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Abstract
The notion of Lyndon word and Lyndon factorization has shown to have unexpected applications in
theory as well as in developing novel algorithms on words. A counterpart to these notions are those
of inverse Lyndon word and inverse Lyndon factorization. Differently from the Lyndon words, the
inverse Lyndon words may be bordered. The relationship between the two factorizations is related
to the inverse lexicographic ordering, and has only been recently explored. More precisely, a main
open question is how to get an inverse Lyndon factorization from a classical Lyndon factorization
under the inverse lexicographic ordering, named CFLin. In this paper we reveal a strong connection
between these two factorizations where the border plays a relevant role. More precisely, we show
two main results. We say that a factorization has the border property if a nonempty border of
a factor cannot be a prefix of the next factor. First we show that there exists a unique inverse
Lyndon factorization having the border property. Then we show that this unique factorization
with the border property is the so-called canonical inverse Lyndon factorization, named ICFL. By
showing that ICFL is obtained by compacting factors of the Lyndon factorization over the inverse
lexicographic ordering, we provide a linear time algorithm for computing ICFL from CFLin.
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31:2 Unveiling the Connection Between CFL and ICFL via a Border Property

1 Introduction

The theoretical investigation of combinatorial properties of well-known word factorizations is
a research topic that recently have witnessed special interest especially for improving the
efficiency of algorithms [5]. Among these, the Lyndon Factorization introduced by Chen, Fox,
Lyndon in [12], named CFL, undoubtedly stands. Any word w admits a unique factorization
CFL(w), that is a lexicographically non-increasing sequence of factors which are Lyndon
words. A Lyndon word w is strictly lexicographically smaller than each of its proper cyclic
shifts, or, equivalently, than each of its nonempty proper suffixes [24]. Interesting applications
of the use of the Lyndon factorization and Lyndon words are the development of the bijective
Burrows-Wheeler Transforms [2, 6, 21] and a novel algorithm for sorting suffixes [5]. In
particular, the notion of a Lyndon word has been re-discovered various times as a theoretical
tool to locate short motifs [15] and relevant k-mers in bioinformatics applications [26]. In
this line of research, Lyndon-based word factorizations have been explored to define a novel
feature representation for biological sequences based on theoretical combinatorial properties
proved to capture sequence similarities [7].

The notion of a Lyndon word has a counterpart that is the notion of an inverse Lyndon
word, i.e., a word lexicographically greater than its suffixes. Inverting the relation between a
word and its suffixes, as between Lyndon words and inverse Lyndon words, leads to different
properties. Indeed, although a word could admit more than one inverse Lyndon factorization,
that is a factorization into a nonincreasing product of inverse Lyndon words, in [8] the
Canonical Inverse Lyndon Factorization, named ICFL, was introduced. ICFL maintains the
main properties of CFL: it is unique and can be computed in linear time. In addition, it
maintains a similar Compatibility Property, used for obtaining the sorting of the suffixes of
w (“global suffixes”) by using the sorting of the suffixes of each factor of CFL(w) (“local
suffixes”) [25]. Most notably, ICFL(w) has another interesting property [8, 9, 10]: we can
provide an upper bound on the length of the longest common prefix of two substrings of a
word w starting from different positions.

A relationship between ICFL(w) and CFL(w) has been proved by using the notion of
grouping [8]. First, let CFLin(w) be the Lyndon factorization of w with respect to the inverse
lexicographic order, it is proved that ICFL(w) is obtained by concatenating the factors of
a non-increasing maximal chain with respect to the prefix order, denoted by PMCw, in
CFLin(w) (see Section 6). Despite this result, the connection between CFLin(w) and the
inverse Lyndon factorization still remained obscure, mainly by the fact that a word may
have multiple inverse Lyndon factorizations.

In this paper, we explore this connection between CFLin and the inverse Lyndon fac-
torizations. Our first main contribution consists in showing that there is a unique inverse
Lyndon factorization of a word that has border property. The border property states that
any nonempty border of a factor cannot be a prefix of the next factor. We further highlight
the aforementioned connection by proving that the inverse Lyndon factorization with the
border property is a compact factorization (Definition 6.7), i.e., each inverse Lyndon factor is
the concatenation of compact factors. In turn, a compact factor is the concatenation of the
longest sequence of identical words in a PMC. We then show the second contribution of
this paper: this unique factorization is ICFL itself and then provide a simpler linear time
algorithm for computing ICFL. Our algorithm is based on a new property that characterizes
ICFL(w): the last factor in ICFL(w) is the longest suffix of w that is an inverse Lyndon
word. Recall that the Lyndon factorization of w has a similar property: the last factor is the
longest suffix of w that is a Lyndon word.
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2 Words

Throughout this paper we follow [4, 13, 22, 23, 27] for the notations. We denote by Σ∗ the
free monoid generated by a finite alphabet Σ and we set Σ+ = Σ∗ \ {1}, where 1 is the empty
word. For a word w ∈ Σ∗, we denote by |w| its length. A word x ∈ Σ∗ is a factor of w ∈ Σ∗

if there are u1, u2 ∈ Σ∗ such that w = u1xu2. If u1 = 1 (resp. u2 = 1), then x is a prefix
(resp. suffix) of w. A factor (resp. prefix, suffix) x of w is proper if x ̸= w. Two words x, y

are incomparable for the prefix order, denoted as x ⋊⋉ y, if neither x is a prefix of y nor y is a
prefix of x. Otherwise, x, y are comparable for the prefix order. We write x ≤p y if x is a
prefix of y and x ≥p y if y is a prefix of x. The notion of a pair of words comparable (or
incomparable) for the suffix order is defined symmetrically.

We recall that, given a nonempty word w, a border of w is a word which is both a proper
prefix and a suffix of w [14]. The longest proper prefix of w which is a suffix of w is also
called the border of w [14, 23]. A word w ∈ Σ+ is bordered if it has a nonempty border.
Otherwise, w is unbordered. A nonempty word w is primitive if w = xk implies k = 1. An
unbordered word is primitive. A sesquipower of a word x is a word w = xnp where p is a
proper prefix of x and n ≥ 1. Two words x, y are called conjugate if there exist words u, v

such that x = uv, y = vu. The conjugacy relation is an equivalence relation. A conjugacy
class is a class of this equivalence relation.

▶ Definition 2.1. Let (Σ, <) be a totally ordered alphabet. The lexicographic (or alphabetic
order) ≺ on (Σ∗, <) is defined by setting x ≺ y if

x is a proper prefix of y, or
x = ras, y = rbt, a < b, for a, b ∈ Σ and r, s, t ∈ Σ∗.

In the next part of the paper we will implicitly refer to totally ordered alphabets. For
two nonempty words x, y, we write x≪ y if x ≺ y and x is not a proper prefix of y [3]. We
also write y ≻ x if x ≺ y. Basic properties of the lexicographic order are recalled below.

▶ Lemma 2.2. For x, y ∈ Σ+, the following properties hold.
(1) x ≺ y if and only if zx ≺ zy, for every word z.
(2) If x≪ y, then xu≪ yv for all words u, v.
(3) If x ≺ y ≺ xz for a word z, then y = xy′ for some word y′ such that y′ ≺ z.
(4) If x≪ y and y ≪ z, then x≪ z.

Let t, j, rj be positive integers, with 1 ≤ j ≤ t. Let S1, . . . ,St be sequences, with Sj =
(sj,1, . . . , sj,rj ). We let (S1, . . . ,St) stand for the sequence (s1,1, . . . , s1,r1 , . . . , st,1, . . . , st,rt).

3 Lyndon words

▶ Definition 3.1. A Lyndon word w ∈ Σ+ is a word which is primitive and the smallest one
in its conjugacy class for the lexicographic order.

▶ Example 3.2. Let Σ = {a, b} with a < b. The words a, b, aaab, abbb, aabab and aababaabb

are Lyndon words. On the contrary, abab, aba and abaab are not Lyndon words.

▶ Proposition 3.3. Each Lyndon word w is unbordered.

A class of conjugacy is also called a necklace and often identified with the minimal word
for the lexicographic order in it. We will adopt this terminology. Then a word is a necklace
if and only if it is a power of a Lyndon word. A prenecklace is a prefix of a necklace. Then
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31:4 Unveiling the Connection Between CFL and ICFL via a Border Property

clearly any nonempty prenecklace w has the form w = (uv)ku, where uv is a Lyndon word,
u ∈ Σ∗, v ∈ Σ+, k ≥ 1, that is, w is a sesquipower of a Lyndon word uv. The following result
has been proved in [16]. It shows that the nonempty prefixes of Lyndon words are exactly
the nonempty prefixes of the powers of Lyndon words with the exclusion of ck, where c is
the maximal letter and k ≥ 2.

▶ Proposition 3.4. A word is a nonempty prefix of a Lyndon word if and only if it is a
sesquipower of a Lyndon word distinct of ck, where c is the maximal letter and k ≥ 2.

In the following L = L(Σ∗,<) will be the set of Lyndon words, totally ordered by the
relation ≺ on (Σ∗, <).

▶ Theorem 3.5. Any word w ∈ Σ+ can be written in a unique way as a nonincreasing
product w = ℓ1ℓ2 · · · ℓh of Lyndon words, i.e., in the form

w = ℓ1ℓ2 · · · ℓh, with ℓj ∈ L and ℓ1 ⪰ ℓ2 ⪰ . . . ⪰ ℓh (3.1)

The sequence CFL(w) = (ℓ1, . . . , ℓh) in Eq. (3.1) is called the Lyndon decomposition (or
Lyndon factorization) of w. It is denoted by CFL(w) because Theorem 3.5 is usually credited
to Chen, Fox and Lyndon [12]. The following result, proved in [16], is necessary for our aims.

▶ Corollary 3.6. Let w ∈ Σ+, let ℓ1 be its longest prefix which is a Lyndon word and let w′

be such that w = ℓ1w′. If w′ ̸= 1, then CFL(w) = (ℓ1, CFL(w′)).

Sometimes we need to emphasize consecutive equal factors in CFL. We write CFL(w) =
(ℓn1

1 , . . . , ℓnr
r ) to denote a tuple of n1 + . . . + nr Lyndon words, where r > 0, n1, . . . , nr ≥ 1.

Precisely ℓ1 ≻ . . . ≻ ℓr are Lyndon words, also named Lyndon factors of w. There is a linear
time algorithm to compute the pair (ℓ1, n1) and thus, by iteration, the Lyndon factorization
of w [17, 23]. Linear time algorithms may also be found in [16] and in the more recent
paper [19].

4 Inverse Lyndon words

For the material in this section see [8, 9, 10]. Inverse Lyndon words are related to the inverse
alphabetic order. Their definition is recalled below.

▶ Definition 4.1. Let (Σ, <) be a totally ordered alphabet. The inverse <in of < is defined by

∀a, b ∈ Σ b <in a⇔ a < b

The inverse lexicographic or inverse alphabetic order on (Σ∗, <), denoted ≺in, is the lexico-
graphic order on (Σ∗, <in).

▶ Example 4.2. Let Σ = {a, b, c, d} with a < b < c < d. Then dab ≺ dabd and dabda ≺ dac.
We have d <in c <in b <in a. Therefore dab ≺in dabd and dac ≺in dabda.

Of course for all x, y ∈ Σ∗ such that x ⋊⋉ y,

y ≺in x⇔ x ≺ y.

Moreover, in this case x≪ y. This justifies the adopted terminology.
From now on, Lin = L(Σ∗,<in) denotes the set of the Lyndon words on Σ∗ with respect to

the inverse lexicographic order. Following [18], a word w ∈ Lin will be named an anti-Lyndon
word. Correspondingly, an anti-prenecklace will be a prefix of an anti-necklace, which in turn
will be a necklace with respect to the inverse lexicographic order.

In the following, we denote by CFLin(w) the Lyndon factorization of w with respect to
the inverse order <in.
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▶ Definition 4.3. A word w ∈ Σ+ is an inverse Lyndon word if s ≺ w, for each nonempty
proper suffix s of w.

▶ Example 4.4. The words a, b, aaaaa, bbba, baaab, bbaba and bbababbaa are inverse Lyndon
words on {a, b}, with a < b. On the contrary, aaba is not an inverse Lyndon word since
aaba ≺ ba. Analogously, aabba ≺ ba and thus aabba is not an inverse Lyndon word.

The following result, proved in [8, 10], and also in [11], summarizes some properties of
the inverse Lyndon words.

▶ Proposition 4.5. Let w ∈ Σ+. Then we have
1. The word w is an anti-Lyndon word if and only if it is an unbordered inverse Lyndon

word.
2. The word w is an inverse Lyndon word if and only if w is a nonempty anti-prenecklace.
3. If w is an inverse Lyndon word, then any nonempty prefix of w is an inverse Lyndon

word.

▶ Definition 4.6. An inverse Lyndon factorization of a word w ∈ Σ+ is a sequence
(m1, . . . , mk) of inverse Lyndon words such that m1 · · ·mk = w and mi ≪ mi+1, 1 ≤ i ≤ k−1.

As the following example in [8] shows, a word may have different inverse Lyndon factor-
izations.

▶ Example 4.7. Let Σ = {a, b, c, d} with a < b < c < d, z = dabdadacddbdc. It is easy to
see that (dab, dadacd, db, dc), (dabda, dac, ddbdc), (dab, dadac, ddbdc) are all inverse Lyndon
factorizations of z.

5 The border property

In this section we prove the main result of this paper, namely, for any nonempty word w,
there exists a unique inverse Lyndon factorization of w which has a special property, named
the border property.

▶ Definition 5.1 (Border property). Let w ∈ Σ+. A factorization (m1, . . . , mk) of w has the
border property if each nonempty border z of mi is not a prefix of mi+1, 1 ≤ i ≤ k − 1.

We first prove a fundamental property of the inverse Lyndon factorizations of w which
have the border property.

▶ Lemma 5.2. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having
the border property. If α is a nonempty border of mj, 1 ≤ j ≤ k − 1, then there exists a
nonempty prefix β of mj+1 such that |β| ≤ |α| and α≪ β.

Proof. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having the
border property, let α be a nonempty border of mj , 1 ≤ j ≤ k− 1. We distinguish two cases:
either |mj+1| < |α| or |mj+1| ≥ |α|.

Assume |mj+1| < |α|. By hypothesis (m1, . . . , mk) is an inverse Lyndon factorization,
hence mj ≪ mj+1, that is, there are r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and mj = ras,
mj+1 = rbt. Obviously |ra| ≤ |mj+1| < |α|, thus there is s′ ∈ Σ∗ such that α = ras′.
Consequently, α = ras′ ≪ rbt = mj+1 and our claim holds with β = mj+1.

Assume |mj+1| ≥ |α|. Let β be the nonempty prefix of mj+1 such that |β| = |α|. Clearly
β ̸= α because (m1, . . . , mk) has the border property. Since α and β are two different
nonempty words of the same length, either β ≪ α or α ≪ β. The first case leads to a
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31:6 Unveiling the Connection Between CFL and ICFL via a Border Property

contradiction because if β ≪ α, then mj+1 ≪ mj by Lemma 2.2 and this contradicts the
fact that (m1, . . . , mk) is an inverse Lyndon factorization. Thus, α ≪ β and the proof is
complete. ◀

▶ Proposition 5.3. For each w ∈ Σ+, there exists a unique inverse Lyndon factorization of
w having the border property.

Proof. The proof is by induction on |w|. If |w| = 1, then the statement clearly holds. Thus
assume |w| > 1. Let F1(w) = (f1, . . . , fk) and F2(w) = (f ′

1, . . . , f ′
v) be two inverse Lyndon

factorizations of w having the border property. Thus

f1 · · · fk = f ′
1 · · · f ′

v = w (5.1)

If |fk| = |f ′
v| and v = 1 or k = 1, clearly fk = f ′

v and F1(w) = F2(w). Analogously, if |fk| =
|f ′

v|, v > 1 and k > 1, then fk = f ′
v and F ′

1(w′) = (f1, . . . , fk−1), F ′
2(w′) = (f ′

1, . . . , f ′
v−1)

would be two inverse Lyndon factorizations of w′ having the border property, where w′ is
such that w = w′fk. Of course, |w′| < |w|. By induction hypothesis, F ′

1(w′) = F ′
2(w′), hence

F1(w) = F2(w).
By contradiction, let |fk| ≠ |f ′

v|. Assume |fk| < |f ′
v| (similar arguments apply if |fk| >

|f ′
v|). The word fk is a proper suffix of f ′

v. Clearly k > 1. Let g be the smallest integer such
that fg+1 · · · fk is a proper suffix of f ′

v, 1 ≤ g ≤ k − 1, that is,

f ′
v = αfg+1 · · · fk (5.2)

where α ∈ Σ+ is a suffix of fg.
Notice that

α ̸≪ fg+1. (5.3)

Indeed, if α ≪ fg+1, then, by Eq. (5.2), we would have f ′
v = αfg+1 · · · fk ≪ fg+1 · · · fk,

which is impossible because f ′
v is an inverse Lyndon word.

The word α is a nonempty proper suffix of fg since otherwise we would have α = fg ≪ fg+1,
contrary to Eq. (5.3). Since fg is an inverse Lyndon word and α is a nonempty proper suffix
of fg, either α ≤p fg or α≪ fg.

If α ≤p fg, then α is a nonempty border of fg, then, by Lemma 5.2, there exists a
nonempty prefix β of fg+1 such that |β| ≤ |α| and α≪ β. Thus, α≪ fg+1 which contradicts
Eq. (5.3). Assume α ≪ fg. Since fg ≪ fg+1, by Lemma 2.2 we have α ≪ fg+1 which
contradicts once again Eq. (5.3). This finishes the proof. ◀

▶ Example 5.4. Let Σ = {a, b, c, d} with a < b < c < d, let z = dabdadacddbdc. Notice that
only the last one of the inverse Lyndon factorizations of z from Example 4.7 fulfils the border
property, and the others do not.

6 Groupings and compact factorizations

In this section we prove a structural property of an inverse Lyndon factorization having the
border property, namely it is a compact factorization. This result is crucial to characterize
the relationship between CFLin(w) and the factorization into inverse Lyndon words of w.
First we report the notion of grouping given in [8]. We refer to [8, 10] for a detailed and
complete discussion on this topic.

Let CFLin(w) = (ℓ1, . . . , ℓh), where ℓ1 ⪰in ℓ2 ⪰in . . . ⪰in ℓh. Consider the partial order
≥p, where x ≥p y if y is a prefix of x. Recall that a chain is a set of a pairwise comparable
elements. We say that a chain is maximal if it is not strictly contained in any other chain. A
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non-increasing (maximal) chain in CFLin(w) is the sequence corresponding to a (maximal)
chain in the multiset {ℓ1, . . . , ℓh} with respect to ≥p. We denote by PMCw, or simply
PMC when it is understood, a non-increasing maximal chain in CFLin(w). Looking at the
definition of the (inverse) lexicographic order, it is easy to see that a PMC is a sequence of
consecutive factors in CFLin(w). Moreover CFLin(w) is the concatenation of its PMC. The
formal definitions are given below.

▶ Definition 6.1. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let 1 ≤ r < s ≤ h. We
say that ℓr, ℓr+1, . . . , ℓs is a non-increasing maximal chain for the prefix order in CFLin(w),
abbreviated PMC, if ℓr ≥p ℓr+1 ≥p . . . ≥p ℓs. Moreover, if r > 1, then ℓr−1 ̸≥p ℓr, if s < h,
then ℓs ̸≥p ℓs+1. Two PMC C1 = ℓr, ℓr+1, . . . , ℓs, C2 = ℓr′ , ℓr′+1, . . . , ℓs′ are consecutive if
r′ = s + 1 (or r = s′ + 1).

▶ Definition 6.2. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh). We say that (C1, C2, . . . , Cs) is
the decomposition of CFLin(w) into its non-increasing maximal chains for the prefix order
if the following holds
(1) Each Cj is a non-increasing maximal chain in CFLin(w).
(2) Cj and Cj+1 are consecutive, 1 ≤ j ≤ s− 1.
(3) CFLin(w) is the concatenation of the sequences C1, C2, . . . , Cs.

▶ Definition 6.3. Let w ∈ Σ+. We say that (m1, . . . , mk) is a grouping of CFLin(w) if the
following holds
(1) (m1, . . . , mk) is an inverse Lyndon factorization of w

(2) Each factor mj, is the product of consecutive factors in a PMC in CFLin(w).

▶ Example 6.4. Let Σ = {a, b, c, d}, a < b < c < d, and w = dabadabdabdadac. We
have CFLin(w) = (daba, dab, dab, dadac). The decomposition of CFLin(w) into its PMC is
((daba, dab, dab), (dadac)). Moreover, (daba, dabdab, dadac) is a grouping of CFLin(w) but
for the inverse Lyndon factorization (dabadab, dabda, dac) this is no longer true.

Next, let y = dabadabdabdabdadac. We have CFLin(y) = (daba, dab, dab, dab, dadac).
The decomposition of CFLin(w) into its PMC is ((daba, dab, dab, dab), (dadac)). Moreover,
(daba, (dab)3, dadac) and (dabadab, (dab)2, dadac) are two groupings of CFLin(y).

For our aims, we need to consider the words that are concatenations of equal factors in
CFLin. This approach leads to a refinement of the partition of CFLin into non-increasing
maximal chains for the prefix order, as defined below.

▶ Definition 6.5 (Compact sequences). Let C = (ℓ1, . . . , ℓh) be a non-increasing maximal
chain for the prefix order in CFLin(w). The decomposition of C into maximal compact
sequences is the sequence (G1, . . . ,Gn) such that
(1) C = (G1, . . . ,Gn)
(2) For every i, 1 ≤ i ≤ n, Gi consists of the longest sequence of consecutive identical

elements in C
Let (C1, C2, . . . , Cs) be the decomposition of CFLin(w) into its non-increasing maximal chains
for the prefix order. The decomposition of CFLin(w) into its maximal compact sequences is
obtained by replacing each Cj in (C1, C2, . . . , Cs) with its decomposition into maximal compact
sequences.

▶ Definition 6.6 (Compact factor). Let (G1, . . . ,Gn) be the decomposition of CFLin(w) into
its maximal compact sequences. For every i, 1 ≤ i ≤ n, the concatenation gi of the elements
in Gi is a compact factor in CFLin(w).

MFCS 2024
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▶ Definition 6.7 (Compact factorization). Let w ∈ Σ+. We say that (m1, . . . , mk) is a
compact factorization of w if (m1, . . . , mk) is an inverse Lyndon factorization of w and each
mj, 1 ≤ j ≤ k, is a concatenation of compact factors in CFLin(w).

▶ Example 6.8. Consider again y = dabadabdabdabdadac over Σ = {a, b, c, d}, a < b < c < d,
as in Example 6.4. The decomposition of CFLin(y) = (daba, dab, dab, dab, dadac) into its
maximal compact sequences is ((daba), (dab, dab, dab), (dadac)). The compact factors in
CFLin(w) are daba, (dab)3, dadac. Moreover, (daba, (dab)3, dadac) is a compact factoriza-
tion whereas (dabadab, (dab)2, dadac) is a grouping of CFLin(y) which is not a compact
factorization.

▶ Proposition 6.9. Let w ∈ Σ+. If (m1, . . . , mk) is an inverse Lyndon factorization of w

having the border property, then (m1, . . . , mk) is a compact factorization of w.

Proof. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having the
border property. Let CFLin(w) = (ℓ1, . . . , ℓh), where ℓ1 ⪰in ℓ2 ⪰in . . . ⪰in ℓh and ℓ1, . . . , ℓh

are anti-Lyndon words. First we prove that (m1, . . . , mk) is a grouping of CFLin(w) by
induction on |w|. If |w| = 1 the statement clearly holds, thus assume |w| > 1.

The words m1 and ℓ1 are comparable for the prefix order, hence either m1 is a proper
prefix of ℓ1 or ℓ1 is a prefix of m1. Suppose that m1 is a proper prefix of ℓ1. Thus, there are
j, 1 < j ≤ k, and x, y ∈ Σ∗, x ̸= 1, such that mj = xy and ℓ1 = m1 · · ·mj−1x. Necessarily it
turns out j = 2 because otherwise m1 ≪ mj−1, hence, by Lemma 2.2, ℓ1 ≪ mj−1x and this
contradicts the fact that ℓ1 is an anti-Lyndon word. In conclusion ℓ1 = m1x and m2 = xy.
We know that m1 ≪ m2, that is, there are r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and
m1 = ras, m2 = rbt = xy. If |x| ≤ |r|, then x is a nonempty border of ℓ1 and if |x| > |r|,
then there is a word t′ such that x = rbt′ which implies ℓ1 ≪ x. Both cases again contradict
the fact that ℓ1 is an anti-Lyndon word.

Therefore, ℓ1 is a prefix of m1. If m1 = ℓ1 · · · ℓh = w, then k = 1 and the statement
is proved. Otherwise, let i be the largest integer such that m1 = ℓ1 · · · ℓi−1x, x, y ∈ Σ∗,
ℓi = xy, 1 < i ≤ h, y ̸= 1. Let (C1, C2, . . . , Cs) be the decomposition of CFLin(w) into its
non-increasing maximal chains for the prefix order. We claim that ℓ1 · · · ℓi−1 is a prefix of
the concatenation of the elements of C1, thus (ℓ1, . . . , ℓi−1) is a chain for the prefix order.
If i = 1 we are done. Let i > 1. By contradiction, assume that there is j, 1 < j < i, such
that ℓj ̸∈ C1. Therefore, ℓ1 ≪ ℓj which implies m1 ≪ ℓj · · · ℓi−1x and this contradicts the
fact that m1 is an inverse Lyndon word.

We now prove that x = 1. Assume x ̸= 1. As a preliminary step, we prove that there is
no nonempty prefix β of m2 such that |β| ≤ |x| and x≪ β. In fact, if such a prefix existed,
there would be r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and x = ras, β = rbt. Notice that y

is a nonempty prefix of m2 · · ·mk, thus y and β = rbt are comparable for the prefix order.
If |ℓi| = |xy| ≤ |xr|, then 0 < |y| ≤ |r| and y would be a nonempty prefix of r. Thus y

would be a nonempty border of ℓi. If |ℓi| = |xy| > |xr|, then there would be a word t′ such
that ℓi = rasrbt′ which would imply ℓi ≪ rbt′. Both cases contradict the fact that ℓi is an
anti-Lyndon word.

Now either ℓi is a prefix of ℓ1 or ℓ1 ≪ ℓi. If ℓi were a prefix of ℓ1, then x would be a
nonempty border of m1. By Lemma 5.2 there would exist a nonempty prefix β of m2 such
that |β| ≤ |x| and x≪ β which contradicts our preliminary step.

If it were true that ℓ1 ≪ ℓi then there would be r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and
ℓ1 = ras, ℓi = rbt = xy. If |x| > |r|, then there would be a word t′ such that x = rbt′ which
would imply m1 ≪ x and this contradicts the fact that m1 is an inverse Lyndon word. If
|x| ≤ |r|, then x would be a prefix of r and x would be a nonempty border of m1. By Lemma
5.2 again, there would exist a nonempty prefix β of m2 such that |β| ≤ |x| and x≪ β which
contradicts again our preliminary step.
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Let w′ ∈ Σ∗ be such that w = m1w′. We know that w′ ̸= 1 and clearly |w′| < |w|. Of
course (m2, . . . , mk) is an inverse Lyndon factorization of w having the border property.
Moreover, by Corollary 3.6, CFLin(w′) = (ℓi, . . . , ℓh) and (C′

1, C2, . . . , Cs) is the decomposition
of CFLin(w′) into its non-increasing maximal chains for the prefix order, where C′

1 is defined
by C1 = (ℓ1, . . . , ℓi−1, C′

1). By induction hypothesis, (m2, . . . , mk) is a grouping of CFLin(w′)
and consequently (m1, . . . , mk) is a grouping of CFLin(w).

Finally, to obtain a contradiction, suppose that (m1, . . . , mk) is a grouping of CFLin(w)
having the border property such that (m1, . . . , mk) is not a compact factorization of w. To
adapt the notation to the proof, set CFLin(w) = (ℓn1

1 , . . . , ℓnr
r ), where r > 0, n1, . . . , nr ≥ 1

and ℓ1, . . . , ℓr are anti-Lyndon words. By Definitions 6.3 and 6.7, there exist integers
j, h, ph, qh, 1 ≤ j ≤ k − 1, 1 ≤ h ≤ r, ph ≥ 1, qh ≥ 1, ph + qh ≤ nh, such that mj ends with
ℓph

h and mj+1 starts with ℓqh

h . Thus, by Definition 6.3, ℓh is a prefix of mj . Moreover, ℓh

is a proper prefix of mj . Indeed otherwise ℓh = mj ≤p mj+1 which is impossible because
mj ≪ mj+1 ((m1, . . . , mk) is an inverse Lyndon factorization). Thus ℓh is a nonempty border
of mj . The word ℓh is also a prefix of mj+1 and this contradicts the fact that (m1, . . . , mk)
has the border property. ◀

7 The canonical inverse Lyndon factorization: The algorithm

In this section we state another relevant result of the paper related to the main one stated in
Section 5. We have shown that a nonempty word w can have more than one inverse Lyndon
factorization but w has a unique inverse Lyndon factorization with the border property
(Example 4.7, Proposition 5.3). Below we highlight that this unique factorization is the
canonical one defined in [8, 10].

This special inverse Lyndon factorization is denoted by ICFL because it is the counterpart
of the Lyndon factorization CFL of w, when we use (I)inverse words as factors. Indeed,
in [8] it has been proved that ICFL(w) can be computed in linear time and it is uniquely
determined for a word w.

In Proposition 7.7 we show another interesting property of ICFL: the last factor of the
factorization is the longest suffix that is an inverse Lyndon word. Based on this result we
provide a new simpler linear algorithm for computing ICFL.

We begin by recalling previously proved results on ICFL, namely Proposition 7.7 in [8]
and Proposition 9.5 in [10]. They are merged into Proposition 7.1.

▶ Proposition 7.1. For any w ∈ Σ+, ICFL(w) is a grouping of CFLin(w). Moreover,
ICFL(w) has the border property.

Corollary 7.2 is a direct consequence of Propositions 5.3, 6.9 and 7.1.

▶ Corollary 7.2. For each w ∈ Σ+, ICFL(w) is a compact factorization and it is is the
unique inverse Lyndon factorization of w having the border property.

Since ICFL(w) is the unique inverse Lyndon factorization with the border property, from
now on these two notions will be synonymous. Proposition 7.3 has been proved in [11].

▶ Proposition 7.3. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let (C1, C2, . . . , Cs) be
the decomposition of CFLin(w) into its non-increasing maximal chains for the prefix order.
Let w1, . . . , ws be words such that CFLin(wj) = Cj, 1 ≤ j ≤ s. Then ICFL(w) is the
concatenation of the sequences ICFL(w1), . . . , ICFL(ws), that is,

ICFL(w) = (ICFL(w1), . . . , ICFL(ws)) (7.1)
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We can now state some results useful to prove the correctness of our algorithm. First we
observe that, thanks to Corollary 7.2 and Proposition 7.3, to compute ICFL we can limit
ourselves to the case in which CFLin is a chain with respect to the prefix order.

▶ Lemma 7.4. Let ℓ1, . . . , ℓh be anti-Lyndon words over Σ that form a non-increasing chain
for the prefix order, that is, ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh. If ℓ1 ̸= ℓ2, then ℓ1 ̸<p ℓ2 · · · ℓh.

Proof. By contradiction, assume that ℓ1 is a prefix of ℓ2 · · · ℓh. Then, ℓ1 = ℓ2 · · · ℓtz where
either z = 1 and 2 < t ≤ h or z is a nonempty prefix of ℓt+1, 2 ≤ t < h. Thus either ℓt or z

is a nonempty border of ℓ1, a contradiction in both cases. ◀

▶ Remark 7.5. [10] Let x, y be two different borders of w ∈ Σ+. If x is shorter than y, then
x is a border of y.

▶ Proposition 7.6. Let w ∈ Σ+ and assume that CFLin(w) form a non-increasing chain for
the prefix order. If (m1, . . . , mk) is a factorization of w such that each mj, 1 ≤ j ≤ k, is a
concatenation of compact factors in CFLin(w), then (m1, . . . , mk) has the border property.

Proof. Let w ∈ Σ+ and assume that CFLin(w) form a non-increasing chain for the prefix
order. Let (m1, . . . , mk) be a factorization of w such that each mj , 1 ≤ j ≤ k, is a
concatenation of compact factors in CFLin(w). The proof is by induction on k. If k = 1,
then the conclusion follows immediately. Assume k > 1.

Let w′ ∈ Σ+ be such that w = m1w′. It is clear that (m2, . . . , mk) is a factorization of
w′ such that each mj , 2 ≤ j ≤ k, is a concatenation of compact factors in CFLin(w′). Thus,
by the induction hypothesis, (m2, . . . , mk) has the border property. It remains to prove that
each nonempty border of m1 is not a prefix of m2. The proof is straightforward if m1 is
unbordered, thus assume that m1 is bordered.

Let CFLin(w) = (ℓn1
1 , . . . , ℓnr

r ), where ℓn1
1 , . . . , ℓnr

r are the compact factors in CFLin(w),
that is, ℓ1, . . . , ℓr are anti-Lyndon words such that ℓ1 ≥p . . . ≥p ℓr. Since m1 is a concatena-
tion of compact factors in CFLin(w), there is h, 1 ≤ h < r such that

m1 = ℓn1
1 · · · ℓ

nh

h .

Notice that ℓh is a nonempty border of m1. Furthermore, since ℓh is unbordered, ℓh is the
shortest nonempty border of m1.

If there were a word z which is a nonempty border of m1 and also a prefix of m2, by
Remark 7.5, ℓh would be a prefix of m2. Therefore, ℓh would be a prefix of the word
ℓ

nh+1
h+1 · · · ℓnr

r which contradicts Lemma 7.4. ◀

▶ Proposition 7.7. Let w ∈ Σ+ and let ICFL(w) = (m1, . . . , mk) be the unique inverse
Lyndon factorization of w having the border property. Then mk is the longest suffix of w

which is an inverse Lyndon word.

Proof. Let w ∈ Σ+ and let (m1, . . . , mk) be the unique inverse Lyndon factorization of w

having the border property. If k = 1 we are done. Thus suppose k > 1. By contradiction,
suppose that mk is not the longest suffix of w that is an inverse Lyndon word. Let s

be such longest suffix. Thus, there exist a nonempty suffix x of mj , 1 ≤ j < k such
that s = xmj+1 · · ·mk. Furthermore x must be a proper suffix of mj or we would have
s = mj · · ·mk ≪ mj+1 · · ·mk contradicting the hypothesis that s is inverse Lyndon.

We claim that x≪ mj+1. Indeed, since mj is an inverse Lyndon word, it holds x ⪯ mj .
Thus, if x≪ mj or x = mj , it immediately follows that x≪ mj+1. Otherwise, x ≤p mj and
x is a nonempty border of mj . By Lemma 5.2 applied to (m1, . . . , mk), with x = α, there
must exist a prefix β of mj+1 such that x≪ β, hence x≪ mj+1.
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Since x≪ mj+1, we have s = xmj+1 · · ·mk ≪ mj+1 · · ·mk, contradicting the hypothesis
that s is an inverse Lyndon word. ◀

▶ Remark 7.8. Let w ∈ Σ+ and let ICFL(w) = (m1, . . . , mk) with k > 1. Let w′ be such
that w = w′mk. Then, by Propositions 5.3 and 7.7, we obtain ICFL(w) = (ICFL(w′), mk).

Proposition 7.9 allows us to determine the longest suffix m′ of a word w such that m′ is
an inverse Lyndon word.

▶ Proposition 7.9. Let w ∈ Σ+ be an inverse Lyndon word, and let ℓ ∈ Σ+ be an anti-Lyndon
word. Then:
1. If ℓ≪ w, then for every k ≥ 1, ℓkw is not an inverse Lyndon word.
2. If ℓw is not an inverse Lyndon word, then ℓ≪ w. Furthermore, for every k ≥ 1, w is the

longest suffix of ℓkw that is an inverse Lyndon word.

Proof. By Lemma 2.2, the proof of 1. is immediate. Suppose ℓw is not inverse Lyndon. Then,
there exists a proper suffix s of ℓw such that ℓw ⪯ s, hence ℓw ≪ s. Since ℓ is anti-Lyndon,
for every proper suffix x of ℓ it follows x≪ ℓ and consequently xw ≪ ℓw. Thus, s must be
a suffix of w. Since w is an inverse Lyndon word, one of the following three cases holds:
(1) w = s; (2) s <p w; (3) s≪ w. By ℓw ≪ s, in each of the three cases it is evident that
ℓw ≪ w. Thus there are r, t, t′ ∈ Σ∗ and a, b ∈ Σ with a < b such that ℓw = rat, w = rbt′.
If |ℓ| ≥ |ra|, then clearly ℓ≪ w. Otherwise, |ℓ| ≤ |r| and there is r′ ∈ Σ∗ such that r = ℓr′.
Consequently, by ℓw = rat = ℓr′at, we obtain w = r′at. Hence w = rbt′ = ℓr′bt′ = r′at

which contradicts the fact that w is an inverse Lyndon word.
For every k ≥ 1, w is a suffix of ℓkw that is an inverse Lyndon word. Let x be a proper

nonempty suffix of ℓ. Of course x ≪ ℓ. The word xw is not an inverse Lyndon word,
otherwise we would have ℓ≪ w ⪯ xw ≪ ℓw, a contradiction. Moreover, by Lemma 2.2, for
any j, 1 ≤ j < k, we have xℓjw ≪ ℓjw and xℓjw is not an inverse Lyndon word. Finally, by
1., ℓkw is not an inverse Lyndon word. ◀

Algorithm 1 Compute ICFL(w), the unique compact factorization of w having the border
property.

1: function Factorize(w)
2: (ℓe1

1 , . . . , ℓen
n )← CompactFactors(w) ▷ Compute compact factors of w

3: F ← ∅
4: m′ ← ℓen

n

5: for t = n− 1 downto 1 do ▷ Work one compact factor at a time
6: if ℓt ≪ m′ then ▷ Proposition 7.9
7: F ← (m′,F)
8: m′ ← ℓet

t

9: else
10: m′ ← ℓet

t ·m′

11: F ← (m′,F)
12: return F

We now describe Algorithm 1. Function Factorize(w) will compute the unique compact
factorization of w having the border property. First, at line 2, the decomposition of w into
its compact factors is computed. Then, the factorization of w is carried out from right to
left. Specifically, in accordance with Proposition 7.7, the for-loop at lines 5–10 will search for
the longest suffix m′ of w that is an inverse Lyndon word. The update of m′ is managed
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by iteratively applying Proposition 7.9 at line 6. Once such longest suffix is found (that is,
when the condition at line 6 is true) it is added to the growing factorization F and a new
search for the longest suffix for the remaining portion of the string is initiated. Otherwise,
line 10, the suffix is extended. In the end, the complete factorization is returned.

▶ Example 7.10. Let Σ = {a, b, c, d}, a < b < c < d, and let us run Factorize(w) on
w = dabadabdabdadac. First, at line 2, we get the sequence (ℓ1, ℓ2

2, ℓ3) = (daba, (dab)2, dadac).
Then, at lines 3–4 we set F = ∅ and m′ = ℓ3 = dadac. We begin the for-loop at lines 5–
10 in which i is set to 2 and 1, in turn. With i = 2 the test of line 6 succeeds, since
ℓ2 = dab ≪ dadac = m′, and so we set F = (dadac) and m′ = ℓ2

2 = (dab)2. At the second
iteration, with i = 1, the test of line 6 again succeeds, since ℓ1 = daba≪ (dab)2 = m′, thus
we set F = ((dab)2, dadac) and m′ = ℓ1 = daba. We now fall out of the loop to line 11 where
we set F = (daba, (dab)2, dadac) = ICFL(w).

7.1 Correctness and complexity

We now prove that Algorithm 1 is correct, that is that it will compute the unique inverse
Lyndon factorization of w having the border property, namely ICFL(w). Formally:

▶ Lemma 7.11. Let w ∈ Σ+, and let F be the result of Factorize(w). Then, F = ICFL(w).

Proof. Let (ℓe1
1 , . . . , ℓen

n ) be the decomposition of w into its compact factors, and let Lt =
ℓet

t · · · ℓen
n . We will denote by m′

t (resp. Ft) the value of m′ (resp. F) at the end of iteration
t. We will prove the following loop invariant: at the end of iteration t, sequence (m′

t,Ft) is a
compact factorization of Lt having the border property. The claimed result will follow by
Corollary 7.2.
Initialization. Prior to entering the loop, (m′

n,Fn) = (ℓen
n ) , where the last equality follows

from Proposition 7.7.
Maintenance. Let t ≤ n− 1. By the induction hypothesis, ICFL(Lt+1) = (m′

t+1,Ft+1).
Suppose ℓt ≪ m′

t+1. Then, by 1. of Proposition 7.9, ℓt ·m′
t+1 is not inverse Lyndon

and m′
t+1 is the longest suffix of ℓet

t ·m′
t+1 that is an inverse Lyndon word. Thus, by

Proposition 7.7 m′
t+1 is the last factor of any compact factorization of ℓet

t ·m′
t+1. Hence,

(m′
t,Ft) = (ℓet

t , m′
t+1,Ft+1) is a compact factorization of Lt having the border property.

Now, consider the case where ℓt ̸≪ m′
t+1. Then, by the contrapositive of 2. of Proposi-

tion 7.9, ℓt ·m′
t+1 is inverse Lyndon and thus, again by 2. of Proposition 7.9, ℓet

t ·m′
t+1

is inverse Lyndon. Therefore, (m′
t,Ft) = (ℓet

t ·m′
t+1,Ft+1) is a compact factorization

having the border property.
Termination. After iteration t = 1, sequence (m′

1,F1) = ICFL(L1) = ICFL(w).
Finally, line 11 sets F = (m′

1,F1) = ICFL(w). ◀

Function Factorize(w) has time complexity that is linear in the length of w. Indeed, the
sequence of compact factors obtained at line 2 can be computed in linear time in the length
of w by a simple modification of Duval’s algorithm (see [23]). After that, each iteration t

of loop 5–10 can be implemented to run in time O(|ℓt|). Indeed, condition ℓt ≪ m′ can be
checked by naively comparing ℓt against m′. Furthermore, the update of m′ and F can be
done in constant time: in fact, ℓt, ℓet

t , m′ and F can all be implemented as pairs of indexes
(in case of the former three) or as a list of indexes (in case of the latter) of w.
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8 Conclusions

We discover the special connection between the Lyndon factorization under the inverse
lexicographic ordering, named CFLin and the canonical inverse Lyndon factorization, named
ICFL: there exists a unique inverse Lyndon factorization having the border property and
this unique factorization is ICFL. Moreover each inverse factor of ICFL is obtained by
concatenating compact factors of CFLin. These properties give a constrained structure to
ICFL that deserve to be further explored to characterize properties of words. In particular,
we believe the characterization of ICFL as a compact factorization, proved in the paper,
could highlight novel properties related the compression of a word, as investigated in [20].
In particular, the number of compact factors seems to be a measure of repetitiveness of the
word to be also used in speeding up suffix sorting of a word.

Finally, we believe that the characterization of ICFL in terms of CFLin may be used to
extend to ICFL the conservation property proved in [10] for CFL. This property shows that
the Lyndon factorization of a word w preserves common factors with the factorization of a
superstring of w. This extends the conservation of Lyndon factors explored for the product
u · v of two words u and v [1, 20].
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