
Algorithms and Complexity for Path Covers of
Temporal DAGs
Dibyayan Chakraborty #

School of Computing, University of Leeds, UK

Antoine Dailly #Ñ

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS,
63000 Clermont-Ferrand, France

Florent Foucaud #Ñ

Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France

Ralf Klasing #

Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France

Abstract
A path cover of a digraph is a collection of paths collectively containing its vertex set. A path cover
with minimum cardinality for a directed acyclic graph can be found in polynomial time [Fulkerson,
AMS’56; Cáceres et al., SODA’22]. Moreover, Dilworth’s celebrated theorem on chain coverings of
partially ordered sets equivalently states that the minimum size of a path cover of a DAG is equal
to the maximum size of a set of mutually unreachable vertices. In this paper, we examine how far
these classic results can be extended to a dynamic setting.

A temporal digraph has an arc set that changes over discrete time-steps; if the underlying
digraph is acyclic, then it is a temporal DAG. A temporal path is a directed path in the underlying
digraph, such that the time-steps of arcs are strictly increasing along the path. Two temporal paths
are temporally disjoint if they do not occupy any vertex at the same time. A temporal path cover
is a collection C of temporal paths that covers all vertices, and C is temporally disjoint if all its
temporal paths are pairwise temporally disjoint. We study the computational complexities of the
problems of finding a minimum-size temporal (disjoint) path cover (denoted as Temporal Path
Cover and Temporally Disjoint Path Cover).

On the negative side, we show that both Temporal Path Cover and Temporally Disjoint
Path Cover are NP-hard even when the underlying DAG is planar, bipartite, subcubic, and there
are only two arc-disjoint time-steps. Moreover, Temporally Disjoint Path Cover remains
NP-hard even on temporal oriented trees. We also observe that natural temporal analogues of
Dilworth’s theorem on these classes of temporal DAGs do not hold.

In contrast, we show that Temporal Path Cover is polynomial-time solvable on temporal
oriented trees by a reduction to Clique Cover for (static undirected) weakly chordal graphs (a
subclass of perfect graphs for which Clique Cover admits an efficient algorithm). This highlights
an interesting algorithmic difference between the two problems. Although it is NP-hard on temporal
oriented trees, Temporally Disjoint Path Cover becomes polynomial-time solvable on temporal
oriented lines and temporal rooted directed trees.

Motivated by the hardness result on trees, we show that, in contrast, Temporal Path Cover
admits an XP time algorithm with respect to parameter tmax + tw, where tmax is the maximum
time-step and tw is the treewidth of the underlying static undirected graph; moreover, Temporally
Disjoint Path Cover admits an FPT algorithm with respect to the same parameterization.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Temporal Graphs, Dilworth’s Theorem, DAGs, Path Cover, Temporally
Disjoint Paths, Algorithms, Oriented Trees, Treewidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.38

Related Version Full Version: https://arxiv.org/abs/2403.04589 [9]

© Dibyayan Chakraborty, Antoine Dailly, Florent Foucaud, and Ralf Klasing;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chakraborty@leeds.ac.uk
mailto:antoine.dailly@uca.fr
https://daillya.github.io/
mailto:florent.foucaud@uca.fr
https://perso.limos.fr/ffoucaud
https://orcid.org/0000-0001-8198-693X
mailto:ralf.klasing@labri.fr
https://doi.org/10.4230/LIPIcs.MFCS.2024.38
https://arxiv.org/abs/2403.04589
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Algorithms and Complexity for Path Covers of Temporal DAGs

Funding This research was partially supported by the ANR projects GRALMECO (ANR-21-
CE48-0004) and TEMPOGRAL (ANR-22-CE48-0001) and by the International Research Center
“Innovation Transportation and Production Systems” of the I-SITE CAP 20-25.

1 Introduction

A classic theorem of Dilworth from 1950 [14] states that in any partially ordered set (poset),
the minimum number of chains required to cover all the elements is equal to the maximum
size of an antichain. Dilworth’s theorem is fundamental from the mathematical point of
view; furthermore, an algorithmic proof (that enables to construct a chain cover and an
antichain in polynomial time) was published by Fulkerson in 1956 [17]. This theorem and
its algorithmic form have many applications, not only in combinatorics, but also in various
fields such as bioinformatics [6], scheduling [32], databases [22], program testing [36], etc.

A collection P of (resp. pairwise vertex-disjoint) directed paths of a digraph D is a
path cover (resp. path partition) of D if all vertices of D are contained in some path of P.
Dilworth’s theorem can be restated in an equivalent form, equating the minimum cardinality
of path covers on directed acyclic graphs (DAGs) and the maximum size of a set of pairwise
“unreachable” vertices, or antichain vertices [4, 5, 16].

Fulkerson [17] showed that finding a minimum-size path cover of a DAG can be done in
polynomial time. Moreover, by using similar methods, one can also find a minimum-size
path partition in polynomial time for arbitrary DAGs (see [11, Probl. 26-2] or [15, Chapter
11.5]). Improving the best known algorithms for path cover and partitions of DAGs is still
an active field of research, see for example [4, 5, 10, 28, 31] for some recent results.

The notions of directed paths and path covers naturally extends to temporal (di)graphs.
Informally, the arc set of a temporal digraph changes over discrete time-steps and labels of
an arc are the time-steps where the arc appears. Temporal (di)graphs have been extensively
studied in the two last decades, with contributions from and applications to various fields,
see [7, 21, 23, 34, 35, 37]. A temporal path of a digraph is a path that traverses edges appearing
at strictly increasing time-steps. The asymmetric nature of temporal paths has motivated
many recent algorithmic works on related reachability or path problems on temporal graphs,
such as [1, 2, 3, 8, 24, 33].

Two temporal paths are temporally disjoint if they do not occupy a vertex at the same
time-step. Motivated by applications in artificial intelligence, this definition was introduced
by Klobas et al. [25] and has since then garnered some attention from the graph algorithmic
community [29]. Even though the above notion was introduced in the context of temporal
undirected graphs, it naturally extends to temporal digraphs and motivates the corresponding
covering problems. The objective of Temporal Path Cover (resp. Temporally Disjoint
Path Cover) is to cover an input temporal digraph by a minimum number of temporal
paths (resp. temporally disjoint paths).

Main objectives. In this paper, we initiate the algorithmic study of Temporal Path
Cover and Temporally Disjoint Path Cover and focus on temporal directed acyclic
graphs (or simply, temporal DAGs). A temporal digraph is a temporal DAG if the union
of all arcs across all time-steps induces a (static) DAG. We say that a temporal digraph
satisfies the Dilworth property (resp. temporally disjoint Dilworth property, or TD-Dilworth
property for short) if the largest size of a temporal antichain (understood as a set of pairwise
temporally unreachable vertices) is equal to the smallest size of a temporal path cover (resp.
temporally disjoint path cover). The main goals of this paper are the following:

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:3

(a) Determine classes of temporal DAGs satisfying the (TD-)Dilworth property.
(b) Study the computational complexities of Temporal Path Cover and Temporally

Disjoint Path Cover on temporal digraphs.

Practical motivation. Similar to the problems studied by Klobas et al. [25], one natural
application is Multi-Agent Path Finding (MAPF) [13, 40], which can be applied for example
to crime prevention in transportation networks [44]. In this setting, k agents are assigned the
task of surveying a location: collecting data, moving objects around, looking out for hazards,
etc. When the changes over time are predictable (train network, irrigation periods in a field,
departure and arrival of vehicles in a logistics area, blockades at given times in a post-disaster
area, naturally occurring blockades such as tides, ...), the location is modeled as a temporal
digraph. If the location digraph does not contain directed cycles, it is modeled by a temporal
DAG (for example, if it is inherently directed from a start area towards a target area). The
exploration path of an agent can be modeled by a temporal path. Now, Temporal Path
Cover corresponds to the situation where the agents need to explore the whole location,
while for Temporally Disjoint Path Cover, the agents also cannot be simultaneously at
the same place, a scenario described as vertex-conflicts in the literature [39]. In both cases,
we want to minimize the number k of agents.

Spatio-temporal security games [42, 43] are a natural example of applicability of MAPF. In
these games, defenders want to protect spatially-located resources from attackers by covering
them, and have to take time into account whenever they are moving (to be sure that the
edges are available when they need to use them). In these games, the temporal dimension
is generally represented by adding one layer of space per time-step. This representation
induces a DAG, with as many vertices as the size of the initial graph multiplied by the
number of time-steps. It seems natural to encode time through the more compact model of
temporal graphs, which allows these games to be modeled by Temporal Path Cover and
Temporally Disjoint Path Cover.

Our results. We begin by formally defining the problems studied in this paper.

Temporal Path Cover (TPC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporal paths in D such that every vertex of D is

covered by some path of C?

Temporally Disjoint Path Cover (TD-PC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporally disjoint temporal paths in D such that

every vertex of D is covered by some path of C?

We observe that in general, temporal DAGs do not have the Dilworth property (see
Figure 1a). Then, we prove the following negative result.

▶ Theorem 1. Temporal Path Cover and Temporally Disjoint Path Cover are
NP-hard on temporal DAGs, even if the input is planar, bipartite, subcubic, of girth 10, has
only one time label per arc, and every label is either 1 or 2.

A temporal DAG D is a temporal oriented tree if the underlying directed graph of D is a
tree. On the positive side, we prove the following.

MFCS 2024

38:4 Algorithms and Complexity for Path Covers of Temporal DAGs

3
2

1

1

1

2

(a) A temporal DAG not having the Dilworth
property.

. . .

. . .

1
1 1

2
2 2

s1 s2 sk

t1 t2 tk

c

(b) A temporal oriented tree not having the TD-
Dilworth property.

Figure 1 Each encircled area is a path of a minimum-size (temporally disjoint) temporal path
cover, vertices in a maximum-size temporal antichain are in black.

▶ Theorem 2. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on
temporal oriented trees with n vertices and at most ℓ many labels per arc. Furthermore,
temporal oriented trees satisfy the Dilworth property.

We briefly describe the technique we use for proving Theorem 2. Two vertices of a
temporal digraph are temporally connected if there exists a temporal path from one to the
other. The connectivity graph of a temporal digraph D is an undirected (static) graph whose
vertex set is the same as that of D, and whose edge set consists of all pairs of temporally
connected vertices. To prove the above theorem, we show that the connectivity graph of a
temporal oriented tree is a weakly chordal graph [19] (a subclass of perfect graphs). We show
Temporal Path Cover can be reduced to Clique Cover on weakly chordal graphs. The
above observation, combined with the Weak Perfect Graph Theorem (proved by Lovász [30]),
proves that temporal oriented trees satisfy the Dilworth property. Moreover, the existing
O(nm)-time algorithm [20] to compute a minimum clique cover of a weakly chordal graph
(having n vertices and m edges) completes the proof of Theorem 2. Our proof gives interesting
structural information on the interaction between temporal paths in temporal oriented trees.
Interestingly, another important class of perfect graphs plays an important role in connection
with Dilworth’s theorem and its translation to the setting of static DAGs: the class of
comparability graphs, see [18, Chapter 5.7]. In our case, there does not appear to be any
connection to comparability graphs.

On the other hand, temporal oriented trees do not satisfy the TD-Dilworth property (see
Figure 1b for an example). Then, we prove the following negative result.

▶ Theorem 3. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.

To find classes that satisfy the TD-Dilworth property, we study temporal oriented lines
(that is, where the underlying digraph is an oriented path) and temporal rooted directed trees.
A tree is a rooted directed tree if it is an oriented tree with a single source vertex called the
root. We prove the following result.

▶ Theorem 4. Temporal Path Cover and Temporally Disjoint Path Cover can be
solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;
where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore,
both classes satisfy the TD-Dilworth property.

Note that some related problems remain NP-hard for temporal lines, such as Temporally
Disjoint Walks [26]. Theorem 4(a) shows that this is not the case here. To prove

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:5

Table 1 Summary of our algorithmic results. For all polynomial-time solvable classes of temporal
DAGs, we also show that the Dilworth property (or TD-Dilworth property for TD-PC) holds.

temporal graph class TPC TD-PC

temporal DAGs (planar bipartite subcubic,
girth 10, two arc-disjoint time-steps) NP-c. NP-c.

temporal oriented trees poly
O(ℓn2 + n3) NP-c.

temporal rooted directed trees poly
O(ℓn2)

poly
O(ℓn2)

temporal oriented lines poly
O(ℓn)

poly
O(ℓn)

general temporal digraphs with
bounded treewidth tw and number of time-steps tmax

poly
(XP w.r.t. tw and tmax)

poly
(FPT w.r.t. tw and tmax)

Theorem 4(b), we begin by constructing a temporal path cover before transforming it into a
temporally disjoint one of the same size. This is in contrast with general temporal oriented
trees, for which, by Theorem 3, such an approach is not possible.

As Temporally Disjoint Path Cover is NP-hard even on temporal oriented trees
and on temporal DAGs with two time-steps, a natural question is what happens when the
number of time-steps is small and the underlying digraph is a tree. Motivated by this
question, we study the case where both the number of time-steps and the treewidth of the
underlying digraph are bounded (where we define the treewidth of a temporal digraph as the
treewidth of the underlying static undirected graph). We show that both problems become
tractable in this setting. More precisely, we give a fixed-parameter tractable (FPT) algorithm
for Temporally Disjoint Path Cover with treewidth and number of time-steps as
parameters. The same technique gives an XP algorithm for Temporal Path Cover.

▶ Theorem 5. There is an algorithm for Temporally Disjoint Path Cover on general
temporal digraphs that is FPT with respect to the treewidth of the underlying undirected
graph and the maximum number of labels per arc. For Temporal Path Cover on general
temporal digraphs, there is an XP algorithm for the same parameter.

See Table 1 for a summary of our algorithmic results.

Further related work. Algorithms for solving several types of path and distance problems
in temporal graphs have been developed, see for example [3, 24, 41]. Recently, the problem
Temporally Disjoint Paths was introduced in [25], as a generalization of the notorious
Disjoint Paths problem (also known as Linkage). In Temporally Disjoint Paths, one
is given a temporal graph with k pairs of vertices called terminals, and the goal is to find a
set of k pairwise temporally disjoint paths, each of them connecting one pair of terminals.
Temporally Disjoint Paths is NP-hard, even for temporal lines and two paths [25]
or temporal stars [29], but becomes FPT for trees when parameterized by the number of
paths [25]. Algorithms that are FPT for certain structural parameters are given in [29].

Structure of the paper. We start with the hardness result for temporal DAGs (Theorem 1)
in Section 3. We then prove our results for temporal oriented trees (Theorem 2 and Theorem 3)
in Sections 4 and 5. We prove Theorem 4, the polynomial-time algorithms for special temporal
oriented trees (temporal rooted directed trees and temporal oriented lines), in Section 6. We
then prove our results for temporal digraphs of bounded treewidth and number of time-steps

MFCS 2024

38:6 Algorithms and Complexity for Path Covers of Temporal DAGs

(Theorem 5) in Section 7. We conclude in Section 8. Due to space constraints, proofs of
propositions and lemmas marked with (*) are omitted here and can be found in the full
version of the paper [9].

2 Preliminaries

A temporal digraph D = (V, A1, . . . , Atmax) is given by a sequence of arc-sets representing
tmax discrete time-steps {1, . . . , tmax}, where an arc in Ai is active at time-step i [25]. We
denote by D = (V, A), where A = ∪tmax

i=1 Ai, the underlying digraph of D (sometimes called
the footprint (di)graph [7]). Equivalently, one can view the time-steps as an arc-labelling
function λ : A(D) → 2[tmax], where λ(−→xy) ⊆ [1, tmax] is the set of time-steps where −→xy is
active [24]. In that case, we denote the temporal digraph as D = (D, λ). We say that a
temporal digraph has a given property P (planarity, given girth, ...) if the undirected graph
obtained by forgetting the orientation of the arcs of its underlying digraph has property
P. Similarly, we call a temporal digraph a temporal DAG (resp. temporal oriented tree,
temporal line, ...) if its underlying digraph is a DAG (resp. oriented tree, path, ...). For a
given temporal digraph, we denote by ℓ the maximum number of labels per arc and by n the
number of vertices in the underlying digraph.

For a (temporal) (di)graph D and subset S of its vertices (resp. edges), D \ S denotes
the (temporal) (di)graph obtained by removing the vertices (resp. edges) in S from D.

In a temporal digraph, a temporal (directed) path is a sequence (v1, v2, t1), (v2, v3, t2), . . . ,

(vk−1, vk, tk−1) such that for any i, j with 1 ≤ i < j ≤ k, vi ̸= vj and for any i with
1 ≤ i ≤ k − 1, ti < ti+1 and there is an arc −−−→vivi+1 at time-step ti. These paths are sometimes
called strict in the literature.1 For a temporal path P = (v1, v2, t1), . . . , (vk−1, vk, tk−1), we
denote by V (P) the set ∪k

i=1{vi} and by A(P) the set ∪k−1
i=1 {−−−→vivi+1}. Note that we allow a

temporal path to contain exactly one vertex and no arc.
The length of a temporal path is the number of arcs it uses. We say that a temporal path

P = (v1, v2, t1), . . . , (vk−1, vk, tk−1) occupies vertex vi during the time interval [ti−1, ti]. Two
temporal paths P1, P2 temporally intersect if there is a vertex v ∈ V (P1) ∩ V (P2) and two
time intervals [a1, b1], [a2, b2] where [a1, b1] ∩ [a2, b2] ̸= ∅ such that P1 (resp. P2) occupies v

during [a1, b1] (resp. [a2, b2]). Two temporal paths are temporally disjoint if they do not
temporally intersect. In other words, they do not occupy the same vertex at the same time.
A temporal path cover (resp. temporally disjoint path cover) of a temporal digraph D is a
collection of temporal paths (resp. temporally disjoint paths) that cover all vertices of D.
Two vertices are temporally connected in D if there exists a temporal path between them. A
temporal antichain is a set of vertices that are pairwise not temporally connected.

▶ Definition 6. A class C has the Dilworth property (resp. TD-Dilworth property) if, for
every digraph D ∈ C, the cardinality of a minimum temporal path cover (resp. temporally
disjoint path cover) of D is equal to the maximum cardinality of a temporal anti-chain in D.

A hole of a static undirected graph is an induced cycle of length at least 5, and an
anti-hole is the complement of a hole. A hole or anti-hole is even (resp. odd) if it has an
even (resp. odd) number of vertices. A graph G is weakly chordal if it has neither a hole
nor an anti-hole. A (minimum) clique cover of a graph G is a (minimum cardinality) set of
complete subgraphs of G that covers all vertices. A (maximum) independent set of a graph G

is a (maximum cardinality) set of pairwise non-adjacent vertices. We shall use the following
results for weakly chordal graphs.

1 For non-strict paths, the condition ti < ti+1 is replaced with ti ≤ ti+1; argued in [29], the strict
definition is more natural for applications where an agent cannot traverse any number of arcs at once.

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:7

▶ Theorem 7 ([20, 30, 38]). Let H be a weakly chordal graph with n vertices and m edges.
Then, a minimum clique cover of H can be found in O(nm)-time. Furthermore, the maximum
size of an independent set of H equals the minimum size of a clique cover of H.

3 Temporal DAGs

We provide a reduction from a restricted variant of 3-Dimensional Matching to prove the
following (proof deferred to the full version [9] due to space constraints).

▶ Theorem 1. Temporal Path Cover and Temporally Disjoint Path Cover are
NP-hard on temporal DAGs, even if the input is planar, bipartite, subcubic, of girth 10, has
only one time label per arc, and every label is either 1 or 2.

We also show the following.

▶ Proposition 8 (*). There are temporal DAGs (whose underlying digraph is a transitive
tournament) that satisfy neither the Dilworth nor the TD-Dilworth property. Moreover,
the ratio between the minimum-size temporal path cover and the maximum-size temporal
antichain can be arbitrarily large.

4 Temporal Path Cover on temporal oriented trees

In this section we prove the following theorem.

▶ Theorem 2. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on
temporal oriented trees with n vertices and at most ℓ many labels per arc. Furthermore,
temporal oriented trees satisfy the Dilworth property.

For the rest of this section, T = (T, λ) shall denote a temporal oriented tree with n vertices
and at most ℓ-many labels per edge. We construct the connectivity graph of T , denoted by G,
as follows: V (G) = V (T) and E(G) = {uv | u ̸= v and u and v are temporally connected}.
In other words, the connectivity graph of a temporal oriented tree connects vertices that
are temporally connected. Observe that G can be constructed in O(ℓn2)-time. The next
observation follows immediately from the definition.

▶ Observation 9. A set S of vertices of T is a temporal antichain if and only if S induces
an independent set in G.

We have the following relationship between temporal paths in T and cliques in G.

▶ Lemma 10. Let S be a set of vertices of T . Then S is contained in a temporal path in T
if and only if S is contained in a clique of G.

Proof. Let S be contained in temporal path P in T . Let u1, u2, . . . , uk where k = |S|, be
the ordering of the vertices in S as they are encountered while traversing P from the source
to the sink. Notice that, for each 1 ≤ i < j ≤ k, there is a temporal path from ui to uj .
Therefore, ui is adjacent to uj in G. Hence, S is contained in a clique of G.

Let S be contained in a clique of G and S′ be a maximal complete subgraph of G such
that S ⊆ V (S′). Now, we orient the edges of S′ to create a digraph

−→
S′ as follows. For an edge

uv ∈ E(S′), we introduce an arc −→uv ∈ A(
−→
S′) if there is a temporal path from u to v in T .

Since T is acyclic,
−→
S′ is a transitive tournament. Hence, there is an ordering u1, u2, . . . , uk

of the vertices of S′ where k = |V (S′)| such that for 1 ≤ i < j ≤ k, there is a temporal

MFCS 2024

38:8 Algorithms and Complexity for Path Covers of Temporal DAGs

path from ui to uj in T . Now, consider any temporal path P from u1 to uk in T . (P exists
as −−→u1uk ∈ A(

−→
S′). Since T is a temporal oriented tree, P will contain all vertices of S′ and

therefore of S. ◀

Following is an immediate corollary of the above.

▶ Corollary 11. The minimum cardinality of a temporal path cover of T is equal to the
minimum cardinality of a clique cover of G.

We will often use the following lemma.

▶ Lemma 12. Let {u, v, w, x} ⊆ V (T) be four vertices such that there is a temporal path P1
from u to v and a temporal path P2 from w to x. If P1 and P2 have a vertex in common,
then, there is a temporal path from u to x, or a temporal path from w to v, or both.

Proof. Assume that there is no temporal path from u to x. Let y be the vertex of a temporal
path from w to x that is closest to u in T . Let t be the smallest integer such that there is a
temporal path from u to v that reaches y at time-step t. Observe that no temporal path from
y to x can start at time-step t′ > t since, otherwise, there would be a temporal path from u

to x. This implies that all temporal paths between w and x reach y at time-step t′′ ≤ t. Let
P1 be a temporal path from w to y which is also a subpath of a temporal path from w to x.
Let P2 be a temporal path from y to v which is also a subpath of a temporal path from u

to v. The above arguments imply that the arc incident with y in P1 has time-step at most
t. Similarly, the arc incident with y in P2 has time-step strictly greater than t. Hence, the
concatenation of P1 and P2 is a temporal path in T from w to v. ◀

4.1 The case of holes
In this subsection, we will show that the connectivity graph G does not contain any holes.
We use the following lemma.

▶ Lemma 13. Let H be an induced cycle of length at least 4 in G. Then, for every vertex
v ∈ V (H) and every arc −→a of T incident with v, the vertices of H \ {v} lie in the same
weakly connected component of T \ {−→a }.

Proof. For the sake of contradiction, let there exist vertices {u, v, w} ⊆ V (H) and an arc
−→a of T incident with v such that u and w lie in two different connected components of
T ′ = T \ {−→a }. Let Cu and Cw be the sets of vertices of H \ {v} contained in the same
connected component as u and w, respectively. Since H \ {v} is connected, there exist
u′ ∈ Cu and w′ ∈ Cw such that u′w′ ∈ E(H) i.e. u′w′ ∈ E(G). Hence, there is a temporal
path P from u′ to w′ or w′ to u′ in T . Since T is a tree, P must contain v. Lemma 10 implies
that {u′, v, w′} forms a subset of a clique in G, and therefore {u′, v, w′} forms a triangle.
But this contradicts that H is a hole. ◀

Going forward, we need the following notations. For an edge e = uv ∈ E(G), let Qe

denote a temporal path from u to v or v to u in T . For an induced cycle H of length at
least 4 in G, let TH denote the smallest connected subtree of T containing all vertices of
H. Lemma 13 implies that every vertex of H must be a leaf in TH (that is, a vertex with
degree 1 in the underlying undirected tree). For a vertex v ∈ V (H), let −→a (v) be the arc
incident with v in TH . Let H be an induced cycle of length at least 4 in G. We can partition
the vertex set of H into two sets IN(H) and OUT (H) as follows: a vertex v ∈ V (H) is in

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:9

T ′
H

Figure 2 On the left, a hole H in the connectivity graph. On the right, its corresponding vertices
in the oriented subtree TH , with T ′

H = TH \ V (H). Vertices in IN(H) are in black.

IN(H) if −→a (v) is directed towards v, and otherwise v is in OUT (H) (see Figure 2 for an
illustration of these definitions).

For a vertex v ∈ IN(H), notice that both neighbors of v in H must lie in OUT (H), and
vice versa, since they must be connected by a directed path in T . Hence, H is bipartite, and
therefore G does not contain any odd hole:

▶ Lemma 14. The connectivity graph G does not contain any odd hole.

Without loss of generality, we assume in the following that OUT (H) (resp. IN(H))
contains every odd-indexed (resp. even-indexed) vertex of H. For an even hole H whose
vertices are cyclically ordered as u1, u2, . . . , uk, we use a cyclic definition of addition, so
uk+1 = u1. We first prove the following lemmas.

▶ Lemma 15. Let H be an even hole in the connectivity graph G. Then, for every i, Quiui+1

and Qui+2ui+3 share a common vertex in T .

Proof. Assume by contradiction that Quiui+1 and Qui+2ui+3 are vertex-disjoint. Assume
without loss of generality that Quiui+1 goes from ui to ui+1. Note that, since each vertex of
the hole is a leaf of TH as a consequence of Lemma 13, the two paths Quiui+1 and Qui+1ui+2

have to share a common vertex other than ui+1 (its neighbour in TH). By the same reasoning,
Qui+1ui+2 and Qui+2ui+3 share a common vertex other than ui+2. Hence, since the three paths
Quiui+1 , Qui+1ui+2 and Qui+2ui+3 are in TH , and Quiui+1 and Qui+2ui+3 are vertex-disjoint,
there is an arc −→a contained in Qui+1ui+2 that separates Quiui+1 and Qui+2ui+3 .

Removing −→a from T partitions the vertices of H into two sets H1 and H2: H1 (resp. H2)
contains the vertices of H that are in the same part of T \ −→a as ui+1 (resp. ui+2). Now,
since H is a cycle, there is an edge ujuj+1 such that (without loss of generality) uj ∈ H1,
uj+1 ∈ H2 and (j, j + 1) ̸= (i + 1, i + 2). This implies that the path Qujuj+1 has to use −→a
in T , and thus Qui+1ui+2 and Qujuj+1 share a common vertex. Hence, Lemma 12 implies
that there is a temporal path from uj+1 to ui+1 or from ui+2 to uj . However, since j ̸= i + 3
(uj ∈ H1 and ui+3 ∈ H2) and j + 1 ̸= i (uj+1 ∈ H2 and ui ∈ H1), both temporal paths
would induce a chord in H, a contradiction. ◀

▶ Lemma 16. The connectivity graph G does not contain any hole of size 6.

Proof. Assume by contradiction that there is a hole on six vertices u1, . . . , u6. We know
that Qu1u2 and Qu4u5 are vertex-disjoint (since otherwise, by Lemma 12, at least one of the
chords u1u4 or u2u5 would exist). The ui’s are leaves of TH , so Qu1u2 and Qu1u6 , being paths
with a common leaf in the same subtree, share at least one common vertex other than u1
(its neighbour in TH), let v be the last (with respect to the orientation of T) vertex in their
common subpath. Now, Qu5u6 has a common vertex with both Qu1u2 (by Lemma 15) and
Qu1u6 (the neighbour of u6 in TH), so it has to contain v by the Helly property of subtrees
of a tree. By the same reasoning, Qu4u5 and Qu5u6 share at least one common vertex other

MFCS 2024

38:10 Algorithms and Complexity for Path Covers of Temporal DAGs

than u5 (its neighbour in TH), let w be the last vertex in their common subpath. The Helly
property of subtrees of a tree again implies that both Qu2u3 and Qu3u4 have to contain w,
since they pairwise intersect with Qu4u5 . But this means that Qu2u3 and Qu5u6 share both v

and w as common vertices, and so by Lemma 12 there is at least one of the two chords u2u5
or u3u6, a contradiction. ◀

We can now prove that there is no even hole in G:

▶ Lemma 17. The connectivity graph G does not contain any even hole.

Proof. Assume by contradiction that G contains an even hole H on k ≥ 8 vertices (k = 6 is
impossible by Lemma 16). We know by Lemma 15 that both Qu3u4 and Quk−1uk

intersect
Qu1u2 , but do not intersect each other (otherwise, by Lemma 12, at least one of the edges
u3uk or u4uk−1 would exist, and both would be chords since k ≥ 8), so there is an arc −→a
in T that separates them. Removing −→a from T partitions the vertices of H into two sets
H1 and H2: H1 (resp. H2) contains the vertices of H that are in the same part of T \ −→a as
u3 (resp. uk). Now, since H is a cycle, there is an edge ujuj+1 such that (without loss of
generality) uj ∈ H1 and uj+1 ∈ H2. This implies that the path Qujuj+1 has to use −→a in T ,
and thus Qu1u2 and Qujuj+1 , both containing −→a , share a common vertex. Hence, Lemma 12
implies that there is a temporal path from uj+1 to u2 or from u1 to uj . However, since
j ≠ k (uj ∈ H1 and uk ∈ H2) and j + 1 ̸= 3 (uj+1 ∈ H2 and u3 ∈ H1), by Lemma 12 both
temporal paths would induce a chord in H, a contradiction. ◀

4.2 The case of anti-holes
In this subsection, we will show that the connectivity graph G does not contain any anti-
hole. For an anti-hole H, let its vertices be circularly ordered as u1, u2, . . . , uk as they are
encountered while traversing the complement of H (which is a hole). Let ODD (H) (resp.
EV EN (H)) denote the set of vertices with odd (resp. even) indices.

▶ Lemma 18. The connectivity graph G does not contain any anti-hole.

Proof. Throughout this proof, recall that T is a tree, in particular, if two vertices are
temporally connected, then there is a unique temporal path from one to the other. Assume
by contradiction that G contains an anti-hole H with k vertices. If k = 5, then H is a hole,
which contradicts Lemma 14; hence, assume k ≥ 6.

When k is odd, let F1 = ODD (H) \ {uk}, F2 = EV EN (H). When k is even, let
F1 = ODD (H) , F2 = EV EN (H). Observe that |F1| = |F2| ≥ 3 and both sets induce
(vertex-disjoint) cliques in G. By Lemma 10, there are temporal paths P1 and P2 in T
containing F1 and F2, respectively, which we can assume are minimal vertex-inclusion-wise
(so that, for each i ∈ {1, 2}, both end-vertices of Pi lie in Fi). For i ∈ {1, 2}, let vi and wi

denote the source and sink of Pi, respectively. We have two cases.

Case 1: V (P1) ∩ V (P2) = ∅. Let Q be the shortest temporal path that contains vertices
from both P1 and P2 (note that, since every vertex in F1 is temporally connected to at least
one vertex in F2, Q necessarily exists). Let p1, p2 be the end-vertices of Q that lie on P1 and
P2, respectively. Since for each i ∈ {1, 2} and Z ∈ {F1, F2}, NG(wi) ∩ Z ̸= ∅, Q is oriented
from p1 to p2, or vice versa. Without loss of generality, assume that Q is oriented from p2
to p1. Then, necessarily p2 = w2, since otherwise w2 is not temporally connected with any
vertex of F1, a contradiction. By a similar argument, we have p1 = v1. Now, consider the
clique induced by NG(v2) ∩ F1. Due to Lemma 10, all vertices of NG(v2) ∩ F1 and v2 itself

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:11

are contained in a temporal path, which also necessarily contains w2. Hence all of F2 (P2,
even) is in a temporal path containing v1, since the path has to go through v1 to reach other
vertices of F1, and so F2 ∪ {v1} forms a clique. This is a contradiction as v1 necessarily has
at least one non-neighbor in F2.

Case 2: V (P1) ∩ V (P2) ̸= ∅. Let Q denote the maximal vertex-inclusion-wise path
that is common to both P1 and P2, i.e., the path induced by the set V (P1) ∩ V (P2). Note
that Q does not contain any vertex from H, since a vertex of H in Q would be temporally
connected to every other vertex of F1 ∪ F2, a contradiction. Let p denote source of Q and
for each i ∈ {1, 2} let Qi (resp. Q′

i) be the subpath of Pi between p and wi (resp. p and vi).
Note that no vertex of Q′

1 \ {p} can be in a directed path with any vertex of Q′
2 \ {p}.

Similarly, no vertex of Q1 \ Q can be in a directed path with any vertex of Q2 \ Q. Thus, the
two subgraphs of the connectivity graph G induced by the vertices of (V (Q1)∪V (Q2))\V (Q)
and (V (Q′

1) ∪ V (Q′
2)) \ {p} each induce the complement of a complete bipartite graph. As

H does not contain any complement of a 4-cycle as an induced subgraph, this implies that
there are exactly three vertices of H in each of these two subsets of vertices (since Q does
not contain any vertex of H). In particular, H has size either 6 or 7.

Without loss of generality, we assume that Q′
1 contains only one vertex of H, which must

be v1. Thus, there are two vertices of H in Q′
2: v2 and another vertex, say, v′

2. Since F1 and
F2 both have size 3, the vertices of H in Q1 are w1 and (say) w′

1, and the only vertex of
H in Q2 is w2. Now, observe that if v2 is contained in a temporal path with w1, then v2,
v′

2, w′
1 and w1 are in a common temporal path. This is not possible, since in H, there is

either one or two non-edges among these four vertices (depending on whether H has size 7
or 6). Thus, w1 and v2 are in no common temporal path. Since v2 has no non-neighbour
in H other than v1 and w1, v2 and w′

1 are in a common temporal path, that also contains
v′

2. Thus, {v2, v′
2, w′

1} form a clique in H. Similarly, {v′
2, w′

1, w1} also form a clique in H. If
H had size 6, v′

2 and w′
1 would need to be non-neighbours in H (since w1 already has two

non-neighbours in H), a contradiction. Thus, H has size 7, and the two non-neighbours in
H of u7 (the vertex of H not in F1 ∪ F2) are v′

2 and w′
1 (since they are the only ones without

two non-neighbours in H). But u7 has to be temporally connected to all of v1, v2, w1 and
w2, so u7 has to be in Q. But any temporal path from v2 to a vertex of Q has to contain v′

2,
and so u7 and v′

2 are temporally connected, a contradiction. This completes the proof. ◀

4.3 Completion of the proof of Theorem 2
Lemmas 14, 17, and 18 imply that the connectivity graph of a temporal oriented tree is
weakly chordal. Note that this cannot be strengthened to chordal, as there are temporal
oriented trees whose connectivity graphs contain induced 4-cycles: let λ(−→s1c) = λ(−→s2c) = 1
and λ(−→ct1) = λ(−→ct2) = 2, the vertices s1, t1, s2 and t2 induce a C4 in the connectivity
graph. Corollary 11 implies the correspondence between a minimum temporal path cover
of a temporal oriented tree and a minimum clique cover of the corresponding connectivity
graph. We then conclude using Theorem 7 for the algorithm. Observation 9, Corollary 11
and Theorem 7 together give the Dilworth property.

5 Temporally Disjoint Path Cover on temporal oriented trees

We provide a reduction from Unary Bin Packing to prove the following (proof deferred to
the full version [9] due to space constraints).

MFCS 2024

38:12 Algorithms and Complexity for Path Covers of Temporal DAGs

▶ Theorem 3. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.

We also show the following.

▶ Proposition 19 (*). There are temporal oriented trees (whose underlying digraph is a star)
that do not satisfy the TD-Dilworth property.

6 Subclasses of temporal oriented trees

▶ Theorem 4. Temporal Path Cover and Temporally Disjoint Path Cover can be
solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;
where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore,
both classes satisfy the TD-Dilworth property.

Proof. (a) Let P = (P, λ) be a temporal oriented line, and let v be a leaf of P . We construct
C as follows. Assume that v is incident with an in-arc −→uv. We construct a maximum-length
temporal path that covers v. Set (b, c) = (u, v), ℓ = max λ(−→uv), and apply the following
routine: while b is incident with an in-arc

−→
ab, if there is a time label smaller than ℓ in λ(

−→
ab),

add
−→
ab to the path, update (b, c) = (a, b) and ℓ = max{k ∈ λ(

−→
ab) | k < ℓ}. When the routine

stops, add the path to C, remove its vertices from P , and start again on a new leaf (or return
C if P is empty). If v was incident with an out-arc, we would do the same but with out-arcs,
start with the smallest possible time label, and update ℓ = min{k ∈ λ(

−→
ab) | k > ℓ}.

This algorithm computes its output in time O(ℓn): every arc is visited at most once, but
we need to parse the time labels in order to see whether we can keep on extending the path
or not. Furthermore, the set of leaves v where we start the routine are a temporal antichain:
assume on the contrary that v1 and v2 are such vertices that are temporally connected,
and assume without loss of generality that there is a path from v1 to v2 in the underlying
oriented path; in this case, our algorithm would have added v1 to the path that started being
computed at v2, a contradiction. Hence, C is a temporally disjoint path cover with the same
size as a temporal antichain, proving that it is minimum-size and that temporal oriented
lines satisfy the TD-Dilworth property.

(b) We give an algorithm that solves Temporal Path Cover on a temporal rooted
directed tree T = (T, λ). First, we sort the vertices of T with respect to their topological
distance from the root in T (with the highest distances first). Then, we construct a maximum-
length temporal path covering the first uncovered vertex (which will be a sink of that path),
and repeat until T is fully covered.

Note that this algorithm outputs C which is clearly a temporal path cover: every vertex
is covered by some path of C. Furthermore, it is an adaptation of the algorithm for temporal
oriented lines: instead of successive leaves, we construct the paths from successive leaves with
highest topological distance from the root. We will show that C is minimum-size, and later
we will explain how to modify the algorithm in order to obtain a minimum-size temporally
disjoint path cover.

Let S be the set of sinks of paths of C. First, let vi and vj be two vertices of S (without
loss of generality, assume that vi was covered by the algorithm after vj). They cannot be
temporally connected, since otherwise, the graph being a temporal rooted directed tree, one
of them is necessarily the predecessor of the other in a path from the root, and thus the
maximum-length temporal path ending in vj would necessarily contain vi, since there is a
temporal path from vi to vj , and thus vi would have been covered at this step and cannot

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:13

be in S. Hence, S is a temporal antichain. Furthermore, since |C| = |S|, C is minimum-size
and S is maximum-size, implying that temporal rooted directed trees satisfy the Dilworth
property.

We now modify the algorithm to obtain a minimum-size temporally disjoint path cover.
Indeed, we can see that the maximum-length temporal path construction, which is executed
for every vertex of S, can re-cover some vertices that had already been covered at a previous
step. Let vi and vj be two vertices of S such that their maximum-length temporal paths
constructed by the algorithm Pi and Pj intersect. Since the graph is a temporal rooted
directed tree, we can divide Pi and Pj into the following parts, without loss of generality:
Pi = P top

i ∪ (Pi ∩ Pj) ∪ P bot
i and Pj = (Pi ∩ Pj) ∪ P bot

j , where P top
i ∩ Pj = P bot

i ∩ Pj =
P bot

j ∩ Pi = ∅ (note that we can have P top
i = ∅). In other words, P top

i (resp. P bot
i) contains

the vertices of Pi \ Pj that are ancestors (resp. descendants) of Pi ∩ Pj in the underlying
rooted tree, with the equivalent definition for P top

j and P bot
j . Hence, we can modify the

algorithm by adding a loop that, for each such pair (Pi, Pj), defines these subpaths and then
removes Pi ∩ Pj from Pj . Now, C will still be a temporal path cover, but the paths will be
vertex-disjoint and thus temporally disjoint, and its size will not change. This implies that
temporal rooted directed trees satisfy the TD-Dilworth property (contrasting the general
temporal oriented trees), and thus the modified algorithm outputs the optimal solution for
these two problems. The result of the algorithm and its modification is depicted in Figure 3.

Finally, one can check that the algorithm and its modification compute C in time O(ℓn2).
For each vertex in the antichain S, we have to construct the maximum-length temporal
path. This can be done in time O(ℓn) by taking at every arc the largest label that allows to
extend the path, thus we have to parse all the labels of every arc along the path, which can
be of linear-size in the worst case. Since we can have a linear number of antichain vertices,
we have a complexity of O(ℓn2) to get the temporal path cover. The modification to make
it temporally disjoint can be done in O(n2) time afterwards, by considering all pairs of
intersecting paths starting from the root. ◀

2

3 1

2 2

2

3 1

2 2

1

1,2

2

1

3

1

1,2

2 1
3

Figure 3 Minimum-size temporal path covers and temporally disjoint path covers of the same
temporal rooted directed tree (on the left, with one label per arc; on the right, with any labels per
arc), as computed by our algorithm and its modification in the proof of Theorem 4.

7 Algorithms for temporal digraphs of bounded treewidth

Recall that an algorithm is FPT with respect to some parameter k of the input, if it runs in
time f(k)nO(1) for inputs of size n, where f is any computable function; the algorithm is XP
for this parameter if the running time is in nf(k) [12]. We prove the following theorem.

MFCS 2024

38:14 Algorithms and Complexity for Path Covers of Temporal DAGs

▶ Theorem 5. There is an algorithm for Temporally Disjoint Path Cover on general
temporal digraphs that is FPT with respect to the treewidth of the underlying undirected
graph and the maximum number of labels per arc. For Temporal Path Cover on general
temporal digraphs, there is an XP algorithm for the same parameter.

Proof (sketch). To prove the theorem, we use the well-known concept of nice tree decom-
positions [27]. The algorithm is a classic bottom-up dynamic programming. To simplify the
algorithm, we replace each arc by a set of parallel arcs, each of them with a distinct time-label.
This makes it easier to deal with temporally disjoint paths, as in this representation, one arc
cannot be used in two solution paths (for Temporally Disjoint Path Cover).

To give the intuition behind the algorithm, we informally describe the states of the
dynamic programming. For a bag Xv ⊆ V (G) corresponding to a node v of the tree
decomposition, every state corresponds to a distinct way a potential solution interacts with
Xv. Primarily, it consists of a set of (solution) subpaths that cover the vertices in Xv. Each
subpath may consist of several disconnected parts (possibly, a part may have only one vertex).
The order in which the vertices of each solution path appear is also specified. We also store
the information, for every vertex, whether it is connected via an arc to one vertex (or two
vertices) in its solution path, but lying outside the bag Xv, and whether this vertex lies in a
lower (already handled) or upper (to be handled) part of the tree decomposition.

We show that this information is enough to encode a partial solution, and as there are at
most p =

(tw
2

)
· tmax arcs in each bag, we deduce that the maximum possible number of states

for a bag is at most 2O(p log p) in the case of Temporally Disjoint Path Cover (since
every arc may appear in at most one solution path) and nO(p log p) in the case of Temporal
Path Cover (since a specific subpath may appear in any number of solution paths, so
we must also encode the number of appearances of each subpath). The running times are
essentially dominated by these functions.

Due to space constraints, the details are deferred to the full version [9]. ◀

8 Conclusion

We have initiated the study of two natural path covering problems in temporal DAGs, which,
in the static case, are related to Dilworth’s theorem and are polynomial-time solvable. Both
problems become NP-hard for temporal DAGs, even in a very restricted setting. Interestingly,
and somewhat unexpectedly, they behave differently on temporal oriented trees: we showed
that Temporal Path Cover is polynomial-time solvable on temporal oriented trees (and a
temporal version of Dilworth’s theorem holds in this setting), while Temporally Disjoint
Path Cover remains NP-hard for this class. On the other hand, this distinction is inverted
in the parameterized case, where we obtained an FPT algorithm for Temporally Disjoint
Path Cover but an XP algorithm for Temporal Path Cover. However, we do not know
if our algorithms for treewidth and number of time-steps are optimal. In particular, can we
obtain an FPT algorithm for Temporal Path Cover for this parameter? One could also
explore other (structural) parameterizations of the problems.

To prove our polynomial-time algorithm for Temporal Path Cover on temporal
oriented trees, we have reduced the problem to Clique Cover in a static undirected graph,
which turns out to be weakly chordal. This is a powerful technique, and the correspondence
between the two problems is quite enlightening for the structure of temporal paths in an
oriented tree. Nevertheless, it seems unlikely that this particular technique can be used on
temporal digraph classes that are far from trees, as it was essential for the proof that any two
vertices are joined by only one path in the underlying tree. However, this general technique
could likely be applied in other temporal settings.

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:15

We note that many of our results for Temporally Disjoint Path Cover also hold
for its stricter vertex-disjoint version (note that a vertex-disjoint version of Temporally
Disjoint Paths is studied in [24]), in particular, the NP-hardness result for restricted DAGs
and the polynomial-time algorithms for rooted directed trees and oriented lines.

References
1 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,

Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic
temporal graphs? J. Comput. Syst. Sci., 114:65–83, 2020.

2 Eleni C. Akrida, George B. Mertzios, and Paul G. Spirakis. The temporal explorer who returns
to the base. In Pinar Heggernes, editor, Algorithms and Complexity - 11th International
Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture
Notes in Computer Science, pages 13–24. Springer, 2019.

3 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. Int. J. Found. Comput. Sci., 14(2):267–285, 2003.

4 Manuel Cáceres. Minimum chain cover in almost linear time. In Kousha Etessami, Uriel Feige,
and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs,
pages 31:1–31:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

5 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I. Tomescu.
Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time. In
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 359–376. SIAM, 2022.

6 Manuel Cáceres, Brendan Mumey, Edin Husić, Romeo Rizzi, Massimo Cairo, Kristoffer
Sahlin, and Alexandru I. Tomescu. Safety in multi-assembly via paths appearing in all path
covers of a DAG. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
19(6):3673–3684, 2022.

7 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012.

8 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021.

9 Dibyayan Chakraborty, Antoine Dailly, Florent Foucaud, and Ralf Klasing. Algorithms and
complexity for path covers of temporal DAGs. arXiv preprint arXiv:2403.04589, 2024.

10 Yangjun Chen and Yibin Chen. On the graph decomposition. In 2014 IEEE Fourth Interna-
tional Conference on Big Data and Cloud Computing, pages 777–784, 2014.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

12 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4(8).
Springer, 2015.

13 Pradipta Kumar Das, Himansu Sekhar Behera, Prabir Kumar Jena, and Bijaya K. Panigrahi.
An intelligent multi-robot path planning in a dynamic environment using improved gravitational
search algorithm. Int. J. Autom. Comput., 18(6):1032–1044, 2021.

14 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51:161–166, 1950.

15 Jeff Erickson. Algorithms. self-published, 2019. URL: http://jeffe.cs.illinois.edu/
teaching/algorithms/.

16 D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
17 Delbert R Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets. In

Proceedings of the American Mathematical Society, volume 7(4), pages 701–702, 1956.

MFCS 2024

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/

38:16 Algorithms and Complexity for Path Covers of Temporal DAGs

18 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete
Mathematics, Vol 57). North-Holland Publishing Co., NLD, 2004.

19 Ryan B. Hayward. Weakly triangulated graphs. J. Comb. Theory, Ser. B, 39(3):200–208,
1985. doi:10.1016/0095-8956(85)90050-4.

20 Ryan B. Hayward, Jeremy P. Spinrad, and R. Sritharan. Improved algorithms for weakly
chordal graphs. ACM Trans. Algorithms, 3(2):14, 2007. doi:10.1145/1240233.1240237.

21 Petter Holme. Modern temporal network theory: a colloquium. European Physical Journal B,
88(9), 2015.

22 H. V. Jagadish. A compression technique to materialize transitive closure. ACM Transactions
on Database Systems, 15(4):558–598, 1990.

23 Naoyuki Kamiyama and Yasushi Kawase. On packing arborescences in temporal networks.
Inf. Process. Lett., 115(2):321–325, 2015.

24 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002.

25 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: temporally disjoint paths. Autonomous Agents and Multi
Agent Systems, 37(1):1, 2023.

26 Nina Klobas, George B Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: Temporally disjoint paths. Autonomous Agents and Multi-Agent
Systems, 37(1):1, 2023.

27 T. Kloks. Treewidth, Computations and Approximations. Springer, 1994.
28 Shimon Kogan and Merav Parter. Faster and unified algorithms for diameter reducing shortcuts

and minimum chain covers. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 212–239. SIAM, 2023.

29 Pascal Kunz, Hendrik Molter, and Meirav Zehavi. In which graph structures can we efficiently
find temporally disjoint paths and walks? In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pages 180–188. ijcai.org, 2023.

30 L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics,
2(3):253–267, 1972.

31 Veli Mäkinen, Alexandru I. Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie,
and Rayan Chikhi. Sparse dynamic programming on dags with small width. ACM Trans.
Algorithms, 15(2), February 2019.

32 Loris Marchal, Hanna Nagy, Bertrand Simon, and Frédéric Vivien. Parallel scheduling of DAGs
under memory constraints. In 2018 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018, pages 204–213. IEEE
Computer Society, 2018.

33 Andrea Marino and Ana Silva. Eulerian walks in temporal graphs. Algorithmica, 85(3):805–830,
2023.

34 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.
The complexity of transitively orienting temporal graphs. In Filippo Bonchi and Simon J.
Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages
75:1–75:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

35 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. In Christos D.
Zaroliagis, Grammati E. Pantziou, and Spyros C. Kontogiannis, editors, Algorithms, Probability,
Networks, and Games - Scientific Papers and Essays Dedicated to Paul G. Spirakis on the
Occasion of His 60th Birthday, volume 9295 of Lecture Notes in Computer Science, pages
308–343. Springer, 2015.

36 Simeon C. Ntafos and S. Louis Hakimi. On path cover problems in digraphs and applications
to program testing. IEEE Transactions on Software Engineering, SE-5(5):520–529, 1979.

https://doi.org/10.1016/0095-8956(85)90050-4
https://doi.org/10.1145/1240233.1240237

D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:17

37 Jari Saramäki and Petter Holme, editors. Temporal Network Theory. Computational Social
Sciences. Springer, Germany, October 2019.

38 Jeremy P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discret.
Appl. Math., 59(2):181–191, 1995. doi:10.1016/0166-218X(93)E0161-Q.

39 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In Pavel Surynek and William
Yeoh, editors, Proceedings of the Twelfth International Symposium on Combinatorial Search,
SOCS 2019, Napa, California, 16-17 July 2019, pages 151–159. AAAI Press, 2019.

40 Dawei Sun, Jingkai Chen, Sayan Mitra, and Chuchu Fan. Multi-agent motion planning from
signal temporal logic specifications. IEEE Robotics Autom. Lett., 7(2):3451–3458, 2022.

41 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

42 Haifeng Xu, Fei Fang, Albert Xin Jiang, Vincent Conitzer, Shaddin Dughmi, and Milind
Tambe. Solving zero-sum security games in discretized spatio-temporal domains. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pages 1500–1506.
AAAI Press, 2014.

43 Yue Yin and Bo An. Efficient resource allocation for protecting coral reef ecosystems. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, pages 531–537. AAAI Press, 2016.

44 Youzhi Zhang, Bo An, Long Tran-Thanh, Zhen Wang, Jiarui Gan, and Nicholas R. Jennings.
Optimal escape interdiction on transportation networks. In Carles Sierra, editor, Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 3936–3944. ijcai.org, 2017.

MFCS 2024

https://doi.org/10.1016/0166-218X(93)E0161-Q

	1 Introduction
	2 Preliminaries
	3 Temporal DAGs
	4 Temporal Path Cover on temporal oriented trees
	4.1 The case of holes
	4.2 The case of anti-holes
	4.3 Completion of the proof of Theorem 2

	5 Temporally Disjoint Path Cover on temporal oriented trees
	6 Subclasses of temporal oriented trees
	7 Algorithms for temporal digraphs of bounded treewidth
	8 Conclusion

