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Abstract
Given an Abelian group G, a Boolean-valued function f : G → {−1, +1}, is said to be s-sparse, if it
has at most s-many non-zero Fourier coefficients over the domain G. In a seminal paper, Gopalan
et al. [15] proved “Granularity” for Fourier coefficients of Boolean valued functions over Zn

2 , that
have found many diverse applications in theoretical computer science and combinatorics. They also
studied structural results for Boolean functions over Zn

2 which are approximately Fourier-sparse. In
this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions
over Abelian groups G of the form, G := Zn1

p1 × · · · × Znt
pt

, for distinct primes pi. We also obtain a
lower bound of the form 1/(m2s)⌈φ(m)/2⌉, on the absolute value of the smallest non-zero Fourier
coefficient of an s-sparse function, where m = p1 · · · pt, and φ(m) = (p1 − 1) · · · (pt − 1). We carefully
apply probabilistic techniques from [15], to obtain our structural results, and use some non-trivial
results from algebraic number theory to get the lower bound.

We construct a family of at most s-sparse Boolean functions over Zn
p , where p > 2, for arbitrarily

large enough s, where the minimum non-zero Fourier coefficient is o(1/s). The “Granularity” result
of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse
Boolean valued function over Zn

2 are Ω (1/s). So, our result shows that one cannot expect such a
lower bound for general Abelian groups.

Using our new structural results on the Fourier coefficients of sparse functions, we design an
efficient sparsity testing algorithm for Boolean function, which tests whether the given function is
s-sparse, or ϵ-far from any sparse Boolean function, and it requires poly((ms)φ(m), 1/ϵ)-many queries.
Further, we generalize the notion of degree of a Boolean function over an Abelian group G. We use it
to prove an Ω(

√
s) lower bound on the query complexity of any adaptive sparsity testing algorithm.
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1 Introduction

Boolean functions are fundamental objects of study in computer science. For a discrete
domain D, a Boolean function f : D → {+1,−1} models a decision task where each member
of D is classified into one of two classes. Boolean functions play a vital role in the study of
digital circuits and computer hardware. They are also significant in the study of algorithms
and complexity, particularly in problems where the set D of instances is endowed with an
algebraic structure. Examples of such problems include matrix multiplication and polynomial
evaluation.

The case of Boolean function complexity with D = Zn
2 has been widely studied. These

functions are often analyzed in connection with their Fourier transform (see Section 2)
and a significant amount of research has focused on the structural properties of Fourier
spectra of important classes of these functions. One such class that this work focuses on
is that of Fourier-sparse functions. These are functions with only a few non-zero Fourier
coefficients, formally defined in Definition 18. We will denote by sf the Fourier sparsity of a
Boolean function f . Fourier sparsity and Fourier-sparse functions have known connections
with a variety of areas of Boolean function analysis and computational complexity like
property testing [15], learning theory [20, 3], distance estimation [35] and communication
complexity [23, 31, 19, 27, 22]. These connections provide enough motivation to comprehend
the structure of Fourier coefficients for Fourier-sparse Boolean functions.

In this work, we extend the study of Fourier-sparse Boolean functions to the domains
D, which are Abelian groups of the form Zn1

p1
× · · · × Znt

pt
, where p1, . . . , pt are distinct

prime numbers. Boolean functions over general Abelian groups have been studied in both
mathematics and computer science. A celebrated result regarding such functions is Chang’s
Lemma [10]. Chang’s lemma over Zn

2 has found numerous applications in complexity theory
and algorithms [5, 9], analysis of Boolean functions [16, 31], communication complexity
[31, 21], extremal combinatorics [13], and many more. Recently, [8] improved Chang’s lemma
over Zn

2 for some special settings of parameters, where Fourier sparsity played a crucial
role. One motivation to study Fourier sparsity over a broader class of Abelian groups is to
investigate possible generalizations of their bounds to those groups.

Fourier analysis over finite Abelian groups in cryptography. For the past three decades,
the field of cryptography has been utilizing concepts derived from Fourier analysis, specifically
over finite Abelian groups. Akavia, Goldwasser, and Safra [2] have combined some of these
concepts to develop a comprehensive algorithm that can detect “large” Fourier coefficients of
any concentrated function on finite Abelian groups, and compute a sparse approximation for
the same. This algorithm has gained significant attention within the cryptography community,
especially regarding the notion of “bit security” of the discrete logarithm problem (DLP),
RSA, and learning with errors (LWE) problems; see [25, 14, 1]. In particular, the “nice”
structural results on the Fourier coefficients of a Boolean-valued function over the general
Abelian group are of utmost importance and interest from a crypto-theoretic point of view.

Interestingly, there are strong relationships between learning, sparsity, and sampling,
in the context of Fourier-sparse Boolean functions. They have been rigorously studied
in [28, 29, 30]. In [28], the authors asked the following:

▶ Question 1.1. What can be said about the structure of the Fourier coefficients of a Boolean
function f over an Abelian group G = Zn

p , where the support is significantly smaller compared
to G?
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Gopalan et al. [15] proved that any non-zero Fourier coefficient of a Boolean function
over Zn

2 with Fourier sparsity at most sf , is at least 1
sf

in its absolute value. This gave a
satisfactory answer of Question 1.1 over Zn

2 . Furthermore, they proved robust versions of their
result for functions which are approximately Fourier-sparse. Finally, their structural results
were used to design a sample-efficient algorithm to test whether a function is Fourier-sparse.

In our work, we undertake the same task for Boolean functions over Abelian groups of the
form Zn

p , for a prime p ≥ 3. We prove lower bounds on the absolute value of any non-zero
coefficient in terms of sf and p. We also prove a tightness result that complements our
lower bounds. In particular, our bound implies that a lower bound of 1

Θ(sf ) that [15] showed
does not hold anymore for Zn

p . Finally, we use our bounds to design a testing algorithm for
Fourier-sparse Boolean functions over Zn1

p1
× · · · × Znt

pt
. This is probably the first time, we

have advanced on understanding some structure on the Fourier-sparse coefficients over a
general Abelian group, and shed some light on Question 1.1.

It is well-known that any Abelian group is isomorphic to a group of the form Zp
n1
1

× · · · ×
Zp

nt
t

where p1, . . . , pt are prime numbers and n1, . . . , nt are positive integers. Unfortunately,
our techniques fall short of handling even a simpler case of Zp2 , fundamentally because of the
absence of a linear structure on the solution space of systems of equations over Zp2 . Therefore,
we are leaving the task of investigating the existence of similar bounds and algorithmic
results when the domain of the function is a general Abelian group to future research.

Why care about Fourier-sparse Boolean functions over Abelian groups?

There has been a considerable amount of interest in studying the complexity of reconstructing
or learning functions of the form f : D → C, where D is a known domain (more general than
a hypercube, such as a general finite Abelian group), and f is Fourier-sparse; see [30, 26,
24, 11, 34]. Fourier-sparse functions over various finite Abelian groups have gained much
interest with the advancement in sparse Fourier transform algorithms [17, 18, 4]. These
algorithms improve the efficiency of the standard Fast Fourier Transform algorithms by
taking advantage of the sparsity itself. To reliably use sparse Fourier transform algorithms, it
is beneficial to have a way to test if a function is s-sparse or, more generally, to estimate the
distance of a function to the closest s-sparse function. In this work, we consider the problem
of non-tolerant sparsity-testing of Boolean functions over finite Abelian groups.

Finally, apart from mathematical curiosity and potential cryptographic applications (as
mentioned previously), structural results on Fourier-sparse functions f : ZN → C, for some
N ∈ N, have also found algorithmic applications in SOS-optimization and control theory.
These applications have further implications in certifying maximum satisfiability (MAX-SAT)
and maximum k-colorable subgraph (MkCS) problems; see [12, 33, 32].

1.1 Our results

Throughout the article, we will be working with the Abelian group G := Zn1
p1

× · · · × Znt
pt

where pi are primes. Let f : G → {−1,+1}, and f(x) =
∑

χ∈Ĝ f̂(χ)χ(x) be the Fourier
transform of f , where Ĝ is the set of characters of the Abelian group G.

We say a Boolean function is s-sparse, if it has at most s non-zero Fourier coefficients.
[15] proved that for any s-sparse Boolean functions over Zn

2 , the magnitude of the Fourier
coefficients are k-granular where k = ⌈log2 s⌉ + 1. A real number is k-granular if it is an
integer multiple of 1/2k. One wonders whether such a phenomenon still holds over a more
general group G.

MFCS 2024
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This notion of granularity made sense over Zn
2 , since in this case, all the Fourier coefficients

are rational (and hence real) numbers. But when the domain of the function is a general
group G, the Fourier coefficients are necessarily complex numbers. So, we would like to
suitably define granularity, and show that such a property still holds for s-sparse Boolean-
valued functions over G. Our first conceptual contribution in this paper is to generalize the
notion of granularity appropriately.

▶ Definition 1 (Granularity). A complex number is said to be k-granular or has granularity k
with respect to Zp if it is of the form g(ωp)

pk , where g(X) ∈ Z[X] and ωp is a primitive pth

root of unity.
More generally, a complex number is said to be (m1, . . . ,mt)-granular with respect to

(Zp1 , . . . ,Zpt
) if it is of the form g(ωp1 ,...,ωpt )

p
m1
1 ···pmt

t

, where g(X1, . . . , Xt) ∈ Z[X1, . . . , Xt] and ωpi

is a primitive pth
i root of unity, i ∈ [k].

Note that, this goes well with the definition of granularity in [15] for the case of Z2 as ω2
is either +1 or −1 and hence g(ω2) is an integer for any g(X) ∈ Z[X].

A function f : G → {−1,+1} is said to be (m1, . . . ,mt)-granular with respect to
(Zp1 , . . . ,Zpt

) if each Fourier coefficient of f is (m1, . . . ,mt)-granular.
We will also need a robust version of the definition of granularity of a complex number.

▶ Definition 2 (µ-close to k-granular). A complex number v is said to be µ-close to
k-granular with respect to Zp if |v − g(ωp)

pk | ≤ µ, for some non-zero polynomial g(X) ∈ Z[X].
Note that a similar notion can be defined for the case of µ-close to (m1, . . . ,mt)-granular

with respect to (Zp1 , . . . ,Zpt).

Now, we are ready to formally state our two main structural results. All our results hold
for Boolean-valued functions over the more general Abelian group G. But for simplicity
of presentation and ease of understanding, we first present the result for Boolean-valued
functions over Zn

p . Later, we present more general versions of our results, see the archived
version of the paper [7] for more details.

Our first theorem says that for any Boolean-valued function over Zn
p that is close to being

sparse, all its large Fourier coefficients are close to being granular. This is a generalization of
the structural theorem of [15, Theorem 3.3], which was proved over Zn

2 .

▶ Theorem 3 (Structure theorem 1). Let f : Zn
p → {−1,+1} be a Boolean-valued function

and let B be the set of characters corresponding to the set of s-largest Fourier coefficients of
f (in terms of magnitude). If

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ) then for all χ ∈ B, f̂(χ) is µ√

s
-close

to ⌈logp s⌉ + 1-granular.

For a function f : Zn
p → {−1,+1},

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ) (where B is the set of

characters corresponding to the set of s largest coefficients of f) can also be stated as “there
is an s-sparse function g : Zn

p → C with the ℓ2-distance between f and g is at most √
µ”.

But note that this does not guarantee that there is an s-sparse Boolean-valued function
g : Zn

p → {−1,+1} with ℓ2-distance between f and g being at most √
µ. However, our

second theorem proves that one can indeed find an s-sparse Boolean-valued function in a
close enough vicinity, thus generalizing [15, Theorem 3.4].

▶ Theorem 4 (Structure theorem 2). Let f : Zn
p → {−1,+1} be a Boolean-valued function

and let B be the set of characters corresponding to the set of s-largest Fourier coefficients of
f (in terms of magnitude). If

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ), with µ ≤ 1

8(p2s)p−1 then there exists
an s-sparse Boolean-valued function F : Zn

p → {−1,+1} with ℓ2 distance between f and F is
at most

√
2µ.
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Theorem 3 and Theorem 4 can be suitably generalized to functions from G to {−1,+1}.
But for the clarity of presentation, we state the generalized theorems and present their proofs
in the archived version of the paper [7].

One important corollary of Theorem 3 is that for any s-sparse Boolean function f :
Zn

2 → {−1,+1} the non-zero Fourier coefficients has magnitude at least 1/2k, where k =
⌈log2 s⌉ + 1. Unfortunately, such a simple corollary cannot be claimed for s-sparse functions
f : Zn

p → {−1,+1} if p ̸= 2. The main reason is that the definition of granularity is for
complex numbers, rather than real numbers and hence such a lower bound cannot be directly
deduced. However, borrowing results from algebraic number theory, we can obtain a lower
bound on the Fourier coefficients of Boolean-valued functions from Zn

p to {−1,+1} for any
arbitrary prime p.

▶ Theorem 5 (Fourier coefficient lower bound). Let f : Zn
p → {−1,+1}, with Fourier sparsity

sf . Then, for any χ ∈ supp(f), we have |f̂(χ)| ≥ 1
(p2sf )⌈(p−1)/2⌉ .

▶ Remark. One can also prove a weaker lower bound of the form 1/((sf + 1)√sf )sf , which
is p-independent; for details, see the archived version of the paper [7].
Observe that the lower bound in Theorem 5 is much lower than 1/sf . One may wonder
how tight our result is. It is known that 1/s is tight for the case when p = 2. For example,
consider the function AND : Zn

2 → {−1,+1}. Its non-empty Fourier coefficients are either
1

2n−1 or − 1
2n−1 , while the empty (constant) coefficient being 1 − 1

2n−1 .
To our pleasant surprise, we construct s-sparse Boolean-valued functions over Zn

p , for
p ≥ 5, such that they have nonzero Fourier coefficients with absolute value being o(1/s).

▶ Theorem 6 (Small Fourier coefficients). For every prime p ≥ 5, and large enough n, there
exist a positive constant αp that depends only on p and a function f : Zn

p → {−1,+1} with
Fourier sparsity sf satisfying the following property:

min
χ∈supp(f)

∣∣∣f̂(χ)
∣∣∣ ≤ 1/s1+αp

f .

We prove a generalized version of the lower bound result (Theorem 5) for Boolean-valued
functions over G. The above example (from Theorem 6) can also be easily extended to obtain
Boolean-value functions over G demonstrating similar bounds on the absolute value of the
non-trivial Fourier coefficients.

Finally, we design efficient algorithms for testing whether a function f : Zn
p → {−1,+1}

is s-sparse or “far” from s-sparse-Boolean. To state our results we need to define what we
mean by a function f : Zn

p → {−1,+1} is ϵ-far from s-sparse.

▶ Definition 7. A function f : Zn
p → {−1,+1} is ϵ-far from s-sparse-Boolean if for every

s-sparse function g : Zn
p → {−1,+1} the ℓ2-distance of f and g is at least

√
ϵ.1

We say that an algorithm (property tester) A ϵ-tests C, for a class of functions f : Zn
p →

{−1,+1}, if given access to the truth table of a function f , whether f ∈ C, or f , is “ϵ-far
from C” can be tested using A with success probability (called the confidence) ≥ 2/3. The
number of queries to the truth-table of f made by A is called the query complexity of A.

1 In property testing usually the distance measure used is Hamming distance between two Boolean
functions. But since we are using ℓ2 distance in our other theorem, so for ease of presentation, we
have defined the farness in terms of ℓ2 instead of Hamming distance. Also, note that for a pair of
Boolean-valued functions the square of the ℓ2 distance and Hamming distance are the same up to a
multiplicative factor of 4, see the archived version of the paper [7]

MFCS 2024



40:6 On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups

Using the structure theorems (Theorem 3 and Theorem 4), we prove the following theorem
which tests sparsity of a Boolean-valued function f : Zn

p → {−1,+1}.

▶ Theorem 8 (Testing s-sparsity). For a fixed prime p, there is a non-adaptive poly(s, 1/ϵ)
query algorithm with confidence 2/3, which tests whether a given function f : Zn

p → {−1,+1},
is s-sparse or ϵ-far from s-sparse-Boolean.

We can also obtain a similar testing algorithm for sparsity, for a Boolean-valued function
over G. The generalized algorithm is discussed in the archived version of the paper [7].

We complement our result by showing a query-complexity lower bound for sparsity-testing
algorithms. Gopalan et al. [15] gave a Ω(

√
s) lower bound for s-sparsity testing algorithms

over Zn
2 . An important component of their proof was to cleverly use an alternative notion

of degree (borrowed from [6]) of a Boolean function over Z2. We also give a similar lower
bound over Zn

p , by appropriately generalizing the useful notion of degree. For details on the
definition of degree, see proof idea of Theorem 9 in Section 1.2 and in the archived version of
the paper [7].

▶ Theorem 9. For Boolean valued functions on Zn
p , to adaptively test s-sparsity, the query

lower bound of any algorithm is Ω(
√
s).

Theorem 9 can be generalized for Boolean valued functions on G, which will give us the same
lower bound.

1.2 Proof ideas

In this section, we briefly outline the proof ideas of our main theorems. Although some of
the proofs are indeed inspired by [15] (which worked over Z2), the proof techniques does not
directly generalize over Zp. So, we will first discuss the proof ideas, and then clarify the
differences between [15] and our techniques (see Section 1.2.1). While doing so, we will try
to convey the hurdles for generalizing over Zp. Let us first sketch the proof of Theorem 3.

Proof idea of Theorem 3. Our goal is to show that if f is µ-close to some s-sparse complex-
valued function in ℓ2, then there exists a non-zero polynomial g(X) ∈ Z[X] such that the
following properties hold.
1. The sum of the absolute values of its coefficients is at most pk, where k := ⌈logp s⌉ + 1.
2. The distance between the absolute value of each non-zero Fourier coefficient of f and

|g(ωp)|/pk is at most µ/
√
s.

To show the above, we first utilize a probabilistic method to prove that for each character
χi ∈ B in the Fourier support of f , there exists a matrix A ∈ Zk×n

p , and a column vector
b ∈ Zn×1

p , such that – (1) χi is a solution of the linear system Aχ = b, and (2) no other
character in the Fourier support of f is a solution of Aχ = b, where B be the set of s-largest
Fourier coefficients of f . After establishing the existence of such A and b, we consider the
Fourier transform of the projection operator for the solution space of Aχ = b (see the archived
version of the paper [7]). The projection operator, as the name suggests, is an operator that
projects Zn

p onto a linear subspace which yields a partition of the Fourier spectrum of f .
Then we show that the ℓ2 Fourier weight of S ∩H, i.e.,

∑
χ∈S∩H |f̂(χ)|2 is upper bounded

by µ/
√
s, where S = B, and H is a coset of A⊥ that are solutions to the system of linear

equations Aχ = b. For details, see the archived version of the paper [7].
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Proof idea of Theorem 5. If we put µ = 0 in Theorem 3, we get that there exists a
g ∈ Z[X], with the sum of the absolute values of its coefficients is at most pk, such that
|f̂(χ)| ≥ |g(ωp)/pk|, where k = ⌈logp sf ⌉ + 1, sf being the sparsity of the Boolean valued
function f . The remaining part of the proof is to show that for any polynomial g with the
aforementioned properties, |g(ωp)|/pk ≥ 1/(p2sf )⌈(p−1)/2⌉.

As stated earlier, we use a non-trivial result from algebraic number theory (Theorem 25),
which states that if f ∈ Z[x], such that f(ωn) ̸= 0, where ωn be a primitive root of unity,
then, |

∏
i∈Z∗

n
f(ωi

n)| ≥ 1. We also use the fact that the sum of the absolute values of the
coefficients of g is at most pk, to get an upper bound on the quantities |g(ωi

p)|, for any
i ∈ [p−1]. Combining these two facts, we obtain our lower bound; for details see the archived
version of the paper [7].

Proof idea of Theorem 4. We first show that the given function f : Zn
p → {−1,+1}, that

is µ-close to some s-sparse complex-valued function in ℓ2, can be written as the sum of two
functions F and G, where the Fourier coefficients of F are ⌈logp s⌉ + 1-granular and the
absolute value of the Fourier coefficients of G are upper bounded by µ/

√
s, where p is an

odd prime. This follows from Theorem 3. Then we show that the range of F is {−1,+1},
which uses the following facts:
1. (F +G)2 = f2 = 1 and
2. F 2 is 2⌈logp s⌉ + 1-granular.
We compute E[G(x)2] in order to find an upper bound on the Fourier coefficients of H :=
G(2f −G), which helps us to conclude that F̂ 2(χ) = 0 for all χ ̸= χ0, and F̂ 2(χ0) = 1, where
χ0 is the character which takes the value 1 at all points in Zn

p . Then we complete the proof
by showing that the Prx[x ∈ Zn

p |f(x) ̸= g(x)] is ≤ µ2/2, which implies that F is
√

2µ close
to f in ℓ2 (see Lemma 22). This idea has also been employed in [15]. We have also extended
this proof to a more general Abelian group G, (see the archived version of the paper [7]).

Proof idea of Theorem 6. The example that we construct to prove Theorem 6 is a simple
one. The crucial observation in this regard is that there are functions from Zp to {−1,+1},
whose Fourier coefficients are smaller than 1/p. In this work, we work with one such
function I≥ p+1

2
: Zp → {−1,+1}. We claim that the composition function ANDn ◦ I≥ p+1

2
is

one such desired function from Zn
p to {−1,+1}, such that its minimum Fourier coefficient is

less than 1/pn. Here, we assume a trivial bound of pn on the Fourier sparsity of the function
ANDn ◦ I≥ p+1

2
.

Proof idea of Theorem 8. We sketch the algorithmic idea over Zn
p , where p is an odd prime;

this idea can be canonically extended to more general Abelian groups G. The main idea of
the algorithm is to partition the set of characters into buckets and estimate the weights of
the individual buckets (that is the sum of the squares of the absolute values of the Fourier
coefficients corresponding to the characters in the buckets). We know from Theorem 5 that
all the coefficients of an s-sparse function are at least as large as 1/(p2s)⌈(p−1)/2⌉. So, we
are certain that if the weights of the buckets can be approximated within an additive error
or τ/3, where τ ≥ 1/(p2s)p−1, then in the case the function is s-sparse, not more than s of
the buckets can have weight more than τ/2. On the other hand, we will show that if the
function f is ϵ-far from any s-sparse Boolean function then with a high probability at least
(s+ 1) buckets will have weight more than τ , making the estimated weight at least 2τ/3; see
the archived version of the paper for more details [7].

MFCS 2024
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The challenge is that estimating the weights of the buckets is not easy if the characters
the randomly partitioned into buckets. Here we use the ideas from Gopalan et al [15] and
appropriately modify them to handle the technicalities of working with Zn

p . We choose the
buckets carefully. The buckets corresponds to the cosets of H⊥ in Zn

p , where H is a random
subspace of Zn

p of dimension, t = Θ(s2). For such kinds of buckets, we show that estimation
of the weight can be done using a small number of samples. We also need to use the concept
of “random shift”, see the archived version of the paper [7], to avoid the corner case of
characters being put into the trivial bucket.

Unlike [15], it becomes a bit more challenging to prove that if f is ϵ-far from any s-sparse
Boolean function over Zn

p , then with high probability at least (s + 1) buckets will have
weight more than τ . Since we partition the set of characters by cosets, the events whether
two characters land in the same bucket (that is same coset) are not independent – since
two characters (in the case p ̸= 2) can be scalar multiple of each other; this is where some
additional care is required (which was not the case in [15]). Under random shifts and
case-by-case analysis, we can show that the two events are not correlated, i.e., the covariance
of the corresponding indicator variables of the two events is 0; see the archived version of the
paper [7]. Thus, we can use Chebyshev’s inequality and then Markov’s inequality to bound
the number of buckets that can be of low weight, or in other words prove that the number of
“heavy” weight buckets is more than s+ 1. The proof of Theorem 8 is given in the archived
version of the paper [7].

Proof idea of Theorem 9. In [15], Gopalan et al. proved a query lower bound over Zn
2 , by

using a natural notion of degree of a Booelan function, denoted deg2. They crucially used
the fact that for a Boolean function f over Z2, 2dim(f) ≥ sf ≥ 2deg2(f); this was originally
proved in [6]. To define the degree, let us consider all possible restrictions f |Vb,r1,...,rt

of f ,
where Vb,r1,...,rt

is a coset of V0,r1,...,rt
in Zn

p as defined as

Vb,r1,...,rk
:= {x ∈ Zn

p : rj · x = bj (mod p) ∀j ∈ [t]} .

Then the degree over Zp of f , denoted by degp, is defined in the following way.

degp(f) = max
ℓ

{ℓ = dim(Vb,r1,...,rt
) : sf |Vb,r1,...,rt

= pdim(Vb,r1,...,rt )},

where sf |Vb,r1,...,rt
is the Fourier sparsity of the function f |Vb,r1,...,rt

. [15] defined the degree
over Zn

2 via similar restrictions. However, [15] argued that this is a natural definition of the
degree over Zn

2 . To argue, observe that f̂ = 1
2nHnf , where Hn is the 2n × 2n Hadamard

matrix, when xi ∈ Zn
2 are seen in lexicographic order. Consider the restrictions f |Vb,r1,...,rt

that takes the value 1 at those points such that each entry of f̂ |Vb,r1,...,rt
is nonzero. Then

deg2 can be defined as the dimension of the coset Vb,r1,...,rt
which is largest amongst them!

In that case, all the Fourier coefficients of f |Vb,r1,...,rt
are nonzero.

Interestingly, we can also show that the above definition of degp is natural, mainly
because f̂ = 1

pnVnf , where V1 is a p × p Vandermonde matrix V1, whose (i, j)-th entry
is (V1)i,j := ω

(i−1)(j−1)
p , and Vn is defined by taking n many Kronecker products of V1,

i.e., Vn := V ⊗n
1 = V1 ⊗ · · · ⊗ V1. Note that Hn = Vn, over Zn

2 . Similar to [6], one can also
show that pdim(f) ≥ sf ≥ pdegp(f) (see the archived version of the paper [7]). This plays a
crucial role in the proof.

We first define two distributions DY es and DNo on the set of Boolean valued functions
from Zn

p to {−1,+1}. Let us choose a random t-dimensional subspace H of ZCt
p , for some

parameter C (to be fixed later). Let C be the set of all cosets of H. There are 2 main steps
as follows.
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1. We construct random functions f by making f a constant on each coset of C. The constant
is chosen randomly from {−1,+1}. We call this probability distribution Dyes.

2. We choose a random function f randomly from ZCt
p , conditioned on the fact that f is

2 − τ far in ℓ2 from any function which has degp = t, where τ is as defined in Theorem 8.
Let us call this distribution DNo.

We show that if an adaptive query algorithm makes less than q < Ω(pt/2) queries, then
the total variation distance ||DY es −DNo||T V between the two distributions DY es and DNo is
≤ 1

3 . This proves that any adaptive query algorithm which distinguishes between DY es and
DNo, i.e., where ||DY es − DNo||T V > 1

3 , must make at least Ω(pt/2) queries. This essentially
proves Theorem 9.

1.2.1 Comparison with Gopalan et al. [15]
In this section, we discuss the main differences and points between our proof and the one by
Gopalan et al. [15]. Our proofs (and the analysis of the testing algorithm) are more elaborate,
subtle, case-dependent, and complicated than [15].

Linear dependence is bad. [15] used the similar idea as in Theorem 3, see the archived
version of the paper for more details [7]. However, their proof took advantage of the fact
that any two distinct non-zero vectors in Zn

2 are linearly independent. This is not true for
Zn

p , as distinct vectors can be scalar multiples of each other; e.g., (1, · · · , 1) and (2, · · · , 2) in
Zn

p , for any p ≥ 3. Thus, our proof technique is capable of handling and overcoming these
difficulties effectively. This is also why our analysis of the structure theorems and algorithms
are very much case-dependent.

Different granularity. In case of Zn
2 , [15] defined a function f : Zn

2 → {−1,+1} to be
k-granular, where k is a positive integer, if all of its nonzero Fourier coefficients are an integer
multiple of 1

2k . In the case of Zn
p , since the Fourier coefficients are truly complex numbers, we

define a function f : Zn
p → {−1,+1} to be k-granular if all of its nonzero Fourier coefficients

are of the form g(ωp)
pk (see Definition 1), where g ∈ Z[X] and ωp is a primitive pth root of

unity.

Algebraic integer lower bounds are harder. While proving a lower bound on the absolute
value of the Fourier coefficients, in the case of Zn

2 , proving a lower bound on the magnitude of
a Fourier coefficient [15] translates to proving a lower bound on |g(−1)|/2k (since ω2 = −1).
Note that |g(−1)| ≥ 1, because g(−1) ∈ Z \ {0}; hence the lower bound follows. However,
for a general prime p, ωp is truly a complex number, and hence, g(ωp) is no longer an integer
(and therefore, there is no way to conclude that |g(ωp)| ≥ 1). We use a non-trivial result from
algebraic number theory (Theorem 25) to tackle this problem, in the proof of Theorem 5.
We also crucially use the fact that the sum of the absolute values of the coefficients of g is at
most pk, to get an upper bound on the quantities |g(ωi

p)|, for any i ∈ [p− 1]. Clearly, this
part requires much more non-triviality than [15].

Do not expect a tight linear lower bound. For p = 2, it follows from [15] that the
lower bound on the absolute value of the Fourier coefficients is equal to 1

sf
. We show in

Theorem 6 that there exists a family of Boolean valued functions on Zn
p , p > 3 such that

minχ∈supp(f)

∣∣∣f̂(χ)
∣∣∣ ≤ 1/s1+αp

f , hence proving that the lower bound on the absolute value of
the Fourier coefficients is not linear in 1

sf
in case of p > 3.
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Generalizing the notion of degree. For functions from Zn
2 to {−1,+1}, it is known that

f̂ = 1
pnHnf , where Hn denotes the Hadamard matrices (see [6]). Then, the degree deg2 is

defined naturally in the case of Zn
2 . The definition of degp becomes slightly challenging, since

the relation f̂ = 1
pnHnf is simply false over Zn

p . To define degp for Boolean valued functions
on Zn

p (see the archived version of the paper [7]), where p is an odd prime, we have defined
the matrix V1 using Vandermonde matrix, and have inductively defined the matrices Vn,
where n is a positive integer, via Kronecker product. Then we have shown that f̂ = 1

pnVnf ,
which helps us to define degp(f). We claim that this is an appropriate generalization of
degree, since Hn = Vn, over Zn

2 .

Finally, we remark that because of the absence of a linear structure on the solution space
of systems of equations over arbitrary Abelian groups (e.g. Zp2), we could not generalize this
to arbitrary Abelian groups.

2 Preliminaries

2.1 Fourier Analysis over Zn1
p1

× · · · × Znt
pt

Zn1
p1

× · · · × Znt
pt

forms a finite Abelian group under addition whose order is pn1
1 · · · pnt

t ,
where p1, . . . , pt are distinct primes. Its individual components form a vector space, that
is, Zni

pi
is a vector space over the field Zpi

for all i ∈ {1, 2, . . . t} whenever pi’s are primes.
Throughout this paper we will denote Zn1

p1
× · · · × Znt

pt
by G. So G is a finite Abelian group

with |G| = pn1
1 · · · pnt

t , where |.| denotes the order of G.
We will denote this root of unity by ωp a pth primitive root of unity, that is e2πι/p.
Let us begine by defining the characters of G.

▶ Definition 10 (Character). A character of G is a homomorphism χ : G → C× of G, that is,
χ satisfies the following:

χ(x+ y) = χ(x)χ(y), x, y ∈ G.

Equivalently, a character χ of G can be defined by

χ(x1, . . . , xt) = χr1(x1) · · ·χrt
(xt) = ωr1·x1

p1
· · ·ωrt·xt

pt
,

where χri
is a character of Zni

pi
for each i and is defined by χri

(xi) = ωri·xi
pi

, xi, ri ∈ Zni
pi

for
all i, ri ·xi =

∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component of ri and xi respectively
(It follows from the fact that any character χ of G can be written as the product of characters
of Zn1

p1
, . . . ,Znt

pt
). Let us denote this character by χr1,...,rt .

Now let us look at some properties of characters.

▶ Lemma 11. Let χ be a character of G. Then,
1. χ0(x) = 1 for all x ∈ G.
2. χ(−x) = χ(x)−1 = χ(x) for all x ∈ G.
3. For any character χ of G, where χ ̸= χ0,

∑
x∈G χ(x) = 0.

4. |χ0(x)| = 1 for all x ∈ G.

Now let us define the dual group of G.

▶ Definition 12 (Dual group). The set of characters of G forms a group under the operation
(χψ)(x) = χ(x)ψ(x) and is denoted by Ĝ, where χ and ψ are characters of G. Ĝ is called the
dual group of G.
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The following theorem states that G is isomorphic to its dual group.

▶ Theorem 13. Ĝ ∼= G.

Let us look at the definition of Fourier transform for functions on G.

▶ Definition 14 (Fourier transform). For any function f : G → C, the Fourier transform
f̂ : Ĝ → C is defined by

f̂(χr1,...,rt
) = 1

|G|
∑
x∈G

f(x)ω−r1·x1
p1

· · ·ω−rt·xt
pt

,

where xi, ri ∈ Zni
pi

for all i, and ri ·xi =
∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component
of ri and xi respectively.

▶ Remark 15. The Fourier transform of a function f : G → C is defined by

f̂(χ) = 1
|G|

∑
x∈G

f(x)χ(x),

where χ(x) is the conjugate of χ(x). The Definition 14 follows from this, as χ = χr1,...,rt
for

some ri ∈ Zni
pi
, i ∈ {1, . . . , t}.

The following theorem states that any function from G to C can be written as a linear
combination of characters of G.

▶ Theorem 16 (Fourier inversion formula). Any function f : G → C can be uniquely written
as a linear combination of characters of G, that is,

f(x) =
∑

χr1,...,rt ∈Ĝ

f̂(χr1,...,rt
)ωr1·x1

p1
· · ·ωrt·xt

pt
,

where xi, ri ∈ Zni
pi

for all i, ri · xi =
∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component
of ri and xi respectively.

▶ Theorem 17 (Parseval). For any two functions f, g : G → C,

Ex∈G [f(x)g(x)] =
∑
χ∈Ĝ

f̂(χ)ĝ(χ).

More specifically, if f : G → {−1,+1} is a Boolean-valued function then∑
χ∈Ĝ

|f̂(χ)|2 = 1.

Now let us define the Fourier sparsity of a function f on G.

▶ Definition 18 (Sparsity and Fourier Support).
The Fourier sparsity sf of a function f : G → C is defined to be the number of non-zero
Fourier coefficients in the Fourier expansion of f (Theorem 16). In this paper, by sparsity
of a function, we will mean the Fourier sparsity of the function.
Fourier support supp(f) of a function f : G → C denotes the set

{
χ | f̂(χ) ̸= 0

}
.

The following lemma states an important property of characters of a subgroup H =
H1 × · · · ×Ht of G.

MFCS 2024
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▶ Lemma 19.
∑

h∈H χh = |H| · 1H⊥ , where H = H1 × · · · × Ht is a subgroup of G, and
h = (h1, . . . , ht), hi ∈ Hi ∀i. That is,∑

h1∈H1,...,ht∈Ht

χh1 · · ·χht
= |H1| · · · |Ht| · 1H⊥

1
· · · 1H⊥

t
.

Here, for each i, Hi is a subgroup of Zni
pi

and hence a subspace Zni
pi

, as Zni
pi

is a vector space.

The proof of Lemma 19 is given in the archived version of the paper [7] due to lack of
space.

▶ Lemma 20. Let f, g be two Boolean valued functions from G to {−1,+1}. Then,

|f̂g(χ)| ≤ ||f ||2||g||2,

for any character χ ∈ Ĝ.

The proof of Lemma 20 is given in the archived version of the paper [7] due to lack of
space.

Now let us formally define the notion of ϵ-close and ϵ-far in ℓ2 below.

▶ Definition 21 (µ-close to s-sparse). Let f and g be two functions with domain Zn
p and range

C. Then the square of the ℓ2 distance between f and g is defined as Ex∈G [|f(x) − g(x)|2].
By Parseval’s identity the square of the ℓ2-distance between f and g can also be written as∑

χ∈Ẑn
p

| ̂(f − g)(χ)|2.
We say that f is ϵ-close to g in ℓ2 if the square of the ℓ2 distance between f and g is less

than ϵ. Similarly, f is ϵ-far from g in ℓ2 if the square of the ℓ2 distance between f and g is
at least ϵ.

The following lemma gives us a relation between the ℓ2 distance between two Boolean
valued functions f and g defined in Definition 21 and Prx[x ∈ G|f(x) ̸= g(x)].

▶ Lemma 22. The square of the ℓ2 distance between two Boolean valued functions f and g
defined in Definition 21 is equal to 4 Prx[x ∈ G|f(x) ̸= g(x)]. 2

The proof of Lemma 22 is given in the archived version of the paper [7] due to lack of
space.

Now let us define the total variation distance between two probability distributions.

▶ Definition 23. Let (Ω,F) be a probability space, and P and Q be probability distributions
defined on (Ω,F). The total variation distance between P and Q is defined in the following
way.

||P −Q||T V = sup
A∈F

|P (A) −Q(A)|.

▶ Lemma 24. Given two probability distributions P and Q on a probability space (Ω,F), the
total variation distance between P and Q is half of the L1 distance between them. That is,

||P −Q||T V = 1
2

∑
x

|P (x) −Q(x)|.

2 If f and g are two Booelan-valued functions then Prx[x ∈ G|f(x) ̸= g(x)] is also called the Hamming
distance between the two functions. So the ℓ2 norm between two Boolean-valued functions is 4 times
the Hamming distance between two Boolean-valued functions.
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3 Lower bound on the Fourier coefficients

In this section, we will prove Theorem 5 assuming Theorem 3, which gives us a lower bound
on the Fourier coefficients of functions from Zn

p to {−1,+1}, where p is a prime number.
This is a generalization on the granularity of a function f : Zn

2 → R when the domain of the
function is Zn

p . We will use the following theorem; for more details see the archived version
of the paper [7].

▶ Theorem 25. For n ∈ Z, let ωn be a primitive root of unity. Let f ∈ Z[x], such that
f(ωn) ̸= 0. Then,∣∣∣∣ ∏

i∈Z∗
n

f(ωi
n)

∣∣∣∣ ≥ 1 .

Proof of Theorem 5. If we put µ = 0 in Theorem 3, we get that there exists a g ∈ Z[X],
such that |f̂(χ)| ≥ |g(ωp)/pk|, where k = ⌈logp sf ⌉ + 1, sf being the sparsity of the Boolean
valued function f . We know by Theorem 25 that |

∏p−1
i=1 g(ωi

p)| ≥ 1. Therefore,

∣∣∣∣ p−1∏
i=1

g(ωi
p)

∣∣∣∣ ≥ 1 ⇒
p−1∏
i=1

∣∣∣∣g(ωi
p)

pk

∣∣∣∣ ≥
(

1
pk

)p−1
⇒

∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
pk(p−1) ≥ 1

(p2sf )p−1 .

For p = 2, g(ωi
p) is an integer, so∣∣∣∣g(ωp)

pk

∣∣∣∣ ≥ 1
4sf

(3.1)

For p ̸= 2, the conjugate of g(ωi
p), namely g(ωi

p), is nothing but = g(ωp−i
p ). Since

|g|1 ≤ pk, it follows that for any i ∈ [p− 1], |g(ωi
p)/pk| ≤ 1. Therefore,

∣∣∣∣ p−1∏
i=1

g(ωi
p)

∣∣∣∣ ≥ 1 ⇒
(p−1)/2∏

i=1
|g(ωi

p)|2 ≥ 1

⇒
(p−1)/2∏

i=1

∣∣∣∣g(ωi
p)

pk

∣∣∣∣2
≥ ( 1

pk
)p−1

⇒
∣∣∣∣g(ωp)
pk

∣∣∣∣2
≥ 1

pk(p−1)

⇒
∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
pk(p−1)/2 ≥ 1

(p2sf )(p−1)/2 . (3.2)

So, from Equation (3.1) and Equation (3.2), we have∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
(p2sf )⌈(p−1)/2⌉ . ◀

▶ Remark 26. Let p be a prime. The proof-technique of Theorem 5 gives the following. If
the Fourier coefficients of a Boolean function f are k granular, where k = ⌈logp s⌉ + 1, then
the Fourier coefficients of f2 are 2k-granular, and their absolute values are ≥ 1

(p2s)(p−1) .
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4 Sparse Boolean-valued function with small Fourier coefficients

In this section, for a fixed prime p ≥ 5, and arbitrarily large s, we give an example of a
function f : Zn

p → {−1,+1}, such that the minimum of the absolute value of its Fourier
coefficients is at most o (1/s). In this section, we give the details of the construction of
Theorem 6; see the archived version of the paper [7].

To prove Theorem 6 we define a function, which is basically composition of ANDn and
univariate Threshold functions; we call AT.
▶ Definition 27. Let us define function AT : Zn

p → {−1,+1} by

AT(x1, x2, . . . , xn) := ANDn

(
I≥ p+1

2
(x1), I≥ p+1

2
(x2), . . . , I≥ p+1

2
(xn)

)
,

where the univariate Threshold function I≥ p+1
2

: Zp → {−1,+1}, is defined as:

I≥ p+1
2

(x) =
{

1 for x ≥ p+1
2

−1 otherwise.

▶ Lemma 28. There is a Fourier coefficient of AT, whose absolute value is 1
pnc , where c is a

constant > 1.
The proof of Lemma 28 is given in the archived version of the paper [7]. Now we are

ready to prove Theorem 6.

Proof of Theorem 6. This directly follows, as we can claim from Lemma 28 that there exists
a family of functions in Zn

p whose absolute value of the minimum coefficient is not linear in
1

sparsity , but actually = Ω( 1
sparsity1+ϵp ). where ϵp > 0, is a p-dependent constant. ◀

▶ Lemma 29. There exists a function whose one of the Fourier coefficients is less than that
of AT.

The proof of Lemma 29 is given in the archived version of the paper [7].

5 Testing Algorithm for Sparsity

Here we present the whole algorithm (Algorithm 1) for sparsity testing over Zn
p (see next

page). However, we describe the various steps of the algorithm in the archived version of the
paper [7], including the correctness and the analysis of the algorithm in the archived version
of the paper [7].

6 Conclusion

Gopalan et al. [15] was the first to study the problem of testing Fourier sparsity of Boolean
function over Zn

2 . Along the way, they were able to drive fundamental properties of Boolean
functions over Zn

2 , like Granularity of the Fourier spectrum, that have found many other
applications [3]. In this work, we have extended their results for groups that can be written
as Zn1

p1
× · · · × Znt

pt
.

The most natural question that arises from our work will be to study this problem for
(finite) general Abelian groups. Unfortunately, our work does not extend to finite Abelian
groups, because of the absence of the component-wise vector space structure. In particular,
it would be nice to get a lower bound on the absolute value of non-zero Fourier coefficients
of a sparse Boolean-valued function over Zn

p2 . In any way, our results in this paper should be
seen as a first step toward solving the lower bound problem over finite Abelian group.

Finally, we ask whether it is possible to show a better (p-dependent) lower bound over Zn
p

on the query-complexity of any adaptive sparsity testing algorithm.
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Algorithm 1 Test Sparsity.

1: Input: s, ϵ, and query access to f : Zn
p → {−1,+1}.

2: Output: YES, if f is s-sparse, and NO, if it is ϵ-far from any Boolean valued function.

3: Parameter setting: Set t := ⌈2 logp s + logp 20⌉ + 1, τ := min( ϵ2

40pt ,
1

(p2s)p−1 ) M :=
O(log(pt) · 1

τ2 )

4: Choose v1, . . . , vt linearly independent vectors uniformly at random from Zn
p .

5: Let H = Span{v1, . . . , vt}
6: Pick (z1, x1), . . . , (zM , xM ) uniformly and independently from H × Zn

p

7: Query f(x1), . . . , f(xM ) and f(x1 − z1), . . . , f(xM − zM )
8: for For every r ∈ Zn

p do
9: Let 1

M

∑M
i=1 χr(zi)f(xi)f(xi − zi) be the estimate of wt(r +H⊥)

10: end for
11: if number of r for which the estimate of wt(r +H⊥) is ≥ 2τ

3 is ≤ s then
12: Output YES
13: else
14: Output NO
15: end if
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