
The Complexity of Simplifying ω-Automata
Through the Alternating Cycle Decomposition
Antonio Casares # Ñ

University of Warsaw, Poland

Corto Mascle #Ñ

LaBRI, Université de Bordeaux, France

Abstract
In 2021, Casares, Colcombet and Fijalkow introduced the Alternating Cycle Decomposition (ACD),
a structure used to define optimal transformations of Muller into parity automata and to obtain
theoretical results about the possibility of relabelling automata with different acceptance conditions.
In this work, we study the complexity of computing the ACD and its DAG-version, proving that
this can be done in polynomial time for suitable representations of the acceptance condition of the
Muller automaton. As corollaries, we obtain that we can decide typeness of Muller automata in
polynomial time, as well as the parity index of the languages they recognise.

Furthermore, we show that we can minimise in polynomial time the number of colours (resp.
Rabin pairs) defining a Muller (resp. Rabin) acceptance condition, but that these problems become
NP-complete when taking into account the structure of an automaton using such a condition.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Omega-regular languages, Muller automata, Zielonka tree

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.35

Related Version Full Version: https://arxiv.org/abs/2401.03811 [13]

Funding Antonio Casares: Supported by the Polish National Science Centre (NCN) grant “Polyno-
mial finite state computation” (2022/46/A/ST6/00072).

This document contains hyperlinks. Each occurrence of a notion is linked to its definition.
On an electronic device, the reader can click on words or symbols (or just hover over them
on some PDF readers) to see their definition.

1 Introduction

1.1 Context
Automata for the synthesis problem. Since the 60s, automata over infinite words have
provided a fundamental tool to study problems related to the decidability of different
logics [5, 38]. Recent focus has centered on the study of synthesis of controllers for reactive
systems with the specification given in Linear Temporal Logic (LTL). The original automata-
theoretic approach by Pnueli and Rosner [37] remains at the heart of the state-of-the-art
LTL-synthesis tools [19, 29, 33, 35]. Their method consists in translating the LTL formula
into a deterministic ω-automaton which is then used to build an infinite duration game; a
winning strategy in this game provides a correct controller for the system.

Different acceptance conditions. There are different ways of specifying which runs of
an automaton over infinite words are accepting. Generally, we label the transitions of the
automaton with some output colours, and we then indicate which colours should be seen
(or not) infinitely often. This can be expressed in a variety of ways, obtaining different
acceptance conditions, such as parity, Rabin or Muller. The complexity of such acceptance

© Antonio Casares and Corto Mascle;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoniocasares@mimuw.edu.pl
https://antonio-casares.github.io/
https://orcid.org/0000-0002-6539-2020
mailto:corto.mascle@labri.fr
https://corto-mascle.github.io/
https://doi.org/10.4230/LIPIcs.MFCS.2024.35
https://arxiv.org/abs/2401.03811
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The Complexity of Simplifying ω-Automata Through the ACD

conditions is crucial in the performance of algorithms dealing with automata and games
over infinite words. For instance, parity games can be solved in quasi-polynomial time [6]
and parity games solvers are extremely performing in practice [24], while solving Rabin and
Muller games is, respectively, NP-complete [18] and PSPACE-complete [22]. Moreover, many
existing algorithms for solving these games are polynomial on the size of the game graph,
and are exponential only on parameters from the acceptance condition: Muller games can
be solved in time O(k5kn5) [6, Theorem 3.4], where n is the size of the game and k is the
number of colours used by the acceptance condition, and Rabin games can be solved in
time O(nr+3rr!) [36, Theorem 7], where r is the number of Rabin pairs of the acceptance
condition. Also, the emptiness check of Muller automata with the condition represented by a
Boolean formula ϕ (Emerson-Lei condition) can be done in time O(2kkn2|ϕ|) [2, Theorem 1].

Some important objectives are therefore: (1) transform an automaton A using a complex
acceptance conditions into an automaton B using a simpler one, and (2) simplify as much as
possible the acceptance condition used by an automaton A (without adding further states).

The Zielonka tree and Zielonka DAG. The Zielonka tree is an informative representation
of Muller conditions, introduced for the study of strategy complexity in Muller games [42, 17].
Zielonka showed that we can use this structure to tell whether a Muller language can be
expressed as a Rabin or a parity language [42, Section 5]. Moreover, it has been recently
proved that the Zielonka tree provides minimal deterministic parity automata recognising
a Muller condition [10, 31], and can thus be used to transform Muller automata using this
condition into equivalent parity automata.

A natural alternative is to consider the more succinct DAG-version of this structure: the
Zielonka DAG. Hunter and Dawar studied the complexity of building the Zielonka DAG from
an explicit representation of a Muller condition, and the complexity of solving Muller games
for these different representations [23]. Recently, Hugenroth showed that many decision
problems concerning Muller automata become tractable when using the Zielonka DAG to
represent the acceptance condition [21].

The ACD: Theoretical applications. In 2021, Casares, Colcombet and Fijalkow [9] proposed
the Alternating Cycle Decomposition (ACD) as a generalisation of the Zielonka tree. The
main motivation for the introduction of the ACD was to define optimal transformations of
automata: given a Muller automaton A, we can build using the ACD an equivalent parity
automaton that is minimal amongst all parity automata obtained by duplicating states of
A [10, Theorem 5.32]. Moreover, the ACD can be used to tell whether a Muller automaton
can be relabelled with an acceptance condition of a simpler type [10, Section 6.1].

However, the works introducing the ACD [9, 10] are of theoretical nature, and no study
of the cost of constructing it and performing the related transformations is presented.

The ACD: Practice. The transformations based on the ACD have been implemented
in the tools Spot 2.10 [16] and Owl 21.0 [27], and are used in the LTL-synthesis tools
ltlsynt [33] and STRIX [29, 32] (top-ranked in the SYNTCOMP competitions [24]). In
the tool paper [12], these transformation are compared with the state-of-the-art methods to
transform Emerson-Lei automata into parity ones. Surprisingly, the transformation based on
the ACD does not only produce the smallest parity automata, but also outperforms all other
existing paritizing methods in computation time.

In [12, Section 4], an algorithm computing the ACD is proposed. However, the focus
is made in the handling of Boolean formulas to enhance the algorithm’s performance in
practice, but no theoretical analysis of its complexity is provided.

A. Casares and C. Mascle 35:3

Simplification of acceptance conditions. As already mentioned, the complexity of the
acceptance conditions play a crucial role in algorithms. One can simplify the acceptance
condition of a Muller automaton by adding further states (and the optimal way of doing this
is determined by the ACD [10]). However, in some cases this leads to an exponential blow-up
in the number of states [28]. A natural question is therefore to try to simplify the acceptance
condition while avoiding adding so many states. We consider two versions of this problem:

Typeness problem. Can we relabel the acceptance condition of a Muller automaton with
one of a simpler type, such as Rabin, Streett or parity?

Minimisation of colours and Rabin pairs. Can we minimise the number of colours used by
the acceptance condition (or, in the case of Rabin automata, the number of Rabin pairs)?

The ACD has proven fruitful for studying the typeness problem: just by inspecting the
ACD of A, we can tell whether we can relabel it with an equivalent Rabin, parity or Streett
acceptance condition [10]. Also, it is a classical result that we can minimise in polynomial
time the number of colours used by a parity automaton [7]. However, it was still unclear
whether the ACD could help to minimise the number of colours of Muller conditions or the
number of Rabin pairs of Rabin acceptance conditions, question that we tackle in this work.

The minimisation of colours in Muller automata has recently been studied by Schwarzová,
Strejček and Major [39]. In their approach, they use heuristics to reduce the number of
colours by applying QBF-solvers. The final acceptance condition is however not guaranteed
to have a minimal number of colours. There have also been attempts to minimise the number
of Rabin pairs of Rabin automata coming from the determinisation of Büchi automata [40].
Also, in their work about minimal history-deterministic Rabin automata, Casares, Colcombet
and Lehtinen left open the question of the minimisation of Rabin pairs [11].

1.2 Contributions
1. Computation of the ACD and the ACD-DAG. We show that we can compute the ACD

of a Muller automaton in polynomial time, provided that the Zielonka tree of its acceptance
condition is given as input (Theorem 13). This shows that the computation of the ACD is
not harder than that of the Zielonka tree, (partially) explaining the strikingly favourable
experimental results from [12]. We also show that we can compute the DAG-version of
the ACD in polynomial time if the acceptance condition of A is given colour-explicitly
or by a Zielonka DAG (Theorem 15). The main technical challenge is to prove that the
ACD has polynomial size in the size of the Zielonka tree.

2. Deciding typeness in polynomial time. Combining the previous contributions with the
results from [10], we directly obtain that we can decide in polynomial time whether a
Muller automaton can be relabelled with an equivalent parity, Rabin or Streett acceptance
condition (Corollary 16). Moreover, we recover a result from Wilke and Yoo [41]: we can
compute in polynomial time the parity index of the language of a Muller automaton.

3. Minimisation of colours and Rabin pairs of acceptance conditions. For a given Muller
(resp. Rabin) language L, we show that we can minimise the number of colours (resp.
Rabin pairs) needed to define L in polynomial time (Theorems 20 and 21). We also relate
the minimisation of Rabin pairs to a subclass of interest of Boolean formulas, called
generalised Horn formulas.

4. Minimisation of colours and Rabin pairs over an automaton structure. Given an au-
tomaton A using a Muller (resp. Rabin) acceptance condition, we show that the problem
of minimising the number of colours (resp. Rabin pairs) to relabel A with an equivalent
acceptance condition over its structure is NP-complete, and it remains NP-hard even

MFCS 2024

35:4 The Complexity of Simplifying ω-Automata Through the ACD

if the ACD is given as input (Theorems 26 and 27). This came as a surprise to us, as
our first intuition was that the ACD would allow to lift the previous polynomial-time
minimisation algorithms to ones which take into account the structure of the automaton.

We provide proof ideas for all the results, technical proofs can be found in the full
version [13]. The full version also contains further contributions and discussions about the
size of different representations of Muller conditions (summarised in Figure 3).

2 Preliminaries

2.1 Automata over infinite words and their acceptance conditions
Given a set Γ, we write 2Γ

+ for the set of its non-empty subsets. For a word w ∈ Γω, we let
Inf(w) be the set of letters appearing infinitely often in w.

Automata. A (non-deterministic) automaton is a tuple A = (Q, qinit,Σ,∆,Γ, col,W), where
Q is a finite set of states, qinit ∈ Q is an initial state, Σ is an input alphabet, ∆ ⊆ Q× Σ ×Q

is a set of transitions, Γ is a finite set of output colours, col : ∆ → Γ is a colouring of the
transitions, and W ⊆ Γω is a language over Γ. We call the tuple (col,W) the acceptance
condition of A. We write q a−→ q′ to denote a transition e = (q, a, q′) ∈ ∆, and q

a:c−−→ q′ to
further indicate that col(e) = c. We write q w:u

q′ to represent the existence of a path from
q to q′ labelled with the input letters w ∈ Σ∗ and output colours u ∈ Γ∗.

Given an automaton A and a word w ∈ Σω, a run over w in A is a path qinit
w0:c0−−−→

q1
w1:c1−−−→ q2

w2:c2−−−→ q3
w3:c3−−−→ · · · ∈ ∆ω. Such a run is accepting if c0c1c2 · · · ∈ W , and rejecting

otherwise. A word w ∈ Σω is accepted by A if it admits an accepting run. The language
recognised by an automaton A is the set L(A) = {w ∈ Σω | w is accepted by A}. Two
automata over the same alphabet are equivalent if they recognise the same language. An
automaton is deterministic (resp. complete) if for every q ∈ Q and a ∈ Σ, there is at most
(resp. at least) one transition q

a−→ q′.
We underline that the colours of the acceptance of runs appear over transitions. For a

discussion on the differences between transition and state-based automata, and arguments in
favour of the former, we refer to [8, Chap. VI].

It is sometimes useful to let transitions carry multiple colours – for instance, this is the
standard model in the HOA format [1]. For many results of this paper (those from Section 3),
allowing or not multiple colours per edge does not make a difference; we could always take
2Γ or ∆ as new set of colours. This will however be relevant in Section 4.2. Also, the HOA
format allows for multiple transitions between the same two states with the same input letter.
These transitions can always be replaced by one carrying multiple colours (we refer to [11,
Prop. 18] for details).

We let the size of A be |A| = |Q| + |Σ| + |∆| + |Γ|. We note that this does not take into
account the size of the representation of its acceptance condition, which can admit different
forms (see page 7). When necessary, we will indicate the size of the representation of the
acceptance condition separately.

Acceptance conditions. We now define the main classes of languages used by automata
over infinite words as acceptance conditions. We let Γ stand for a finite set of colours.

Muller. We define the Muller language of a family F ⊆ 2Γ
+ of non-empty subsets of Γ as:

MullerΓ(F) = {w ∈ Γω | Inf(w) ∈ F}.

We will often refer to sets in F as accepting sets and sets not in F as rejecting sets.

A. Casares and C. Mascle 35:5

Rabin. A Rabin condition is represented by a family R = {(g1, r1), . . . , (gr, rr)} of Rabin
pairs, where gj , rj ⊆ Γ. We define the Rabin language of a single Rabin pair (g, r) as

RabinΓ((g, r)) = {w ∈ Γω | Inf(w) ∩ g ̸= ∅ ∧ Inf(w) ∩ r = ∅},

and the Rabin language of a family of Rabin pairs R as: RabinΓ(R) =⋃r
j=1 RabinΓ((gj , rj)).

Streett. The Streett language of a family R = {(g1, r1), . . . , (gr, rr)} of Rabin pairs is defined
as the complement of its Rabin language:

StreettΓ(R) = Γω \ RabinΓ(R).

Parity. We define the parity language over a finite alphabet Π ⊆ N as:

parityΠ = {w ∈ Πω | min Inf(w) is even}.

We say that an automaton is a C automaton, for C one of the classes of languages above,
if its acceptance condition uses a C language. We refer to the survey [3] for a more detailed
account on different types of acceptance conditions.

▶ Remark 1. Muller languages are exactly the languages characterised by the set of letters
seen infinitely often. They are also the languages recognised by deterministic Muller automata
with one state.

We observe that parity languages are special cases of Rabin and Streett languages which
are in turn special cases of Muller languages.

▶ Example 2. In Figure 1 we show different types of automata over the alphabet Σ = {a, b}
recognising the language of words that contain infinitely many bs and eventually do not
encounter the factor abb.

q

r

p

b : 4

a : 3

a : 3

b : 2

a : 3b : 1

Parity automaton A1.

s

t

a : α

b : γa : α

b : β

With a Muller condition

F = {{γ, α}, {β, γ}, {β}}.

With a Rabin condition

R = {({γ}, {β}), ({β}, {α})}.

Automaton A2 with equivalent Muller and
Rabin conditions over it.

Figure 1 Different types of automata recognising the language L = Σ∗bω + Σ∗(a+b)ω. (Note that
the set of outputs that occur infinitely often in a run of A2 cannot be {β, γ}.)

The 8 classes of automata obtained by combining the 4 types of acceptance conditions
above with deterministic and non-deterministic models are equally expressive [30, 34]. We
call the class of languages that can be recognised by these automata ω-regular languages. The
parity index of L is the minimal number k such that L can be recognised by a deterministic
parity automaton using k output colours (which coincides with the minimal number of colours
used by a Muller automaton recognising L [10, Proposition 6.14]).

MFCS 2024

35:6 The Complexity of Simplifying ω-Automata Through the ACD

Typeness. Let A1 = (Q, qinit,Σ,∆,Γ1, col1,W1) be a deterministic automaton, and let C
be a class of languages (potentially containing languages over different alphabets). We say
that A1 can be relabelled with a C-acceptance condition, or that A is C-type, if there is
W2 ⊆ Γω

2 , W2 ∈ C, and a colouring function col2 : ∆ → Γ2 such that A1 is equivalent to
A2 = (Q, qinit,Σ,∆,Γ2, col2,W2). In this case, we say that (col1,W1) and (col2,W2) are
equivalent acceptance conditions over A.

Given a Muller automaton A, we use the expression deciding the typeness of A for the
problem of answering if A is Rabin type, Streett type, parity type, or none of those.1

▶ Remark 3. In this work, we only consider typeness for deterministic automata for simplicity.
For non-deterministic models, typeness admits two non-equivalent definitions [26]: (1) the
acceptance status of each individual infinite path coincide for both acceptance conditions, or
(2) both automata recognise the same language.

▶ Example 4. The automaton A2 from Figure 1 is Rabin type, as we have labelled it with a
Rabin acceptance condition that is equivalent over A to the Muller condition given by F (in
this case, both conditions use the same set of colours Γ = {α, β, γ}). However, we note that
RabinΓ(R) ̸= MullerΓ(F), as γω ∈ RabinΓ(R), while γω /∈ MullerΓ(F). This is possible, as no
infinite path in A2 is labelled by a word that differentiates both languages (such as γω).

2.2 The Zielonka tree and the Zielonka DAG
We represent trees and directed acyclic graphs (DAGs) as pairs T = (N,⪯) with N a non-
empty finite set of nodes and ⪯ the ancestor relation (n ⪯ n′ meaning that n is above n′).
An A-labelled tree (resp. A-labelled DAG) is a tree (resp. DAG) together with a labelling
function ν : N → A. We write |T | to denote the number of nodes of a tree T .

▶ Definition 5 ([42]). Let F ⊆ 2Γ
+ be a family of non-empty subsets of a finite set Γ. The

Zielonka tree for F (over Γ),2 denoted ZF = (N,⪯, ν : N → 2Γ
+) is a 2Γ

+-labelled tree with
nodes partitioned into round nodes and square nodes, N = N⃝ ⊔N□, such that:

The root is labelled Γ.
If a node is labelled X ⊆ Γ, with X ∈ F , then it is a round node, and it has a child for
each maximal non-empty subset Y ⊆ X such that Y ̸∈ F , which is labelled Y .
If a node is labelled X ⊆ Γ, with X ̸∈ F , then it is a square node, and it has a child for
each maximal non-empty subset Y ⊆ X such that Y ∈ F , which is labelled Y .

▶ Example 6. Let F = {{γ, α}, {γ, β}, {β}} be the Muller condition of the automaton from
Example 2, over the alphabet {α, β, γ}. In Figure 2 we show the Zielonka tree of F .

The Zielonka DAG of a family F ⊆ 2Γ
+ is the labelled directed acyclic graph Z-DAGF

obtained by merging the nodes of ZF with a common label. It inherits the partition into
round and square nodes, with children of round nodes being square and vice-versa.

▶ Lemma 7 (Implied by [21, Lemma 1]). Given a 2Γ
+-labelled tree T with a partition into

round and square nodes, we can decide in polynomial time whether there is a family F ⊆ 2Γ
+

such that T = ZF . In the affirmative case, this family is uniquely determined.

1 We could consider further classes of acceptance conditions such as Büchi, coBüchi, generalised Büchi,
weak, etc... We refer to [10, Appendix A] for more details on these acceptance types.

2 The definition of ZF , as well as most subsequent definitions, do not only depend on F but also on the
alphabet Γ. Although this dependence is important, we do not explicitly include it in the notations in
order to lighten them, as most of the times the alphabet will be clear from the context.

A. Casares and C. Mascle 35:7

α, β, γ

α, γ β, γ

α γ γ

Figure 2 Zielonka tree ZF for F = {{γ, α}, {γ, β}, {β}}.

Representation of acceptance conditions. There is a wide variety of ways to represent a
Muller language, including as its Zielonka tree, its Zielonka DAG, or colour-explicitly, that is,
as a list of the subsets appearing in F . In Figure 3 we summarise the relationship between
these representations. We highlight that the Zielonka DAG can be built in polynomial
time from both the Zielonka tree and from a colour-explicit representation of a Muller
condition [23, Theorem 3.17]. The exponential-size separation between the Zielonka tree
and colour-explicit representations, as well as explicit examples showing the gap between
Zielonka trees and DAGs are original contributions.

Rabin Zielonka DAG

Zielonka tree

Explicit

Exponential gap

Polynomial translation/

Figure 3 Comparison between the different representations of Muller conditions. A blue bold
arrow from X to Y means that converting an X-representation into the form Y requires exponential
time. A dashed arrow from X to Y means that a conversion can be computed in polynomial time.
The dotted arrow indicates that the polynomial translation can only be applied on a fragment of X,
as it is more expressive than Y .

2.3 The Alternating Cycle Decomposition
We now present the Alternating Cycle Decomposition and its DAG-version, following [10].

Let A be an automaton with Q and ∆ as set of states and transitions, respectively. A
cycle of A is a subset ℓ ⊆ ∆ such that there is a (not necessarily simple) path with the same
starting and ending state such that the set of edges it visits is ℓ. The set of cycles of an
automaton A is written Cycles(A). We will consider the set of cycles ordered by inclusion. If
we see A as a graph, its cycles are the strongly connected subgraphs of that graph, and the
maximal cycles are its strongly connected components (SCCs). Let A be a Muller automaton
with acceptance condition (col,MullerΓ(F)). Given a cycle ℓ ∈ Cycles(A), we say that ℓ is
accepting (resp. rejecting) if col(ℓ) ∈ F (resp. col(ℓ) /∈ F).

▶ Definition 8. Let ℓ0 ∈ Cycles(A) be a cycle. We define the tree of alternating subcycles
of ℓ0, denoted AltTree(ℓ0), as a Cycles(A)-labelled tree with nodes partitioned into round nodes
and square nodes, N = N⃝ ⊔N□, such that:

MFCS 2024

35:8 The Complexity of Simplifying ω-Automata Through the ACD

The root is labelled ℓ0.
If a node is labelled ℓ ∈ Cycles(A), and ℓ is an accepting cycle (col(ℓ) ∈ F), then it is a
round node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such
that ℓ′ is rejecting (col(ℓ′) /∈ F).
If a node is labelled ℓ ∈ Cycles(A), and ℓ is a rejecting cycle (col(ℓ) /∈ F), then it is a
square node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such
that ℓ′ is accepting (col(ℓ′) ∈ F).

▶ Definition 9 (Alternating cycle decomposition). Let A be a Muller automaton, and let
ℓ1, ℓ2, . . . , ℓk be an enumeration of its maximal cycles. We define the alternating cycle
decomposition of A to be the forest ACD(A) = {AltTree(ℓ1), . . . ,AltTree(ℓk)}.

▶ Remark 10. The Zielonka tree can be seen as the special case of the alternating cycle
decomposition for an automata with a single state.

As mentioned in the introduction, the ACD was introduced in order to build small parity
automata from Muller ones: given the ACD of a Muller automaton A, we can build in
polynomial time an equivalent parity automaton PACD

A (called the ACD-parity transform of
A) of minimal size amongst all automata obtained from A by “duplication of states”. See [10,
Section 5.2] for a formal statement and further results.

▶ Example 11. Figure 4 contains the alternating cycle decomposition of the automata A1
and A2 from Figure 1. We represent their transitions as pairs (q, a) ∈ Q × Σ. Since both
automata are strongly connected, each ACD consists in a single tree, whose root is the whole
set of transitions.

∆1

(q, b)
(p, a),(p, b)

(r, a)

(p, a)

∆2

(t, b)
(s, a),(s, b)

(t, a)

(s, a)

Figure 4 Alternating cycle decomposition of A1 (on the left) and A2 (on the right), from Figure 1.

The ACD-DAG of a Muller automaton A, written ACD-DAG(A), is the family of labelled
DAGs obtained by merging nodes with the same label in the trees of ACD(A). It is useful
for deciding the typeness and the parity index of L(A), as stated next.

▶ Proposition 12 ([10, Section 6.1]). Given a deterministic Muller automaton A and its
ACD-DAG, we can decide the typeness of A and compute the parity index of L(A) in
polynomial time.

3 Computation of the Alternating Cycle Decomposition

We present in this section our central contribution: a polynomial-time algorithm to compute
the alternating cycle decomposition of a Muller automaton with the acceptance condition
given by a Zielonka tree (Theorem 13). This shows that the computation of the ACD is

A. Casares and C. Mascle 35:9

not harder than that of the Zielonka tree, (partially) explaining the strikingly performing
experimental results from [12]. We also show that if the acceptance condition is represented as
a Zielonka DAG, we can compute ACD-DAG(A) in polynomial time (Theorem 15), from which
we can derive decidability in polynomial time of typeness of Muller automata (Corollary 16).

3.1 Statements of the results
▶ Theorem 13 (Computation of the ACD). Given a Muller automaton A with acceptance
condition represented by a Zielonka tree ZF ,3 we can compute ACD(A) in polynomial time
in |A| + |ZF |.

As stated in the previous section, given the ACD of a Muller automaton A, we can
transform A in polynomial time into its ACD-parity-transform: a parity automaton equivalent
to A that is minimal amongst parity automata obtained as a transformation of A. The
previous theorem implies that this can be done even if only the Zielonka tree of the acceptance
condition of A is given as input, together with the automaton structure.4

▶ Corollary 14. We can compute the ACD-parity-transform of a Muller automaton in
polynomial time, if its acceptance condition is given by a Zielonka tree.

▶ Theorem 15 (Computation of the ACD-DAG). Given a Muller automaton A with acceptance
condition represented by a Zielonka DAG Z-DAGF (resp. colour-explicitly), we can compute
ACD-DAG(A) in polynomial time in |A| + |Z-DAGF | (resp. |A| + |F|).

Combining Theorem 15 with Propositions 12, we directly obtain that we can decide
typeness of Muller automata and the parity index of their languages in polynomial time.

▶ Corollary 16 (Polynomial-time decidability of typeness and parity index). Given a deterministic
Muller automaton A with its acceptance condition represented colour-explicitly, as a Zielonka
tree, or as a Zielonka DAG, we can decide the typeness of A, and determine the parity index
of L(A), in polynomial time.

The decidability of the parity index in polynomial time had already been obtained by
Wilke and Yoo [41]. This result contrasts with the fact that deciding the parity index of a
language represented by a deterministic Rabin or Streett automaton is NP-complete [25].

3.2 Main algorithm and complexity
Description of the algorithm. We describe an algorithm computing ACD-DAG(A) from a
Muller automaton A. To obtain ACD(A), it suffices then to unfold this DAG. This algorithm
builds the ACD-DAG in a top-down fashion: first, it computes the strongly connected
components of A and initialises the root of each of the DAGs in ACD-DAG(A). Then, it
iteratively computes the children of the already found nodes as follows: Given a node n
labelled ℓ (assume that ℓ is an accepting cycle), the algorithm goes through all square nodes
m in the Zielonka DAG and for each of them computes the maximal sub-cycles of ℓ whose set
of colours is included in the label of m, but not in those of any of its children. The algorithm
then selects maximal cycles among those found, add them to ACD-DAG(A) (if they do not
already appear there) and sets them as children of n.

3 Lemma 7 lets us check in polynomial time if a tree indeed is the Zielonka tree of a Muller condition.
4 Also, we note that given A and its ACD, it is immediate to compute a Zielonka tree over the set of

colours Γ = ∆ defining an equivalent acceptance condition over A.

MFCS 2024

35:10 The Complexity of Simplifying ω-Automata Through the ACD

Complexity analysis. We explain now how we obtain a polynomial upper bound on the
complexity of the algorithms presented in the previous paragraph.

We first remark that we need to make at |ACD-DAG(A)| computations of the children of a
node, as each node of the ACD-DAG is considered at most once by the algorithm. Therefore,
to obtain Theorem 15 (computation of the ACD-DAG) we need to show that:
1. We can compute the children of a node in polynomial time in |Q| + |Z-DAGF |, and
2. |ACD-DAG(A)| is polynomial in |Q| + |Z-DAGF |.

To establish Theorem 13 (computation of the ACD), we remark that we can compute
ACD(A) from A and ZF by simply folding ZF to obtain Z-DAGF , apply Theorem 15 to get
ACD-DAG(A), and then unfold the latter to obtain ACD(A). The first two steps require a
time polynomial in |Z-DAGF |+ |Q| ≤ |ZF |+ |Q|, while the third step takes a time polynomial
in |ACD(A)|. Thus, to obtain the theorem, it suffices to establish
3. |ACD(A)| is polynomial in |Q| + |ZF |.

The most technical part lies in the proofs of items 2 and 3, stated below.

▶ Proposition 17. Let A be a Muller automaton and F the family defining its acceptance
condition. Then,
a) |ACD(A)| ≤ |Q| · |ZF |.
b) |ACD-DAG(A)| ≤ |Q| · |Z-DAGF |.

We describe now the main ideas of the proof of Proposition 17. We use the notion
of local subtree at a state of the ACD. If q is a state of A appearing in the SCC ℓi, we
define the local subtree at q, noted Tq, as the subtree of AltTree(ℓi) containing the nodes
Nq = {n ∈ AltTree(ℓi) | q is a state in the label of n}. We define analogously the local
subDAG of ACD-DAG(A) at q, noted Dq.

We remark that |ACD(A)| ≤
∑

q∈Q |Tq| (resp. |ACD-DAG(A)| ≤
∑

q∈Q |Dq|), as each
node of the ACD appears in some local subtree. Therefore, it suffices to bound the size of the
local subtrees (resp. local subDAGs) to obtain a polynomial bound on the size of ACD(A)
(resp. ACD-DAG(A)) to deduce Proposition 17. Quite surprisingly, the arguments to bound
these objects are slightly different in each case.

▶ Lemma 18. For every state q, the tree Tq has size at most |ZF |.

Proof sketch. We define in a top-down fashion an injective function f : Tq → ZF . For the
base case, we send the root of Tq to the root of ZF . Let n be a node in Tq such that f(n)
has been defined, and let n1, . . . , nk be its children. The key technical result is to show that
there are k descendants of f(n), containing the sets of labels of n1, . . . , nk, respectively, that
are incomparable for the ancestor relation. Then, the subtrees rooted at these nodes are
pairwise disjoint, which allows to define f(ni) for all i and carry out the induction. ◀

We conclude that the size of ACD(A) is polynomial in |Q| + |ZF |, deriving the first item
of Proposition 17:

|ACD(A)| ≤
∑
q∈Q

|Tq| ≤ |Q| · |ZF |.

▶ Lemma 19. For every state q, the DAG Dq has size at most |Z-DAGF |.

Proof sketch. As before, we define an injective function f : Dq → Z-DAGF . However, now
we cannot use the fact that the subDAGs rooted at k incomparable elements are disjoint.

To circumvent this difficulty, for each node n in Dq different from the root, we fix an
arbitrary immediate ancestor of n, noted pred(n) (that is, n is a child of pred(n)). For a node
n in Dq, we let Cn be the set of colours appearing in the label of n. We define f recursively:

A. Casares and C. Mascle 35:11

For the root n0 of Dq, we let f(n0) be a maximal (deepest) node in Z-DAGF containing Cn0

in its label. For n a node such that we have define f for all its ancestors, we let f(n) be a
maximal node in the subDAG rooted at f(pred(n)) containing Cn in its label (we note that
f(n) is a round node if and only if n is a round node). The most technical part of the proof
is to show injectivity of the obtained function. ◀

4 Minimisation of colours and Rabin pairs

We consider the problem of minimising the representation of the acceptance condition
of automata. That is, given a deterministic automaton A using a Muller (resp. Rabin)
acceptance condition, what is the minimal number of colours (resp. Rabin pairs) needed to
define an equivalent acceptance condition over A?

We first study the minimisation of colours for Muller languages, without taking into
account the structure of the automaton. We show that given the Zielonka DAG of the
condition (resp. set of Rabin pairs), we can minimise its number of colours (resp. number of
Rabin pairs) in polynomial time (Theorems 20 and 21). We provide an alternative point of
view over the minimisation of Rabin pairs, using so-called generalised Horn formulas (see
Remark 23). Then, we tackle the same question taking into account the structure of the
automaton. Surprisingly, we show that in this case both problems are NP-complete, even if
the ACD is given as input (Theorems 26 and 27).

4.1 Minimisation of the representation of Muller languages in PTIME
and generalised Horn formulas

Minimisation of colours for Muller languages. We say that a Muller language MullerΣ(F)
is k-colour type if there is a set of k colours Γ, a family of sets F ′ ⊆ 2Γ

+ and a mapping
ϕ : Σ → Γ such that for all S ∈ 2Σ

+, S ∈ F ⇐⇒ ϕ(S) ∈ F ′.
Note that this is equivalent to asking if all automata using MullerΣ(F) as acceptance

condition can be relabelled with an equivalent Muller condition using at most k colours.
(However, it is not the same as having a Muller automaton recognising MullerΣ(F) using at
most k colours.)

Colour-Minimisation-ML is the problem of deciding whether a given Muller language
(represented by its Zielonka DAG) is k-colour type. We chose to specify the input as a
Zielonka DAG, as it is more succinct than the other representations we consider (c.f. Figure 3).
We now prove that this problem can be solved in polynomial time, which implies that it can
be equally solved in polynomial time if the Muller language is represented colour-explicitly,
or as a Zielonka tree.

▶ Theorem 20 (Tractability of minimisation of colours for Muller languages). The problem
Colour-Minimisation-ML can be solved in polynomial time.

Proof sketch. We define two colours a, b ∈ Σ as equivalent if for every node n of Z-DAGF ,
a ∈ ν(n) ⇐⇒ b ∈ ν(n). It is not difficult to see that we can merge equivalent colours,
that is, we can define Muller(F) using as many colours as the number of classes for this
equivalence relation. We prove that this is optimal: If Muller(F) can be defined using a
mapping ϕ : Σ → Γ, then, for all α ∈ Γ, the colours in ϕ−1(α) are equivalent. Therefore, it
suffices to inspect Z-DAGF to determine the number of equivalence classes. ◀

Minimisation of Rabin pairs for Rabin languages. In this section we tackle the minimisation
of the number of Rabin pairs to represent Rabin languages. We provide a polynomial-time
algorithm which turns a family of Rabin pairs into an equivalent one with a minimal number

MFCS 2024

35:12 The Complexity of Simplifying ω-Automata Through the ACD

of pairs. The algorithm comes down to partially computing the Zielonka tree of the input
Rabin language from top to bottom, and stopping when we can infer from the partial view
of the tree a set of Rabin pairs equivalent to the input. We present the algorithm differently
to clarify the proofs, in particular the proof that the resulting number of pairs is minimal.

We say that a Rabin language L ⊆ Σω is k-Rabin-pair type if there is a family of k Rabin
pairs R over some set of colours Γ and a mapping ϕ : Σ → Γ such that for all w ∈ Σω,
w ∈ L ⇐⇒ ϕ(w) ∈ RabinΓ(R).

Rabin-Pair-Minimisation-ML is the problem of deciding whether a language RabinΣ(R)
(represented by the Rabin pairs R) is k-Rabin-pair type.

▶ Theorem 21 (Tractability of minimisation of Rabin pairs for Rabin languages). The problem
Rabin-Pair-Minimisation-ML can be solved in polynomial time.

We obtain the minimal set of Rabin pairs iteratively. We start with an empty set of
pairs. While our set of pairs is not equivalent to the input one, we compute a maximal set of
colours S accepted by the input set of pairs and not by our current set of pairs. We then
compute the maximal subset T of S that is rejected by the input set of pairs. We infer from
them a new Rabin pair, which accepts the sets of colours contained in S but not in T . We
add this pair to our set of pairs.

We prove that the resulting set is optimal by showing that at all times, we can define an
injective function from our current set of pairs to any set of pairs equivalent to the input.

The minimisation of pairs for Streett conditions in polynomial time follows by symmetry.

Generalised Horn formulas. We discuss an alternative point of view on the minimisation
of Rabin pairs, via a generalisation of Horn formulas.

Horn formulas are a popular fragment of propositional logic, as they enjoy some convenient
complexity properties. It is well-known that the satisfiability problem for those formulas can
be solved in linear time [15].

We consider a succinct representation of Horn formulas, called generalised Horn formula.
They allow one to merge several Horn clauses with the same premises, e.g. (x1 ∧ x2 =⇒ y1)
and (x1 ∧ x2 =⇒ y2), into a single clause (x1 ∧ x2 =⇒ y1 ∧ y2). We can apply the classical
linear-time algorithm for satisfiability on this generalised form, however, note that it is not
linear in the size of the generalised formula, but in the size of the implicit Horn formula
represented.

▶ Definition 22. A generalised Horn clause (or GH clause) is a Boolean formula of the form
either (x1 ∧ · · · ∧ xn) =⇒ (y1 ∧ · · · ∧ ym) or (x1 ∧ · · · ∧ xn) =⇒ ⊥ (in the latter case, the
clause is called negative). A generalised Horn formula (or GH formula) is a conjunction of
GH clauses. It is simple if none of its GH clauses are negative.

▶ Remark 23 (Correspondence simple GH formulas ↔ Streett conditions). We observe that
there is a correspondence between simple GH formulas and Streett conditions. Define the
function α that turns a GH clause (x1 ∧ · · · ∧ xn) =⇒ (y1 ∧ · · · ∧ ym) into the Rabin pair
({y1, . . . , ym}, {x1, . . . , xn}). We extend it into a function turning simple GH formulas into
families of Rabin pairs by defining α(

∧k
i=1 GHi) = (α(GHi))k

i=1. We can then observe that
α is a bijection (we consider Boolean formulas up to commutation of the terms, for instance
we consider that φ ∨ ψ and ψ ∨ φ are the same formula). We also note that the number of
clauses of a simple GH formula is the number of pairs of its image by α.

Note that for all simple GH formula φ, the set of sets accepted by the Streett condition
α(φ) is {ν−1(⊥) | ν : Var → {⊤,⊥} is a valuation satisfying φ}. As a result, two simple GH
formula are equivalent if and only if their images by α define the same Streett language.

A. Casares and C. Mascle 35:13

As a consequence of this correspondence and Theorem 21, we obtain that we can minimise
the number of clauses in a GH formula in polynomial-time. This result contrasts nicely
with the NP-completeness of minimising the number of clauses in a Horn formula [4] (see
also [14]). On the other hand, minimising the number of literals in a GH formula remains
NP-complete, just like in the case of Horn formulas [20]. This can be showed by a slight
adaptation of the reduction from [14] to GH formulas.

▶ Proposition 24. There is a polynomial-time algorithm to minimise the number of clauses
of a GH formula.

Proof sketch. The polynomial-time minimisation of simple GH formulas follows from The-
orem 21 and Remark 23. The extension to all Generalised Horn formulas is essentially a
technicality, due to the fact that negative clauses cannot be directly translated into Rabin
pairs as in the previously. We circumvent this problem by replacing them with some non-
negative clauses and proving that minimising the initial formula comes down to minimising
the resulting simple one. ◀

On the other hand, generalised Horn formulas are likely not a suitable representation
for acceptance conditions on automata, as they yield an NP-complete emptiness problem
(Proposition 25). This is an interesting example of a family of acceptance conditions whose
satisfiability problem is in PTIME but which yields an NP-complete emptiness problem on
automata.

▶ Proposition 25. Checking emptiness of an automaton with an acceptance condition
represented by a GH formula is NP-complete.

Proof sketch. The NP upper bound follows from the one on Emerson-Lei conditions. For
the hardness, we reduce from the Hamiltonian cycle problem. ◀

4.2 Minimisation of acceptance conditions on top of an automaton
We now consider the problem of minimising the number of colours or Rabin pairs used by
a Muller or Rabin condition over a fixed automaton. We could expect that it is possible
to generalise the previous polynomial time algorithms by using the ACD, instead of the
Zielonka DAG. Quite surprisingly, we show that these problems become NP-complete when
taking into account the structure of the automata.

Minimisation of colours on top of a Muller automaton. We say that a deterministic
Muller automaton A is k-colour type if we can relabel it with a Muller condition using at
most k output colours that is equivalent over A (and uses a single colour per edge). We
also consider automata with multiple colours per edge (in this section, multiple labels may
be relevant). We will nevertheless show that allowing them does not change the theoretical
complexity of the problem. We say that A is k-multi-colour type if we can relabel it with an
equivalent Muller condition using at most k colours, with possibly several colours per edge.

Colour-Minimisation-Aut (resp. Multi-Colour-Minimisation-Aut) is the problem of
deciding whether a deterministic Muller automaton is k-colour type (resp. k-multi-colour
type). These problems admit different variants according to the representation of the Muller
condition. We will show that for the three representations we are concerned with (colour-
explicit, Zielonka tree and Zielonka DAG), both problems are NP-complete. This implies
that they are NP-hard even if the ACD is provided as input, by Theorem 13. Hugenroth

MFCS 2024

35:14 The Complexity of Simplifying ω-Automata Through the ACD

showed5 that, for state-based automata, the problem Colour-Minimisation-Aut is NP-hard
when the acceptance condition of A is represented colour-explicitly or as a Zielonka tree [21].
However, it is not straightforward to generalise it to transition-based automata, since the
classic translation between state-based and transition-based automata does not preserve
minimality.

▶ Theorem 26 (NP-completeness of minimisation of colours for Muller automata). The problems
Colour-Minimisation-Aut and Multi-Colour-Minimisation-Aut are NP-complete, if the
acceptance condition MullerΓ(F) of A is represented colour-explicitly, as a Zielonka tree,
Zielonka DAG or as the ACD of A.

To obtain the NP-hardness, we reduce from the chromatic number problem for graphs.
We note that the fact that these problems lie in NP is not obvious: we could be tempted to
guess an acceptance condition on the same automaton structure and check equivalence of
the two automata. However, reducing the number of colours might blow up the size of the
representation of the acceptance condition.

NP-upper bound: Proof sketch. We guess a colouring col′ : ∆ → [k] and check in polyno-
mial time that there exists a family F ′ over [k] defining an equivalent condition over A. To
do so, we remark that such F ′ exists if and only if there is no pair of words w+ ∈ L(A) and
w− /∈ L(A) such that the sets of colours produced infinitely often under col′ by their runs are
equal. The existence of such words reduces to emptiness of adequate Streett automata. ◀

Minimisation of Rabin pairs on top of a Rabin automaton. We say that a deterministic
Muller automaton A is k-Rabin-pair type if we can relabel it with an equivalent Rabin
condition using at most k Rabin pairs.

Rabin-Pair-Minimisation-Aut is the problem of deciding whether a given deterministic
Rabin automaton is k-Rabin-pair type. As before, we can consider different representations of
the acceptance condition of the automaton: using Rabin pairs, colour-explicitly, the Zielonka
tree, the Zielonka DAG or by providing the ACD.

▶ Theorem 27 (NP-completeness of minimisation of Rabin pairs for Rabin automata). The
problem Rabin-Pair-Minimisation-Aut is NP-complete for all the previous representations of
the acceptance condition.

5 Conclusion

In this work we obtained several positive results concerning the complexity of simplifying the
acceptance condition of an ω-automaton. Our first technical result is that the computation
of the ACD (resp. ACD-DAG) of a Muller automaton is not harder than the computation of
the Zielonka tree (resp. Zielonka DAG) of its acceptance condition (Theorems 13 and 15).
This provides support for the assertion that the optimal transformation into parity automata
based on the ACD is applicable in practical scenarios, backing the experimental evidence
provided by the implementations of the ACD-transform [12].

Furthermore, this result has several implications for our simplification purpose: We can
decide the typeness of Muller automata and compute the parity index of their languages in
polynomial time (Corollary 16). In addition, we showed that we can minimise in polynomial

5 As of today, the proof is not currently publicly available online, we got access to it by a personal
communication. The theorem only expresses the NP-hardness for the colour-explicit representation, but
a look into the reduction works unchanged if the condition is given as a Zielonka tree.

A. Casares and C. Mascle 35:15

time the colours and Rabin pairs necessary to represent a Muller language. However, these
problems become NP-hard when taking into account the structure of a particular automaton
using this acceptance condition, even if the ACD of the automaton is provided as input.
Nevertheless, we believe that the methods for the minimisation of colours in the case of
Muller languages could be combined with the structure of the ACD to obtain heuristics
reducing the number of colours used by Muller automata, which might lead to substantial
(although not optimal) reductions.

In sum, our results clarify the potential of the ACD and complete our understanding of
the complexity of simplifying the acceptance conditions of ω-automata.

References
1 Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Křetínský,

David Müller, David Parker, and Jan Strejček. The Hanoi omega-automata format. In CAV,
pages 479–486, 2015. doi:10.1007/978-3-319-21690-4_31.

2 Christel Baier, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, David Müller,
and Jan Strejček. Generic emptiness check for fun and profit. In ATVA, pages 445–461, 2019.
doi:10.1007/978-3-030-31784-3_26.

3 Udi Boker. Why these automata types? In LPAR, volume 57 of EPiC Series in Computing,
pages 143–163, 2018. doi:10.29007/c3bj.

4 Endre Boros and Ondřej Čepek. On the complexity of Horn minimization. Rutgers University.
Rutgers Center for Operations Research [RUTCOR], 1994.

5 J. Richard Büchi. On a decision method in restricted second order arithmetic. Proc. Internat.
Congr. on Logic, Methodology and Philosophy of Science, pages 1–11, 1962.

6 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17–152–
STOC17–188, 2022. doi:10.1137/17M1145288.

7 Olivier Carton and Ramón Maceiras. Computing the Rabin index of a parity automaton.
RAIRO, pages 495–506, 1999. doi:10.1051/ita:1999129.

8 Antonio Casares. Structural properties of automata over infinite words and memory for games
(Propriétés structurelles des automates sur les mots infinis et mémoire pour les jeux). Phd thesis,
Université de Bordeaux, France, 2023. URL: https://theses.hal.science/tel-04314678.

9 Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of
games and automata using Muller conditions. In ICALP, volume 198, pages 123:1–123:14,
2021. doi:10.4230/LIPIcs.ICALP.2021.123.

10 Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, and Karoliina Lehtinen. From
Muller to Parity and Rabin Automata: Optimal Transformations Preserving (History) Deter-
minism. TheoretiCS, Volume 3, April 2024. doi:10.46298/theoretics.24.12.

11 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in Muller games. In ICALP, volume 229, pages
117:1–117:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

12 Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer, Florian Renkin, and Salomon Sickert.
Practical applications of the Alternating Cycle Decomposition. In TACAS, volume 13244 of
Lecture Notes in Computer Science, pages 99–117, 2022. doi:10.1007/978-3-030-99527-0_6.

13 Antonio Casares and Corto Mascle. The complexity of simplifying ω-automata through the
alternating cycle decomposition. CoRR, abs/2401.03811, 2024. doi:10.48550/arXiv.2401.
03811.

14 Tom Chang. Horn formula minimization. Master’s thesis, Rochester Institute of Technology,
2006. Available at https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=7895&
context=theses.

15 William F Dowling and Jean H Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. The Journal of Logic Programming, 1(3):267–284, 1984.

MFCS 2024

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.29007/c3bj
https://doi.org/10.1137/17M1145288
https://doi.org/10.1051/ita:1999129
https://theses.hal.science/tel-04314678
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.46298/theoretics.24.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.48550/arXiv.2401.03811
https://doi.org/10.48550/arXiv.2401.03811
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=7895&context=theses
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=7895&context=theses

35:16 The Complexity of Simplifying ω-Automata Through the ACD

16 Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexan-
dre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme
Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s
new? In CAV, volume 13372 of Lecture Notes in Computer Science, pages 174–187, 2022.
doi:10.1007/978-3-031-13188-2_9.

17 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In LICS, pages 99–110, 1997. doi:10.1109/LICS.1997.614939.

18 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for fragments
of µ-calculus. In CAV, volume 697 of Lecture Notes in Computer Science, pages 385–396, 1993.
doi:10.1007/3-540-56922-7_32.

19 Javier Esparza, Jan Křetínský, Jean-François Raskin, and Salomon Sickert. From LTL and
limit-deterministic Büchi automata to deterministic parity automata. In TACAS, pages
426–442, 2017. doi:10.1007/978-3-662-54577-5_25.

20 Peter L Hammer and Alexander Kogan. Optimal compression of propositional Horn knowledge
bases: complexity and approximation. Artificial Intelligence, 64(1):131–145, 1993.

21 Christopher Hugenroth. Zielonka DAG acceptance and regular languages over infinite words.
In DLT, volume 13911 of Lecture Notes in Computer Science, pages 143–155, 2023. doi:
10.1007/978-3-031-33264-7_12.

22 Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In MFCS, pages 495–506,
2005. doi:10.1007/11549345_43.

23 Paul Hunter and Anuj Dawar. Complexity bounds for Muller games. Theoretical Computer
Science (TCS), 2008.

24 Swen Jacobs, Guillermo A. Perez, Remco Abraham, Veronique Bruyere, Michael Cadilhac,
Maximilien Colange, Charly Delfosse, Tom van Dijk, Alexandre Duret-Lutz, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Klara Meyer, Thibaud
Michaud, Adrien Pommellet, Florian Renkin, Philipp Schlehuber-Caissier, Mouhammad Sakr,
Salomon Sickert, Gaetan Staquet, Clement Tamines, Leander Tentrup, and Adam Walker.
The reactive synthesis competition (SYNTCOMP): 2018-2021, 2022. arXiv:2206.00251.

25 Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Structural complexity of omega-
automata. In STACS, pages 143–156, 1995. doi:10.1007/3-540-59042-0_69.

26 Orna Kupferman, Gila Morgenstern, and Aniello Murano. Typeness for omega-regular au-
tomata. Int. J. Found. Comput. Sci., 17(4):869–884, 2006. doi:10.1142/S0129054106004157.

27 Jan Křetínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-words,
automata, and LTL. In ATVA, volume 11138 of Lecture Notes in Computer Science, pages
543–550, 2018. doi:10.1007/978-3-030-01090-4_34.

28 Christof Löding. Optimal bounds for transformations of ω-automata. In FSTTCS, pages
97–109, 1999. doi:10.1007/3-540-46691-6_8.

29 Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. Practical synthesis of reactive
systems from LTL specifications via parity games. Acta Informatica, pages 3–36, 2020.
doi:10.1007/s00236-019-00349-3.

30 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. Infor-
mation and control, 9(5):521–530, 1966. doi:10.1016/S0019-9958(66)80013-X.

31 Philipp Meyer and Salomon Sickert. On the optimal and practical conversion of Emerson-Lei
automata into parity automata. Unpublished manuscript, obsoleted by the work of [9], 2021.

32 Philipp J. Meyer and Salomon Sickert. Modernising Strix. SYNT Workshop, 2021. URL:
https://www7.in.tum.de/~sickert/publications/MeyerS21.pdf.

33 Thibaud Michaud and Maximilien Colange. Reactive synthesis from LTL specification with
Spot. In SYNT@CAV, Electronic Proceedings in Theoretical Computer Science, 2018.

34 Andrzej W. Mostowski. Regular expressions for infinite trees and a standard form of automata.
In SCT, pages 157–168, 1984. doi:10.1007/3-540-16066-3_15.

35 David Müller and Salomon Sickert. LTL to deterministic Emerson-Lei automata. In GandALF,
pages 180–194, 2017. doi:10.4204/EPTCS.256.13.

https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-031-33264-7_12
https://doi.org/10.1007/978-3-031-33264-7_12
https://doi.org/10.1007/11549345_43
https://arxiv.org/abs/2206.00251
https://doi.org/10.1007/3-540-59042-0_69
https://doi.org/10.1142/S0129054106004157
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1016/S0019-9958(66)80013-X
https://www7.in.tum.de/~sickert/publications/MeyerS21.pdf
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.4204/EPTCS.256.13

A. Casares and C. Mascle 35:17

36 Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. In LICS,, pages
275–284. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.23.

37 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989. doi:10.1145/75277.75293.

38 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. URL: http://www.jstor.
org/stable/1995086.

39 Tereza Schwarzová, Jan Strejček, and Juraj Major. Reducing acceptance marks in Emerson-Lei
automata by QBF solving. In SAT, volume 271, pages 23:1–23:20, 2023. doi:10.4230/LIPIcs.
SAT.2023.23.

40 Cong Tian and Zhenhua Duan. Büchi determinization made tighter. CoRR, abs/1404.1436,
2014. arXiv:1404.1436.

41 Thomas Wilke and Haiseung Yoo. Computing the Rabin index of a regular language of infinite
words. Inf. Comput., pages 61–70, 1996. doi:10.1006/inco.1996.0082.

42 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

MFCS 2024

https://doi.org/10.1109/LICS.2006.23
https://doi.org/10.1145/75277.75293
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
https://doi.org/10.4230/LIPIcs.SAT.2023.23
https://doi.org/10.4230/LIPIcs.SAT.2023.23
https://arxiv.org/abs/1404.1436
https://doi.org/10.1006/inco.1996.0082
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	1.1 Context
	1.2 Contributions

	2 Preliminaries
	2.1 Automata over infinite words and their acceptance conditions
	2.2 The Zielonka tree and the Zielonka DAG
	2.3 The Alternating Cycle Decomposition

	3 Computation of the Alternating Cycle Decomposition
	3.1 Statements of the results
	3.2 Main algorithm and complexity

	4 Minimisation of colours and Rabin pairs
	4.1 Minimisation of the representation of Muller languages in PTIME and generalised Horn formulas
	4.2 Minimisation of acceptance conditions on top of an automaton

	5 Conclusion

