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Abstract
This paper studies the recursion-theoretic aspects of large-scale geometries of infinite strings, a
subject initiated by Khoussainov and Takisaka (2017). We investigate several notions of quasi-
isometric reductions between recursive infinite strings and prove various results on the equivalence
classes of such reductions. The main result is the construction of two infinite recursive strings α

and β such that α is strictly quasi-isometrically reducible to β, but the reduction cannot be made
recursive. This answers an open problem posed by Khoussainov and Takisaka.
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1 Introduction

Quasi-isometry is an important concept in geometric group theory that has been used to
solve problems in group theory. Loosely speaking, two metric spaces are said to be quasi-
isometric iff there is a mapping (called a quasi-isometry) from one metric space to the other
that preserves the distance between any two points in the first metric space up to some
multiplicative and additive constants. Thus, for example, while the Euclidean plane is not
isometric to R2 equipped with the taxicab distance, the two spaces are quasi-isometric to
each other since the Euclidean distance between any two points does not differ from the
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37:2 Quasi-Isometric Reductions Between Infinite Strings

taxicab distance between them up to a multiplicative factor of
√

2. The study of group
properties – where groups are represented by their Cayley graphs – that are invariant under
quasi-isometries is quite a prominent theme in geometric group theory; examples of such
group properties include hyperbolicity and growth rate [2].

This paper studies quasi-isometries of the ordered sets (N, <) with the objects being
infinite strings, recursive functions from N to a finite alphabet or isomorphic copies of these
structures defined with automatic functions in automata theory replacing recursive ones
(the latter being delayed to the journal version of this paper). The notion of quasi-isometry
for infinite strings was introduced by Khoussainov and Takisaka [6], enabling the study of
global patterns on strings and linking the study of large-scale geometries with automata
theory, computability theory, algorithmic randomness and model theory. Furthermore, quasi-
isometries between hyperbolic metric spaces in general – an example of which is an infinite
string when viewed as a colored metric space – are well-studied in geometric group theory.
Isometries between computable metric spaces have also been studied by Melnikov [10].

Among the various questions investigated by Khoussainov and Takisaka was the compu-
tational complexity of the quasi-isometry problem: given any two infinite strings α and β, is
there a quasi-isometry from α to β? They found that for any two quasi-isometric strings,
a quasi-isometry that is recursive in the halting problem relative to α and β always exists
between them, and that the quasi-isometry problem between any two recursive strings is
Σ0

2-complete [7]1. In comparison, the corresponding problem for isometry with respect to
recursive strings is Π0

1-complete [10]. Khoussainov and Takisaka also had the following open
problem which was mentioned in many talks and discussions: if a quasi-isometric reduction
from α to β exists, does there always exist a recursive quasi-isometric reduction? This is
a very natural question for computer science, specifically for computability theory, since it
seeks to understand how complex such a reduction is. We answered this question in the
negative, that is, there are cases where the reduction exists but cannot be made recursive.
The fourth author’s bachelor thesis [9] which contains this result was cited by Khoussainov
and Takisaka in the journal version [7] of their paper [6].

To complete the picture, the present work examines, in more detail, the recursion-theoretic
aspects of quasi-isometries between infinite strings. We study various natural restrictions
on quasi-isometric reductions between strings: first, many-one reductions, where the quasi-
isometric reduction is required to be recursive and many-one; second, one-one reductions,
which are injective many-one reductions; third, permutation quasi-isometric reductions, which
are surjective one-one reductions.

The main subjects of this work are the structural properties of the equivalence classes
induced by the different types of reductions and the relationships between these reductions.
In accordance with recursion-theoretic terminology, we call an equivalence class induced by
a reduction type a degree of that reduction type. We show, for example, that within each
many-one quasi-isometry degree, any pair of strings has a common upper bound as well as a
common lower bound with respect to one-one reductions. Furthermore, there are two strings
for which their many-one quasi-isometry degrees have a unique least common upper bound.
The main result is the separation of quasi-isometry from recursive quasi-isometry, that is, we
construct two recursive strings such that one is quasi-isometric reducible to the other but
no recursive many-one quasi-isometry exists between them. This main result answers the
above-mentioned open problem posed by Khoussainov and Takisaka.

1 Note that [7] is the journal version of their paper [6], containing some corrections from the earlier paper.
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2 Notation

Any unexplained recursion-theoretic notation may be found in [11, 13, 14]. The set of positive
integers will be denoted by N; N∪ {0} will be denoted by N0. The finite set Σ will denote the
alphabet used. We assume knowledge of elementary computability theory over different size
alphabets [1]. An infinite string α ∈ Σω can also be viewed as a Σ-valued function defined
on N. The length of an interval I is denoted by |I|. For αi ∈ Σ∗ and i ∈ N, we write (αi)∞

i=1
to denote α1α2 · · · , a possibly infinite string.

3 Colored Metric Spaces and Infinite Strings

▶ Definition 1 (Colored Metric Spaces, [6]). A colored metric space (M ; dM , Cl) consists of
the underlying metric space (M ; dM ) with metric dM and the color function Cl : M → Σ,
where Σ is a finite set of colors called an alphabet. We say that m ∈ M has color σ ∈ Σ if
σ = Cl(m).

▶ Definition 2 (Quasi-isometries Between Colored Metric Spaces, [6]). For any A ≥ 1 and
B ≥ 0, an (A, B)-quasi-isometry from a metric space M1 = (M1; d1) to a metric space
M2 = (M2; d2) is a function f : M1 → M2 such that for all x, y ∈ M1, 1

A · d1(x, y) − B ≤
d2(f(x), f(y)) ≤ A · d1(x, y) + B, and for all y ∈ M2, there exists an x ∈ M1 such that
d2(f(x), y) ≤ A.

Given two colored metric spaces M1 = (M1; d1, Cl1) and M2 = (M2; d2, Cl2), a function
f : M1 → M2 is a quasi-isometric reduction from M1 to M2 iff for some A ≥ 1 and B ≥ 0,
f is an (A, B)-quasi-isometry from (M1; d1) to (M2; d2) and f is color-preserving, that is,
for all x ∈ M1, Cl1(x) = Cl2(f(x)).

An infinite string α can then be seen as a colored metric space (N; d, α), where d is the metric
on N defined by d(i, j) = |i − j| and α : N → Σ is the color function. For any two infinite
strings α and β, we write α ≤qi β to mean that there is a quasi-isometric reduction from α

to β. The relation ≤qi is a preorder on Σω. For any pair of distinct letters a1, a2 ∈ Σ, aω
1

and aω
2 are incomparable with respect to ≤qi, so this relation is not total.

The following proposition gives a useful simplification of the definition of quasi-isometry
in the context of infinite strings.

▶ Proposition 3. Given two infinite strings α and β, let f : N → N be a color-preserving
function. Then f is a quasi-isometric reduction from α to β iff there exists a constant C ≥ 1
such that for all x, y in the domain of α, the following conditions hold:
(a) d(f(x), f(x + 1)) ≤ C;
(b) x + C < y ⇒ f(x) < f(y).

Proof. First, suppose that f : N → N is a color-preserving quasi-isometric reduction from α

to β. We show that there exists a constant C ≥ 1 for which Conditions (a) and (b) hold for
any x, y ∈ N. By the definition of a quasi-isometric reduction, there exist constants A ≥ 1
and B ≥ 0 such that

1
A

· d(x, y) − B ≤ d(f(x), f(y)) ≤ A · d(x, y) + B. (1)

We first derive, for each of the two conditions, a choice of C satisfying it.

MFCS 2024



37:4 Quasi-Isometric Reductions Between Infinite Strings

(i) Plugging y = x + 1 into the upper bound in (1) yields d(f(x), f(x + 1)) ≤ A + B.
(ii) Assume for the sake of a contradiction that for all C ≥ 1, there are x ∈ N and C ′ > C

such that f(x + C ′) ≤ f(x). We show that if C is chosen so that A + B ≤ 1
A · C − B,

then the existence of some C ′ > C with f(x + C ′) ≤ f(x) would lead to a contradiction.
Fix such a C, and suppose there were indeed some C ′ with C ′ > C ≥ 1 and

f(x + C ′) ≤ f(x) . (2)

Then,

f(x + C ′ + 1) − f(x + C ′) ≤ d(f(x + C ′ + 1), f(x + C ′))
≤ A + B (by statement (i))

≤ 1
A

· C − B (by the choice of C)

<
1
A

· C ′ − B (since C ′ > C)

≤ f(x) − f(x + C ′) (by (1) and (2)) ,

giving f(x + C ′ + 1) < f(x). One can repeat the preceding argument inductively,
yielding the inequality f(x + C ′ + k + 1) − f(x + C ′ + k) < f(x) − f(x + C ′ + k), or
equivalently f(x + C ′ + k + 1) < f(x), for each k ≥ 0. But this is impossible since f(x)
is finite and d(f(x + C ′ + k + 1), f(x + C ′ + k′ + 1)) > 0 whenever |k − k′| is sufficiently
large.

It follows from (i) and (ii) that Conditions (a) and (b) are satisfied for C = A · (A + 2B).
For a proof of the converse direction, fix a C satisfying Conditions (a) and (b). Suppose

x ∈ N. Then by Condition (a), d(f(x), f(x + 1)) ≤ C. Inductively, assume that d(f(x), f(x +
n)) ≤ n · C. Then by the inductive hypothesis and Condition (a), d(f(x), f(x + n + 1)) ≤
d(f(x), f(x+n))+d(f(x+n), f(x+n+1)) ≤ n ·C +C = (n+1) ·C where the first inequality
follows from the triangle inequality. Consequently, for all x, y ∈ N,

d(f(x), f(y)) ≤ d(x, y) · C . (3)

Next, we establish a lower bound for d(f(x), f(y)). Without loss of generality, assume
x < y. Write y = x + i(C + 1) + j for some i ∈ N0 and 0 ≤ j ≤ C. By a simple induction, one
can show that f(x + i(C + 1)) ≥ f(x) + i and thus d(f(x), f(x + i(C + 1)) ≥ i. Furthermore,
d(f(x + i(C + 1)), f(y)) ≤ C2. Thus d(f(x), f(y)) ≥ i − C2 and i ≥ d(x, y)/(C + 1) − 1. It
follows that d(f(x), f(y)) ≥ d(x, y)/(C + 1) − 1 − C2. Thus one can select A = (C + 1) and
B = C2 + 1 to establish the required bounds for the quasi-isometric mapping.

To establish that for all y ∈ M2, there exists an x ∈ M1 such that d2(f(x), y) ≤ A, one
can choose any A ≥ max(C, f(1)), as the distance between f(x) and f(x + 1) is bounded
by C. ◀

By Proposition 3, we can now redefine quasi-isometric reduction in terms of one constant C,
instead of two constants A and B as in Definition 2, reducing the number of constants by 1.

▶ Definition 4. Suppose C ≥ 1. Given infinite strings α and β, a C-quasi-isometry from α

to β is a color-preserving function f : N → N such that for all x, y in the domain of α,
(a) f(1) ≤ C and f(x) − C ≤ f(x + 1) ≤ f(x) + C.
(b) x + C < y ⇒ f(x) < f(y).
For the rest of the paper, we shall use “Condition (a)” and “Condition (b)” to refer to the
above conditions respectively, without necessarily mentioning the definition number.
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A useful property of a C-quasi-isometry f from α to β is that any position of β has at most
C + 1 pre-images under f .

▶ Lemma 5 ([6, Corollary II.4]). Given two infinite strings α and β, suppose that f is a
C-quasi-isometry from α to β. Then for all y ∈ N, |f−1(y)| ≤ C + 1.

It was proven earlier that for any infinite strings α, β and any C-quasi-isometry f from α to
β, there is a constant D such that each position of β is at most D positions away from some
image of f . The next lemma states that each position of β in the range of f is at most C

positions away from a different image of f . The proof is omitted due to space restrictions.

▶ Lemma 6. Given two infinite strings α and β, suppose that f is a C-quasi-isometry
from α to β. Then min{f(x) : x ∈ N} ≤ C and for each y ∈ N, min{f(x) : x ∈ N
and f(x) > f(y)} ≤ f(y) + C. Hence for each z ∈ N, there is some x ∈ N such that
d(f(x), z) ≤ C.

▶ Corollary 7. Let Σ = {a1, . . . , al} and let α, β be two infinite strings. Let f be a C-quasi-
isometry from α to β. Suppose that there is a positive integer K such that there is at least
one occurrence of ai in any interval of positions of α of length K. Then there is at least one
occurrence of ai in any interval of positions of β of length KC.

A quasi-isometry f can fail to be order-preserving in that there are pairs x, y ∈ N with x < y

and f(x) > f(y). Nonetheless, as Khoussainov and Takisaka noted [6, Lemma II.2], every
quasi-isometry enforces a uniform upper bound on the size of a cross-over – the difference
f(x) − f(y) for such a pair x, y ∈ N.

▶ Lemma 8 (Small Cross-Over Lemma, [6, Lemma II.2]). Given two infinite strings α and β,
suppose that f is a C-quasi-isometry from α to β. Then for all n, m ∈ N with n < m, we
have f(n) − f(m) ≤ C2.

4 Recursive Quasi-Isometric Reductions

Khoussainov and Takisaka [6] investigated the structure of the partial-order Σω
qi of the

quasi-isometry degrees over an alphabet Σ = {a1, . . . , al}. They proved that Σω
qi has a

greatest element, namely the degree of (a1 · · · an)ω, and that Σω
qi contains uncountably many

minimal elements. Furthermore, they showed that Σω
qi includes a chain of the type of the

integers, and that it includes an antichain. In connection with computability theory, in
particular with the arithmetical hierarchy, they established that the quasi-isometry relation
on recursive infinite strings is Σ0

2-complete [7]. In this section, we continue research into the
recursion-theoretic aspects of quasi-isometries on infinite strings. We consider the notions
of many-one and one-one recursive reducibilities first introduced by Post [12] as relations
between recursive functions, and apply them to quasi-isometric reductions. We also define a
third type of quasi-isometric reducibility – permutation reducibility – which is bijective. We
then prove a variety of results on the degrees of such reductions.

▶ Definition 9 (Many-One Reducibility). A string α is many-one reducible, or mqi-reducible,
to a string β iff there exists a quasi-isometric reduction f from α to β such that f is recursive.
We call such an f a many-one quasi-isometry (or mqi-reduction), and write α ≤mqi β to
mean that α is many-one reducible to β; if, in addition, f is a C-quasi-isometry, then we
call f a C-many-one quasi-isometry (or C-mqi-reduction). We write α <mqi β to mean that
α ≤mqi β and β ̸≤mqi α.

MFCS 2024



37:6 Quasi-Isometric Reductions Between Infinite Strings

▶ Definition 10 (One-One Reducibility). A string α is one-one reducible, or 1qi-reducible, to
a string β iff there exists a many-one quasi-isometry f from α to β such that f is one-one.
We call such an f a one-one quasi-isometry (or 1qi-reduction), and write α ≤1qi β to mean
that α is one-one reducible to β; if, in addition, f is a C-quasi-isometry, then we call f a
C-one-one quasi-isometry (or C-1qi-reduction). We write α <1qi β to mean that α ≤1qi β

and β ̸≤1qi α.

▶ Definition 11 (Permutation Reducibility). A string α is permutation reducible, or pqi-
reducible, to a string β iff there exists a one-one quasi-isometry f from α to β such that f

is surjective. We call such an f a permutation quasi-isometry (or pqi-reduction), and write
α ≤pqi β to mean that α is permutation reducible to β; if, in addition, f is a C-quasi-isometry,
then we call f a C-permutation quasi-isometry (or C-pqi-reduction). We write α <pqi β to
mean that α ≤pqi β and β ̸≤pqi α. Here, note that it can be shown that α ≤pqi β implies
β ≤pqi α.

Given an alphabet Σ, the relations ≤mqi, ≤1qi, ≤pqi and ≤qi are preorders on the class of
infinite strings over Σ. Let ≡mqi be the relation on Σω such that α ≡mqi β iff α ≤mqi β

and β ≤mqi α. Then ≡mqi is an equivalence relation on Σω. We call an equivalence class
on Σω induced by ≡mqi a many-one quasi-isometry degree (or mqi-degree), and denote the
mqi-degree of an infinite string α by [α]mqi. Analogous definitions apply to ≡1qi, [α]1qi, ≡pqi,
[α]pqi, ≡qi and [α]qi.

We denote the partial orders induced by ≤pqi, ≤1qi, ≤mqi and ≤qi on the pqi-degrees,
1qi-degrees, mqi-degrees and qi-degrees by Σω

pqi, Σω
1qi, Σω

mqi and Σω
qi respectively.

By definition, Σω
pqi is a refinement of Σω

1qi in the sense that for all infinite strings α and
β, [α]pqi ≤pqi [β]pqi ⇒ [α]1qi ≤1qi [β]1qi. In a similar manner, Σω

1qi is a refinement of Σω
mqi,

which is in turn a refinement of Σω
qi. The first subsection deals with the mqi-degrees, starting

with the inner structure of each mqi-degree.

4.1 Structure of the mqi-Degrees
Fix any two distinct infinite strings β and γ belonging to [α]mqi. It can be shown that β and
γ have a common upper bound as well as a common lower bound in [α]mqi such that these
bounds are witnessed by 1qi-reductions.

▶ Proposition 12. For any two distinct infinite strings β, γ ∈ [α]mqi, there exists a δ ∈ [α]mqi

such that β ≤1qi δ and γ ≤1qi δ.

Proof. Let f be a C-mqi-reduction from β to γ. Let δ be the infinite string obtained from γ

by repeating C + 1 times each letter of γ. Then γ ≤1qi δ via a (C + 1)-1qi-reduction g defined
by g(n) = (n − 1) · (C + 1) + 1 for each n ∈ N. Furthermore, δ ≤mqi γ via a C-mqi-reduction
g′ defined by g′(n) = ⌈ n

C+1 ⌉. Thus δ ∈ [α]mqi.
Next, one constructs a (C2 + 2C)-1qi-reduction f ′ from β to δ using the function f . For

each y in the range of f , map the pre-image of y under f , which by Lemma 5 has at most
C + 1 elements, to the set of positions of δ corresponding to the C + 1 copies of the letter at
position y. Formally, define

f ′(n) =


g(f(n)) , if f(n) ̸= f(n′) for all n′ < n;
g(f(n)) + C ′ , otherwise; where 1 ≤ C ′ < C + 1 is minimum such that

g(f(n)) + C ′ ̸= f ′(n′) for all n′ < n.
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We verify that f ′ is an injective (C2 + 2C)-quasi-isometry. Injectiveness follows from the
definition of f ′: in the first case, the injectiveness of g ensures that f ′(x) ̸= f ′(x′) for all
x′ < x; in the second case, it is directly enforced that f ′(x) ̸= f(x′) for all x′ < x. Since
f is a C-reduction, x + C < y ⇒ f(x) < f(y) ⇒ g(f(x)) < g(f(y)) ⇒ f ′(x) < f ′(y), and
so f ′ satisfies Condition (b) with constant C. Now we show that f ′ satisfies Condition
(a) with constant C2 + 2C. By Condition (a), d(f(x), f(x + 1)) ≤ C. Without loss of
generality, assume that f(x) ≤ f(x + 1). By the definition of f ′, f ′(x) ≥ g(f(x)) and
f ′(x + 1) ≤ g(f(x + 1)) + C. Since f(x) ≤ f(x + 1), it follows that f ′(x) ≤ f ′(x + 1) and so

d(f ′(x + 1), f ′(x)) ≤ g(f(x + 1)) + C − g(f(x))
= (C + 1) · (f(x + 1) − 1) + 1 + C − (C + 1) · (f(x) − 1) − 1
= (C + 1) · (f(x + 1) − f(x)) + C

≤ C · (C + 1) + C

= C2 + 2C .

This completes the proof. ◀

Next, we prove a lower bound counterpart of Proposition 12.

▶ Proposition 13. For any two distinct infinite strings β, γ ∈ [α]mqi, there exists a δ ∈ [α]mqi

such that δ ≤1qi β and δ ≤1qi γ.

Proof. Suppose β = β1β2 . . ., where βi ∈ Σ. Let f : N → N be a C-mqi-reduction from β to
γ. Now define δ = βi1βi2 . . ., where ik is the minimum index such that ik ̸= il for all l < k

and for all j < ik, f(j) ̸= f(ik). By Condition (b), the range of f is infinite and thus each ik

is well-defined. We verify that δ ≤1qi β and δ ≤1qi γ.
Define f ′(n) = in for all n ∈ N. We show that f ′ is a 1qi-reduction from δ to β. By the

choice of the in’s, f ′(n) > f ′(m) whenever n > m; in particular, f ′ is injective and Condition
(b) holds for f ′. Furthermore, given any n, by applying Condition (b) to f and all n′ ≤ n, it
follows that f ′(n + 1) ≤ f ′(n) + C + 1. Hence f ′ also satisfies Condition (a).

Next, define a 1qi-reduction f ′′ from δ to γ by f ′′(n) = f(in). The injectiveness of
f ′′ follows from the choice of the in’s (though f ′′ is not necessarily strictly monotone
increasing). Using the fact that in+1 ≤ in +C +1, as well as applying Condition (a) in+1 − in

times, d(f ′′(n + 1), f ′′(n)) = d(f(in+1), f(in)) ≤ C · d(in+1, in) ≤ C · (C + 1). Hence f ′′

satisfies Condition (a) with constant C · (C + 1). Since the in’s are strictly increasing,
m + C < n ⇒ im + C < in ⇒ f(im) < f(in). Thus f ′′ is a C · (C + 1)-1qi-reduction.

Lastly, define a mqi-reduction g from β to δ by g(n) = k where k is the minimum integer
with f(n) = f(ik). As the in’s cover the whole range of f , g is well-defined. For any given
n, suppose g(n) = k1 and g(n + 1) = k2, so that f(n) = f(ik1) and f(n + 1) = f(ik2). By
Condition (b), d(n, ik1) ≤ C and d(n + 1, ik2) ≤ C, and so

d(g(n), g(n + 1)) = d(k1, k2)
≤ d(ik1 , ik2)
≤ d(n, ik1) + d(n, n + 1) + d(n + 1, ik2)
≤ 2C + 1 .

Hence g satisfies Condition (a) with constant 2C + 1. To verify that g satisfies Condition
(b) for some constant, fix any n and apply Condition (b) C · (C + 1) times to f , giving
f(n) + C · (C + 1) ≤ f(n + C · (C + 1)2). Suppose g(n) = ik1 and g(n + C · (C + 1)2) = ik2 , so
that f(n) = f(ik1) and f(n + C · (C + 1)2) = f(ik2). Then d(f(ik1), f(ik2)) = d(f(n), f(n +

MFCS 2024



37:8 Quasi-Isometric Reductions Between Infinite Strings

C · (C + 1)2)) ≥ C · (C + 1). So by applying Condition (a) d(ik1 , ik2) times to f , we have
C · d(ik1 , ik2) ≥ d(f(ik1), f(ik2)) ≥ C · (C + 1). Dividing both sides of the inequality by
C yields d(ik1 , ik2) ≥ C + 1. Applying the contrapositive of Condition (b) to f then gives
f(ik2) ≥ f(ik1) ⇒ ik2 +C ≥ ik1 . Since d(ik1 , ik2) ≥ C +1, this implies that g(n+C ·(C +1)2)
= ik2 > ik1 = g(n). Thus g satisfies Condition (b) with constant C · (C + 1)2 − 1. ◀

4.2 1qi-Degrees Within mqi-Degrees
We now investigate the structural properties of 1qi-degrees within individual mqi-degrees.
As will be seen shortly, these properties can vary quite a bit depending on the choice of the
mqi-degree.

▶ Proposition 14. There exists an infinite string α such that [α]mqi is the union of an
infinite ascending chain of 1qi-degrees.

Proof. Let Σ = {0, 1} and let α = 10ω. Then [α]mqi consists of all infinite strings with a
finite, positive number of occurrences of 1. Given any infinite string β with k ≥ 1 occurrences
of 1, β is 1qi-equivalent to a string γ in [α]mqi iff γ has exactly k occurrences of 1. If
1 ≤ k < k′, then each string β ∈ [α]mqi with exactly k occurrences of 1 is 1qi-reducible to any
string β′ ∈ [α]mqi with exactly k′ occurrences of 1. Thus [α]mqi is the union of an ascending
chain [α]1qi < [110ω]1qi < [1110ω]1qi < . . ., where the i-th term of this chain is 1i0ω. ◀

▶ Proposition 15. There exists an infinite string α such that the poset of 1qi-degrees within
[α]mqi is isomorphic to N2 with the componentwise ordering. That is, [α]mqi is the union
of infinitely many disjoint infinite ascending chains of 1qi-degrees such that every pair of
these ascending chains has incomparable elements. Also, [α]mqi does not contain infinite
anti-chains of 1qi-degrees.

Proof. Let Σ = {0, 1, 2} and let α = 120ω. Then [α]mqi consists of all infinite strings with a
finite, positive number of 1’s and a finite, positive number of 2’s. Furthermore, [α]1qi consists
of all infinite strings with exactly one occurrence of 1 and exactly one occurrence of 2.

Based on the proof of Proposition 14, [α]mqi is the union, over all k ≥ 1, of chains of the
form [12k0ω]1qi < [122k0ω]1qi < . . ., where the i-th term of each chain is [1i2k0ω]1qi. Given
any two chains Γj = {[1i2j0ω]1qi : i ∈ N} and Γk = {[1i2k0ω]1qi : i ∈ N}, where j < k, the
classes [122j0ω]1qi ∈ Γj and [12k0ω]1qi ∈ Γk are incomparable with respect to ≤1qi.

It remains to show that any anti-chain of 1qi-degrees contained in [α]mqi must be finite.
Consider any anti-chain of 1qi-degrees containing the class [1i2j0ω]1qi ⊆ [α]mqi. Every
element of this anti-chain that is different from [1i2j0ω]1qi is of the form [1i′2j′0ω]1qi, where
either i < i′ and j > j′, or i > i′ and j < j′. Thus, if the anti-chain were infinite, then
it would contain at least 2 1qi-degrees, [β]1qi and [γ]1qi, such that either β has the same
number of occurrences of 1 as γ, or β has the same number of occurrences of 2 as γ. This is
a contradiction as it would imply that either β ≤1qi γ or γ ≤1qi β. ◀

4.3 pqi-Reductions
We now discuss pqi-reductions, which are the most stringent kind of quasi-isometric reductions
considered in the present work. Pqi-reductions are 1qi-reductions that are surjective; an
example of such a reduction is the mapping 2m − 1 7→ 2m, 2m 7→ 2m − 1 from (01)ω to
(10)ω. We record a few elementary properties of pqi-reductions.

▶ Lemma 16. If f is a pqi-reduction and if x + D = f(x) for some D ≥ 1 and some x ∈ N,
then there are at least D positions y > x such that f(y) < f(x).
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Proof. If x + D = f(x) for some D ≥ 1, then {1, . . . , x + D − 1} \ {f(1), . . . , f(x − 1)} must
contain at least D elements as the former set contains D more elements than the latter.
Thus, for f to be a bijection, there must exist at least D positions y > x that are mapped
by f into {1, . . . , x + D − 1} \ {f(1), . . . , f(x − 1)}. ◀

We next observe that for any pqi-reduction f , there is a uniform upper bound on the difference
x − f(x).

▶ Proposition 17. If f is a C-pqi-reduction, then for all x ∈ N, x − f(x) < 2C2 + 1.

Proof. Assume, by way of contradiction, that there is some x ∈ N such that x − f(x) ≥
2C2 + 1. First, suppose that there are at least C2 + 1 numbers z such that z > x and
f(z) ∈ {f(x) + 1, f(x) + 2, . . . , x − 1}. Then there are at least C2 + 1 numbers z′ such that
z′ < x and f(z′) > x > f(x), among which there is at least one z′

0 with f(z′
0) ≥ x + C2 + 1.

This would contradict the fact that by the Small Cross-Over Lemma (Lemma 8), z′
0 < x ⇒

f(z′
0) ≤ f(x) + C2 < x + C2.
Second, suppose that f maps at most C2 numbers greater than x into {f(x) + 1, f(x) +

2, . . . , x − 1}. Then there are at least C2 + 1 numbers less than x that are mapped into
{f(x) + 1, f(x) + 2, . . . , x − 1} and in particular, there is at least one number y < x such
that f(y) ≥ f(x) + C2 + 1, contradicting the Small Cross-over Lemma. Thus for all x ∈ N,
x − f(x) < 2C2 + 1. ◀

Lemma 16 and Proposition 17 together give a uniform upper bound on the absolute difference
between any position number and its image under a C-pqi-reduction.

▶ Corollary 18. If f is a C-pqi-reduction, then for all x ∈ N, |x − f(x)| < 2C2 + 1.

Proof. By Condition (b), there cannot be more than C numbers y such that y > x and
f(y) < f(x). Lemma 16 thus implies that there cannot exist any D > C such that
x + D = f(x), and so f(x) − x ≤ C. Combining the latter inequality with that in Proposition
17 yields |x − f(x)| < max{C + 1, 2C2 + 1} = 2C2 + 1. ◀

Given any infinite string α, it was observed earlier that by the definitions of pqi, 1qi and
mqi-reductions, [α]pqi ⊆ [α]1qi ⊆ [α]mqi. In the following example, we give instances of
strings α where each of the two subset relations is proper or can be replaced with the equals
relation.

▶ Example 19.
(a) [α]pqi = [α]1qi = [α]mqi. Set α = 0ω. For any infinite string γ such that γ ≤mqi 0ω, γ

can only contain occurrences of 0, and therefore [0ω]pqi = [0ω]1qi = [0ω]mqi = {0ω}.
(b) [α]1qi = [α]mqi and [α]pqi ⊂ [α]1qi. Set α = (01)ω. First, (001)ω ≤1qi (01)ω, as witnessed

by the 1qi-reduction 3n − 2 7→ 4n − 3, 3n − 1 7→ 4n − 1, 3n 7→ 4n for n ∈ N. We also have
(01)ω ≤1qi (001)ω via the 1qi-reduction 2n − 1 7→ 3n − 2, 2n 7→ 3n for n ∈ N. However,
(001)ω /∈ [(01)ω]pqi because the density of 0’s and 1’s in the two strings are different,
making it impossible to construct a permutation reduction between them. More formally,
if there were a pqi-reduction from (001)ω to (01)ω, then by Corollary 18, there would be a
constant D such that for each n, the first 3n positions of (001)ω are mapped into the first
3n + D positions of (01)ω. But the first 3n positions of (001)ω contain 2n occurrences of
0 while the first 3n + D positions of (01)ω contain at most

⌈
1.5n + D

2
⌉

occurrences of 0,
and for large enough n, one has 2n >

⌈
1.5n + D

2
⌉
. Hence no pqi-reduction from (001)ω

to (01)ω can exist, and so [α]pqi ⊂ [α]1qi.
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To see that [(01)ω]mqi ⊆ [(01)ω]1qi, we first note that any string that is mqi-reducible to
(01)ω (or to any other recursive string) must be recursive. Thus if β ≤mqi (01)ω, then
a 1qi-reduction from β to (01)ω can be constructed by mapping the n-th position of
β to the position of the matching letter in the n-th occurrence of 01 in (01)ω. Next,
suppose that f is a C-mqi-reduction from (01)ω to β. By Corollary 7, f maps the
positions of (01)ω to a sequence of positions of β that contains 0 and 1 every 2C positions.
Thus a 1qi-reduction can be constructed from (01)ω to β by mapping, for each n, the
(2n − 1)-st and (2n)-th positions of (01)ω to the positions of the first occurrence of 0 and
first occurrence of 1 respectively in the interval [2C(n − 1) + 1, 2Cn] of positions of β.
Therefore β ∈ [(01)ω]1qi.

(c) [α]1qi ⊂ [α]mqi and [α]pqi = [α]1qi. Set α = 10ω. We recall from the proof of Proposition
14 that [10ω]pqi and [10ω]1qi consist of all binary strings with a single occurrence of 1,
while [10ω]mqi consists of all binary strings with a finite, positive number of occurrences
of 1. Thus [10ω]pqi = [10ω]1qi and [10ω]pqi ̸= [10ω]mqi.

(d) [α]pqi ⊂ [α]1qi ⊂ [α]mqi. Set α = (0n1)∞
n=1, the concatenation of all strings 0n1 where

n ∈ N. Then β = (0n11)∞
n=1 ∈ [α]mqi; however, β /∈ [α]1qi as each pair of adjacent

positions of 1’s in β must be mapped to distinct positions of 1’s in α, but the distance
between the n-th and (n + 1)-st occurrences of 1 in α increases linearly with n, meaning
that Condition (a) cannot be satisfied.
To construct an mqi-reduction from β to α, map the positions of the substring 0n11 of β

to the positions of the substring 0n1 of α as follows: for k ∈ {1, . . . , n}, the position of
the k-th occurrence of 0 in 0n11 is mapped to that of the k-th occurrence of 0 in 0n1,
while the two positions of 1’s in 0n11 are mapped to the position of the single 1 in 0n1.
For an mqi-reduction from α to β, for each substring 0n1 of α and each substring 0n11
of β, the positions of 0n in 0n1 are mapped to the corresponding positions of 0n in 0n11,
while the position of 1 in 0n1 is mapped to the position of the first occurrence of 1 in
0n11. Thus β ∈ [α]mqi.
Furthermore, γ = 1(0n1)∞

n=1 ∈ [α]1qi but γ /∈ [α]pqi. The reason for γ not being pqi-
reducible to α is similar to that given in Example (b). If such a pqi-reduction did
exist, then by Corollary 18, there would exist a constant D such that for all n, the first
1 +

∑n
k=1(k + 1) = 1 + n(n+3)

2 positions of γ are mapped into the first 1 + n(n+3)
2 + D

positions of α. But the first 1 + n(n+3)
2 positions of γ contain n + 1 occurrences of 1 and

for large enough n, the first 1 + n(n+3)
2 + D positions of α contain at most n occurrences

of 1. Hence no pqi-reduction from γ to α is possible.
For a 1qi-reduction from γ to α, map the starting position of γ, where the letter 1 occurs,
to the first occurrence of 1 in α. For subsequent positions of γ, for each n ≥ 1, the
set of positions of γ where the substring 0n1 occurs can be mapped in a one-to-one
fashion into the set of positions of α where the substring 0n+11 occurs. To see that α

is 1qi-reducible to γ, it suffices to observe that α is a suffix of γ, so one can map the
positions of α in a one-to-one fashion to the positions of the suffix of γ corresponding to
α. The 1qi-reduction from α to γ is trivial.

Proposition 21 extends the first example in Example 19 by characterising all recursive strings
whose pqi, 1qi and mqi-degrees all coincide. In fact, there are only |Σ| many such strings:
those of the form aω

i , where ai ∈ Σ. We call the pqi, 1qi and mqi-degrees of such strings
trivial. Due to space constraint, the proof of Proposition 21 is omitted.

▶ Definition 20. The pqi, 1qi and mqi-degrees of each string aω
i , where ai ∈ Σ, will be called

trivial pqi, 1qi and mqi-degrees respectively.
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▶ Proposition 21. If, for some recursive string α, [α]pqi = [α]1qi = [α]mqi, then all three
degree classes are trivial.

We observe next that every non-trivial pqi degree must be infinite.

▶ Proposition 22. All non-trivial pqi-degrees are infinite.

Proof. Suppose that at least two distinct letters occur in α. Fix a letter, say a1, that occurs
infinitely often in α. Let a2 be a letter different from a1 that occurs in α. For each n ∈ N,
let βn = an

1 a2α(n+1), where α(n+1) is obtained from α by removing the first occurrence of a2
as well as the first n occurrences of a1. Since βn is built from α by permuting the letters
occurring at a finite set of positions of α, βn ∈ [α]pqi. As the βn’s are all distinct, it follows
that [α]pqi is indeed infinite. ◀

We close this subsection by illustrating an application of Proposition 22, showing that if the
mqi-degree of α contains at least two distinct strings such that one is 1qi-reducible to the
other, then the first string is 1qi-reducible to infinitely many strings in [α]mqi.

▶ Proposition 23. If there exist distinct β ∈ [α]mqi and γ ∈ [α]mqi such that β ≤1qi γ, then
β is 1qi-reducible to infinitely many strings in [α]mqi.

Proof. Suppose that β ≤1qi γ and β ̸= γ for some β ∈ [α]mqi and γ ∈ [α]mqi. Then [α]mqi is
non-trivial, so by Proposition 22, [γ]pqi is infinite. Since [γ]pqi ⊆ [γ]1qi, [γ]1qi is also infinite.
Thus β is 1qi-reducible to each of the infinitely many strings in [γ]1qi. ◀

4.4 The Partial Order of All mqi-Degrees
As discussed earlier, Khoussainov and Takisaka [6] observed that for any alphabet Σ =
{a1, . . . , al}, the partial order Σω

qi has a greatest element equal to [(a1 · · · al)ω]qi. Their proof
also extends to the partial order of all recursive mqi-degrees, showing that for each recursive
string α, [α]mqi ≤mqi [(a1 · · · al)ω]mqi. We next prove that there is a pair of recursive
mqi-degrees whose join is precisely the maximum recursive mqi-degree [(a1 · · · al)ω]mqi.

▶ Proposition 24. Suppose that Σ = {a1, . . . , al}. Then there exist two distinct infinite
strings α and β such that [(a1 · · · al)ω]mqi is the unique recursive common upper bound of
[α]mqi and of [β]mqi under ≤mqi.

Proof. Let α = (a1)ω and β = (a2a3 · · · al)ω. Suppose that for some recursive string γ,
α ≤mqi γ via a C-mqi-reduction. Since a1 is the only letter occurring in α, Condition (a)
implies that there must be at least one occurrence of a1 in γ every C positions. Similarly,
if β ≤mqi γ via a C ′-mqi-reduction, then for each ai with i ≥ 2, since ai occurs every l − 1
positions, it must also occur in γ every C ′ · (l − 1) positions. Hence there exists a constant
C ′′ such that every substring of γ of length C ′′ contains at least one occurrence of ai for
every i ∈ {1, . . . , l}, and therefore (a1 · · · al)ω ≤mqi γ. Since γ ≤mqi (a1 · · · al)ω follows from
the proof of [6, Proposition II.1], one has γ ∈ [(a1 · · · al)ω]mqi, as required. ◀

Khoussainov and Takisaka [6] showed that the partial order Σω
qi is not dense. In particular,

given any distinct ai, aj ∈ Σ, there is no element [β]qi that is strictly between the minimal
element [(aj)ω]qi and the “atom” [ai(aj)ω]qi [6, Proposition II.1]. The next theorem shows
similarly that the partial order Σω

mqi is non-dense with respect to pairs of mqi-degrees. The
high-level proof of the theorem is given below; the proofs of claims used are not shown due
to space limitations.
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▶ Theorem 25. There exist two pairs (α, β) and (γ, δ) of recursive strings such that both α

and β are mqi-reducible to γ as well as mqi-reducible to δ, but there is no string ξ such that
α ≤mqi ξ, β ≤mqi ξ, ξ ≤mqi γ and ξ ≤mqi δ.

Proof. Let Σ = {0, 1}. Define the strings

α = σ1σ2 . . . , where σn = (01)22n

0n1n ;

β = τ1τ2 . . . , where τn = (01)22n

1n0n ;

γ = µ1µ2 . . . , where µn = (01)22n

0n ;

δ = ν1ν2 . . . , where νn = (01)22n

1n .

We first show that α ≤mqi γ. For each i ∈ N, define the following intervals of positions.
Ki = [ki, ki + 22i+1 − 1] is the interval of positions of the substring (01)22i

of σi in α.
Ri = [ri, ri + 2i − 1] is the interval of positions of the substring 0i1i of σi in α.
Li = [li, li + 22i+1 − 1] is the interval of positions of the substring (01)22i

of µi in γ.
L′

i = [li + 22i+1, li + 22i+1 + i − 1] is the interval of positions of the substring 0i of µi in γ.

Define an mqi-reduction g from α to γ as follows. For i ∈ N,

g(ki + 4w + 2u + x) = li + 2(i − 1) + 2w + x , 0 ≤ w ≤ i − 2, u, x ∈ {0, 1} ;

g(ki + m) = li + m , 4i − 4 ≤ m ≤ 22i+1 − 1 ;

g(ri + m) = li + 22i+1 + m , 0 ≤ m ≤ i − 1 ;
g(ri + i + m) = li+1 + 2m + 1 , 0 ≤ m ≤ i − 1.

The mqi-reduction g maps the interval Ki to the suffix of the interval Li starting at its
(2i − 1)-st position such that each of the first i − 1 pairs of positions of this suffix is the image
of two consecutive pairs of positions of Ki, while the remaining |Ki| − 2(i − 1) positions of
Ki is mapped by g to the remaining positions of the suffix of Li in a one-to-one fashion.
Thus g is a 4-mqi-reduction from α to γ. A similar mqi-reduction can be constructed from β

to γ, from α to δ, as well from β to δ.
Assume, by way of contradiction, that there is a string ξ and there are mqi-reductions f1

from α to ξ, f2 from β to ξ, f3 from ξ to γ and f4 from ξ to δ with constants C1, C2, C3 and
C4 respectively. Set C = max{C1, C2, C3, C4} and fix some n > 2C7 + 1.

For i ∈ N, let K ′
i = [ki + C2 + 2, ki + 22i+1 − 3 − C2] be the interval obtained from Ki by

removing the first and last C2 + 2 positions. We make the following observation. The proof
is omitted due to space constraint.

▷ Claim 26. For all positions m ∈ K ′
n, for i ∈ {1, 2} and j ∈ {3, 4}, fj(fi(m)) ∈ Ln.

Define the sets Hi = f1(K ′
i) ∪ f2(K ′

i) for i ∈ N. We show that the sets Hn and Hn+1 are non-
overlapping by proving max(Hn) < min(Hn+1). By Claim 26, for all m ∈ Hn and j ∈ {3, 4}
we have fj(m) ∈ Ln. Then, we have f(min(Hn+1))−f(max(Hn)) ≥ min(Ln+1)−max(Ln) =
n + 1 > 2C7 + 2 > C2. So by the Small Cross-Over Lemma, min(Hn+1) > max(Hn).

Consider the interval [min(Hn), max(Hn)] in the domain of ξ. By Claim 26, f3 (resp. f4)
maps each element of Hn into Ln. Fix any other position z in the interval. Then f3
cannot map z into L′

n, which is the set of positions in γ of the string 0n. To see this, we
note that if ℓ and ℓ + 1 are the two largest values of Kn, then ℓ is at least C2 + 1 more
than the value x such that fi(x) = max(Hn) for some i ∈ {1, 2}, and so by Condition
(b), z + C < max(Hn) + C < fk(ℓ + 1) for k ∈ {1, 2}. Thus f3(z) < f3(fk(ℓ + 1)) for



K. F. Celine, Z. Gao, S. Jain, R. Lou, F. Stephan, and G. Wu 37:13

k ∈ {1, 2}. Furthermore, by applying Condition (a) repeatedly to f3 and then to fk, we have
d(f3(fk(ℓ+1)), f3(fk(max(K ′

n)))) ≤ C ·d(fk(ℓ+1), fk(max(K ′
n))) ≤ C2 ·(C2 +2) = C4 +2C2.

Since f3(fk(max(K ′
n))) ∈ Ln and we fixed n > 2C7 + 1, then f3(fk(ℓ + 1)) /∈ Ln+1.

Furthermore, the letter at position f3(fk(ℓ + 1)) of γ is 1. Thus f3(z) cannot lie in L′
n as

there is no occurrence of 1 in L′
n. A similar argument, using position ℓ rather than position

ℓ + 1, shows that f4(z) cannot lie in L′
n. One can also prove similarly that none of the

positions in the interval [min(Hn+1), max(Hn+1)] is mapped by f3 or f4 into the interval L′
n.

Next, we consider the positions of ξ between max(Hn) and min(Hn+1). Since none of
the positions of ξ in the union [min(Hn), max(Hn)] ∪ [min(Hn+1), max(Hn+1)] is mapped
by f3 into L′

n and L′
n is an interval of length n > 2C7, Lemma 6 implies that there are at

least ⌊ n
C3

⌋ positions of ξ between Hn and Hn+1 which are mapped into L′
n. Then, we can

make the following observations – the proofs of which are omitted due to space constraint.

▷ Claim 27. The string ξ contains a substring of 0’s (resp. 1’s) of length Ω(C4) between
Hn and Hn+1 such that all positions of this substring are mapped by f3 (resp. f4) into L′

n.

▷ Claim 28. There cannot exist between Hn and Hn+1 two Ω(C4)-long substrings of 0’s
(resp. 1’s) such that an Ω(C4)-long substring of 1’s (resp. 0’s) lies between them.

Based on these two claims, there are exactly two maximal intervals J1 and J2, each of
length Ω(C4), such that the substrings of ξ occupied by J1 and J2 belong to {0}∗ and {1}∗

respectively. Then f1 maps Ω(C3) positions of [rn, rn + n − 1] into J1 and Ω(C3) positions
of [rn + n, rn + 2n − 1] into J2; further, there are two positions that are Ω(C3) positions
apart, one in [rn, rn + n − 1] and the other in [rn + n, rn + 2n − 1], such that f1 maps the
first position into J1 and the second position into J2. This implies that J1 must precede
J2, for otherwise Condition (b) would be violated. Arguing similarly with f2 in place of f1
(that is, the mapping from β to ξ), it follows that J2 must precede J1, a contradiction. We
conclude that the string ξ cannot exist. ◀

Example 19 established separations between various notions of recursive quasi-reducibility:
pqi, 1qi and mqi-reducibilities. It remains to separate general quasi-isometry from its recursive
counterpart. Due to space constraint, we only give a proof sketch of Theorem 29.

▶ Theorem 29. There exist two recursive strings α and β such that α ≤qi β but α ̸≤mqi β.

Proof sketch. We begin with an overview of the construction of α and β. To ensure that
only non-recursive quasi-isometries between α and β exist, we use a tool from computability
theory, which is a Kleene tree [8] – an infinite uniformly recursive binary tree with no infinite
recursive branches (see, for example, [11, §V.5]). The idea of the proof is to encode a fixed
Kleene tree into β, and construct α such that for any quasi-isometry f from α to β, an
infinite branch of the encoded Kleene tree can be computed recursively from f . Hence, f

cannot be recursive, as otherwise the chosen infinite branch of the Kleene tree must be
recursive, contradicting the definition of a Kleene tree.

We now describe the construction of α and β based on some fixed Kleene tree T ⊆ {0, 1}∗.
The building blocks for α and β are called n-blocks, which are strings of the following form
for some n ∈ N:

λ(n,0) = 0n1n,
λ(n,i) = 0⌊ n+1

2 ⌋1i0⌈ n+1
2 ⌉1n, for 1 ≤ i ≤ n − 1,

λ′
n = (01)n1n,

We may also call an n-block as simply a block.
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To construct α and β we concatenate the blocks in stages, where in stage n we arrange
n-blocks to form θn and ζn. Then, θn and ζn for n ∈ N are concatenated to form α and β

respectively. That is, α = θ1θ2 . . . and β = ζ1ζ2 . . . where θn and ζn are defined as follows:
θ1 = ζ1 = λ(1,0).
For n ≥ 2, θn = vn,1 sn,1 vn,2 sn,2 vn,3 tn vn,4 un.
For n ≥ 2, ζn = v′

n,1 s′
n,1 v′

n,2 s′
n,2 v′

n,3 t′
n v′

n,4 u′
n.

We now state the definitions of each variables vn,1 and so on, and explain their purpose later.
For n ≥ 2, we define the following:

Let Bn
1 , Bn

2 , Bn
3 , Bn

4 , Bn
5 , Bn

6 , Bn
7 , Bn

8 be the number of blocks in α before the start of
vn,1, sn,1, vn,2, sn,2, vn,3, tn, vn,4, un respectively.
Join segments vn,i = v′

n,i = (λ(n,0))3nBn
2i−1 .

Scaling segments sn,1vn,2sn,2 and s′
n,1v′

n,2s′
n,2, each containing two of the scaling parts

sn,i = s′
n,i = (λ(n,1))nB(λ(n,2))nB . . . (λ(n,n−1))nB(λ(n,0))2nB where B means Bn

2i.
Branching segments tn = (λ(n,0))2nBn

6 +1 and t′
n = (λ(n,0))2nBn

6 λ′
n.

Selection segments un and u′
n defined as follows. Let

Sn =
{

n−1∑
m=1

bm4n−1−m : b1 · · · bn−1 ∈ T ∩ {0, 1}n−1

}
.

Then, each element
∑n−1

m=1 bm4n−1−m of Sn corresponds to the binary string b1 · · · bn−1 ∈
T . Define un = λ(n,1)(λ(n,0))max(Sn). For 1 ≤ i ≤ max(Sn) + 1, let the i-th block of u′

n

be λ(n,0) if i − 1 ̸∈ Sn and be λ(n,1) if i − 1 ∈ Sn.
Note that the number of blocks in the respective segments of α and β are the same. So, for
example, the number of blocks in α before vn,i is the same as that of β before v′

n,i.
Before we explain the purpose of each segment, we first describe some useful properties of

the n-blocks. The proofs are omitted due to space restrictions. Let f be any C-quasi-isometric
reduction from α to β. For all large enough n:

No position of the i-th occurrence of an n-block in α is mapped by f to the position of
an m-block in β with m < n.
No position of a block λ(n,1) is mapped by f to a position of a block λ(n,0) occurring in β.
For i ≤ n − 2, f maps the sequence of positions of each λ(n,i) block in a scaling segment
of θn into either the sequence of positions of a λ(n,i) block in a scaling segment of ζn or
the sequence of positions of a λ(n,i+1) block in a scaling segment of ζn.
f can map the sequence of positions of a λ(n,n−1) block into the sequence of positions of
exactly k blocks λ(n,0) iff k = 2.
Up to C + 1 blocks λ(n,0) can be mapped to a single λ′

n block.
A single λ(n,0) block can be mapped across λ(n,0)λ

′
n.

We can now describe the purpose of each segment. As above, the proofs are omitted due
to space restrictions. Let f be a C-quasi-isometric reduction from α to β. For sufficiently
large n ≥ 2:

Each join segment vn,i has a non-negative lead ℓ such that for all nBn
2i−1+1 ≤ j ≤ 2nBn

2i−1,
f maps the j-th λ(n,0) block of vn,i to the (j + ℓ)-th λ(n,0) block of v′

(n,i).
The scaling part doubles the lead in the previous join segment. Since a scaling segment
contains two scaling parts, the scaling segment multiplies the lead by four. Hence, if the
lead of vn,1 is ℓ, then the lead of vn,3 is 4ℓ.
The branching segment ensures that the lead is decreased by at most C or increased by 1.
So, if the lead of vn,3 is 4ℓ, then the lead of vn,4 is between 4ℓ − C and 4ℓ + 1 inclusive.
The selection segment ensures that the lead in the previous join segment vn,4 is in Sn.
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Then, one can show that there is some constant c such that for large enough n, the leads
ℓn and ℓn+1 of the join segments vn,4 and vn+1,4 are contained in Sn and Sn+1 respectively,
and the binary strings σn ∈ T ∩ {0, 1}n−1 and σn+1 ∈ T ∩ {0, 1}n, corresponding to ℓn and
ℓn+1 respectively have a common prefix of length n − c. Let τn be the prefix of σn of length
n − c. Then, for some large enough n, τn ≺ τn+1 ≺ τn+2 ≺ . . . give an infinite branch of the
Kleene tree T , which is non-recursive by definition of Kleene trees. Moreover, this infinite
branch can be computed recursively from f . Hence, the quasi-isometric reduction f from α

to β must be non-recursive. Hence, α ̸≤mqi β.
We now describe how to construct a quasi-isometric reduction f from α to β, using some

fixed infinite branch B(1)B(2) · · · of the Kleene tree. Since θ1 = ζ1 = λ(n,0), we can map θ1
to ζ1 in a strictly increasing manner and the lead in the next segment is 0. We can now
describe the mappings for each segment in θn for n ≥ 2. Observe that each block λ(n,i) can
be mapped to a block λ(n,j) in a strictly increasing manner if j = i or i + 1. For each join
segment v(n,i) with lead ℓ1 and 3nBn

2i−1 blocks, map the first 3nBn
2i−1 − ℓ1 blocks of vn,i

to the last 3nBn
2i−1 − ℓ1 blocks of v′

(n,i). Then, map the last ℓ1 blocks of vn,i to the first ℓ1
blocks of the following segment in ζn. The lead in the next segment is ℓ1.

Next we describe the mapping for scaling part sn,i with lead ℓ2. For each 1 ≤ j ≤
(n − 1)nBn

2i − ℓ2, map the j-th block of sn,i to the (j + ℓ2)-th block of s′
n,i. Map each of

the last ℓ2 blocks λ(n,n−1) of sn,i to 2 blocks λ(n,0) of s′
n,i. Map the first 2nBn

2i − 2ℓ2 blocks
λ(n,0) of sn,i to the remaining 2nBn

2i − 2ℓ2 blocks λ(n,0) of s′
n,i. Map the last 2ℓ2 blocks λ(n,0)

of sn,i to the first 2ℓ2 blocks of the following join segment in ζn. The lead of the next join
segment is 2ℓ2.

For the branching segment, suppose that the current lead is ℓ3. If B(n − 1) = 1, map the
(2nBn

6 − ℓ3)-th λ(n,0) block to the concatenation λ(n,0)λ
′
n of two blocks in t′

nvn,4. Otherwise,
map the (2nBn

6 −ℓ3 +1)-st λ(n,0) block to the λ′
n block in t′

n. Map the rest of the λ(n,0) blocks
such that f is strictly increasing. Then, the lead of the next join segment is ℓ3 + B(n − 1).

For the selection segment, suppose that the current lead is ℓ4. Map the λ(n,1) block to
the (ℓ4 + 1)-st block. By induction, ℓ4 ∈ Sn and so the (ℓ4 + 1)-st block in the selection
segment of ζn is λ(n,1). Map the λ(n,0) blocks in a strictly increasing manner. ◀

5 Conclusions and Future Investigations

The present paper introduced finer-grained notions of quasi-isometries between infinite strings,
in particular requiring the reductions to be recursive. We showed that permutation quasi-
isometric reductions are provably more restrictive than one-one quasi-isometric reductions,
which are in turn provably more restrictive than many-one quasi-isometric reductions. One
result was that general many-one quasi-isometries are strictly more powerful than recursive
many-one quasi-isometries, which answers Khoussainov and Takisaka’s open problem.

This work also presented some results on the structures of the permutation, one-one and
many-one quasi-isometric degrees. It was shown, for example, that there are two infinite
strings whose many-one quasi-isometric degrees have a unique common upper bound. It was
also proven that the partial order Σω

mqi is non-dense with respect to pairs of mqi-degrees. We
conclude with the simple observation that the class of mqi-degrees does not form a lattice; in
particular, the mqi-degrees [0ω]mqi and [1ω]mqi do not have a common lower bound.

For future work, we consider an automata-theoretic version of quasi-isometric reduction.
Note that Definition 4 defines quasi-isometric reduction based only on the ordering of
the natural numbers, as well as adding and subtracting constants. Then we can define
an automatic version of Definition 4 for any automatically-ordered set (A, ≤A) which is

MFCS 2024
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order-isomorphic to (N, ≤): we replace natural number i with the i-th smallest element
of A, and study automatic functions µ, ν : A → Σ instead of infinite recursive strings
α, β : N → Σ. (The complete definitions of automatic functions and relations can be found
in [3, 4, 5].) Note that the successor function is first-order definable in (A, ≤A) as follows:
succ(x) = x + 1 := min{y : x <A y}. So, adding and subtracting constants are automatic
as well. Then this definition corresponds to the quasi-isometric reduction between colored
metric spaces (A; dA, µ) and (A; dA, ν) where the metric function dA is defined in terms of
the order-isomorphism g from (A, ≤A) to (N, ≤); that is, dA(x, y) = |g(x) − g(y)|.

Now one can ask, for which automatic functions µ, ν : A → Σ, is there a quasi-isometric
reduction from µ to ν? And can every quasi-isometric reduction between some given µ, ν be
replaced by an automatic quasi-isometric reduction? The journal version of this paper will
also study this automatic setting and show that the answer to the second question depends
on (A, ≤A). Moreover, the expressibility, that is, which mappings from N to Σ correspond to
automatic functions from A to Σ in (A, ≤A), also depends on the choice of (A, ≤A).
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