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Abstract
We introduce a dense counterpart of graph degeneracy, which extends the recently-proposed invariant
symmetric difference. We say that a graph has sd-degeneracy (for symmetric-difference degeneracy)
at most d if it admits an elimination order of its vertices where a vertex u can be removed whenever
it has a d-twin, i.e., another vertex v such that at most d vertices outside {u, v} are neighbors of
exactly one of u, v. The family of graph classes of bounded sd-degeneracy is a superset of that of
graph classes of bounded degeneracy or of bounded flip-width, and more generally, of bounded
symmetric difference. Unlike most graph parameters, sd-degeneracy is not hereditary: it may be
strictly smaller on a graph than on some of its induced subgraphs. In particular, every n-vertex
graph is an induced subgraph of some O(n2)-vertex graph of sd-degeneracy 1. In spite of this and
the breadth of classes of bounded sd-degeneracy, we devise Õ(

√
n)-bit adjacency labeling schemes

for them, which are optimal up to the hidden polylogarithmic factor. This is attained on some even
more general classes, consisting of graphs G whose vertices bijectively map to the leaves of a tree T ,
where transversal edges and anti-edges added to T define the edge set of G. We call such graph
representations signed tree models as they extend the so-called tree models (or twin-decompositions)
developed in the context of twin-width, by adding transversal anti-edges.

While computing the degeneracy of a graph takes linear time, we show that determining its
symmetric difference is para-co-NP-complete. This may seem surprising as symmetric difference can
serve as a short-sighted first approximation of twin-width, whose computation is para-NP-complete.
Indeed, we show that deciding if the symmetric difference of an input graph is at most 8 is co-NP-
complete. We also show that deciding if the sd-degeneracy is at most 6 is NP-complete, contrasting
with the symmetric difference.
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1 Introduction

There are two theories of sparse graphs: the so-called Sparsity Theory pioneered by Nešetřil
and Ossona de Mendez [18], and the theory behind the equivalent notions of bounded
degeneracy, maximum average degree, subgraph density, and arboricity. One of the many
merits of the former theory is to capture efficient first-order model checking within subgraph-
closed classes, with the so-called nowhere dense classes [12]. Monadic stability constitutes
a dense analogue of nowhere denseness with similar algorithmic properties [10]. The second
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32:2 Symmetric-Difference (Degeneracy) and Signed Tree Models

theory has, as we will see, simple but useful connections with the chromatic number and
adjacency labeling schemes. One of our two main motivations is to introduce and explore
dense analogues of it.

The degeneracy of a graph G is the minimum integer d such that every induced subgraph
of G has a vertex of degree at most d. As removing vertices may only decrease the degree of
the remaining ones, checking that the degeneracy is at most d can be done greedily. This
prompts the following equivalent definition, equal to the coloring number1 minus one [11, 9].
A graph has degeneracy at most d if there is a total order, called degeneracy ordering, on
its vertices such that every vertex v has at most d neighbors following v in the order. The
degeneracy is then the least integer d such that an ordering witnessing degeneracy at most d

exists. Given such an ordering, a graph can be properly (d + 1)-colored by a greedy strategy:
use the smallest available color looping through vertices in the given order. Another advantage
of the definition via degeneracy ordering is that it yields a polynomial-time algorithm to
compute the degeneracy. While the graph is nonempty, find a vertex of minimum degree,
append it to the order, and remove it from the graph. Degeneracy is frequently used to bound
the chromatic number from above. For instance, until recently [19] the Kostochka–Thomason
degeneracy bound of graphs without Kt minor [15, 20] was the best way we knew of coloring
these graphs.

Another application of bounding the degeneracy is to obtain implicit representations.
Indeed graphs of bounded degeneracy admit f(n)-bit adjacency labeling schemes with
f(n) = O(log n).2 In other words, given a class of graphs of degeneracy at most d, there
exists an algorithm, called decoder, such that the vertices of any n-vertex graph G from the
class can be assigned labels (which are binary strings) of length f(n) in such a way that
the decoder can infer the adjacency of any two vertices u, v in G from their mere labels.
An O(log n)-bit labeling scheme is easy to design for any class C of bounded degeneracy. From
an ordering of G ∈ C witnessing degeneracy d, the label of each vertex stores its own index in
the ordering and the indices of its at most d neighbors that follow it in the order. Then the
decoder just checks whether the index of one of u, v is among the indices of the neighbors
of the other vertex. Note that each label has size at most (d + 1)⌈log n⌉. For example, this
was recently used to show that every subgraph-closed class with single-exponential speed of
growth admits such a labeling scheme [3].

Adjacency labeling schemes of size O(log n) are at the heart of the recently-refuted
Implicit Graph Conjecture (IGC) [14, 17]. The IGC speculated that the information-theoretic
necessary condition for a hereditary graph class to have an O(log n)-bit labeling scheme is
also sufficient. This necessary condition comes from the observation that a string of length
O(n log n) obtained by concatenating all vertex labels is an encoding of the graph. Therefore
a class of graphs that admits an adjacency labeling scheme of size O(log n) contains at most
2O(n log n) (un)labeled n-vertex graphs. Graph classes with such a bound on the number of
(un)labeled n-vertex graphs are called factorial. In this terminology, the IGC can be stated
as follows: any hereditary factorial graph class admits an O(log n)-bit adjacency labeling
scheme.

The IGC has been refuted by a wide margin; in a breakthrough work, Hatami and
Hatami [13] showed that there are factorial hereditary graph classes for which any adjacency
labeling scheme requires labels of length Ω(

√
n). However, the refutation is based on

a counting argument and does not pinpoint an explicit counterexample. There are a number

1 not to be confused with the chromatic number
2 Throughout the paper, log denotes the logarithm function in base 2.
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of explicit factorial graph classes that could refute the IGC, but the conjecture is still open for
these classes. Let us call EIGC (for Explicit Implicit Graph Conjecture) this very challenge.
For instance, whether the IGC holds within intersection graphs of segments, unit disks, or
disks in the plane, and more generally semi-algebraic graph classes, is unsettled. Despite
the workable definitions of these classes, the geometric representations alone cannot lead to
O(log n)-bit labeling schemes [16]. If such labeling schemes exist, they are likely to utilize
some non-trivial structural properties of these graphs.

The graph parameter symmetric difference was introduced to design a candidate to
explicitly refute the IGC [2]. A graph G has symmetric difference at most d if in every
induced subgraph of G there is a pair of vertices u, v such that there are at most d vertices
different from u and v that are adjacent to exactly one of u, v. In other words, u and v

are d-twins, i.e., they become twins after removing at most d vertices from the graph. One
can construe symmetric difference as a dense analogue of the first definition of degeneracy
given above. Symmetric difference is a hereditary graph parameter: it can only decrease
when taking induced subgraphs. Like classes of bounded degeneracy, classes of bounded
symmetric difference are factorial [2]. Symmetric difference generalizes degeneracy in the
sense that any class of graphs of bounded degeneracy has bounded symmetric difference.
Indeed, if a graph has degeneracy at most d, then it has symmetric difference as most 2d: for
any graph with an ordering witnessing degeneracy d, the first two vertices in the order are
2d-twins. Notice that, on the other hand, complete graphs have unbounded degeneracy, but
their symmetric difference is 0. Classes of bounded symmetric difference contains classes of
bounded twin-width, and this containment is strict as twin-width is unbounded on degenerate
graphs [5]. The existence of an O(log n)-bit adjacency labeling scheme for graphs of bounded
symmetric difference remains open.

Our contribution. We introduce another dense analogue of degeneracy based on the second
given definition. The sd-degeneracy (for symmetric-difference degeneracy) of a graph G is the
least integer d for which there is an ordering of the vertices of G such that every vertex v but
the last one admits a d-twin in the subgraph of G induced by v and all the vertices following
it in the order. It follows from the definitions that graphs with sd-degeneracy at most d

form a superset of graphs with symmetric difference at most d. Contrary to what happens
in the sparse setting with degeneracy, this superset is strict. In fact, there are classes with
sd-degeneracy 1 and unbounded symmetric difference.

▶ Proposition 1 (⋆). For any n-vertex graph G, there exists a graph of sd-degeneracy 1 with
less than n2 vertices containing G as an induced subgraph.

By an aforementioned counting argument, the class of all graphs requires labeling schemes
of size Θ(n). Therefore, by Proposition 1, the (non-hereditary) class of graphs with sd-
degeneracy at most 1 requires adjacency labels of size Ω(

√
n). Surprisingly, we match this

lower bound with a labeling scheme, tight up to a polylogarithmic factor, for any class of
bounded sd-degeneracy.

▶ Theorem 2. The class of all graphs with sd-degeneracy at most d admits an O(
√

dn log3 n)-
bit adjacency labeling scheme.

The tool behind the proof of Theorem 2 is the second motivation of the paper. We wish to
unify and extend twin-decompositions of low width (also called tree models) [4, 8] developed
in the context of twin-width, and spanning paths (or Welzl orders) of low crossing number
(or low alternation number) [22], which are useful orders in answering geometric range
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queries; also see [10] which utilizes these orders as part of efficient first-order model checking
algorithms. We thus introduce signed tree models. A signed tree model of a graph G is a tree
whose leaves are in one-to-one correspondence with the vertices of G, together with extra
transversal edges and anti-edges, which fully determine (see the exact rules in Section 3) the
edges of G. The novelty compared to the existing tree models is the presence of transversal
anti-edges. We show that graphs with signed tree models of degeneracy at most d admit
a labeling scheme as in Theorem 2. The latter theorem is then obtained by building such
a signed tree model for any graph of sd-degeneracy d.

When given the vertex ordering witnessing sd-degeneracy d, the labeling scheme can be
effectively computed. However, we show that computing the sd-degeneracy of a graph (hence,
in particular a witnessing order) is NP-complete, even when the sd-degeneracy is guaranteed
to be below a fixed constant. In the language of parameterized complexity, sd-degeneracy is
para-NP-complete.

▶ Theorem 3. Deciding if a graph has sd-degeneracy at most 1 is NP-complete.

We show that, surprisingly, the other dense analogue of degeneracy, symmetric difference,
is co-NP-complete. Again, the associate parameterized problem is para-co-NP-complete.

▶ Theorem 4. Deciding if a graph has symmetric difference at most 8 is co-NP-complete.

This is curious because sd-degeneracy and symmetric difference similarly extend to the
dense world two equivalent definitions of degeneracy. Nevertheless, one can explain the
apparent tension between Theorems 3 and 4: a vertex ordering witnesses an upper bound in
the sd-degeneracy, whereas an induced subgraph witnesses a lower bound in the symmetric
difference. We leave as an open question whether classes of bounded symmetric difference
have labeling schemes of (poly)logarithmic size. This is excluded for bounded sd-degeneracy,
for which we now know essentially optimal labeling schemes. While not an absolute barrier,
the likely absence of polynomial certificates tightly upper bounding the symmetric difference
complicates matters in settling this open question.

Organization. Section 2 gives definitions and notation. In Section 3 we introduce signed
tree models, and prove that graphs of bounded sd-degeneracy admit signed tree models of
bounded width. In Section 4 we show how to balance these signed tree models, and complete
the proof of Theorem 2. In Section 5 we prove Theorem 4, and we prove Theorem 3 in the
long version [23]. The proofs marked with a ⋆ have been moved to the appendix.

2 Preliminaries

We denote by [i, j] the set of integers that are at least i and at most j, and [i] is a
shorthand for [1, i]. We follow standard asymptotic notation throughout, and additionally
by f(n) = Õ(g(n)) we mean that there exists constants c, n0 > 0 such that for any n ⩾ n0
we have f(n) ⩽ g(n) logc n.

We denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively.
Given a vertex u of a graph G, we denote by NG(u) the set of neighbors of u in G (open
neighborhood) and by NG[u] the set NG(u) ∪ {u} (closed neighborhood). When H, G are two
graphs, we may denote by H ⊆i G (resp. H ⊆ G) the fact that H is an induced subgraph
(resp. subgraph) of G, i.e., can be obtained by removing vertices of G (resp. by removing
vertices and edges of G). We denote by G[S] the subgraph of G induced by S, formed by
removing every vertex of V (G) \ S. We use G − S as a shorthand for G[V (G) \ S], and G − v,
for G − {v}.
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Given two sets A and B, we denote by A△B their symmetric difference, that is, (A \
B) ∪ (B \ A). Given a graph G, and two distinct vertices u, v ∈ V (G), we set

sdG(u, v) := |(NG(u) \ {v})△(NG(v) \ {u})|.

The symmetric difference of G, sd(G), is defined as maxH⊆iG minu ̸=v∈V (H) sdH(u, v). Sym-
metric difference was implicitly introduced in [2] and later explicitly defined in [1]. For
example, if G is a planar graph, one can find in any induced subgraph H of G two ver-
tices of degree less than 6. Hence planar graphs have symmetric difference bounded by
12. We call sd-degeneracy of G, denoted by sdd(G), the smallest non-negative integer d

such that |V (G)| = 1 or there is a pair u ̸= v ∈ V (G) satisfying sdG(u, v) ⩽ d and G − v

has sd-degeneracy at most d. We say that an ordering v1, v2, . . . , vn of the vertices of G

witnesses that the sd-degeneracy of G is at most d if for every i ∈ [n − 1], there is a j > i

such that sdG−{vk : k∈[i−1]}(vi, vj) ⩽ d. It thus holds that for any graph G, sdd(G) ⩽ sd(G),
since for every i ∈ [n], G − {vk : k ∈ [i − 1]} is an induced subgraph of G. But, as shown
by Proposition 1, there are some graphs with sd-degeneracy 1 and unbounded symmetric
difference.

Two vertices u, v are said to be d-twins in a graph G if they are distinct and |(NG(u) \
NG[v]) ∪ (NG(u) \ NG[v])| ⩽ d. The a × b rook graph has vertex set {(i, j) : i ∈ [a], j ∈ [b]}
and edge set {(i, j)(k, ℓ) : (i, j) ̸= (k, ℓ), i = k or j = ℓ}. Equivalently it is the line graph of
the bipartite complete graph Ka,b. For every a, b ⩾ 3, the symmetric difference of the a × b

rook graph is 2(min(a, b) − 1).
We will extensively use tree orders, i.e., partial orders defined by ancestor–descendant

relationships in a rooted tree. We denote by ≺T the corresponding relation in rooted tree T .
That is, u ≺T u′ means that u is a strict ancestor of u′ in T , and u ⪯T u′ means that u is
an ancestor of u′, i.e., u = u′ or u ≺T u′. We extend this partial order to elements of

(
V (T )

2
)
.

An unordered pair uv is an ancestor of u′v′ in T , denoted by uv ⪯T u′v′, whenever either
u ⪯T u′ and v ⪯T v′, or v ⪯T u′ and u ⪯T v′ holds. We write uv ≺T u′v′ when uv ⪯T u′v′

and {u, v} ≠ {u′, v′}. A rooted binary tree is full if all its internal nodes, i.e., non-leaf nodes,
have exactly two children. A rooted binary tree is complete if all its levels are completely
filled, except possibly the last one, wherein leaves are left-aligned. The depth of a rooted
tree is the maximum number of nodes in a root-to-leaf path. We denote by L(T ) the set of
leafs of T .

3 Signed tree models

An unordered pair of vertices in T that is not in an ancestor–descendant relationship is
called a transversal pair of T . Two transversal pairs uv, u′v′ of T cross if u, v have the same
common ancestor as u′, v′ do, and neither uv is an ancestor of u′v′, nor u′v′ is an ancestor of
uv. A signed tree model T is a triple (T, A(T ), B(T )), where T is a full binary tree, A(T ) (for
Android green, or Anti) is a set of transversal pairs of T , called transversal anti-edges, and
B(T ) (for Blue, or Biclique) is a set of transversal pairs of T , called transversal edges, such
that A(T ) ∩ B(T ) ̸= ∅ and no uv, u′v′ ∈ A(T ) ∪ B(T ) cross. We may refer to the transversal
anti-edges as green edges, and to the transversal edges as blue edges.

The width of the signed tree model (T, A(T ), B(T )) is the degeneracy of the graph
(V (T ), A(T ) ∪ B(T )). Note that if (V (T ), A(T ) ∪ B(T )) is d-degenerate, then (V (T ), A(T ) ∪
B(T ) ∪ E(T )) is (d + 3)-degenerate. The signed tree model is d-sparse if |A(T ) ∪ B(T )| ⩽
d|V (T )|. We observe that a signed tree model of width d is d-sparse, but an O(1)-sparse
signed tree model can have width Ω(

√
|V (T )|) (think of the disjoint union of a clique on

√
n

vertices with a set n −
√

n independent vertices).

MFCS 2024
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1 2

3

4 5 6 7 8 9

10

11 12 13 14

Figure 1 A signed tree model of a 14-vertex graph.

The signed tree model T := (T, A(T ), B(T )) defines a graph G := GT with vertex set
L(T ). Two leaves u, v ∈ L(T ) are adjacent in G if there is u′v′ ∈ B(T ) such that u′ ⪯T u

and v′ ⪯T v, and there is no u′′v′′ ∈ A(T ) with u′v′ ≺T u′′v′′ ⪯T uv. For example, in
the representation of Figure 1, vertices 4 and 8 are adjacent in G because of the blue edge
between their parents (below the green edge between their grandparents), but vertices 7
and 8 are non-adjacent because of the green edge between their grandparents (below the
blue edge between their great-grand-parents). We may say that a graph G admits (or has)
a signed tree model of width d if there is a signed tree model of this width that defines G.
Every graph G admits a signed tree model as one can simply set A(T ) := ∅, B(T ) := E(G)
on an arbitrary full binary tree T with L(T ) = V (G). However this representation may have
large width, while a more subtle one (linking nodes higher up in the tree) may have a lower
width.

A signed tree model is said to be clean if every pair of siblings are linked by a green
or blue edge. It is easy to turn a signed tree model into a clean one representing the same
graph: simply add green edges between every pair of siblings that were previously not linked
(by a blue or green edge). This operation may only increase the width of the signed tree
model by 1. The advantage of working with a clean signed tree model is that for every pair of
leaves u, v with least common ancestor w, there is at least one transversal edge or anti-edge
connecting the paths (in T ) between w and u and between w and v. Clean tree models will
be useful in Section 4 when we balance the trees associated with the tree models.

Given a clean signed tree model (T, A(T ), B(T )) and u, v ∈ L(T ), we denote by eT (u, v)
the unique green or blue edge u′v′ such that u′v′ ⪯T uv and no green or blue edge u′′v′′

satisfies u′v′ ≺T u′′v′′ ⪯T uv. The edge eT (u, v) exists because the signed tree model is
clean, and is unique because no green or blue edges may cross (or be equal). Then, u, v are
adjacent in G if and only if eT (u, v) ∈ B(T ), i.e., eT (u, v) is a blue edge. We first show that
graphs of bounded sd-degeneracy (and in particular, of bounded symmetric difference) admit
clean signed tree models of bounded width.

▶ Lemma 5. Any graph of sd-degeneracy d admits a clean signed tree model of width d + 1.

Proof. Let v1, . . . , vn be a vertex ordering that witnesses sd-degeneracy d for an n-vertex
graph G. For i ∈ [n], let Gi := G − {vj : 1 ⩽ j ⩽ i − 1}. In particular, G1 = G. Let ui

be a d-twin of vi in Gi. Initially we consider a forest of n distinct 1-vertex rooted trees,
each root labeled by a distinct vertex of G. We will build T (and in parallel, the transversal
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anti-edges and edges) by iteratively giving a common parent to two roots of this forest of n

singletons. Note that different nodes of T may have the same label, as the labels will range
in V (G) whereas T has 2n − 1 nodes.

For i ranging from 1 to n − 1:
add a blue (resp. green) edge between vi and ui if uivi ∈ E(G) (resp. uivi /∈ E(G)),
add a blue edge between vi and the roots labeled by w for w ∈ NGi(vi) \ NGi [ui],
add a green edge between vi and the roots labeled by w for w ∈ NGi

(ui) \ NGi
[vi], and

create a common parent, labeled by ui, for the roots labeled ui (left child) and vi (right
child).

This defines a full binary tree T such that L(T ) = V (G). In (V (T ), A(T ) ∪ B(T )), the leaves
labeled by v1 and u1 have degree at most d + 1 and 1, respectively. Hence an immediate
induction on (T, A(T ), B(T )) (after removing these two leaves, and following the order
v2, . . . , vn) shows that (V (T ), A(T ) ∪ B(T )) is (d + 1)-degenerate. As we only add transversal
anti-edges and edges between pairs of roots, no pair in A(T ) ∪ B(T ) can cross. Indeed if x, y

are two nodes of T that are both roots in some Gi, then it cannot happen that x′, y′ are also
both roots of some Gi′ with x ≺T x′ and y′ ≺T y. The first item further ensures that the
signed tree model (T, A(T ), B(T )) of width d + 1 is clean.

Let us finally check that for every u, v ∈ L(T ), eT (u, v) is a blue edge if and only if
uv ∈ E(G). This is a consequence of the following property.

▷ Claim 6. Let x, y be two nodes of T labeled by u, v respectively. Let x′ be a child of
x, labeled by u′, such that x′y is neither a blue nor a green edge. Further assume that
y was a root when the parent of x′ (i.e., x) was created. Then, uv ∈ E(G) if and only if
u′v ∈ E(G).

Proof. If x′ is the left child of x, the conclusion holds since u = u′. We can thus assume that
x′ is the right child of x, and not the sibling of y since it would contradict that x′y is neither
a blue nor a green edge. Node x′ was not linked to y by a blue or a green edge, so v cannot
be a neighbor of exactly one of u, u′. ◁

Consider the moment eT (u, v) was added to the signed tree model, say between the then-roots
x and y, labeled by u′ and v′, respectively. By the way blue and green edges are introduced,
xy is a blue edge if u′v′ ∈ E(G), and xy is green if u′v′ /∈ E(G). Thus we conclude by
iteratively applying Claim 6. ◀

4 Balancing Signed Tree Models

For any signed tree model of width d of an n-vertex graph, we get an adjacency labeling
scheme with labels of size O(dh log n), where h is the depth of T . Indeed, one can label a leaf
v of T (i.e., vertex of G) by the identifiers (each of log(2n) bits) of all the nodes of the path
from v to the root of T , followed by the identifiers of the outneighbors of these at most h

nodes in a fixed orientation of (V (T ), A(T ) ∪ B(T )) with maximum outdegree at most d + 1,
allocating an extra bit for the color of each corresponding edge. One can then decode the
adjacency of any pair u, v ∈ V (G) by looking at the color of eT (u, v). The latter is easy to
single out, based on the labels of u and v.

▶ Proposition 7. Let G be an n-vertex graph with a signed tree model of width d and depth h.
Then, G admits an O(dh log n)-bit adjacency labeling scheme.

Unfortunately, the depth of the tree T of a signed tree model of low width obtained for
an n-vertex graph of low sd-degeneracy could be as large as n. This makes a direct use
of Proposition 7 inadequate. Instead, we first decrease the depth of the signed tree model,
while controlling its sparsity. We rely on the following simple lemma.

MFCS 2024
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▶ Lemma 8. Let T be a full, complete tree, whose leaves read 1, . . . , n ⩾ 2 from left to right.
Any interval [i, j] with i, j ∈ [n] is the disjoint union of the leaves of at most 2 log n rooted
subtrees of T .

Proof. Let X ⊆ V (T ) be such that the leaves of the subtrees rooted at a node of X partition
[i, j], and X is of minimum cardinality among node subsets with this property. Let k be
the first level of T intersected by X (with the root being at level 1). At most two nodes
x, y of X are at level k (and exactly one node when k = 2), with x = y or x to the left of y.
Observe that if x ≠ y, then x, y have to be consecutive along the left-to-right ordering of
level k, but cannot be siblings (otherwise they can be substituted by their parent). At level
k + 1, at most two nodes can be part of X: the node just to the left of the leftmost child
of x, and the node just to the right of the rightmost child of y. This property propagates to
the last level. Thus |X| ⩽ max(2(⌈log n⌉ − 1), ⌈log n⌉) ⩽ 2 log n. Note indeed that there are
⌈log n⌉ + 1 levels. ◀

From the previous proof it can also be seen that there is a unique minimum-cardinality
set X representing [i, j]. In what follows, let us denote it by Xi,j . We also denote by IT (x)
the set of leaves of the subtree of T rooted at x ∈ V (T ).

▶ Observation 9. For every rooted tree T , and every x, y ∈ V (T ), if IT (x) and IT (y)
intersect, then one is included in the other.

We are now ready to prove the main lemma of this section.

▶ Lemma 10. Let (T, A(T ), B(T )) be a clean d-sparse signed tree model of an n-vertex graph
G. Then, G admits a 4d log2 n-sparse signed tree model (T ′, A(T ′), B(T ′)) of depth ⌈log n⌉+1.

Proof. Consider the left-to-right order on L(T ). To ease the notation, say that the leaves are
labeled 1, 2, . . . , n in this order. We choose for T ′ the full, complete binary tree whose leaves
are also labeled by 1, 2, . . . , n when read from left to right. For every transversal anti-edge
(resp. edge) xy ∈ A(T ) (resp. xy ∈ B(T )), note that IT (x) and IT (y) are discrete intervals.
Let [i, j] := IT (x) and [i′, j′] := IT (y). We add to A(T ′) (resp. B(T ′)) all the unordered pairs
x′y′ with x′ ∈ Xi,j and y′ ∈ Xi′,j′ . It may happen that some x′y′ is added both to A(T ′)
and B(T ′). In which case, x′y′ originates from both x0y0 ∈ A(T ) and x1y1 ∈ B(T ) such that
x0y0 ≺T x1y1 or x1y1 ≺T x0y0. In the former case, we remove x′y′ from B(T ′) (and only
keep it in A(T ′)), and in the latter, we remove x′y′ from A(T ′) (and only keep it in B(T ′)).
This finishes the construction of T ′ := (T ′, A(T ′), B(T ′)).

Let us first argue that no pairs of green or blue edges cross in T ′. Assume for the
sake of contradiction that a′b′, c′d′ ∈ A(T ′) ∪ B(T ′) satisfy a′ ≺T ′ c′ and d′ ≺T ′ b′. Let
ab, cd ∈ A(T )∪B(T ) be the green or blue edges that created a′b′, c′d′, respectively. As IT (a) ⊇
IT ′(a′), IT (c) ⊇ IT ′(c′), and a′ ≺T ′ c′, IT (a) and IT (c) intersect. Thus by Observation 9,
IT (a) ⊆ IT (c) or IT (c) ⊆ IT (a). By minimality of the sets Xi,j , IT (c) cannot include IT ′(a′).
Thus IT (c) ⊂ IT (a), so a ≺T c. Analogously d ≺T b, which implies that ab and cd cross in
T . Therefore T ′ is a signed tree model.

By design, the depth of T ′ is ⌈log n⌉ + 1. As T := (T, A(T ), B(T )) is d-sparse, it has
at most (2n − 1)d transversal (anti-)edges. Each blue or green edge of T gives rise to at most
(2 log n)2 blue or green edges of T ′, by Lemma 8. Hence T ′ is 4d log2 n-sparse.

Let us finally check that T ′ still represents G. Fix u, v ∈ V (G) and xy := eT (u, v). Let
x′y′ be the green or blue edge of T ′ originating from xy such that u ∈ IT ′(x′), v ∈ IT ′(y′). We
claim that x′y′ cannot have been removed (see the technicality at the end of the construction
of T ′), nor can x′′y′′ ∈ A(T ′) ∪ B(T ′) hold with x′y′ ≺T x′′y′′. Indeed, by the arguments of
the second paragraph, the green or blue edge e of T giving rise to x′′y′′ would be such that
xy ≺T e ⪯T uv, contradicting the definition of eT (u, v). ◀
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We finally need this folklore observation.

▶ Observation 11. Every m-edge graph has degeneracy at most ⌈
√

2m⌉ − 1.

Proof. It is enough to show that any m-edge graph G has a vertex of degree at most ⌈
√

2m⌉−1.
If all the vertices of G have degree at least ⌈

√
2m⌉, then m ⩾ 1

2 n⌈
√

2m⌉. But also n ⩾
⌈
√

2m⌉ + 1 for a vertex to possibly have ⌈
√

2m⌉ neighbors. Thus m ⩾ 1
2
√

2m(
√

2m + 1) > m,
a contradiction. ◀

Combining Lemmas 5 and 10, Observation 11, , and Proposition 7 yields Theorem 2.

Proof of Theorem 2. Let G be an n-vertex graph of sd-degeneracy d. By Lemma 5, G

admits a clean signed tree model of width at most d + 1, hence (d + 1)-sparse. Thus
by Lemma 10, G has a 4(d + 1) log2 n-sparse signed tree model T of depth ⌈log n⌉ + 1.
By Observation 11, T has width at most√

16(d + 1)n log2 n = 4
√

(d + 1)n log n.

Therefore, by Proposition 7, G has a O(
√

dn log3 n)-bit labeling scheme. ◀

5 Symmetric Difference is para-co-NP-complete

For any fixed even integer d ⩾ 8, we show that the following problem is NP-complete: Does
the input graph G have an induced subgraph with at least two vertices and no pair of d-twins?
We call such an induced subgraph a (d + 1)-diverse graph. The membership of this problem
to NP is straightforward, as a (d + 1)-diverse induced subgraph H of G is a polynomial-sized
witness. One can indeed check in polynomial-time that H has at least two vertices, and that
for every pair u, v of vertices of H, at least d + 1 other vertices of H are neighbors of exactly
one of u, v.

The d-twin graph Td(G) of a graph G is a graph with vertex set V (G) and edges between
every pair of d-twins.

▶ Observation 12. The vertices of a (d+1)-diverse induced subgraph of G form an independent
set of Td(G).

Given any 3-SAT formula φ with at most three occurrences of each variable, clauses of
size two or three, and at least three clauses, we build a graph G := G(φ) such that G has
a (d + 1)-diverse induced subgraph if and only if φ is satisfiable. Such a restriction of 3-SAT
is known to be NP-complete [21].

5.1 Bubble gadget
A bubble gadget B (or bubble for short) is a w × w rook graph, with w := d

2 + 2, deprived of
the two rightmost vertices of its top row. We say that B is properly attached to the rest of
the graph if each vertex of the top row (of width d

2 ) and of the rightmost column (of height
d
2 + 1) has one or two neighbors outside the gadget, whereas the other vertices of B have no
neighbors outside V (B). Let S be the set of neighbors of the bubble outside of B.

We say that B is neatly attached to S if it is properly attached to S, and further, vertices
of the top row and rightmost column have exactly one outside neighbor, and at most one
vertex of S has neighbors in both the top row and rightmost column. The neat attachments
that we will use, in this section and the next, satisfy 2 ⩽ |S| ⩽ 5. Hence they can be
described by a tuple of size between 2 and 5, listing the number of neighbors of vertices
in S among V (B), starting with the top row and ending with the rightmost column. For
instance, Figure 2 depicts a neat (2, 2, 2, 7)-attachment. A bubble properly attached to S is
in a delicate state. It may entirely survive in a (d + 1)-diverse induced subgraph of G.
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S

w := d
2 + 2

w

Figure 2 A neatly (2, 2, 2, 7)-attached bubble gadget, with d = 12.

▶ Observation 13. Let B be a bubble gadget properly attached to S in G. No pair of vertices
of B are d-twins in G[V (B) ∪ S].

Proof. In B the only pairs with symmetric difference at most d, in fact exactly d, consist of
a vertex in the top row and another vertex in its column, or two vertices of the same row in
the two rightmost columns. In both cases, these pairs have symmetric difference at least d + 1
in G[V (B) ∪ S] since vertices of the top row or rightmost column have at least one neighbor
in S, while all other vertices of B have no neighbor in S. ◀

However, deletions that cause one vertex of the top row or two vertices of the rightmost
column to no longer have outside neighbors cause the bubble to completely collapse.

▶ Lemma 14 (⋆). Let B be a bubble gadget properly attached to S in G. Let H be any
(d + 1)-diverse induced subgraph of G, such that at least one vertex of the top row or at least
two vertices of the rightmost column has no neighbor in V (H) \ V (B). Then, H contains
at most one vertex of B.

In the current section, for the hardness of symmetric difference, all the bubble gadgets
will be neatly attached. Furthermore, every vertex a bubble is attached to will have at least
one neighbor on the top row, or at least two neighbors in the rightmost column. Thus the
deletion of any vertex a bubble B is attached to will result, by Lemma 14, in deleting all the
vertices of B but at most one.

5.2 Variable and clause gadgets
The variable gadget of variable x used in φ is simply two vertices x, ¬x adjacent to a set
Nx of t := d

2 + 1 shared neighbors. Since each literal appears positively and negatively in
φ (otherwise the valuation of the literal is clear), vertices x and ¬x have one or two other
neighbors in G corresponding to the clause they belong to, as we will soon see. The vertices
of Nx will have other neighbors split into at most four bubble gadgets. This too will be
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x ¬x

Nx

Figure 3 The variable gadget of x with d = 12.

described shortly. The clause gadget of clause c consists of a pair of adjacent vertices vc, dc.
We make vc (but not dc) adjacent to the two or three vertices corresponding to the literals
of c.

5.3 Construction of G(φ)
Unsurprisingly, we add one variable gadget per variable, and one clause gadget per clause
of φ. Let x1, . . . , xn be a numbering of the variables, and c1, . . . , cm, of the clauses. We
neatly attach a bubble gadget to Sj made of the five vertices zj , vcj , dcj , vcj+1 , dcj+1 for every
j ∈ [m − 1], with (in this order) a (1, ⌊d/4⌋, ⌊d/4⌋, ⌈d/4⌉, ⌈d/4⌉)-attachment, where zj is
a vertex of some Nx. The choice of zj is irrelevant, but we take all the vertices zj pairwise
distinct. This is possible since there are at most 3n/2 clauses, and more than dn/2 vertices
contained in the union of the sets Nx. For every j ∈ [m−1], we make {vcj

, dcj
} fully adjacent

to {vcj+1 , dcj+1}. The construction of G is almost complete; see Figure 4 for an illustration.

vc1 dc6

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

Figure 4 The essential part of G built so far, for a 3-CNF formula φ whose first two clauses
are x1 ∨ ¬x3 ∨ x4 and ¬x2 ∨ x3 ∨ ¬x4. The blue ellipses represent the bubbles attached to the four
enclosed vertices (recall that the bubble is attached to a fifth vertex among the sets Nx).

At this point, all the vertices vcj
, dcj

such that j ∈ [2, m−1] have exactly ⌊d/4⌋+⌈d/4⌉ =
d/2 neighbors in (two) bubble gadgets. Let y1, . . . , ynt be the ordering of the vertices in⋃

x Nx from left to right in how they appear in Figure 4. We neatly attach a bubble gadget
to (vc1 , dc1 , y1) by a (⌈d/4⌉, ⌈d/4⌉, d + 1 − 2⌈d/4⌉)-attachment. Similarly, we neatly attach
a bubble gadget to (vcm

, dcm
, ynt) by a (⌈d/4⌉, ⌈d/4⌉, d + 1 − 2⌈d/4⌉)-attachment. Finally

for every i ∈ [nt − 2], we neatly attach a bubble gadget to S′
i made of the three vertices

yi, yi+1, yi+2 with a (1, d/2, d/2)-attachment. This finishes the construction.
We make some observations. As all the bubble gadgets are neatly attached, no two

vertices outside a bubble gadget B can share a neighbor in B.

▶ Observation 15. For every j ∈ [m], vcj
, dcj

each have exactly d/2 neighbors in bubble
gadgets (all of which are non-adjacent to any other vertex outside their respective bubble).

Vertices in
⋃

x Nx have more neighbors in bubbles.

▶ Observation 16. Every v ∈
⋃

x Nx has at least d/2 + 1 neighbors in bubble gadgets (all of
which are non-adjacent to any other vertex outside their respective bubble).
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5.4 Correctness
We can now show the following strengthening of Theorem 4.

▶ Theorem 17. For every fixed even integer d ⩾ 8, deciding if an input graph has symmetric
difference at most d is co-NP-complete.

As the graph G := G(φ) presented in Section 5.3 can be constructed in polynomial time,
we shall simply check the equivalence between the satisfiability of φ and the existence of a
(d + 1)-diverse induced subgraph of G(φ). We recall that, by definition, G has not symmetric
difference at most d if and only if it has a (d + 1)-diverse induced subgraph.

▶ Lemma 18. If φ is satisfiable, then G admits a (d + 1)-diverse induced subgraph.

Proof. Let A be a satisfying assignment of φ. For each variable x of φ, we delete vertex ¬x

if A sets x to true, and we delete vertex x otherwise (if A sets x to false). Let us call H the
obtained induced subgraph of G (with at least two vertices). We claim that H has no pair of
d-twins, and successively rule out such pairs

(i) within the same bubble,
(ii) between a vertex in a bubble B and a vertex outside B (but possibly in another bubble),
(iii) between two vertices both outside every bubble gadget.

(i) As H contains all the vertices of G on which bubble gadgets are attached, by Observation 13,
no two distinct vertices in the same bubble are d-twins.

(ii) Let us fix a bubble gadget B attached to S, and two vertices u ∈ V (B) and v ∈
V (H) \ V (B). First observe that u has at least d/2 + 1 neighbors in V (B) (hence in H) that
are not neighbors of v. All the vertices v ∈ V (H) \ (V (B) ∪ S) have at least d/2 neighbors in
H that are not neighbors of u. For these vertices v, sdH(u, v) > d. We thus focus on the case
when v ∈ S. We can assume that v is some vcj

or dcj
, as any other vertices have at least d/2

neighbors outside B. We can further assume that u is in the top row or rightmost column
of B, otherwise it has d neighbors that are not neighbors of u (and u has at least one private
neighbor). Now we observe that

sdH(u, v) ⩾ |NH(u)\NH [v]|+|NH(v)\NH [u]| ⩾ d/2+1+d/2−1−⌈d/4⌉+⌊d/4⌋+2 ⩾ d+1,

where d/2 + 1 lower bounds the number of neighbors of u whose neighborhood is included in
V (B), d/2 − 1 −⌈d/4⌉ lower bounds the number of neighbors of u in the top row or rightmost
column of B that are not adjacent to v, ⌊d/4⌋ lower bounds the number of neighbors of v

in another bubble than B, and 2 accounts for the at least two neighbors vcj−1 , dcj−1 or
vcj+1 , dcj+1 of v, whichever exist. (Here we need that there are at least two clauses.)

(iii) Let u, v be two distinct vertices outside every bubble gadget. Vertex u (resp. v) has
at least d/2 neighbors that are not neighbors of v (resp. u). This holds by Observations 15
and 16, and the fact that every vertex xi or ¬xi is adjacent to Nxi

, while no other vertex
outside the bubble gadgets is adjacent to any vertex in Nxi . Furthermore, as |Nxi | = d/2 + 1
and vertices in

⋃
x Nx have at least d/2 + 1 neighbors in bubble gadgets, the only pairs that

could be d-twins in H are made of two vertices in clause gadgets. As there are at least
three clauses in φ, two vertices u, v from distinct clause gadgets have at least two additional
private neighbors. Thus we can assume that u = vcj

and v = dcj
for some j ∈ [m]. As A is

a satisfying assignment, at least one vertex x or ¬x adjacent to vcj has survived in H. Hence
sdH(u, v) ⩾ d/2 + d/2 + 1 = d + 1. ◀

▶ Lemma 19 (⋆). If φ is not satisfiable, then G has no (d + 1)-diverse induced subgraph.
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6 Discussion and open problems

Degeneracy can be defined either by degeneracy ordering for vertices, or by the existence
of vertices of small degree in all the induced subgraphs. And despite sd-degeneracy and
symmetric difference arising as dense counterparts to these two equivalent definitions, they
are not equivalent: classes of bounded symmetric difference are strictly contained in classes of
bounded sd-degeneracy. Using signed tree models, we achieve an adjacency labeling scheme
for classes of bounded sd-degeneracy that is tight up to logarithmic factors. The necessity of
these additional logarithmic factors remains questionable. Moreover, an optimal adjacency
labeling scheme for classes of bounded symmetric difference is yet to be found.

▶ Question 1. Is there an O(
√

n)-adjacency labeling scheme for classes of bounded sd-
degeneracy? Is there an O(log n)-adjacency labeling scheme for classes of bounded symmetric
difference?

On the other hand, we prove a surprising phenomenon: not only both symmetric difference
and sd-degeneracy lead to classes that are hard to recognize, but they respectively lead
to para-NP-complete and para-co-NP complete problems. However, the existence of a
polynomial-time approximation for remains open.

▶ Question 2. Is there a polynomial-time algorithm to compute an approximation of sym-
metric difference (and sd-degeneracy)?
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typically defined through evaluating a particular function on bipartitions of V (G) made by
the two connected components of T when removing one edge of T . The width is then the
minimum over tree layouts of the maximum over all such evaluations. In the definition of
signed tree models, we depart from this viewpoint, and instead augment T with a sparse
structure encoding the graph G.

1 2

3

4 5 6 7 8 9

10

11 12 13 14

Figure 5 The signed tree model of Figure 1 made clean.

Every graph of twin-width d admits a signed tree model with A(T ) = ∅ and width
at most d + 1. Tree models or twin-decompositions are signed tree models with A(T ) = ∅,
and further technical requirements. We observe that similar objects to signed tree models
were utilized in [6] to attain a fast matrix multiplication on matrices of low twin-width. We
will not need a definition of twin-width, and refer the interested reader to [7]. In Section 1 we
also mentioned Welzl orders with low alternation number [22], let us now elaborate on that.

A Welzl order of alternation number d for a graph G is a total order < on V (G) such
that the neighborhood of every vertex is the union of at most d intervals along <. We claim
that bipartite graphs G = (X ⊎ Y, E(G)) with a Welzl order < of alternation number d

admit a signed tree model of width 2d. Note that we can assume that for every x ∈ X

and y ∈ Y , x < y. We build a signed tree model (T, A(T ), B(T )) of G as follows. Let us
call binary comb a full binary tree whose internal nodes induce a path, rooted at an endpoint
of this path. We make the root of T adjacent to the roots of two binary combs with |X|
and |Y | leaves, respectively. The leaves are labeled from left to right with the vertices of
G in the order <. To simplify the notations, assume that these labels describe [n] in the
natural order. To represent that vertex i ∈ X has [j, k] ⊆ Y in the partition of its open
neighborhood into maximal intervals, we add a blue edge between leaf i and the parent of k,
and a green edge between i and the parent of j − 1 (to stop the interval). Finally observe
that (V (T ), A(T ) ∪ B(T )) has maximum degree at most 2d. (The subtree whose leaves are
the vertices of X need not be a binary comb.)

A similar construction would work for graphs G of chromatic number q, and would yield
a signed tree model of width 2(q − 1)d. A more permissive definition of signed tree models,
allowing leaf-to-ancestor transversal edges, would give models of width 2d for any graph
with a Welzl order of alternation number d. However, with this alternative definition, the
consequences of Section 4 would not follow. Hence we stick to the given definition of signed
tree models.

MFCS 2024



32:16 Symmetric-Difference (Degeneracy) and Signed Tree Models

C Proof of Lemma 14

We first deal with the case when a vertex v of the top row (in the entire B) has no neighbor in
V (H) \ V (B). By symmetry, assume that v is the topmost vertex of the first column. Vertex
v is thus d-twin with all the other vertices of the first column. Hence by Observation 12,
either v is not in H, or none of the d/2 + 1 vertices below v are in H.

If the latter holds, then any two vertices in the same column, outside the top row and
rightmost column, are now d-twins. By Observation 12 within these vertices, H can only
contain at most one vertex per column. In turn, the kept vertices are d-twins, so at most
one can be kept overall. We conclude since the vertices of NH(S) ∩ V (B) have at most two
neighbors in S.

We now suppose that v is not in H. Then, in each row but the topmost, the vertices in
the first and penultimate columns are d-twins. Thus, within each pair, at most one vertex
can be in H. This implies that any two vertices in the same column, outside the top row
and rightmost column, are now d-twins. Thus we conclude as in the previous paragraph.

We now deal with the case when two vertices x, y of the right most column have no
neighbor in V (H) \ V (B). By symmetry, we can assume that x is in the second row, and
y is in the third row. Then x (resp. y) is d-twin with the vertex just to its left. After one
vertex is removed in each pair, in each column but the last two, the vertices in the second
and third rows have become d-twins. Therefore, H can only contain at most one vertex from
all these pairs. We reach again the state that any two vertices in the same column, outside
the top row and rightmost column, are d-twins, and conclude as previously.

D Proof of Lemma 19

For each variable x, the vertices x, ¬x are 3-twins, thus at least one of them has to be
removed in a (d + 1)-diverse induced subgraph. The kept literals (if any) define a (partial)
truth assignment. By assumption, this assignment does not satisfy at least one clause cj .
This implies that vcj , dcj are d-twins in the corresponding induced subgraph. Indeed, they
each have exactly d/2 private neighbors in bubble gadgets, and no other private neighbor.

By Lemma 14, the bubble attached to Sj is reduced to at most one vertex, say wj (if
any). In turn, this makes the pairs vcj−1 , dcj−1 and vcj+1 , dcj+1 d-twins (when they exist).
Indeed their symmetric difference is at most 3 + ⌈d/4⌉ + 1 ⩽ d, where 3 accounts for the three
literals of the clause, and 1 for vertex wj . This iteratively collapses every bubble attached
to some Sj′ to a single vertex, as well as the two bubble gadgets attached to {vc1 , dc1 , y1}
and {vcm , dcm , ynt}, in say, w0 and wm. Now all the vertices wj (for j ∈ [0, m]) are 6-twins,
so at most one can be kept. We recall that at most one vertex per clause gadget could be
kept. For j going from 1 to m − 1, the vertex kept (if any) from the clause gadget of cj is an
8-twin of the vertex kept in the next surviving clause gadget. This implies that from all the
clause gadgets and all the bubble gadgets attached to them, one can only keep at most one
vertex overall, say z. This vertex has degree at most 3 in the resulting induced subgraph.

Vertices y1, y2 are now d-twins, so the bubble gadget attached to S′
1 collapses to at most

one vertex. Vertices y1 and z are now 5-twins, so at most one can survive, which we keep
calling z. Even if y2 is kept, it is now a d-twin of y3, thus at most one of y2, y3 can be kept.
This implies the collapse of the bubble gadget attached to S′

2 to at most one vertex, absorbed
by z. In turn, y2 and z collapse to a single vertex. This process progressively eats up all the
vertices yj , and all the bubble gadgets attached to them. As soon as a vertex x or ¬x has
three remaining neighbors, it becomes a 6-twin of z, and is absorbed by it. We end up with
the single vertex z.
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