,Y ] – by definition P (X × Y ) – is a boolean algebra.
To conclude that Rel(P ) is a peircean bicategory, it is enough to show that (¬M) holds,
that is

ϕ ,◦ ¬ψ = ¬(ϕ ,◦ ψ)

for all maps ϕ ∈ Rel(P )[X,Y ] and arrows ψ ∈ Rel(P )[Y,Z]. By Proposition 30, ϕ is a
functional and entire element of P . Thus, one can rely on Lemma 25 to conclude that

ϕ ,◦ ¬ψ = ∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(¬ψ)) (Defintion of Rel(P ))

= ¬( ∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(ψ)) ) (Lemma 25)

= ¬(ϕ ,◦ ψ) (Defintion of Rel(P ))

◀

By Propositions 28 and 31 proving the following result amounts to a few routine checks.

▶ Theorem 32. The adjunction in (7), restricts to the adjunction below on the left.

PB BHD
HmI

Rel

⊣

Thus, by Theorem 27, there is an adjunction FOB BHD⊣ .

Proof. First, we want to prove that the inclusion HmI : CB ↪→ EED in (7) restricts to an
inclusion of categories PB ↪→ BHD. By Proposition 28, one only needs to check for morphisms
in PB. Given a morphism of peircean bicategories F : C → D, HmI(F ) is the morphism of
elementary and existential doctrines (F̃ , bF ) defined in Section 4. In order to conclude that
it is a morphism of boolean doctrines, it is enough to show that bF

X is a morphism of boolean
algebras for all objects X. Since (F̃ , bF ) is a morphism of doctrines, bF

X is a morphism of
inf-semilattices. Thus it is enough to show that bF

X preserve negation. But this is trivial
since, for all c ∈ C[X, I],

bF
X(¬c) = F (¬c) (Def. bF )

= ¬F (c) (morphism of Peircean, Definition 26)
= ¬bF

X(c) (Def. bF )

Now, to prove that Rel restrict to a functor Rel : BHD → PB, by Proposition 31, one
only needs to check that for all morphisms of boolean hyperdoctrines (F, b) : P → Q,
Rel(F, b) : Rel(P ) → Rel(Q) is a morphism of peicean bicategories. Since by (7), Rel(F, b) is
a morphism of cartesian bicategories, one only needs to check that it preserves the negation.
But this is obvious since for all arrows ϕ ∈ Rel(P )[X,Y ], Rel(F, b)(ϕ) is – by definition –
bX×Y (ϕ) and bX×Y is a morphism of boolean algebras.

To conclude, one only needs to check the unit and the counit of the adjunction in (7).
The counit is an isomorphism of cartesian bicategories (see Equation (9) in [7]), and then it
provides an isomorphism of peircean bicategories C ∼= Rel(C[−, I]) whenever C is a peircean
bicategory. The unit of the adjunction ηP : P → Rel(P )[−, I] is the morphism of elementary
and existential doctrines (ΓP , ρ) illustrated in [7, Section 7] or [5, Appendix C]. To conclude
that ηP is a morphism of boolean hyperdoctrine whenever P is a boolean hyperdoctrine,
one has only to prove that ρ is a morphism of boolean algebras, but this is trivial since ρ is
always an isomorphism of inf-semilattices. ◀
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7 Boolean Hyperdoctrines Representing First-Order Bicategories

As anticipated in §4, the adjunction in (7) becomes an equivalence for certain well-behaved
doctrines. Definitions 33 and 34 state the conditions that such doctrines must satisfy.

▶ Definition 33. An elementary and existential doctrine P : Cop −→ InfSl has comprehensive
diagonals if for the equality predicate δX ∈ P (X) it holds that P∆X

(δX) = ⊤X and every
arrow f : Y → X ×X such that Pf (δX) = ⊤Y factors (uniquely) through ∆X .

Intuitively, a doctrine has comprehensive diagonals if its equality is extensional, namely if a
formula t1 = t2 is true, then the terms t1 and t2 are syntactically equal. In the language of
cartesian bicategories, for two maps t1, t2, this can be stated by means of diagrams as

if t1 t2X X = X X then t1X Y = t2X Y . (10)

While it is sometimes meaningful to consider syntactic doctrines (e.g. Example 23) in which
the equality is not extensional, in several semantical doctrines this condition is satisfied.

▶ Definition 34. Let P : Cop −→ InfSl be an elementary existential doctrine. We say that
P satisfies the Rule of Unique Choice (RUC) if for every entire functional element ϕ in
P (X × Y ) there exists an arrow f : X → Y such that ⊤X ≤ P⟨id◦

X
,f⟩(ϕ).

The reader can think that a doctrine has (RUC) if for every element (intuitively formula)
that is entire and functional, there exists an arrow in C (intuitively a term) that represents
it.

▶ Example 35. The doctrine P : Setop −→ InfSl has comprehensive diagonals, and it satisfies
the (RUC) (since every functional and total relation can be represented by a function). More
generally, every subobject doctrine SubC : Cop −→ InfSl on a regular category, as presented
in Example 15 satisfies the (RUC) and it has comprehensive diagonals, as observed in [44].

▶ Example 36. The doctrine C[−, I] : Map(C)op −→ InfSl presented in Example 16 satisfies
the (RUC) and it has comprehensive diagonals, as proved in [7]. The reader can find a
diagrammatic proof of (10) in [5, Appendix A].

Hereafter – and in the equivalence in (8) – EED is the full subcategory of EED whose
objects are doctrines satisfying (RUC) and with comprehensive diagonals. Similarly BHD is
the full subcategory of BHD whose objects are boolean hyperdoctrines satisfying (RUC) and
with comprehensive diagonals.

By means of Theorem 32, it is easy to prove that the equivalence in (8) restricts as follows.

▶ Theorem 37. PB ≡ BHD and thus, by Theorem 27, FOB ≡ BHD.

Proof. By Equation (8) we have that the HmI and Rel functors provide an equivalence
between the categories CB and EED. Now, since every peircean category is in particular
a cartesian bicategory, we have that every boolean hyperdoctrine arising from a peircean
bicategory satisfies (RUC) and it has comprehensive diagonals. Then, we have that the
functor HmI : PB ↪→ BHD factors through the canonical inclusion BHD ↪→ BHD:

PB BHD

BHD

HmI

HmI
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By Theorem 32, we have that HmI : PB ↪→ BHD is fully and faithful (since the counit of the
adjunction is an iso), so it remains to prove that it is essentially surjective (with respect to the
objects of BHD). By the equivalence presented in Equation (8), we know that every boolean
hyperdoctrine (that is in particular an elementary and existential doctrine) satisfying (RUC)
and having comprehensive diagonals, is isomorphic to an elementary and existential doctrine
C[−, I] : Map(C)op −→ InfSl for some cartesian bicategory C. Thus, we can conclude that
C[−, I] : Map(C)op −→ InfSl is a boolean hyperdoctrine and, by Corollary 29, that C is a
peircean bicategory. This concludes the proof that PB ≡ BHD. ◀

8 Related Work

There exists many structures that are closely related to fo-bicategories, as discussed in [3].
The introduction of peircean bicategory in § 5 provide clearer correspondences with such
structures. Here we discuss some of them.

Boolean hyperdoctrines are used in [10] as a categorical treatment of another work of
Peirce: existential graphs [64]. While the latter share some similarities with the graphical
language of fo-bicategories there is one notable difference: negation is a primitive operator
rather than a derived one, as it happens for instance also in [25] and Definition 26. In [3]
and in §5, it is emphasised how this choice makes the resulting calculus less algebraic in
flavour, having to deal with convoluted rules such as the one for (de)iteration or properties
which are not purely equational, such as (¬M).

Inspired by [10], another graphical language [50] akin to Peirce’s graphs is based on a
decomposition of a hyperdoctrine into a bifibration. In this work, the categorical treatment
revolves around the notion of monoidal chiralities [49], which are much more closer in spirit
to fo-bicategories. We believe that our results might set an initial step towards a connection
between fo-bicategories and chiralities.

A recent work [15] proposes a relational understanding of doctrines. However, these
corresponds to the regular fragment of first-order logic, and thus it might by intriguing to
understand the role of the additional black structure of first-order bicategories in this setting.
Another route, suggested by the equivalence in Theorem 37, might be to understand the role
of (¬M) in relational doctrines with boolean fibres.

Finally, it is also worth remarking that peircean bicategories, as well as fo-bicategories,
are poset-enriched categories. Such categorical treatements of first-order logic are also found
in works such as [30, 23], along with the references therein. Their primary focus, though, is
on the categorical approach to classical proof theory instead of semantics.

9 Conclusions and Future Work

Theorems 32 and 37 provide a solid bridge between functional and relational approaches
to classical logic. The former rely on categorical structures that are usually defined by
means of exactness properties; the latter on fo-bicategories which enjoy a purely equational
presentation, much in the spirit of Boole’s algebra and Peirce’s calulus.

To achieve our result, we found it extremely convenient to introduce the notion of peircean
bicategories that, by Theorem 27, provide a far handier characterisation of fo-bicategories.

Theorem 27 might also be useful to establish a correspondence with allegories [22]: since
cartesian bicategories are equivalent to unitary pretabular allegories [35], we expect that
such allegories where, additionally, homsets carry boolean algebras satisfying (¬M) are
equivalent to fo-bicategories. Despite searching the literature, we did not find analogous
structures. Interestingly, the property (¬M) can be proven in any Peirce allegories, as shown
in Proposition 4.6.1 in [53].
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Finally, as future work we aim to investigate how our characterizations can be extended
to higher-order classical logic, which is categorically represented through the notion of
tripos [29, 57]. Indeed, we believe that the constructions and results presented in this work,
together with the notion of tripos, can serve as a guide for defining a variant of fo-bicategories
– hopefully, purely equational – capable of representing higher-order classical logic.
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