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Abstract
While machine learning theory and theoretical computer science are both based on a solid mathemat-
ical foundation, the two research communities have a smaller overlap than what the proximity of the
fields warrant. In this invited abstract, I will argue that traditional theoretical computer scientists
have much to offer the learning theory community and vice versa. I will make this argument by
telling a personal story of how I broadened my research focus to encompass learning theory, and
how my TCS background has been extremely useful in doing so. It is my hope that this personal
account may inspire more TCS researchers to tackle the many elegant and important theoretical
questions that learning theory has to offer.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Theoretical Computer Science, Learning Theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.4

Category Invited Paper

Funding Kasper Green Larsen: Supported by a DFF Sapere Aude Research Leader Grant No.
9064-00068B.

1 A Personal Story

My goal with this invited abstract, is to inspire more theoretical computer science (TCS)
researchers to engage in topics in machine learning theory. Being a TCS researcher myself, I
hope that by telling my own personal story – of how I adopted the field of learning theory –
may provide a unique and more compelling argument than if a core learning theorist was
to attempt to convince you. Being a personal story, I will focus on some of the research
results I obtained along the way, and not so much on the broader learning theory and TCS
literature. The results I present have been chosen because they tell an interesting story and
showcase how core TCS concepts have proven useful in learning theory. Along the way, I will
tell some anecdotes on how these research projects started, and I will try to give you an idea
of some of the thought processes I initially went through when trying to enter a new field.
I have also tried to sprinkle in some advice for more junior researchers based on my own
experiences. Finally, I will also formally define some of the learning theory questions I have
studied, giving you an idea of what such questions may look like. I sincerely hope that you
find this somewhat unusual abstract refreshing.

1.1 My TCS Background and Connections Between Fields
For those who do not know me, let me start by briefly giving you my background, while also
trying to convince you that many fields of TCS are deeply connected, and that it pays off to
have a broad interest in TCS.

I started my Ph.D. studies in 2008 under the supervision of Professor Lars Arge at Aarhus
University, Denmark. My initial research was on data structures, in particular so-called
I/O-efficient data structures [2, 5], that take the memory hierarchy of modern hardware
into account. Ever since I started my studies, I have always been curious and eager to learn
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4:2 From TCS to Learning Theory

new areas by interacting with great colleagues in the TCS community. This openness to
collaborations and sharing of ideas is one of the strongest and most rewarding traits of our
community.

Initially, my interactions with other researchers were through fellow students at the
department. I explicitly remember Allan Grønlund coming to my office with one of Mihai
Pǎtraşcu’s beautiful papers [33] on data structure lower bounds in the cell probe model [35],
excitedly proclaiming that “this is so cool, we need to do this too!”. At the time, I had never
had a complexity course or seen a real lower bound proof, and I was immediately hooked.
This led me on a long research journey trying to understand and develop the techniques for
proving lower bounds on the efficiency (space, query time, update time) of data structures,
see e.g. [23, 24, 29] for some highlights.

While cell probe lower bounds were my main focus for years, I always found research that
bridges several fields the most exciting. The earliest such example in my own research started
with a visit by Jeff M. Phillips in our research group. During his visit, Jeff introduced me to
discrepancy theory while explaining some of his recent work. As discrepancy theory will be
important later, let me give a rough definition of it here. At its core, discrepancy theory
studies the following problem: Given a matrix A ∈ Rm×n, compute a coloring x ∈ {−1, 1}n

minimizing the discrepancy ∥Ax∥∞. Understanding the best achievable discrepancy for
various types of matrices is an old and very well-studied topic in TCS [3, 34, 10, 7, 31]. In
particular, I recall Jeff telling me about a result of Banaszczyk [6] showing that matrices with
sparse columns always have low discrepancy colorings. While being intellectually intrigued
by this result, I did not see any immediate applications of it in my own research. However, a
couple of months later, Elad Verbin, a post doc in our group at the time, suggested to me
that I should try to prove data structure lower bounds in the group model. Without going
into details here, it turns out that Banaszczyk’s discrepancy result could be used to directly
translate decades of research on discrepancy lower bounds into group model data structure
lower bounds [25]. The connection even improved some of the discrepancy upper bounds
using data structure upper bounds as well.

This theme of connecting areas has proven very useful over the years. It for instance
got me started on streaming algorithms when Jelani Nelson and Huy L. Nguyen asked
whether we could use cell probe lower bound techniques to prove time lower bounds for
streaming algorithms [27]. In later work with Jelani [26], we similarly proved optimality of the
Johnson-Lindenstrauss (JL) lemma [21] in dimensionality reduction using an encoding-based
argument. Such arguments were typically used in cell probe data structure lower bounds. As
it will be important later, let us recall that the JL lemma says that any set of n points in
Rd can be embedded into O(ε−2 log n) dimensions while preserving all pairwise distances to
within a factor 1 ± ε.

Another interesting example was initiated during a visit at MIT in 2017 where Vinod
Vaikuntanathan was telling me how “data structures and crypto are a match made in heaven”.
This claim got me curious, and after returning home, I read a bit on data structure in
cryptography and stumbled on Oblivious RAMs (ORAMs) [17]. An ORAM is basically a
primitive for obfuscating the memory access pattern of an algorithm, such that the memory
accesses reveal nothing about the data stored. Checking the references of the papers I was
reading, it turned out that a crypto Professor sitting just down stairs, Jesper Buus Nielsen,
had made multiple contributions to ORAMs. After some brief initial discussions, we quickly
realized that cell probe lower bound techniques could be tweaked to prove strong lower
bounds for ORAMs [28]. This connection started a whole line of research into lower bounds
for ORAMs and related primitives in crypto.
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Finally, let me mention one last example outside learning theory. Back in 2017, I was
attending a communication complexity workshop in Banff, where Mark Braverman was giving
a talk about some work of his [11] on a conjecture in information theory/network coding [30].
The conjecture relates to communication networks, where a network is modeled by a graph
with capacities on the edges, designating how many bits may be sent across. The conjecture
then says that for undirected graphs (messages may be sent in both directions), if we are
given k source-sink pairs that each need to send an r bit message from source to sink, then
the largest number of bits r we can handle without violating capacity constraints, is equal to
the multi-commodity flow rate. Intuitively, this means that the best you can do is to simply
forward your messages as indivisible bits. Mark’s talk was excellent, but at the time, I had
no immediate applications of his result. However, while spending a semester at the Simons
Institute in 2018, a coincidental conversation with MohammadTaghi Hajiaghayi led us [15]
to proving conditional lower bounds for I/O-efficient algorithms using the information theory
conjecture that Mark presented. Needless to say, it was quite satisfactory to come full circle
and address the topic that started my Ph.D. studies. In addition to the lower bounds for
I/O-efficient algorithms, the conjecture also gave a clean conditional Ω(n log n) lower bound
for constant degree boolean circuits for multiplication [1]. I find it quite fascinating how two
such seemingly different problems of multiplication and communication in graphs may prove
to be so intimately connected.

If there is one message to take away from my own experiences, in particular for junior
researchers, it must be that many things are deeply connected and you never know when
results in one branch of TCS may prove useful in another. That is one of its beauties. I
would thus strongly recommend that you attend talks, seminars, and generally engage in
discussions with the many brilliant TCS researchers, also in fields outside your own immediate
interest. Build your expertise in one area, but always be curious and look for connections
and inspiration from others.

1.2 Entering Learning Theory

Now let me get to the promised topic of entering learning theory from a TCS background,
and how this background proved extremely useful. For me, this journey started around
2019. As you all know, machine learning was the big hype at the time, and probably still
is. Like many others, I initially found deep neural networks and what they could do quite
fascinating. This led me to consider whether I should get into machine learning and work on
this extremely hot topic. However, after getting a slightly better understanding of the field, I
quickly found that training a deep neural net and running some experiments on a benchmark
data set, to be much more engineering and craftsmanship than deep stimulating thoughts.
And with all the obligations that come with a faculty position, I just did not have the time
to learn the practical skills that it takes to make efficient and competitive implementations.
And probably was not that interested in it after all. I almost abandoned machine learning,
had it not been for a student of mine, Alexander Mathiasen. Alexander was very independent
and eager to get into machine learning. He had realized that I was more interested in theory
questions and had on his own discovered the great source of open problems in learning theory
that are published with the COLT proceedings. The open problem Alexander had found
was related to a technique called boosting. Let me start by introducing the general idea in
boosting and the setup for binary classification in supervised learning.

MFCS 2024
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Supervised Learning and Boosting

In supervised learning, a binary classification problem is specified by an input domain X , an
unknown target function f : X → {−1, 1} and an unknown data distribution D over X . A
learning algorithm receives as input a training data set of n i.i.d. samples (xi, f(xi)) with
each xi ∼ D. The goal of the learning algorithm is to output a classifier h : X → {−1, 1}
minimizing the probability of misprediction the label of a new sample from D, i.e. where
erD(h) := Prx∼D[h(x) ̸= f(x)] is as small as possible. To have an example in mind, think
of X as the set of all images of a particular size and f as the hard-to-specify function that
maps every image of a mammal to −1 and every other image to 1. The learning problem is
thus to train a classifier that can detect whether an image contains a mammal or not.

Boosting is then a powerful and elegant idea that allows one to combine multiple inaccurate
classifiers into a highly accurate voting classifier. Boosting algorithms such as AdaBoost [16]
work by iteratively running a base learning algorithm on reweighed versions of the training
data to produce a sequence of classifiers h1, . . . , ht. After obtaining hi, the weighting of the
training data is updated to put larger weights on samples misclassified by hi, and smaller
weights on samples classified correctly. This effectively forces the next training iteration to
focus on points with which the previous classifiers struggle. After sufficiently many rounds,
the classifiers h1, . . . , ht are finally combined by taking a (weighted) majority vote among
their predictions. This idea also goes under the name of multiplicative weight updates and
has many applications in TCS.

Boosting works exceptionally well in practice and much theoretical work has gone into
explaining its huge success. One important line of work in this direction is based on the
notion of margins [8]. A voting classifier g may be written as g(x) = sign(

∑t
i=1 αih(x)) with

αi ∈ R. If we normalize the weights so that
∑

i |αi| = 1, then
∑t

i=1 αihi(x) ∈ [−1, 1]. The
margin of g on a sample (x, y) ∈ X × {−1, 1} is then defined as y

∑t
i=1 αihi(x). The margin

is thus a number in [−1, 1] and can be thought of as a confidence in the prediction. If the
margin is 1, then all classifiers combined by g agree and are correct. If the margin is 0, then
we have a (weighted) 50-50 split between the two possible predictions −1/1, and so on. It
has then been proved that voting classifiers g with large margins on all training samples
(xi, yi) have a small erD(g) [8].

Boosting and Discrepancy Theory

Now let me return to the open problem Alexander approached me with. Since voting classifiers
with large margins have a small erD(g), it seems natural to develop boosting algorithms that
obtain large margins by combining few base classifiers, i.e. with a small t. This leads to faster
predictions and possibly also faster training. The question now is as follows: If the best
possible margin on all training samples is γ⋆ when one is allowed to combine arbitrarily many
base classifiers hi, then how large margins can we obtain by combining t base classifiers?
The best known algorithm obtained margins of γ⋆ − O(

√
log(n)/t) with n training samples,

and the best known lower bound showed that this is tight whenever t ≤ n1/2. The conjecture
stated that this remains tight for t ≤ n log n.

In my first learning theory paper [32], we observed an interesting connection between
this question and discrepancy theory. In more detail, we considered the matrix A obtained
by forming a row for each training sample (xi, yi) and a column for each hi in a voting
classifier g(x) = sign(

∑t
j=1 αjhj(x)). The entry corresponding to (xi, yi) and hj stores the

value yiαjhj(x). Notice that the sum of the entries in the i’th row is precisely the margin of
g on (xi, yi). Next, if we can find a coloring x ∈ {−1, 1}t such that ∥Ax∥∞ ≈ 0, then this
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means that for every single row of A, the sum over the columns j where xj = 1 is almost
exactly the same as the sum over columns where xj = −1. Thus if we replace g by a new
voting classifier where we set all αj to 0 when xj equals the majority of −1/1’s in x, and to
2 when xj is the minority, then the new g′ has almost exactly the same margins as before
but uses only half as many base classifiers. Recursively finding a low discrepancy coloring
x using the celebrated Spencer’s six standard deviations suffice result [34], we were able to
refute the conjecture on the tradeoff between t and the achievable margin while establishing
yet an interesting connection between discrepancy theory and other areas.

Support Vector Machines, Sketching and Teaching

Around the same time as our first learning theory results, I had voluntarily started teaching
the Machine Learning undergraduate course at Aarhus University. Never having followed
such a course myself, this was a great way of forcing myself to learn the basics. But beyond
learning the basics, teaching also led to new research questions. After having completed
the first project on boosting, we naturally started reading up on the references proving that
large margins lead to small erD(g). Such results are referred to as generalization bounds
and are a cornerstone of learning theory. Studying the classic proofs of generalization for
large margin voting classifiers [8], there seemed to be an underlying idea of sketching or
compressing the voting classifier g while exploiting that it has large margins. Intuitively, if
there is a small-bit representation of g, then there are only few choices for g. A union bound
over all these choices shows that it is unlikely that there is even a single g that performs
great on the training data (has large margins) and poor on new data (has large erD(g)).

Around the same time, I had just taught Support Vector Machines (SVMs) [14]. SVMs
are another type of learning algorithm where the input domain X is Rd. In the simplest
setup, when given a training set of n samples (xi, yi) ∈ Rd × {−1, 1} with ∥xi∥ ≤ 1 for all
i, SVM searches for the separating hyperplane with the largest margin to the data. In the
context of SVMs, if we assume for simplicity that a hyperplane passes through the origin and
has unit length normal vector w ∈ Rd, then we predict the label of a new point x ∈ Rd by
returning sign(wT x). The margin of the hyperplane on a labeled point (x, y) is then defined
as yxT w. The margin is positive if the hyperplane correctly predicts the label of (x, y) and
the absolute value of the margin measures how far the point is from the hyperplane itself.

Similarly to the case for boosting, there were known generalization bounds [9] stating
that if a hyperplane h has large margins, then erD(h) is small. However, these bounds were
proved in a completely different way than the boosting bounds and seemed to be sub-optimal.
In our work [18], we improved these generalization bounds by observing a connection to
the Johnson-Lindenstrauss (JL) lemma [21] that I previously worked on [26]. Shortly after
the lower bound for JL by Jelani and I, Noga Alon and Bo’az Klartag [4] presented an
alternative proof that at its core gives a randomized sketch for representing a set of n unit
length vectors in Rd using O(ε−2 log n) bits for each vector, while preserving their pairwise
inner products up to additive ε. Our idea was then to apply this sketch to w and the training
data. Since wT x changes by only additive ε, the sketched hyperplane w̃ remains correct (i.e.
sign(w̃T x) = sign(wT x) = y) if the margin was larger than ε before sketching. In this way,
we get a compression whose size depends on the margin. Combining this with the union
bound idea mentioned earlier led to improved generalization bounds for SVMs.

MFCS 2024
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Replicable Learning and Sketching

Let me give another example where the JL lemma proved useful in learning theory. In a
very exciting line of work, starting with [20], core TCS researchers introduced the notion
of replicable learning as an attempt at addressing issues with reproducibility of results in
machine learning. Here the basic setup is that you want to develop learning algorithms A,
such that if A is run on two sets S and S′ of n i.i.d. samples from the same distribution D,
then we should get the same output with high probability. The intuition is thus, if you rerun
someones replicable algorithm on your own data set, you will get the same results as they
did on their data set, provided that the data set is sampled from the same distribution. To
help you in this seemingly difficult task, the two executions of A share a random seed. This
may be justified in practice by publishing the seed of a pseudorandom generator along with
your machine learning paper and experimental results. There is naturally a ton of problems
to revisit in replicable learning and some strong connections with differential privacy have
already been established [12].

In a recent result [22], we considered SVMs in the replicable setting. Here we are
promised that there exists a hyperplane with all margins at least γ on the support of the
data distribution D, and must replicably compute a hyperplane h with small erD(h). The
key idea in our work is quite simple: partition the training data into t chunks and run SVM
on each to obtain hyperplanes with normal vectors w1, . . . , wt. Average these normal vectors
w = t−1 ∑

i wi and apply the sketching technique by Alon and Klartag [4] to w. The first
main observation is that computing the average w reduces variance compared to each wi.
Thus for two independent but identically distributed training data sets S and S′, the resulting
w and w′ will be close. The key property of the sketching technique of Alon and Klartag is
that such close vectors are very likely to be “rounded” to the same hyperplane/sketch if we
share a carefully chosen random seed.

Multi-Distribution Learning, Discrepancy Theory and NP-Hardness

Let me conclude with one last example of TCS techniques playing a key role in learning
theory results. A recent line of work in learning theory has studied learning in a setup with
multiple data distributions. Formally, we have k distributions D1, . . . , Dk over X × {−1, 1}
and the goal is to train a classifier that performs well on all k distributions simultaneously.
For this purpose, we are given a hypothesis set H containing hypotheses h : X → {−1, 1}.
As an example, think of H as all hyperplanes in Rd. If we let τ = minh∈H maxi erDi

(h)
denote the best achievable max-error of any h ∈ H, then the goal is produce a classifier
f : X → {−1, 1} with maxi erDi

(f) ≤ τ + ε using as few training samples as possible.
It is known that for a single distribution D, this task requires Θ(d/ε2) samples and it is

straight forward to generalize the algorithm to O(dk/ε2) samples for k distributions. Very
surprisingly, it turns out that this can be improved to essentially O((d + k)/ε2) samples using
boosting ideas [19]. However, the upper bounds achieving this number of samples are cheating
a little. Concretely, they do not output a single hypothesis f with maxi erDi

(f) ≤ τ + ε.
Instead, they output a distribution Df over hypotheses such that maxi Ef∼Df

[erDi(f)] ≤ τ +ε.
Attempting to derandomize this does not seem to work as we only have Markov’s inequality
to argue that with constant probability, a random f ∼ Df has maxi erDi

(f) = O(k(τ + ε)).
In a current manuscript, we show that there is a good reason why this is the case. Concretely,
we prove via a reduction from discrepancy minimization that it is NP-hard to compute an
f : X → {−1, 1} with maxi erDi(f) ≤ τ + ε. Here we use a result of Charikar et al. [13]
stating that it is NP-hard to distinguish whether, for a given a 0/1 matrix A, there exists
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an x ∈ {−1, 1}n with Ax = 0, or whether all x ∈ {−1, 1}n have ∥Ax∥∞ = Ω(
√

n). In our
reduction, we think of the columns as the input domain X and we form a distribution for each
row of A. The key idea is to show that if a learning algorithm computes an f : X → {−1, 1}
with maxi erDi(f) ≤ τ + ε, then the predictions made by f on the columns must give a low
discrepancy coloring that can distinguish the two cases.

While showing NP-hardness is by now completely standard in TCS, let me add that my
two coauthors are both from Statistics. They had heard NP-hardness mentioned before, but
never used it, and found quite some joy in getting to apply it on a relevant problem. I guess
the experience shows that what may be common tools in one discipline may be highly novel
in another.

1.3 Conclusion and Thoughts
To summarize my research journey into learning theory, I hope that I convinced you that
many techniques and tricks from TCS are extremely useful. Not only do they help in
addressing learning theory questions, but they also bring an interesting new direction to the
field, such as e.g. arguing computational hardness of training a classifier. Furthermore, this
transfer of techniques is not isolated to learning theory, but has been a guiding principle in
all my research since the early days of my Ph.D. studies. Keep your eyes open for surprising
connections between seemingly disjoint topics - they are often hiding just below the surface.

To me, the questions studied in learning theory are as clean, elegant, beautiful and
well-defined as any TCS topic, and are very well fit for anyone with a TCS background.
What has worked well for me, has been to start in some corner (coincidentally boosting
for me) and get to know the literature and related questions. Then as you have a better
understanding and overview, you can start approaching neighboring questions and growing
your focus. I suppose this is not much different from starting your Ph.D. studies by working
on a narrow topic and broadening out as you mature. Finally, do not underestimate the
value of talking to peers and attending talks for inspiration. As a newcomer, it is sometimes
hard to ask the right question, and calibrating with an expert is very useful. Also, the COLT
open problems have been a good source of inspiration as you at least know that some experts
in the field find the question interesting.

I strongly hope that this abstract may inspire some of you to work on learning theory, or
give you the courage to enter a new field that you find intriguing, knowing that your TCS
skills are useful in many surprising places.
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