
On the Number of Quantifiers Needed to Define
Boolean Functions
Marco Carmosino #

MIT-IBM Watson AI Lab, Cambridge, MA, USA

Ronald Fagin #

IBM Research-Almaden, San Jose, CA, USA

Neil Immerman #

University of Massachusetts, Amherst, MA, USA

Phokion G. Kolaitis #

University of California Santa Cruz, CA, USA
IBM Research-Almaden, San Jose, CA, USA

Jonathan Lenchner1 #

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

Rik Sengupta #

MIT-IBM Watson AI Lab, Cambridge, MA, USA

Abstract
The number of quantifiers needed to express first-order (FO) properties is captured by two-player
combinatorial games called multi-structural games. We analyze these games on binary strings
with an ordering relation, using a technique we call parallel play, which significantly reduces the
number of quantifiers needed in many cases. Ordered structures such as strings have historically
been notoriously difficult to analyze in the context of these and similar games. Nevertheless, in
this paper, we provide essentially tight bounds on the number of quantifiers needed to characterize
different-sized subsets of strings. The results immediately give bounds on the number of quantifiers
necessary to define several different classes of Boolean functions. One of our results is analogous
to Lupanov’s upper bounds on circuit size and formula size in propositional logic: we show that
every Boolean function on n-bit inputs can be defined by a FO sentence having (1 + ε) n

log(n) + O(1)
quantifiers, and that this is essentially tight. We reduce this number to (1 + ε) log(n) + O(1) when
the Boolean function in question is sparse.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Computational complexity and cryptography

Keywords and phrases logic, combinatorial games, Boolean functions, quantifier number

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.34

Related Version Full Version: https://arxiv.org/abs/2407.00688 [2]

Funding Rik Sengupta: Supported by NSF CCF-1934846.

Acknowledgements The authors acknowledge Ryan Williams for numerous helpful discussions and
conversations, Sebastian Pfau for an observation that improved the statement of the Parallel Play
Lemma, and the anonymous reviewers for comments and suggestions that improved the quality of
this manuscript.

1 Corresponding author

© Marco Carmosino, Ronald Fagin, Neil Immerman, Phokion G. Kolaitis, Jonathan Lenchner, and
Rik Sengupta;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mlc@ibm.com
https://orcid.org/0009-0007-1118-1352
mailto:fagin@us.ibm.com
https://orcid.org/0000-0002-7374-0347
mailto:immerman@umass.edu
https://orcid.org/0000-0001-6609-5952
mailto:kolaitis@ucsc.edu
https://orcid.org/0000-0002-8407-8563
mailto:lenchner@us.ibm.com
https://orcid.org/0000-0002-9427-8470
mailto:rsengupta@cs.umass.edu
https://orcid.org/0000-0002-9238-5408
https://doi.org/10.4230/LIPIcs.MFCS.2024.34
https://arxiv.org/abs/2407.00688
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 On the Number of Quantifiers Needed to Define Boolean Functions

1 Introduction

In 1981, Immerman [11] introduced quantifier number (QN) as a measure of the complexity
of first-order (FO) sentences. For a function g: N → N, he defined QN[g(n)] as the class of
properties on n-element structures describable by a uniform sequence of FO sentences with
O(g(n)) quantifiers. He then showed that on ordered structures, for f(n) ≥ logn, one has:

NSPACE[f(n)] ⊆ QN[(f(n))2/ logn] ⊆ DSPACE[(f(n))2], (1)

thereby establishing an important connection between QN and space complexity and so
directly linking a logical object to classical complexity classes.

The same paper [11] described a two-player combinatorial game (which Immerman called
the separability game), that captures quantifier number in the same way that the more
well-known Ehrenfeucht-Fraïssé (EF) game [3,7] captures quantifier rank (QR). The paper
additionally showed that any property whatsoever of n-element ordered structures can be
described with a sentence having a QR of logn+ 3. Since a QR of logn+ 1 is required just
to distinguish a linear order of size n from smaller linear orders [17], QR has limited power
to distinguish properties over ordered structures. QN is potentially a more fine-grained and
powerful measure for this purpose. However, owing to the inherent difficulties of the analysis
of Immerman’s separability game, the study of the game and of QN in general lay dormant
for forty years, until the game was rediscovered and renamed the multi-structural (MS) game
in [4]. In that paper the authors made initial inroads into understanding how to analyze the
game, leading to several follow-up works [1, 5, 18]. Other related games to study the number
of quantifiers were recently introduced in [9], and close cousins of MS games were used to
study formula size in [8, 10]. In [10] the authors study a related problem to ours – they
examine the (existential) sentences of minimum size needed to express a particular set of
string properties. However, even without the existential restriction, the connection between
the minimum size of a sentence and its minimum number of quantifiers is not obvious. It is
possible for a property to be expressible only by a much longer sentence with fewer quantifiers
than one with more quantifiers.

The MS game is played by two players, Spoiler (S, he/him) and Duplicator (D, she/her),
on two sets A,B of structures. Essentially, S tries to break all partial isomorphisms between
all pairs of structures (one from A and the other from B) over a prescribed number of rounds,
whereas D tries to maintain a partial isomorphism between some pair of structures. Unlike
in EF games, D has more power in MS games, since she can make arbitrarily many copies of
structures before her moves, enabling her to play all possible responses to S’s moves. The
fundamental theorem for MS games [4, 11] (see Theorem 1) states that S has a winning
strategy for the r-round MS game on (A,B) if and only if there is a FO sentence φ with at
most r quantifiers that is true for every structure in A but false for every structure in B.
We call such a φ a separating sentence for (A,B). In general, our eventual objective will be
to separate a set A of n-bit strings from all other n-bit strings (i.e., from its complement
AC). This is a particularly interesting question because of its intimate connection to the
complexity of Boolean functions.

Boolean Functions. Any Boolean function on n-bit strings is specified by two complementary
sets, A,AC ⊆ {0, 1}n, representing the input strings that get mapped to 1 and 0 respectively.
For such a function f : {0, 1}n → {0, 1}, we say that a FO sentence φ in the vocabulary
of strings defines the function f if φ is a separating sentence for (f−1(1), f−1(0)). Hence,
the key results of this paper can be thought of as giving sharp bounds on the number of
quantifiers needed to define Boolean functions. Our main results about the definability of
Boolean functions are Theorems A and B below.

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:3

▶ Theorem A. Given an arbitrary ε > 0, every Boolean function on n-bit strings can be
defined by a FO sentence having (1 + ε) n

log(n) +Oε(1) quantifiers, where the Oε(1) additive
term depends only on ε and not n. Moreover, there are Boolean functions on n-bit strings
that require n

log(n) +O(1) quantifiers to define.

Say that a family, F = {fn}∞
n=1, of Boolean functions on n-bit strings, is sparse if the

cardinality of the set of strings mapping to 1 under each fn is polynomial in n. For example,
if L is a sparse language, then the family of Boolean functions, defined for each n, by the
characteristic function of L restricted to n-bit inputs, is sparse [6, 15].

▶ Theorem B. Given an arbitrary ε > 0, and a sparse family, F = {fn}∞
n=1, of Boolean

functions on n-bit strings, each function fn ∈ F can be defined by a FO sentence having
(1 + ε) log(n) +Oε(1) quantifiers, where the Oε(1) additive term depends only on ε and not
n. Moreover, there are sparse families of Boolean functions on n-bit strings, the functions of
which require log(n) quantifiers to define.

Theorem A follows from Theorems 18 and 19 (in Section 5), whereas Theorem B follows
from Theorem 16 and Proposition 14 (in Section 5). Theorem 18 can be viewed as a first-order
logic analog of the upper bounds obtained by Lupanov for minimum circuit size [13] and
minimum propositional formula size [14] to capture an arbitrary Boolean function. Note
that any property whatsoever of n-bit strings can be captured trivially by a sentence with n
existential quantifiers. Similar to Lupanov’s bounds, our result shows that we can shave off
a factor of log(n) from this trivial upper bound. Furthermore, Theorem 19 establishes via a
counting argument that there are functions with a QN lower bound that essentially matches
our worst-case upper bound – a result that can be viewed as a first-order logic analog of the
Riordan-Shannon lower bound [16] for propositional formula size.

Parallel Play. A key technical contribution we make in this paper is the Spoiler strategy
of parallel play, which widens the scope of winning strategies for S compared to previous
work. The essential idea is for S to partition the sets A and B into subsets A1 ⊔ . . . ⊔ Ak

and B1 ⊔ . . . ⊔ Bk, and then play k MS “sub-games” in parallel on (Ai,Bi). In certain
circumstances, S can then combine his strategies for each of those sub-games into a strategy
for the entire game, and thereby save many superfluous moves. Applying the fundamental
theorem, this results in a very small number of quantifiers in the corresponding separating
sentence.

Outline of the Paper. This paper is organized as follows. In Section 2, we set up some
preliminaries. In Section 3, we precisely formulate what we call the Parallel Play Lemma
(Lemma 5) and the Generalized Parallel Play Lemma (Lemma 6). In Section 4, we develop
results on linear orders that are similar to but more nuanced than those in [4, 5], with the
extra nuance being critical for our subsequent string separation results. In Section 5, we
present our results on separating disjoint sets of strings. In Section 6, we wrap up with some
conclusions and open problems.

Owing to space constraints, in some places we provide proof sketches, and refer the reader
to the full proofs in the appendix of the full version of the paper [2].

2 Preliminaries

Fix a vocabulary τ with finitely many relation and constant symbols. We typically designate
structures in boldface (A), their universes in capital letters (A), and sets of structures in
calligraphic typeface (A). This last convention includes sets of pebbled structures (see below).

MFCS 2024

34:4 On the Number of Quantifiers Needed to Define Boolean Functions

We always use log(·) to designate the base-2 logarithm. Furthermore, in several results in
Section 5, we have an O(1) additive term. This term will always be independent of n. Any
additional dependence will be stated in the form of a subscript on the O, e.g., Ot(1) would
denote a term independent of n, but dependent on the choice of some parameter t.

Pebbled Structures and Matching Pairs. Consider a palette C = {r,b, g, . . .} of pebble
colors, with infinitely many pebbles of each color available. A τ -structure A is pebbled if
some of its elements a1, a2, . . . ∈ A have pebbles on them. There can be at most one pebble
of each color on a pebbled structure. There can be multiple pebbles (of different colors) on
the same element ai ∈ A. Occasionally, when the context is clear, we will use the term board
synonymously with “pebbled structure”.

If A is a τ -structure, and the first few pebbles are placed on elements a1, a2, a3 . . . ∈ A,
we designate the resulting pebbled τ -structure as ⟨A | a1, a2, a3, . . .⟩. Note that A can be
viewed as a pebbled structure ⟨A | ⟩ with the empty set of pebbles.

By convention, we use r, b, and g for the first three pebbles we play (in that order), as
a visual aid in our proofs. Hence, the pebbled structure ⟨A | a1, a2, a3⟩ has pebbles r on
a1 ∈ A, b on a2 ∈ A, and g on a3 ∈ A. Note that a1, a2, and a3 need not be distinct.

We say that the pebbled structures ⟨A | a1, . . . , ak⟩ and ⟨B | b1, . . . , bk⟩ are a matching
pair if the map f : A → B defined by:

f(ai) = bi for all 1 ≤ i ≤ k

f(cA) = cB for all constants c in τ

is an isomorphism on the induced substructures. Note that ⟨A | a1, . . . , ak⟩ and ⟨B | b1, . . . , bk⟩
can form a matching pair even when A ̸∼= B.

Multi-Structural Games. Assume r ∈ N, and let A and B be two sets of pebbled structures,
each pebbled with the same set {x1, . . . , xk} ⊆ C of pebble colors. The r-round multi-
structural (MS) game on (A,B) is defined as the following two-player game, played by two
players, Spoiler (S, he/him) and Duplicator (D, she/her). In each round i for 1 ≤ i ≤ r,
S chooses either A or B, and an unused color yi ∈ C; he then places (“plays”) a pebble of
color yi on an element of every board in the chosen set (“side”). In response, D makes as
many copies as she wants of each board on the other side, and plays a pebble of color yi on
an element of each of those boards. D wins the game if at the end of round r, there is a
board in A and a board in B forming a matching pair. Otherwise, S wins. For readability,
we always call the two sets A and B, even though the structures change over the course of a
game in two ways:

A or B can increase in size over the r rounds, as D can make copies of the boards.
The number of pebbles on each of the boards in A and B increases by 1 in each round.

We usually refer to A as the left side, and B as the right side.
Let A and B be two sets of pebbled structures, with each pebbled structure containing

pebbles colored with {x1, . . . , xk} ⊆ C. Let φ(x1, . . . , xk) be a FO formula with free variables
{x1, . . . , xk}. We say φ is a separating formula for (A,B) (or φ separates A and B) if:

for every ⟨A | a1, . . . , ak⟩ ∈ A we have A[a1/x1, . . . , ak/xk] |= φ,
for every ⟨B | b1, . . . , bk⟩ ∈ B we have B[b1/x1, . . . , bk/xk] |= ¬φ.

The following key theorem [4,11], stated here without proof, relates the logical characterization
of a separating formula with the combinatorial property of a game strategy.

▶ Theorem 1 (Fundamental Theorem of MS Games, [4, 11]). S has a winning strategy in the
r-round MS game on (A,B) iff there is a formula with ≤ r quantifiers separating A and B.

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:5

In the theorem above, if A and B are sets of unpebbled structures, and φ is a sentence,
we call φ a separating sentence for (A,B).

We note that D has a clear optimal strategy in the MS game, called the oblivious strategy:
for each of S’s moves, D can make enough copies of each pebbled structure on the other
side to play all possible responses at the same time. If D has a winning strategy, then the
oblivious strategy is winning. For this reason, the MS game is essentially a single-player
game, where S can simulate D’s responses himself.

We make an easy observation here without proof, that will help us discard some boards
during gameplay; we can remove them without affecting the result of the game. This will
help us in the analysis of several results in the paper.

▶ Observation 2. During gameplay in any instance of the MS game, consider a board
⟨A | a1, . . . , ak⟩ such that there is no board on the other side forming a matching pair with
it. Then, ⟨A | a1, . . . , ak⟩ can be removed from the game without affecting the result.

Linear Orders. Let τord = ⟨<; min,max⟩ be the vocabulary of orders, where < is a binary
predicate, and min and max are constant symbols. For every ℓ ≥ 1, we shall use Lℓ to refer
to a structure of type τord, which interprets < as a total linear order on ℓ+ 1 elements, and
min and max as the first and last elements in that total order respectively. Note that there
is only one linear order for any fixed value of ℓ. When unambiguous, we may suppress the
subscript and refer to the linear order as simply L.

We define the length of a linear order L as the size of its universe minus one (equivalently,
as the number of edges if the linear order were represented as a path graph). Hence, the
length of Lℓ is ℓ. Since we only consider ℓ ≥ 1, the length is always positive, and min and
max are necessarily distinct. Our convention is different from [4] and [5], where the length of
a linear order was the number of elements, and the vocabulary had no built-in constants.
Note that having min and max is purely for convenience; each can be defined and reused at
the cost of two quantifiers.

Let L be a linear order with elements a < b. The linear order L[a, b] is the induced linear
order on all elements from a to b, both inclusive. If the variables x and y have been interpreted
by L so that xL = a and yL = b, then we shall use L[x, y] and L[a, b] interchangeably; we
adopt a similar convention for constants. If pebbles r and b have been placed on L on a and
b respectively, we use L[r,b] to mean L[a, b].

We will frequently need to consider sets of linear orders. For ℓ ≥ 1, we will use the
notation L≤ℓ to denote the set of linear orders of length at most ℓ, and L>ℓ to denote the
set of linear orders of length greater than ℓ.

Strings. Let τstring = ⟨<, S ; min,max⟩ be the vocabulary of binary strings, where < is a
binary predicate, S is a unary predicate, and min and max are constant symbols. We encode a
string w = (w1, . . . , wn) ∈ {0, 1}n by the τstring-structure Bw having universe Bw = {1, . . . , n},
relation < interpreted by the linear order on {1, . . . , n}, relation S = {i | wi = 1}, and min
and max interpreted as 1 and n respectively.

For an n-bit string w, and i, j such that 1 ≤ i ≤ j ≤ n, denote by w[i, j] the substring
wi . . . wj of w. Note that w[i, j] corresponds to the induced substructure of Bw on {i, . . . , j}.
We will often interchangeably talk about the string w and the τstring-structure Bw, when the
context is clear. As in τord, having min and max in the vocabulary is purely for convenience.

MFCS 2024

34:6 On the Number of Quantifiers Needed to Define Boolean Functions

3 Parallel Play

In this section, we prove our key lemma, that shows how, in certain cases, S can combine his
winning strategies in two sub-games, playing them in parallel in a single game that requires
no more rounds than the longer of the two sub-games.

To understand why this is helpful, note that in general, if a formula φ is of the form
φ1 ∧ φ2 or φ1 ∨ φ2, the number of quantifiers in φ is the sum of the number of quantifiers
in φ1 and φ2, even if the two subformulas have the same quantifier structure. We will see
that playing parallel sub-games roughly corresponds to taking a φ of the form φ1 ∧ φ2 or
φ1 ∨ φ2 where the subformulas have the same quantifier prefix, and writing φ with the same
quantifier prefix as φ1 or φ2, saving half the quantifiers we normally require.

Suppose S has a winning strategy for an instance (A,B) of the r-round MS game. In
principle, the choice of which side S plays on could depend on D’s previous responses.
However, note that any strategy S used by S that wins against the oblivious strategy also
wins against any other strategy that D plays. Therefore, we may WLOG restrict ourselves
to strategies used by S against D’s oblivious strategy. It follows that the choice of which side
to play on in every round is completely determined by the instance (A,B), and independent
of any of D’s responses. Let S be such a winning strategy for S. We now define the pattern
of S, which specifies which side S plays on in each round, when following S.

▶ Definition 3. Suppose A and B are sets of pebbled structures, and assume that S has a
winning strategy S for the r-round MS game on (A,B). The pattern of S, denoted pat(S),
is an r-tuple (Q1, . . . , Qr) ∈ {∃,∀}r, where:

Qi =
{

∃ if S plays in A in round i,
∀ if S plays in B in round i.

We say that S wins the game with pattern (Q1, . . . , Qr) if S has a winning strategy S for the
game in which pat(S) = (Q1, . . . , Qr).

The following lemma is implicit in the proof of Theorem 1.

▶ Lemma 4. For any two sets A and B of pebbled τ -structures, the following are equivalent:
1. S wins the r-round MS game on (A,B) with pattern (Q1, . . . , Qr).
2. (A,B) has a separating formula with r quantifiers and quantifier prefix (Q1, . . . , Qr).

Note that Lemma 4 implies that, as long as there is a separating formula φ for (A,B)
with r quantifiers, S has a winning strategy for the r-round MS game on (A,B) that “follows”
φ; namely, if φ = Q1 . . . Qrψ, then in round i, S plays in A if Qi = ∃, and in B if Qi = ∀.
Hence, for the rest of the paper, we will refer to S moves in A and B as existential and
universal moves respectively. We are now ready to state our main lemma from this section.

▶ Lemma 5 (Parallel Play Lemma). Let A and B be two sets of pebbled structures, and let
r ∈ N. Suppose that A and B can be partitioned as A = A1 ⊔A2 and B = B1 ⊔B2 respectively,
such that for 1 ≤ i ≤ 2, S has a winning strategy Si for the r-round MS game on (Ai,Bi),
satisfying the following conditions:
1. Both Si’s have the same pattern P = pat(S1) = pat(S2).
2. At the end of the sub-games, both of the following are true:

There does not exist a board in A1 and a board in B2 forming a matching pair.
There does not exist a board in A2 and a board in B1 forming a matching pair.

Then S wins the r-round MS game on (A,B) with pattern P .

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:7

Proof. S plays the r-round MS game on (A,B) by playing his winning strategy S1 on
(A1,B1), and his winning strategy S2 on (A2,B2), simultaneously in parallel. This is a
well-defined strategy, since every Si has the same pattern P . At the end of the game:

for i = j, no board from Ai forms a matching pair with a board from Bj , since S wins
the sub-game (Ai,Bi).
for i ̸= j, no board from Ai forms a matching pair with a board from Bj , by assumption.

Therefore, no matching pair remains after round r, and so, S wins the game. The pattern
for this strategy is P by construction. ◀

We observe that Lemma 5 can be generalized in two ways. Firstly, we could split into k
sub-games instead of two. Secondly, we can weaken assumption 1 in the statement of the
lemma, so that each of the patterns is a subsequence of some r-tuple P = {∃,∀}r. This is
because S can simply extend the strategy Si with pattern Pi to a strategy S ′

i with pattern P ,
where for every “missing” entry in the tuple P , S makes a dummy move on the corresponding
side. We state a generalized version below without a proof.

▶ Lemma 6 (Generalized Parallel Play Lemma). Let A and B be two sets of pebbled structures,
and let r ∈ N. Let P ∈ {∃,∀}r be a sequence of quantifiers of length r. Suppose that A and B
can be partitioned as A = A1 ⊔ . . . ⊔ Ak and B = B1 ⊔ . . . ⊔ Bk respectively, such that for all
1 ≤ i ≤ k, S has a winning strategy Si for the ri-round MS game on (Ai,Bi) (where ri ≤ r),
satisfying the following conditions:
1. For all i, pat(Si) is a subsequence of P .
2. At the end of the sub-games, for i ̸= j, there does not exist a board in Ai and a board in

Bj forming a matching pair.
Then S wins the r-round MS game on (A,B) with pattern P .

Note that Lemmas 5 and 6 can be applied in conjunction with Observation 2 as long
as there is at least one structure remaining on either side, since a winning strategy (and
therefore its corresponding pattern) is unaffected if some of the pebbled structures in the
instance are deleted. Furthermore, in many cases, we can provide a strategy for S where
condition 2 in Lemmas 5 and Lemma 6 will be automatically met after the first move, and
therefore will continue to be satisfied at the end of the game. We shall use these two facts
implicitly in the proofs that follow.

4 Linear Orders

As noted in Section 1, the results in this section are similar to those in [4, 5], but somewhat
more nuanced, leading ultimately to the quantifier alternation theorems (Theorems 12 and
13). Instead of the unwieldy function g(·) studied in those papers, we study the simpler
function q(·), which, given an integer ℓ, returns the minimum number of quantifiers needed
to separate L≤ℓ from L>ℓ. A key result, not appreciated in [4, 5], is that the number of
quantifiers needed to separate two linear orders of different sizes never exceeds the quantifier
rank needed by more than one (Theorem 11).

Let r(ℓ) (resp. q(ℓ)) be the minimum QR (resp. QN) needed to separate L≤ℓ and L>ℓ.
Let q∀(ℓ) (resp. q∃(ℓ)) be the minimum number of quantifiers needed to separate L≤ℓ

and L>ℓ with a sentence whose prenex normal form starts with ∀ (resp. ∃). Note that
q(ℓ) = min(q∀(ℓ), q∃(ℓ)). The values of r(ℓ) are well understood [17]:

▶ Theorem 7 (Quantifier Rank, [17]). For ℓ ≥ 1, we have r(ℓ) = 1 + ⌊log(ℓ)⌋.

MFCS 2024

34:8 On the Number of Quantifiers Needed to Define Boolean Functions

Since QR lower bounds QN, we have r(ℓ) ≤ q(ℓ) for all ℓ. On the other hand, for each
ℓ > 0, we will show that S can always separate L≤ℓ from L>ℓ in a multi-structural game of
at most r(ℓ) + 1 rounds, which shows that q(ℓ) ≤ r(ℓ) + 1.

For notational convenience, we denote by MSL∃,r(ℓ) an r-round MS game on (L≤ℓ, L>ℓ),
in which S must play an existential first round move. We use MSL∀,r(ℓ) analogously, where
the first round move must be universal. Observe that, a priori, any such game may be
winnable by either S or D. Since we are primarily interested in upper bounds, we restrict
our attention only to S-winnable games. We call such games simply winnable.

4.1 The Closest-to-Midpoint with Alternation Strategy
In this section, we describe a divide-and-conquer recursive strategy for S to play winnable
game instances MSLQ,r(ℓ). This strategy will give us upper bounds on q∃(ℓ) and q∀(ℓ), which
we will then relate to r(ℓ).

We define the closest-to-midpoint of a linear order L[x, y] as the element halfway between
the elements corresponding to x and y if L[x, y] has even length, or the element just left of
center if L[x, y] has odd length.

The S-winning strategy is called Closest-to-Midpoint with Alternation (CMA). The
pattern for this strategy will alternate between ∃ and ∀, splitting each game recursively into
two smaller sub-games that can be played in parallel using Lemma 5. In these sub-games,
placed pebbles will take on the roles of min and max. S continues in this way until the
sub-games are on linear orders of length 2 or less, at which point he can win them easily.

The idea is for S to obey the following two rules throughout, except possibly the last
three rounds:

S starts on his designated side (determined by Q), and then alternates in every round;
on every board, S plays on the closest-to-midpoint of a linear order L[x, y], chosen
carefully to ensure he essentially “halves” the length of the instance every round.

Note that one consequence of the second point above is that S will never play on max.
Before getting to a formal description of the strategy, let us illustrate the main idea

through a worked example. Consider the (winnable) game MSL∃,4(5). In round 1, S plays
on the closest-to-midpoint of all boards in L≤5 (by the two conditions in the CMA strategy).
Before D’s response, we reach the position shown in Figure 1.

L≤5 L>5

...

∃rmin max min max

min r max min max

min r max

min r max

min r max

Figure 1 The position after S’s round 1 move in the game MSL∃,4(5). The pebble r is on the
closest-to-midpoint of every board on the left.

Now assume D responds obliviously. We can first use Observation 2 to discard all boards
on the right with r on max. By virtue of S’s first move, every board ⟨L | a1⟩ on the left
satisfies both L[min, r] ≤ 2, and L[r,max] ≤ 3. Now consider any board ⟨L′ | a′

1⟩ on the right.
Note that either L′[min, r] > 2, or L′[r,max] > 3. Partition the right side as B1 ⊔ B2, where
every ⟨L′ | a′

1⟩ ∈ B1 satisfies L′[min, r] > 2, and every ⟨L′ | a′
1⟩ ∈ B2 satisfies L′[r,max] > 3.

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:9

In round 2, S makes a universal move (by the first condition in the CMA strategy). In
all boards in B1, he plays pebble b on the closest-to-midpoint of L′[min, r]; similarly, in all
boards in B2, he plays pebble b on the closest-to-midpoint of L′[r,max]. Note that in either
case, S plays b on an element which is not on r, min, or max.

After D responds obliviously, we can use Observation 2 to discard all boards on the left
where b is on min, max, or r. Since in particular this discards all boards on the left with
r on min, we can again use Observation 2 to discard all boards from the right which have
r on min. Every remaining board in B1 (resp. B2) corresponds to the isomorphism class
min < b < r < max (resp. min < r < b < max). The remaining boards on the left also
correspond to exactly one of those classes. Partition the left side as A1 ⊔ A2 accordingly.

Now, because of this difference in isomorphism classes, we will never obtain a matching
pair from A1 and B2 (or from A2 and B1). Furthermore, for the rest of the game, S will
only play inside L[min, r] on all boards in A1 and B1, and inside L[r,max] on all boards in
A2 and B2. Suppose, in response to such a move on A1, D plays outside the range L[min, r]
on a board from B1; the resulting board cannot form a partial match with any board from
A1 (since there is a discrepancy with r), or with any board from A2 (as observed already).
Therefore, this board from B1 can be discarded using Observation 2. A similar argument
applies if D ever responds outside the corresponding range in B2, A1, or A2.

It follows that the sub-game (A1,B1) (resp. (A2,B2) corresponds exactly to the game
MSL∀,3(2) (resp. MSL∀,3(3)) where S has already made his first move using the CMA strategy
by playing a universal move on the closest-to-midpoints of the (relevant) linear orders. Since
S will alternate sides throughout, the patterns for both sub-game strategies will be the same.

We can now apply Lemma 5. Observe that the lengths of the instances in the sub-games
have been roughly halved, at the cost of a single move. The game then proceeds as shown
in Figure 2. The leaves of the tree correspond to base cases (analyzed in Section 4.2). The
pattern of the strategy is preserved along all branches.

Figure 2 The MSL∃,4(5) game tree. Each leaf is decorated with the associated quantifier prefix.
All paths can be played in parallel using Lemma 6 using the pattern (∃, ∀, ∃, ∀).

4.2 Formalizing the Strategy
The first step in formalizing the CMA strategy for S is to define four base cases, which we
shall call irreducible games. We assert the following (see Appendix A in [2]).
1. MSL∀,1(1) is winnable with the pattern (∀).
2. MSL∃,2(1) is winnable with the pattern (∃,∀).
3. MSL∀,2(2) is winnable with the pattern (∀,∀).
4. MSL∀,3(2) is winnable with the pattern (∀,∃,∀).

The game MSL∃,1(1) is not winnable and hence not considered.
We now give a formalization of the inductive step. For a given quantifier Q ∈ {∃,∀} and

its complementary quantifier Q̄, consider the game MSLQ,k(ℓ). Note that if S employs the
CMA strategy the game splits into the two sub-games MSLQ̄,k−1(ℓ′) and MSLQ̄,k−1(ℓ′′). We
designate this split as:

MFCS 2024

34:10 On the Number of Quantifiers Needed to Define Boolean Functions

MSLQ,k(ℓ) → MSLQ̄,k−1(ℓ′) ⊕ MSLQ̄,k−1(ℓ′′).

We will show in the proof of Lemma 9 that these sub-games can be played recursively, in
parallel. When S reaches an irreducible sub-game, he plays the winning patterns asserted
above. We claim the following about the rules for splitting. The proof is in [2].

▷ Claim 8 (Splitting Rules). For k ≥ 3, we have:

(i) MSL∃,k(2ℓ) → MSL∀,k−1(ℓ) ⊕ MSL∀,k−1(ℓ), ℓ ≥ 1
(ii) MSL∃,k(2ℓ+ 1) → MSL∀,k−1(ℓ) ⊕ MSL∀,k−1(ℓ+ 1), ℓ ≥ 1 (2)
(iii) MSL∀,k(2ℓ) → MSL∃,k−1(ℓ) ⊕ MSL∃,k−1(ℓ− 1), ℓ ≥ 2
(iv) MSL∀,k(2ℓ+ 1) → MSL∃,k−1(ℓ) ⊕ MSL∃,k−1(ℓ), ℓ ≥ 1

Of course, the CMA strategy starts out seemingly promisingly, splitting with both initial
sub-games starting on the same side; we must ensure that the strategy continues to be
well-defined, i.e., this continues throughout the recursion stack, especially since the sub-games
can have different lengths. We show this in Lemma 9, whose proof is in [2].

▶ Lemma 9. The CMA strategy is well-specified. Moreover, for k ≥ 3, if MSLQ,k(ℓ) →
MSLQ̄,k−1(ℓ1) ⊕ MSLQ̄,k−1(ℓ2) with ℓ1 ≥ ℓ2, then the pattern of S’s winning strategy for
MSLQ,k(ℓ) is Q concatenated with the pattern for the winning strategy for MSLQ̄,k−1(ℓ1).

4.3 Bounding and Characterizing the Pattern
Define q∗

∃(ℓ) (resp. q∗
∀(ℓ)) as the minimum r ∈ N such that S wins the game MSL∃,r(ℓ)

(resp. MSL∀,r(ℓ)) using the CMA strategy. Of course, we must have q∃(ℓ) ≤ q∗
∃(ℓ) and

q∀(ℓ) ≤ q∗
∀(ℓ). Let q∗(ℓ) = min(q∗

∃(ℓ), q∗
∀(ℓ)). The following lemma (whose proof is omitted)

follows from the complete description of the strategy from Section 4.2.

▶ Lemma 10. We have q∗
∀(1) = 1, q∗

∃(1) = 2, and q∗
∀(2) = 2. Also:

q∗
∃(2ℓ) = q∗

∀(ℓ) + 1 for ℓ ≥ 1, q∗
∃(2ℓ+ 1) = q∗

∀(ℓ+ 1) + 1 for ℓ ≥ 1,
q∗

∀(2ℓ) = q∗
∃(ℓ) + 1 for ℓ ≥ 2, q∗

∀(2ℓ+ 1) = q∗
∃(ℓ) + 1 for ℓ ≥ 1.

From Lemma 10 it is possible to recursively compute q∗
∀(ℓ) and q∗

∃(ℓ), and therefore q∗(ℓ)
for all values of ℓ ≥ 1. These values are provided for ℓ ≤ 127 in Table 1.

We now state and prove the main result of this section.

▶ Theorem 11. For all ℓ ≥ 1, we have:

r(ℓ) ≤ q(ℓ) ≤ r(ℓ) + 1.

Proof. The first inequality, r(ℓ) ≤ q(ℓ), is obvious. For the second, we will show that q∗
∃(ℓ)

and q∗
∀(ℓ) are both bounded above by r(ℓ) + 1 (and since q(ℓ) ≤ q∗(ℓ) = min(q∗

∃(ℓ), q∗
∀(ℓ)), so

too for q(ℓ)). Lemma 10 shows that the assertion is true for ℓ ≤ 2. Now, it can be shown
recursively (see, e.g., Appendix A in [2]) that q∗

∀(2k) = q∗
∃(2k) = k+ 1 for k ≥ 1. By Theorem

7, we also know that r(2k) = k+ 1 for k ≥ 1. So the three functions, r(·), q∗
∀(·), and q∗

∃(·), all
equal each other at successive powers of two, and increase by one between these successive
powers. Since all three functions are monotonic, they differ from one another by at most one.
Therefore, we have q∗

∃(ℓ) ≤ r(ℓ) + 1 and q∗
∀(ℓ) ≤ r(ℓ) + 1. ◀

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:11

Table 1 Values of q∗
∀(ℓ), q∗

∃(ℓ), q∗(ℓ) and r(ℓ) for 1 ≤ ℓ ≤ 127.

ℓ q∗
∀(ℓ) q∗

∃(ℓ) q∗(ℓ) r(ℓ)
1 1 2 1 1
2 2 2 2 2
3 3 3 3 2
4 3 3 3 3
5 3 4 3 3

6-7 4 4 4 3
8-9 4 4 4 4
10 5 4 4 4

11-15 5 5 5 4
16-18 5 5 5 5
19-21 5 6 5 5
22-31 6 6 6 5
32-37 6 6 6 6
38-42 7 6 6 6
43-63 7 7 7 6
64-75 7 7 7 7
76-85 7 8 7 7
86-127 8 8 8 7

We wrap up this section with two results that will be useful in Section 5. For their proofs,
we refer the reader to the full version [2].

▶ Theorem 12 (Alternation Theorem, Smaller vs. Larger). For every ℓ ≥ 1, there is a separating
sentence σℓ for (L≤ℓ, L>ℓ) with q∗(ℓ) quantifiers (and so at most log(ℓ) + 2 quantifiers), such
that the quantifier prefix of σℓ strictly alternates and ends with a ∀.

▶ Theorem 13 (Alternation Theorem, One vs. All). For every ℓ ≥ 1, there is a sentence φℓ

separating Lℓ from all other linear orders having an alternating quantifier prefix (ending with
a ∀) and consisting of q∗(ℓ) + 2 quantifiers (and so at most log(ℓ) + 4 quantifiers).

5 Strings

In this section, we pursue our main objective: string separation results, in order to characterize
the complexity of Boolean functions. We would like to bound the number of quantifiers
required for these separations as a function of both the length n of the strings, as well as the
sizes of the sets.

In general, we would like to separate a set of n-bit strings from the set of all other n-bit
strings; recall from Section 1 that we can think of this as separating the 1 instances from the
0 instances for a Boolean function on n-bit inputs. To do so, we first need to develop a basic
technique for distinguishing one string from another.

▶ Proposition 14 (One vs. One). Upper Bound: For every pair w,w′ of n-bit strings such
that w ̸= w′, there is a sentence φw,w′ with log(n) + 6 quantifiers separating ({w}, {w′}).
This sentence φw,w′ (in prenex form) has an alternating quantifier prefix ending with ∀.
Lower Bound: For all sufficiently large n, there exist two n-bit strings w,w′, such that
separating them requires ⌊log(n)⌋ quantifiers.

MFCS 2024

34:12 On the Number of Quantifiers Needed to Define Boolean Functions

Proof.

Upper Bound. Let w,w′ ∈ {0, 1}n be any two distinct n-bit strings. There is an index
i ∈ [n] such that wi ̸= w′

i. Let A = {w} and B = {w′}. We will show that S wins the MS
game on (A,B) in log(n) + 6 rounds.

In round 1, S plays pebble r on the A side, on the element wi in w, creating the pebbled
string ⟨w | wi⟩. Assume D responds obliviously on the B side. We can now immediately use
Observation 2 to discard the resulting pebbled string ⟨w′ | w′

i⟩ ∈ B, where the pebble r is
on the element w′

i. Every remaining board in B is of the form ⟨w′ | w′
j⟩, for j ̸= i. Note

that the substring w′[1, j] has length j, which is different from i, the length of the substring
w[1, i] of w ∈ A. So now, S can simply play the strategy from Theorem 13 to separate a
linear order of length i from all other linear orders, which he wins in log(n) + 4 rounds with
an alternating pattern. This gives us the desired result, after at most one more dummy move
to preserve alternation.

Lower Bound. Let ℓ = 2k + 2 for k > 1, and let w = 02k−11002k−1 and w′ = 02k−10102k−1 .
If S plays entirely on one side of the respective 1s then he is effectively playing the MS game
on (L2k−1 , L2k−1−1). By Theorem 7, we have r(2k−1) = k = ⌊log(ℓ)⌋. Since QR lower bounds
QN, the MS game played in this fashion requires at least ⌊log(ℓ)⌋ rounds to win.

Now suppose that instead of playing entirely on the same side of the respective 1s, S
plays on both sides of a 1 and/or on the 1 during these ⌊log(ℓ)⌋ rounds. In this case, D can
play obliviously to the left of the 1 when S plays to the left of the 1, obliviously to the right
of the 1 when S plays to the right of the 1, and on the 1 whenever S plays on the 1, thereby
keeping matching pairs simultaneously on both sides. The lower bound follows. ◀

We also need another helpful lemma, whose proof is in Appendix B of [2].

▶ Lemma 15. Let f : N → N be a function satisfying limn→∞ f(n) = ∞, and let t ≥ 2
be any integer. Then, for some number N(t) depending on t, for all n ≥ N(t), we have
⌈logt(f(n))⌉! ≥ f(n).

We now start with our string separation problems. The first problem we will consider
will be when there is a single n-bit string in A, and the 2n − 1 remaining n-bit strings in B.
Note that this corresponds to our Boolean function of interest being an indicator function.

▶ Theorem 16 (One vs. All). For all n, and for every ε > 0, it is possible to separate each
n-bit string from all other n-bit strings by a sentence with (1 + ε) log(n) +Oε(1) quantifiers.
This sentence (in prenex form) starts with a ∀, then has at most ε log(n) + 1 occurrences of
∃, and then ends with an alternating quantifier prefix of length at most log(n) +Oε(1).

Proof Sketch (see [2] for full proof). Fix any ε > 0, and fix any integer t ≥ 21/ε. By
Lemma 15, we know there is some integer N(t), such that for all n ≥ N(t), ⌈logt(n)⌉! ≥ n.
For any such n, fix an arbitrary w ∈ {0, 1}n, and let A = {w}, and B = {0, 1}n − {w}.

Consider the MS game on (A,B). Every w′ ∈ B differs from w in at least one bit. In round
1, S plays a universal move, placing a pebble on each w′ ∈ B on an index that disagrees with
w at that index. Assume D responds obliviously, so that there are n resulting pebbled strings
in A. For the next ⌈logt(n)⌉ rounds, S plays only existential moves, placing the ⌈logt(n)⌉
pebbles in distinct permutations on the n strings in A, creating n distinct isomorphism
classes2 by Lemma 15. Once we discard structures from the two sides using Observation 2,

2 An isomorphism class is a maximal set of partially isomorphic pebbled structures.

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:13

we are now left with n isomorphism classes, each of them defining a one-vs-all sub-game; in
each of these sub-games, the round 1 pebble is placed at a different index in the single string
on the left from any string on the right. Therefore, S can view this as a game simply about
lengths, and can employ any one-vs-all linear order strategy. The entire game therefore
reduces to n parallel instances of one-vs-all sub-games on linear orders.

By Lemma 6 and Theorem 13, S can now win these parallel games in log(n) + 4 further
moves. Together with the initial universal move and the preprocessing moves, the total
number of rounds is:

⌈logt(n)⌉+log(n)+5 ≤ log(n)
log(t) +log(n)+6 = log(n)

(
1 + 1

log(t)

)
+6 ≤ (1+ε) log(n)+6.

Note that N(t) depends only on t, which in turn depends only on ε. So when n < N(t), the
number of quantifiers can be absorbed directly into the Oε(1) additive term. ◀

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

Figure 3 Illustration of the technique used by S to partition a set of structures into isomorphism
classes. Here S plays three pebble moves to break the set of six strings into distinct isomorphism
classes: r < b < g, r < g < b, and so on. Note that three pebbling moves suffice to give each string
its own isomorphism class since 3! = 6.

The next problem we will consider has polynomially many n-bit strings in A, and the
remaining n-bit strings in B. This will correspond to our Boolean function of interest being
a sparse function. Note that this immediately implies Theorem B in Section 1.

▶ Theorem 17 (Polynomially Many vs. All). Let f : N → N be a function that satisfies
limn→∞ f(n) = ∞ and f(n) = O(nk) for some constant k. Then, for all n, and for every
ε > 0, it is possible to separate each set of f(n) n-bit strings from all other n-bit strings by a
sentence with (1 + ε) log(n) +Ok,ε(1) quantifiers.

Proof Sketch (see [2] for full proof). Assume n > 2, and pick a sufficiently large constant
k such that f(n) ≤ nk for all n. Next, pick ε > 0. Let t ≥ 4 be a large enough integer so that
t ≥ 22k/ε. By Lemma 15, we know there is some integer N(t), such that for all n ≥ N(t), we
have ⌈logt(f(n))⌉! ≥ f(n). S once again plays ⌈logt(f(n))⌉ existential moves, separating the
f(n) strings in A into distinct isomorphism classes by using different permutations. Now,
as in the proof of Theorem 16, S has reduced the games to f(n) parallel one-vs-all string
separation instances. So now, using Theorem 16, he can win these instances in parallel, using
(1 + ε/2) log(n) + 6 quantifiers for all n ≥ max(N(t), N ′(ε)), for some N ′(ε) depending only
on ε. The total number of rounds used by S is:

⌈logt(f(n))⌉ + (1 + ε/2) log(n) + 6 ≤ (1 + ε/2) log(n) + k logt(n) + 7

= (1 + ε/2) log(n) + k log(n)
2k/ε + 7

≤ (1 + ε) log(n) + 7.

MFCS 2024

34:14 On the Number of Quantifiers Needed to Define Boolean Functions

Again, N(t) depends only on t, which depends only on k and ε, whereas N ′(ε) depends only
on ε. So when n < max(N(t), N ′(ε)), the number of quantifiers can be absorbed into an
additive term that depends only on k and ε, giving us the Ok,ε(1) term. ◀

Our final results concern separating arbitrary sets of n-bit strings from their complements.
As discussed in Section 1, this corresponds exactly to defining arbitrary Boolean functions.
Note that this will immediately imply Theorem A in Section 1.

▶ Theorem 18 (Arbitrary vs. Arbitrary – Upper Bound). For all n, and for every ε > 0,
any two disjoint sets of n-bit strings are separable by a sentence with (1 + ε) n

log(n) +Oε(1)
quantifiers.

Proof Sketch (see [2] for full proof). We first observe that for any real number r > 2, S
can play m := ⌈n/ logr(n)⌉ preprocessing existential moves, putting different permutations of
these m pebbles on the strings in A (i.e., the left side). A Stirling’s approximation argument
similar to Lemma 15 shows that there is some N(r) such that for all n ≥ N(r), this number
m of preprocessing moves suffices to give each string in A its own isomorphism class. Note
that once this is done, S has partitioned the original instance into |A| disjoint instances of
one-vs-all games.

Now, given ε > 0, we first choose r > 2 small enough that log(r) < 1 + ε/2. S now plays
the preprocessing existential moves as described above to obtain |A| parallel one-vs-all
instances. Now, by Theorem 16, he can win these instances in parallel using Lemma 6, using
(1 + ε/2) log(n) + 6 rounds for all n ≥ max(N(r), N ′(ε)), for some N ′(ε) depending only on
ε. The total number of rounds needed, therefore, is:

m+ (1 + ε/2) log(n) + 6 ≤ n

log(n) · log(r) +
(

1 + ε

2

)
log(n) + 7

≤
(

1 + ε

2

) (
n

log(n) + log(n)
)

+ 7

< (1 + ε) n

log(n) + 7

for all n ≥ max(N(r), N ′(ε), N ′′(ε)), where for all n ≥ N ′′(ε), we have (1 + ε/2) log(n) <
(ε/2) n

log(n) . Since each of N(r), N ′(ε), and N ′′(ε) depends only on ε, the number of quantifiers
for smaller n is absorbed into the Oε(1) term. ◀

Remarkably, we cannot improve the upper bound in Theorem 18 by any significant
amount. The following proposition establishes this by means of a counting argument, also
showing that Theorem A is tight.

▶ Theorem 19 (Arbitrary vs. Arbitrary – Lower Bound). For all sufficiently large n, there
is a nonempty set of n-bit strings, A ⊊ {0, 1}n, such that every separating sentence φ for
(A, {0, 1}n − A) must have at least n/ log(n) quantifiers.

Proof Sketch (see [2] for full proof). If we require k quantifiers to separate any instance
on n-bit strings (for sufficiently large n), we can start by counting the number of pairwise
inequivalent sentences that can be written with k quantifiers. Such a sentence has a quantifier
prefix of length at most k (≤ 2k+1 possibilities), followed by a quantifier-free part, which
is a disjunction of types (2kk possibilities). This puts the total number of possible such
formulas to be at most 2k · 22k log(k) . We need this number to be at least 22n − 2, to account
for all nonempty instances of the form (A, {0, 1}n − A), which require pairwise inequivalent
sentences to separate. Solving this shows that we need k ≥ n/ log(n). ◀

M. Carmosino, R. Fagin, N. Immerman, P. G. Kolaitis, J. Lenchner, and R. Sengupta 34:15

6 Conclusions & Open Problems

We obtained nontrivial quantifier upper bounds with matching lower bounds (up to (1 + ε)
factors) for a variety of string separation problems. All our upper bounds arise as a result of
using the technique of parallel play.

Throughout this work, with very few exceptions, we used MS games to obtain upper
bounds. It might seem unnecessary to exhibit upper bounds using game arguments, when it
ordinarily suffices to exhibit separating sentences. However, the sentences implicitly arising
from our game techniques are highly nontrivial to construct. In the case of QR, since taking
disjunctions and conjunctions do not increase the quantifier rank, one can build up complex
sentences out of simpler ones without paying any cost; we lose this convenience with QN,
and therefore need more nuanced techniques, such as parallel play.

Natural directions to extend this work include the following:
1. It would be illuminating to understand the QN required to express particular string and

graph properties. While our lower bound for the one-vs-one problem (Proposition 14)
gave a pair of strings requiring log(n) quantifiers to separate, the counting argument in
Proposition 19 does not exhibit a specific instance on n-bit strings that provably requires
n/ log(n) quantifiers to separate. Note that by (1), if we can find any property that
requires ω(log(n)) quantifiers to capture, then that property lies outside of NL.

2. Is it possible to use our upper bound in Theorem 18 to obtain Lupanov’s upper bound of
(1 + ε)2n/ log(n) on the minimum formula size needed separate two sets in propositional
logic (or vice versa)?

3. It is known for ordered structures that with O(logn) quantifiers, one can express the
BIT predicate, or equivalently, all standard arithmetic operations on elements of the
universe [12]. In particular, with BIT, some properties that would otherwise require
log(n) quantifiers can be expressed using O(log(n)/ log log(n)) quantifiers. Understanding
the use of BIT and other numeric relations would be valuable.

References
1 Marco Carmosino, Ronald Fagin, Neil Immerman, Phokion Kolaitis, Jonathan Lenchner, and

Rik Sengupta. Multi-structural games and beyond, 2023. doi:10.48550/arXiv.2301.13329.
2 Marco Carmosino, Ronald Fagin, Neil Immerman, Phokion Kolaitis, Jonathan Lenchner,

and Rik Sengupta. On the number of quantifiers needed to define boolean functions, 2024.
arXiv:2407.00688.

3 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae, 49:129–141, 1961. doi:10.4064/fm-49-2-129-141.

4 Ronald Fagin, Jonathan Lenchner, Kenneth W. Regan, and Nikhil Vyas. Multi-structural
games and number of quantifiers. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13, Rome, Italy, 2021. IEEE.
doi:10.1109/LICS52264.2021.9470756.

5 Ronald Fagin, Jonathan Lenchner, Nikhil Vyas, and R. Ryan Williams. On the number
of quantifiers as a complexity measure. In Stefan Szeider, Robert Ganian, and Alexandra
Silva, editors, 47th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages
48:1–48:14, Vienna, Austria, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.MFCS.2022.48.

6 Steven Fortune. A note on sparse complete sets. SIAM Journal on Computing, 8(3):431–433,
1979. doi:10.1137/0208034.

7 Roland Fraïssé. Sur quelques classifications des systèmes de relations. Université d’Alger,
Publications Scientifiques, Série A, 1:35–182, 1954. doi:10.2307/2963939.

MFCS 2024

https://doi.org/10.48550/arXiv.2301.13329
https://arxiv.org/abs/2407.00688
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.1109/LICS52264.2021.9470756
https://doi.org/10.4230/LIPIcs.MFCS.2022.48
https://doi.org/10.4230/LIPIcs.MFCS.2022.48
https://doi.org/10.1137/0208034
https://doi.org/10.2307/2963939

34:16 On the Number of Quantifiers Needed to Define Boolean Functions

8 Martin Grohe and Nicole Schweikardt. The succinctness of first-order logic on linear orders.
Log. Methods Comput. Sci., 1(1), 2005. doi:10.2168/LMCS-1(1:6)2005.

9 L. Hella and K. Luosto. Game characterizations for the number of quantifiers. Mathematical
Structures in Computer Science, pages 1–20, 2024.

10 Lauri Hella and Jouko Väänänen. The size of a formula as a measure of complex-
ity. In Asa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, editors,
Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and
Philosophy of Mathematics, pages 193–214. De Gruyter, Berlin, München, Boston, 2015.
doi:doi:10.1515/9781614516873.193.

11 Neil Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

12 Neil Immerman. Descriptive Complexity. Springer, New York USA, 1999.
13 Oleg Lupanov. On a method of circuit synthesis. Izvestia VUZ Radiofizika, 1(1):120–140,

1958.
14 Oleg Lupanov. On the realization of functions of logical algebra by formulae of finite classes

(formulae of limited depth). Problems of Cybernetics, 6(6):1–14, 1965. Upper bounds on sizes
of formulas for all functions (English translation of Problemy Kibernetiki 6 (1961) 5-14.).

15 Stephen R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of berman and
hartmanis. Journal of Computer and System Sciences, 25(2):130–143, 1982. doi:10.1016/
0022-0000(82)90002-2.

16 John Riordan and C E Shannon. The number of two-terminal series-parallel networks. Journal
of Mathematics and Physics, 21(1-4):83–93, 1942. doi:10.1002/sapm194221183.

17 Joseph G. Rosenstein. Linear Orderings. Academic Press, New York USA, 1982.
18 Harry Vinall-Smeeth. From quantifier depth to quantifier number: Separating structures with

k variables, 2024. doi:10.48550/arXiv.2311.15885.

https://doi.org/10.2168/LMCS-1(1:6)2005
https://doi.org/doi:10.1515/9781614516873.193
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1002/sapm194221183
https://doi.org/10.48550/arXiv.2311.15885

	1 Introduction
	2 Preliminaries
	3 Parallel Play
	4 Linear Orders
	4.1 The Closest-to-Midpoint with Alternation Strategy
	4.2 Formalizing the Strategy
	4.3 Bounding and Characterizing the Pattern

	5 Strings
	6 Conclusions & Open Problems

