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Abstract
In this paper we give several applications of Littlestone dimension. The first is to the model of
Angluin and Dohrn [1], where we extend their results for learning by equivalence queries with random
counterexamples. Second, we extend that model to infinite concept classes with an additional source
of randomness. Third, we give improved results on the relationship of Littlestone dimension to
classes with extended d-compression schemes, proving the analog of a conjecture of Floyd and
Warmuth [4] for Littlestone dimension.
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1 Introduction

In query learning, a learner attempts to identify an unknown concept from a collection via
a series of data requests called queries. Typically, algorithms designed for learning in this
setting attempt to bound the number of required queries to identify the target concept in
the worst-case scenario. If one imagines the queries of the learner being answered by a
teacher, the usual setup imagines the teacher answering queries in an adversarial manner,
with minimally informative answers. Alternatively, for a given algorithm, the bounds for the
traditional model are on the worst-case answers over all potential targets. In variations of
the model, one of these two factors is usually modified.

For instance, Kumar, Chen, and Singla [7] study the case in which the answers are
assumed to be maximally informative in a certain sense. In this manuscript, we first work in
the setup originating with Angluin and Dohrn [1], where we assume that the answers to the
queries are randomly selected with respect to some fixed probability distribution.
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42:2 Applications of Littlestone Dimension to Query Learning and to Compression

Consider a concept class C = {C1, . . . , Cn}, subsets of a fixed set X. Fix a target concept
A ∈ C. An equivalence query consists of the learner submitting a hypothesis B ∈ C to a
teacher, who either returns yes if A = B, or a counterexample x ∈ A△B. In the former case,
the learner has learned A, and in the latter case, the learner uses the new information to
update and submit a new hypothesis.

Angluin and Dohrn [1] fix a probability distribution µ on X and assume that the teacher
selects the counterexamples randomly with respect to µ restricted to A△B. They show
that for a concept class C of size n, there is an algorithm in which the expected number
of queries to learn any concept is at most log2(n). It is natural to wonder whether there
is a combinatorial notion of dimension which can be used to bound the expected number
of queries independent of the size of the class - perhaps even in infinite classes. In fact,
Angluin and Dohrn [1] (Theorem 25) already consider this and show that the VC-dimension
of the concept class is a lower bound on the number of expected queries. On the other hand,
Angluin and Dohrn [1] (Theorem 26), using an example of [9], show that the VC-dimension
cannot provide an upper bound for the number of queries.

The motivation for bounds depending on some notion of dimension rather than the
number of concepts is two-fold:

Many combinatorial notions of dimension (e.g. Littlestone or VC) of a class C can be
small while |C| is large.

Investigating this model of learning in settings where C is an infinite class will require
methods and bounds that do not use |C|.

Roughly speaking, the Littlestone dimension (or Ldim) [9] of a concept class C over
domain X is the maximal depth of a complete binary decision tree T such that T ’s nodes are
associated with elements of X and T ’s edges are associated with binary labels such that each
root-to-leaf path in T agrees in the labeling of its respective elements with some concept in
C. If we require all nodes of T at the same depth to be associated with the same element of
X, this yields the definition of VC dimension.

We show that the Littlestone dimension provides such an upper bound; we give an
algorithm that yields a bound that is linear in the Littlestone dimension for the expected
number of queries needed to learn any concept. In Section 2 we establish the bounds for
finite concept classes C.

In Section 3 we give a specific example that shows finite Littlestone dimension of an
infinite class C is not sufficient to guarantee the learnability of the class in the model of
Angluin and Dohrn [1]. That is, we show the expected number of queries is impossible
to bound over all target concepts, even in very simple infinite classes. Suppose that the
target concept is itself selected randomly with respect to some (perhaps unrelated to the
feedback mechanism) probability distribution. In this case, we give an algorithm so that the
expected number of queries (over both sources of randomness) is at most Õ(d) where d is the
Littlestone dimension of the class C. This result uses the bounds developed in Section 2 in an
essential way, in particular by using the finite class’s Littlestone dimension instead of its size.

In Section 4, we give another application of Littlestone dimension - to compression
schemes, which answers a question of Johnson and Laskowski [6] on d-compression with b

extra bits, a notion originating with Floyd and Warmuth [4]. The existence of a d-compression
is closely related to various notions of learning; d-compressibility of a class C implies the
class has VC-dimension at most d. A famous conjecture of Floyd and Warmuth [4] asks if
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every VC-class has a d-compression where d is the VC-dimension.1 Our result in Section
4 proves a strong version of the conjecture for Littlestone dimension. In Section 4 we also
explain some of the many variants of this problem which have been previously solved.

2 Random counterexamples and EQ-learning

In this section, we essentially work in the setting of Angluin and Dohrn [1] with slightly
different notation. Throughout this section, let X be a finite set, let C be a set system on X,
and let µ be a probability measure on X. For A, B ∈ C, let

∆(A, B) = {x ∈ X | A(x) ̸= B(x)}

denote the symmetric difference of A and B.

▶ Definition 2.1. We denote, by Cx̄=ī for x̄ ∈ Xn and ī ∈ {0, 1}n, the set system {A ∈
C | A(xj) = ij , j = 1, . . . , n}. For A ∈ C and a ∈ X, we let

u(A, a) = Ldim(C) − Ldim(Ca=A(a)).

For any a ∈ X, either Ca=1 or Ca=0 has Littlestone dimension strictly less than that of C and
so:

▶ Lemma 2.2. For A, B ∈ C and a ∈ X with A(a) ̸= B(a),

u(A, a) + u(B, a) ≥ 1.

Next, we define a directed graph that is similar to the elimination graph of Angluin and
Dohrn [1].

▶ Definition 2.3. We define the thicket query graph GT Q(C, µ) to be the weighted directed
graph on vertex set C such that the directed edge from A to B has weight d(A, B) equal to the
expected value of Ldim(C) − Ldim(Cx=B(x)) over x ∈ ∆(A, B) with respect to the distribution
µ|∆(A,B).

2

▶ Definition 2.4. The query rank of A ∈ C is defined as: infB∈C(d(A, B)).

▶ Lemma 2.5. For any A ̸= B ∈ C, d(A, B) + d(B, A) ≥ 1.

Proof. Noting that ∆(A, B) = ∆(B, A), and using Lemma 2.2:

d(A, B) + d(B, A) =
∑

a∈∆(A,B)

µ(a)
µ(∆(A, B)) (u(A, a) + u(B, a))

≥
∑

a∈∆(A,B)

µ(a)
µ(∆(A, B))

= 1. ◀

▶ Definition 2.6 (Angluin and Dohrn [1], Definition 14). Let G be a weighted directed graph
and l ∈ N, l > 1. A deficient l-cycle in G is a sequence v0, . . . vl−1 of distinct vertices such
that for all i ∈ [l], d(vi, v(i+1) ( mod l)) ≤ 1

2 with strict inequality for at least one i ∈ [l].

1 Resolving whether there is an O(d) compression has a reward of 600 dollars [12].
2 Here one should think of the query by the learner as being A, and the actual hypothesis being B. The

teacher samples from ∆(A, B), and the learner now knows the value of the hypothesis on x.

MFCS 2024



42:4 Applications of Littlestone Dimension to Query Learning and to Compression

The next result is similar to Theorems 16 (the case l = 3) and Theorem 17 (the case
l > 3) of Angluin and Dohrn [1], but our proof is rather different (note that the case l = 2
follows easily from Lemma 2.5).

▶ Theorem 2.7. The thicket query graph GT Q(C, µ) has no degenerate l-cycles for l ≥ 2.

The analogue of Theorem 16 of Angluin and Dohrn [1] can be adapted in a very similar
manner to the technique employed by them. However, the analogue of the proof of Theorem
17 of Angluin and Dohrn [1] falls apart in our context; the reason is that Lemma 2.2 is
analogous to their Lemma 6 (and Lemma 2.5 is analogous to their Lemma 13), but our
lemmas involve inequalities instead of equations. The inductive technique of Angluin and
Dohrn [1, Theorem 17] is to shorten degenerate cycles by considering the weights of a
particular edge in the elimination graph along with the weight of the edge in the opposite
direction. Since one of those weights being large forces the other to be small (by the equalities
of their lemmas), the induction naturally separates into two useful cases. In our thicket query
graph, things are much less tightly constrained - one weight of an edge being large does not
force the weight of the edge in the opposite direction to be small. However, the technique
employed in our proof seems to be flexible enough to adapt to prove Theorems 16 and 17 of
Angluin and Dohrn [1].

Proof. Suppose the vertices in the degenerate l-cycle are A0, . . . , Al−1. By the definition of
degenerate cycles and d(−, −), we have, for each i ∈ Z/lZ, that

∑
a∈∆(Ai,Ai+1)

µ(a)
µ(∆(Ai, Ai+1))u(Ai, a) ≤ 1

2 .

Clearing the denominator we have∑
a∈∆(Ai,Ai+1)

µ(a)u(Ai, a) ≤ 1
2µ(∆(Ai, Ai+1)). (2.1)

Note that throughout this argument, the coefficients are being calculated modulo l. Notice
that for at least one value of i, the inequality in 2.1 must be strict.

Let G, H be a partition of

X = {A1, . . . , Al}.

Now define

D(G, H) := {a ∈ X | ∀A1, B1 ∈ G, ∀A2, B2 ∈ H, A1(a) = B1(a), A2(a) = B2(a), A1(a) ̸= A2(a)} .

The following fact follows from the definition of ∆(A, B) and D(−, −).

▶ Fact 2.8. The set ∆(Ai, Ai+1) is the disjoint union, over all partitions of X into two
pieces G, H such that Ai ∈ G and Ai+1 ∈ H of the sets D(G, H).

Now, take the sum of the inequalities 2.1 as i ranges from 1 to l. On the LHS of the
resulting sum, we obtain

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)u(Ai, a)

 .
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On the RHS of the resulting sum, we obtain

1
2

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)

 .

Given a partition G, H of {A1, . . . , Al} we note that the term D(G, H) = D(H, G) appears
exactly once as an element of the above sum for a fixed value of i exactly when Ai ∈ G and
Ai+1 ∈ H or Ai ∈ H and Ai+1 ∈ G.

Consider the partition G, H of X . Suppose that Aj , Aj+1, . . . , Ak is a block of elements
each contained in G, and that Aj−1, Ak+1 are in H. Now consider the terms i = j − 1 and
i = k of the above sums (each of which where D(G, H) appears).

On the left hand side, we have
∑

a∈D(G,H) µ(a)u(Aj−1, a)) and
∑

a∈D(G,H) µ(a)u(Ak, a)).
Note that for a ∈ D(G, H), we have a ∈ ∆(Aj−1, Ak). So, by Lemma 2.2, we have∑

a∈D(G,H)

µ(a)u(Aj−1, a) +
∑

a∈D(G,H)

µ(a)u(Ak, a) ≥
∑

a∈D(G,H)

µ(a).

On the RHS, we have

1
2

 ∑
a∈D(G,H)

µ(a) +
∑

a∈D(G,H)

µ(a)

 =
∑

a∈D(G,H)

µ(a).

For each G, H a partition of X, the terms appearing in the above sum occur in pairs as
above by Fact 2.8, and so, we have the LHS is at least as large as the RHS of the sum of
inequalities 2.1, which is impossible since one of the inequalities must have been strict by
our degenerate cycle. ◀

▶ Theorem 2.9. There is at least one element A ∈ C with query rank at least 1
2 .

Proof. If not, then for every element A ∈ C, there is some element B ∈ C such that
d(A, B) < 1

2 . So, pick, for each A ∈ C, an element f(A) such that d(A, f(A)) < 1
2 . Now, fix

A ∈ C and consider the sequence of elements of C given by (f i(A)); since C is finite, at some
point the sequence repeats itself. So, take a list of elements B, f(B), . . . , fn(B) = B. By
construction, this yields a bad cycle, contradicting Theorem 2.7. ◀

2.1 The thicket max-min algorithm
In this subsection we show how to use the lower bound on query rank proved in Theorem
2.9 to give an algorithm that yields the correct concept in linearly (in the Littlestone
dimension) many queries from C. The approach is fairly straightforward – essentially the
learner repeatedly queries the highest query rank concept. The approach is similar to that
taken in Angluin and Dohrn [1, Section 5] but with query rank in place of their notion of
informative.

Now we informally describe the thicket max-min-algorithm. At stage i, the learner is
given information of a concept class Ci. The learner picks the query

A = argmaxA∈Ci
(minB∈Ci

dCi
(A, B)) .

The algorithm halts if the learner has picked the actual concept C. If not, the teacher returns
a random element ai ∈ ∆(A, C) at which point the learner knows the value of C(ai). Then

Ci+1 = (Ci)ai=C(ai).

Let T (C) be the expected number of queries before the learner correctly identifies the target
concept.

MFCS 2024



42:6 Applications of Littlestone Dimension to Query Learning and to Compression

▶ Theorem 2.10. The expected number of queries to learn a concept in a class C is less than
or equal to 2 Ldim(C).

Proof. The expected drop in the Littlestone dimension of the concept class induced by any
query before the algorithm terminates is at least 1/2 by Theorem 2.9; so the probability that
the drop in the Littlestone dimension is positive is at least 1/2 for any given query. So, from
2n queries, one expects at least n drops in Littlestone dimension, at which point the class is
learned. ◀

3 Equivalence queries with random counterexamples and random
targets

Let C consist the collection of intervals
{(

1
n+1 , 1

n

)
| n ∈ N

}
with µ the Lebesgue measure on

the unit interval. This concept class has Littlestone dimension one since any two concepts
are disjoint. There is no upper bound on the number of expected queries (using the model
with random counterexamples of the previous section) that is uniform over all targets.

To see why, suppose the learner guesses interval
(

1
n+1 , 1

n

)
for some n. For any ϵ > 0 there

is N ∈ N such that with probability greater than 1 − ϵ, the learner gets a counterexample
from the interval they guessed,

(
1

n+1 , 1
n

)
. Of course, even with this additional information,

no matter the learner’s guess at any stage at which they have received only negative
counterexamples, this is clearly still the case. Thus, there can be no bound on expected
queries which is uniform over all target concepts.

In this section we introduce an additional source of randomness, which allows for learning
over infinite classes C.3 So, suppose C is a (possibly infinite) set of concepts on a set X.
Suppose that we have probability measures µ on X and τ on C. Suppose a target A ∈ C is
selected randomly according to the distribution τ and the counterexamples to equivalence
queries are selected randomly according to the distribution µ.

▶ Theorem 3.1. Suppose that C is countable with finite Littlestone dimension d. There is
an algorithm such that the expected number of queries over distributions µ on X and τ on C
is at most Õ(d).

Proof. Let ϵk = 1
2k+1 for k ∈ N. The idea of the algorithm is to run our earlier algorithm on

a 1 − ϵk fraction of the concepts with respect to the measure τ .
At stage k of the algorithm, we observe the following. Since C is countable, enumerate the

collection C = {Ci}i∈N. Then since
∑∞

i=1 P (Ci) = 1, for any ϵk > 0, there is Nk = N(ϵk) ∈ N
such that

∑∞
i=1 P (Ci) ≥ 1 − ϵk.

Conditional on the target being among the first Nk concepts, the next idea is to run
the algorithm from the previous section on this finite set for n steps where n is such that
the probability that we have not identified the target after n steps is less than ϵ, for some
0 < ϵ < 1. This number n = nd,ϵ depends only on the Littlestone dimension and ϵ, but not
on N as we will explain.

We now bound the probability that the algorithm has not terminated after n steps,
conditional on the target being in the first Nk many concepts. Since at any step, the
probability that the Littlestone dimension drops is at least 1

2 by Theorem 2.9, the probability
that the algorithm has not terminated after n steps is at most the probability of a binomial
random variable with probability 1

2 achieving at most d − 1 successes in n attempts, which is

3 One might also think of the random EQ learning of Angluin and Dohrn as analyzing the maximum
number of expected number of queries over all possible targets, while our model will analyze the
expected number of queries where the expectation is taken over the concepts (with a fixed but arbitrary
distribution) and over the counterexamples.
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d−1∑
k=0

(
n

k

)(
1
2

)n

≤ nd/2n.

Note that nd/2n < ϵ whenever n − d log n > log
( 1

ϵ

)
. Hence,

n ≥ Õ(d + log(1/ϵ))

is sufficient.
So at stage k, we run the algorithm for n steps as specified above. Either the target

concept is found or we continue to stage k + 1 on the larger concept class Nk. Since

(1 − ϵ1)
( ∞∑

k=1
ϵk

)
= 1/2

∞∑
k=1

1/2k+1 < 1,

the expected total number of queries is still bounded by Õ(d + log(1/ϵ)).4 ◀

4 Compression schemes and stability

In this section, we follow the notation and definitions given in Johnson and Laskowski [6]
on compression schemes, a notion due to Littlestone and Warmuth [10]. Roughly speaking,
C admits a d-dimensional compression scheme if, given any finite subset F of X and some
f ∈ C, there is a way of encoding the set F with only d-many elements of F in such a way
that F can be recovered.

We will give a formal definition, but we note that numerous variants of this idea appear
throughout the literature, including as size d-array compression [2], extended compression
schemes with b extra bits [4], and as unlabeled compression schemes [8]. In the definitions
below, we let dom(f) denote the domain of f and Cfin the restriction of C to finite subsets.

The following definition gives the notion of compression we consider within this section; the
notion is equivalent to the notion of a d-compression with b extra bits [4]. The equivalence of
these two notions is proved by Johnson and Laskowski [6, Proposition 2.1]. In our compression
schemes, the role of the b extra bits is played by the reconstruction functions, and of course,
the number of extra bits can be bounded in terms of the number of reconstruction functions
(and vice versa). Of course, one is interested in optimizing both the size of the compression
and the number of reconstruction functions (extra bits) in general.

▶ Definition 4.1. We say that a concept class C has a d-compression if there is a compression
function κ : Cfin → Xd and a finite set R of reconstruction functions ρ : Xd → 2X such that
for any f ∈ Cfin
1. κ(f) ⊆ dom(f)
2. f = ρ(κ(f))|dom(f) for at least one ρ ∈ R.

We work with the above notion mainly because it is the notion used in Johnson and
Laskowski [6], and our goal is to improve a result therein. That result was later improved by
Laskowski and appears in the unpublished notes of Guingona [5] (Theorem 4.1.3). When the
original work on this result was completed, we were not aware of the work of Guingona [5],
but as it turns out, our result improves both of these (the latter uses exponentially many
reconstruction functions, while we use linearly many).

4 There isn’t anything particularly special about the sequence ϵk that we chose. Any sequence (ϵk) going
to zero whose sum converges can be seen to work in the algorithm and affects only the constants in the
expected number of steps, which we are not optimizing.

MFCS 2024
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Johnson and Laskowski [6] prove that a concept class with finite Littlestone dimension
has an extended d-compression for some d.5 The precise value of d is not determined there,
but was conjectured to be the Littlestone dimension. In Theorem 4.4, we will show that
d can be taken to be the Littlestone dimension and d + 1 many reconstruction functions
suffice.6

The question in Johnson and Laskowski [6] is the analogue (for Littlestone dimension) of
a well-known open question from VC-theory [4]: is there a bound A(d) linear in d such that
every class of VC-dimension d has a compression scheme of size at most A(d)? In general,
there is known to be a bound that is at most exponential in d [11].

▶ Definition 4.2. Suppose Ldim(C) = d. Given a partial function f , say that f is exceptional
for C if for all a ∈ dom(f),

C(a,f(a)) := {g ∈ C | g(a) = f(a)}

has Littlestone dimension d.

▶ Definition 4.3. Suppose Ldim(C) = d. Let fC be the partial function given by

fC(x) =


0 Ldim(C(x,0)) = d

1 Ldim(C(x,1)) = d

undefined otherwise.

It is clear that fC extends any partial function exceptional for C.

▶ Theorem 4.4. Any concept class C of Littlestone dimension d has an extended d-
compression with (d + 1)-many reconstruction functions.

Proof. If d = 0, then C is a singleton, and one reconstruction function suffices. So we may
assume d ≥ 1.

Fix some f ∈ Cfin with domain F . We will run an algorithm to construct a tuple of length
at most d from F by adding one element at each step of the algorithm. During each step of
the algorithm, we also have a concept class Ci, with C0 = C initially.

If f is exceptional in Ci−1, then the algorithm halts. Otherwise, pick either:
ai ∈ F such that f(ai) = 1 and

(Ci−1)(ai,1) := {g | g ∈ Ci−1, g(ai) = 1}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(ai,1) =
{g | g ∈ Ci−1, g(ai) = 1}.

di ∈ F such that f(di) = 0 and

(Ci−1)(di,0) := {g | g ∈ Ci−1, g(di) = 0}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(di,0).

5 Their result is formulated for the sets of realizations of first-order formulas that are stable, but their
proofs work for general concept classes, and Chase and Freitag [3] explain that stability is equivalent to
finite Littlestone dimension.

6 After proving this, we became aware of the unpublished result of Laskowski appearing as [5, Theorem
4.1.3] which shows one can take d to be the Littlestone dimension and uses 2d many reconstruction
functions.
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We allow the algorithm to run for at most d steps. There are two distinct cases. If our
algorithm has run for d steps, let κ(f) be the tuple (ā, d̄) of all of the elements ai as above
followed by all of the elements di as above for i = 1, . . . , d. By choice of ai and di, this tuple
consists of d distinct elements. By construction the set

C(ā,d̄) := {g ∈ C| g(ai) = 1, g(di) = 0}

has Littlestone dimension 0, that is, there is a unique concept in this class. So, given
(c1, c2, . . . , cn) ∈ Xd consisting of distinct elements, for i = 0, . . . , d, we let ρi(c1, . . . , cn) be
some g belonging to

{g ∈ C | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i},

if such a g exists. By construction, for some i, the Littlestone dimension of the concept class
{g ∈ C ∩ F | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i} is zero, and so g is uniquely specified
and will extend f .

We handle cases where the algorithm halts early by augmenting two of the reconstruction
functions ρ0 and ρ1 defined above. Because ρ0 and ρ1 have so far only been defined for
tuples consisting of d distinct elements, we can extend these to handle exceptional cases by
generating tuples with duplicate elements.

If the algorithm stops at some step i > 1, then it has generated a tuple of length i − 1
consisting of some elements aj and some elements dk. Let ā consist of the elements aj chosen
during the algorithm, and let d̄ consist of the elements dk chosen during the running of the
algorithm. Observe that f is exceptional for C(ā,d̄).

If ā is not empty, with initial element a′, then let κ(f) = (ā, a′, d̄, a′, . . . , a′) ∈ F d. From
this tuple, one can recover (ā, d̄) (assuming ā is nonempty), so we let ρ1(ā, a′, d̄, a′, . . . , a′) be
some total function extending fC(ā,d̄)

, which itself extends f . So ρ1(ā, d̄) extends f whenever
the algorithm halts before step d is completed and some ai was chosen at some point. If
ā is empty, then let κ(f) = (d̄, d′, . . . , d′) ∈ F d, where d′ is the initial element of d̄. From
this tuple, one can recover (∅, d̄) (assuming ā is empty), so we let ρ0(d̄, d′, . . . , d′) be total
function extending fC(∅,d̄)

, which itself extends f . Finally, if the algorithm terminates during
step 1, then it has generated the empty tuple. In this case, let κ(f) = (c, . . . , c) for some
c ∈ F . Then Ldim(C) = Ldim(C(c,l)) for some l ∈ {0, 1}. In particular, if we have defined
κ(f ′) = (c, . . . , c) above for some f ′ where the algorithm only returns c (rather than the
empty tuple), then 1 − l = f ′(c) ̸= f(c), and so any such f ′ is handled by ρ1−l. So we may
overwrite ρl to set ρ(c, . . . , c) to be a total function extending fC , which itself extends f . For
any tuple output by our algorithm, one of the reconstruction functions produces an extension
of the original concept. ◀
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