
The Even-Path Problem in Directed
Single-Crossing-Minor-Free Graphs
Archit Chauhan #

Chennai Mathematical Institute, India

Samir Datta #

Chennai Mathematical Institute & UMI ReLaX, India

Chetan Gupta #

Indian Institute of Technology, Roorkee, India

Vimal Raj Sharma #

Indian Institute of Technology, Jodhpur, India

Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a
fundamental NP-complete problem [24] known as the EvenPath problem. Nedev [28] proved in
1999, that for directed planar graphs, the problem can be solved in polynomial time. More than
two decades since then, we make the first progress in extending the tractable classes of graphs for
this problem. We give a polynomial time algorithm to solve the EvenPath problem for classes of
H-minor-free directed graphs,1 where H is a single-crossing graph.

We make two new technical contributions along the way, that might be of independent interest.
The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking
networks. These are graphs that mimic parities of all possible paths between a designated set of
terminals of the original graph.

Finding vertex disjoint paths between given source-destination pairs of vertices is another
fundamental problem, known to be NP-complete in directed graphs [14], though known to be
tractable in planar directed graphs [34]. We encounter a natural variant of this problem, that of
finding disjoint paths between given pairs of vertices, but with constraints on parity of the total
length of paths. The other significant contribution of our paper is to give a polynomial time algorithm
for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions
(and also in directed graphs of bounded treewidth).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.43

Related Version Full Version: http://arxiv.org/abs/2407.00237

Funding Archit Chauhan: Partially supported by a grant from Infosys foundation and TCS PhD
fellowship.
Samir Datta: Partially supported by a grant from Infosys foundation.

Acknowledgements We would like to thank anonymous reviewers for their useful comments and
corrections in past submissions. We would also like to thank Martin Grohe for pointing out some
references. We are also grateful to Geevarghese Philip and Vishwa Prakash H .V. for their help in
reading some sections and improving the presentation of this paper.

1 Throughout this paper, when referring to concepts like treewidth or minors of directed graphs, we intend
them to apply to the underlying undirected graph.

© Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:archit@cmi.ac.in
mailto:sdatta@cmi.ac.in
https://orcid.org/0000-0003-2196-2308
mailto:chetan.gupta@cs.iitr.ac.in
https://orcid.org/0000-0002-0727-160X
mailto:vimalraj@iitj.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2024.43
http://arxiv.org/abs/2407.00237
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


43:2 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

1 Introduction

Given a directed graph G, and two vertices s and t in it, checking for the existence of a
a simple directed path from s to t is a fundamental problem in graph theory, known as
the Reachability problem. The EvenPath problem is a variant of Reachability, where given a
directed graph G and two vertices s and t we need to answer whether there exists a simple
path of even length from s to t. EvenPath was shown to be NP-complete by LaPaugh and
Papadimitriou [24] via a reduction from an NP-complete problem, the Path-Via-A-Vertex
problem. On the other hand, they also show in [24] that its undirected counterpart is solvable
in linear time. Several researchers have recently studied both the space, and simultaneous
time-space complexity of EvenPath for special classes of graphs [5, 10]. A similar problem,
that of finding a simple directed cycle of even length, called EvenCycle (which easily reduces
to EvenPath), has also received significant attention. While polynomial-time algorithms have
been known since long for the undirected version ([24, 39]), the question of tractablility of
the directed version was open for over two decades before polynomial-time algorithms were
given by McCuiag, and by Robertson, Seymour and Thomas [27]. More recently, Björklund,
Husfeldt and Kaski [3] gave a randomized polynomial-time algorithm for finding a shortest
even directed cycle in directed graphs.

Although EvenPath is NP-complete for general directed graphs, it is natural and interesting
to investigate the classes of graphs for which it can be solved efficiently. In 1994, before the
algorithm of [27], Gallucio and Loebl [15] gave a polynomial-time algorithm for EvenCycle
in planar directed graphs. They did so by developing a routine for a restricted variant of
EvenPath (when s, t lie on a common face, and there are no even directed cycles left on
removal of that face). Following that, Nedev in 1999, showed that EvenPath in planar graphs
is polynomial-time solvable [28]. Planar graphs are an example of a minor-closed family,
which are families of graphs that are closed under edge contraction and deletion. Minor-closed
families include many more natural classes of graphs, like graphs of bounded genus, graphs
of bounded treewidth, apex graphs. A theorem of Robertson-Seymour [33] shows that every
minor-closed family can be characterized by a set of finite forbidden minors. Planar graphs,
for example, are exactly graphs with K3,3,, K5 as forbidden minors [38]. In this paper, we
consider the family of H-minor-free graphs, where H is any fixed single-crossing graph, i.e.,
H can be drawn on the plane with at most one crossing. Such families are called single-
crossing-minor-free graphs. They include well-studied classes of graphs like K5-minor-free
graphs, K3,3-minor-free graphs.2 Robertson and Seymour showed that single-crossing-minor
free graphs admit a decomposition by (upto) 3-clique-sums, into pieces that are either of
bounded treewidth, or planar [30]. This is a simpler version of their more general theorem
regarding decomposition of H-minor free graphs, (where H is any fixed graph) by clique
sums, into more complex pieces, involving apices and vortices [32]. Solving EvenPath on
single-crossing-minor free graphs would therefore be a natural step to build an attack on
more general minor closed familes.

Many results on problems like reachability, matching, coloring, isomorphism, for planar
graphs have been extended to K3,3-minor-free graphs and K5-minor-free graphs as a next
step (see [36, 21, 22, 37, 35, 11, 2]). Chambers and Eppstein showed in [6] that using the
results of [4, 17] for maximum flows in planar and bounded treewidth graphs, respectively,
maximum flows in single-crossing-minor-free graphs can be computed efficiently. Following
the result of [1] which showed that perfect matching in planar graphs can be found in NC,
Eppstein and Vazirani in [13], extended the result to single-crossing-minor-free graphs.

2 Both K5, K3,3 have crossing number one. Also, note that both the families, K5-minor-free, and K3,3-
minor-free, have graphs of O(n) genus.



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:3

1.1 Our Contributions
From here onwards, we will drop the term “directed” and assume by default that the
graphs we are referring to are directed, unless otherwise stated. Operations like clique sums,
decomposing the graphs along separating triples, pairs, etc., will be applied on the underlying
undirected graphs. The following is the main theorem we prove in this paper:

▶ Theorem 1. Given an H-minor-free graph G for any fixed single-crossing graph H, the
EvenPath problem in G can be solved in polynomial time.

We first apply the theorem of Robertson-Seymour (theorem 3), and decompose G using
3-clique sums into pieces that are either planar or of bounded treewidth. Though EvenPath is
tractable in planar graphs, and can also be solved in bounded treewidth graphs by Courcelle’s
theorem, straightforward dynamic programming does not yield a polynomial-time algorithm
for the problem, as we will explain in subsequent sections. One of the technical ingredients
that we develop to overcome the issues is that of parity-mimicking networks, which are graphs
that preserve the parities of various paths between designated terminal vertices of the graph it
mimics. We construct them for upto three terminal vertices. The idea of mimicking networks
has been used in the past in other problems, like flow computation [6, 7, 17, 20, 23], and in
perfect matching [13]. The ideas we use for constructing parity mimicking networks however,
do not rely on any existing work that we know of. For technical reasons, we require our
parity mimicking networks to be of bounded treewidth and planar, with all terminals lying
on a common face. These requirements make it more challenging to construct them (or even
to check their existence), than might seem at a first glance. One of our main contributions is
to show (in lemma 8) the construction of such networks, for upto three terminals. It might
be of independent interest to see if a more simpler construction exists (perhaps a constructive
argument to route paths, that has eluded us so far), that avoids the hefty case analysis we
do, and also if they can be constructed for more than three terminals.

We also come across a natural variant of another famous problem. Suppose we are given
a graph G and vertices s1, t1, s2, t2 . . . sk, tk (we may call them terminals) in it. The problem
of finding pairwise vertex disjoint paths, from each si to ti is a well-studied problem called
the disjoint paths problem. In undirected graphs, the problem is in P when k is fixed [31, 29],
but NP-complete otherwise [26]. For (directed) graphs, the problem is NP-complete even for
k = 2 [14]. In planar graphs, it is known to be in P for fixed k [34, 9, 25]. We consider this
problem, with the additional constraint that the sum of lengths of the si-ti paths must be of
specified parity. We hereafter refer to the parity of the sum of lengths as total parity, and
refer to the problem as DisjPathsTotalParity. In the undirected setting, a stricter version of
this problem has been studied, where each si-ti path must have parity pi that is specified
in input. This problem was shown to be in P for fixed k, by Kawarabayashi et al. [18].
However much less is known in directed setting. While DisjPathsTotalParity can be solved for
fixed k in bounded treewidth graphs using Courcelle’s theorem [8], we do not yet know if
it is tractable in planar graphs, even for k = 2. The other main technical contribution of
our paper is in lemma 10, where we show that in some special cases, i.e., when there are
four terminals, three of which lie on a common face of a planar graph, DisjPathsTotalParity
can be solved in polynomial time for k = 3. We do this by showing that under the extra
constraints, the machinery developed by [28] can be further generalized and applied to find a
solution in polynomial time. The question of tractability of DisjPathsTotalParity in planar
graphs, without any constraint of some terminals lying on a common face is open, and would
be interesting to resolve. A polynomial-time algorithm for it (for fixed k), would yield a
polynomial-time algorithm for EvenPath in graphs with upto k crossings, which is currently
unknown.

MFCS 2024



43:4 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Though the proofs of lemmas 8,10 form the meat of technical contributions of the paper,
we give a proof idea, deferring the proofs to the full version of the paper.

2 Preliminaries

From now onwards we will refer to simple, directed paths as just paths. For a path P , and a
pair of vertices u and v on P , such that u occurs before v in P , P [u, v] denotes the subpath
of P from u to v. If P1 and P2 are two paths that are vertex disjoint, except possibly sharing
starting or ending vertices, then we say that P1, P2 are internally disjoint paths. If P1’s
ending vertex is same as the starting vertex of P2, then we denote the concatenation of P1
and P2 by P1.P2. We will use the numbers 0, 1 to refer to parities, 0 for even parity and 1
for odd parity. We say a path P is of parity p (p ∈ {0, 1}), if its length modulo 2 is p. We
will use a well-known structural decomposition of H-minor-free graphs due to [30]. We recall
the definition of clique sums:

▶ Definition 2. A k-clique-sum of two graphs G1, G2 can be obtained from the disjoint union
of G1, G2 by identifying a clique in G1 of at most k vertices with a clique of the same number
of vertices in G2, and then possibly deleting some of the edges of the merged clique.

Thus when separating G along a separating pair/triplet, we can add virtual edges if needed, to
make the separating pair/triplet a clique. The virtual edges will not be used in computation
of path parities, they are only used to compute the decomposition. We can keep track of
which edges in the graph are virtual edges and which are the real edges throughout the
algorithm. We can repeatedly apply this procedure to decompose any graph G into smaller
pieces. The following is a theorem from [30].

▶ Theorem 3 (Robertson-Seymour [30]). For any single-crossing graph H, there is an integer
τH such that every graph with no minor isomorphic to H is either
1. the proper 0-, 1-, 2- or 3-clique-sum of two graphs, or
2. planar
3. of treewidth ≤ τH .
Thus, every H-minor-free graph, where H is a single-crossing graph, can be decomposed by 3-
clique sums into graphs that are either planar or have treewidth at most τH . Polynomial time
algorithms are known to compute this decomposition [12, 19, 16] (and also NC algorithms [13]).
The decomposition can be thought of as a two colored tree (see [12, 6, 13] for further details
on the decomposition), where the blue colored nodes represent pieces (subgraphs that are
either planar or have bounded treewidth), and the red nodes represent cliques at which two
or more pieces are attached. We call these nodes of the tree decomposition as piece nodes

and clique nodes, respectively. The edges of the tree describe the incidence relation between
pieces and cliques (see Figure 2). We will denote this decomposition tree by TG. We will
sometimes abuse notation slightly and refer to a piece of TG (and also phrases like leaf piece,
child piece), when it is clear from the context that we mean the piece represented by the
corresponding node of TG. Note that the bounded treewidth and planarity condition on the
pieces we get in the decomposition, is along with their virtual edges. As explained in [6, 13],
we can assume that in any planar piece of the decomposition, the vertices of a separating
pair or triplet lie on a common face (Else we could decompose the graph further).

Suppose G decomposes via a 3-clique sum at clique c into G1 and G2. Then we write
G as G1⊕cG2. More generally, if G1, G2, . . . , Gℓ all share a common clique c, then we use
G1 ⊕c G2 ⊕c . . . ⊕c Gℓ to mean G1, G2, . . . , Gℓ are glued together at the shared clique. If it is
clear from the context which clique we are referring to, we will sometimes drop the subscript



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:5

v6

v4

v1

v5

v3

v2

v10

v8

v7

v9

Figure 1 An example of a graph G.
We ignore directions here.

v6

v2

v4

v6

v2

v5

v4

v6

v2

v7

v4

v1

v6

v2

v4

v1

v2

v4

v1

v2

v4

v3

v2

v10

v8

v7

v9

v2

v7

Figure 2 A clique sum decomposition of G. Red nodes
are the clique nodes and blue node the piece nodes. Dashed
edges denote virtual edges.

and simply use G1 ⊕ G2 ⊕ . . . ⊕ Gℓ instead. Suppose G′
2 is a graph that contains the vertices

of the clique c shared by G1 and G2. We denote by G[G2 → G′
2], the graph G1⊕cG′

2, i.e.,
replacing the subgraph G2 of G, by G′

2, keeping the clique vertices intact. We will also use
the notion of snapshot of a path in a subgraph. If G can be decomposed into G1 and G2
as above, and P is an s-t path in G, its snapshot in G1 is the set of maximal subpaths of
P , restricted to vertices of G1. Within a piece, we will sometimes refer to the vertices of
separating cliques, and s and t, as terminals.

In figures, we will generally use the convention that a single arrow denotes a path segment
of odd parity and double arrow denotes a path segment of even parity, unless there is an
explicit expression for the parity mentioned beside the segment.

3 Overview and Technical Ingredients

We first compute the 3-clique sum decomposition tree of G, TG. We can assume that s, t,

each occur in only one piece of TG, S and T , respectively.3 We call the pieces S and T , along
with the pieces corresponding to nodes that lie in the unique path in TG joining S and T , as
the main pieces of TG, and the remaining pieces are called the branch pieces of TG. We will
assume throughout that TG is rooted at S.

The high level strategy of our algorithm follows that of [6]. The algorithm has two phases.
In the first phase, we simplify the branch pieces of the decomposition tree. Any s-t even
path P must start and end inside the main pieces S and T , respectively. However, it may

3 If they are part of a separating vertex/pair/triplet then they may occur in multiple pieces of TG. Say s
is a part of many pieces in TG. To handle that case, we can introduce a dummy s′ and add an edge
from s′ to s and reduce the problem to finding an odd length path from s′ to t. The vertex s′ now will
occur in a unique piece in TG. Vertex t can be handled similarly.

MFCS 2024



43:6 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

take a detour into the branch pieces. Suppose L is a leaf branch piece of TG, attached to
its parent piece, say Gi, via a 3-clique c. Using Nedev’s algorithm or Courcelle’s theorem,
we can find paths of various parities between vertices of c in L, which constitutes the parity
configuration of L with respect to c (formally defined in next subsection). We will replace L

by a parity mimicking network of L with respect to vertices of c, L′. L′ will mimic the parity
configuration of L and hence preserve the parities of all s-t paths of original graph. The
parity mimicking networks we construct are small and planar, with the terminals (vertices
of c) all lying on a common face, as decribed in lemma 8. Therefore, if Gi is of bounded
treewidth, then Gi ⊕ L′ will be of bounded treewidth. And if Gi is planar, then we can plug
L′ in the face of Gi that is common to vertices of c, and Gi ⊕ L′ will be planar. This allows
us compute the parity configurations of the merged piece, and repeat this step until a single
branch, i.e. a path, remains in the decomposition tree, consisting only of the main pieces
(connected by cliques), including S and T .

In the second phase, we start simplifying the main pieces, starting with the leaf piece T .
Instead of a single mimicking network for T , we will store a set of small networks, each of
them mimicking a particular snapshot of a solution. We call them projection networks. Since
a snapshot of an s-t even path in T can possibly be a set of disjoint paths between the (upto)
four terminals in T , we require the DisjPathsTotalParity routine of lemma 10 to compute these
projection networks. We combine the parent piece with each possible projection network.
The merged piece will again be either planar or of bounded treewidth, allowing us to continue
this operation towards the root node until a single piece containing both s and t remains.
We query for an s-t even path in this piece and output yes iff there exists one. At each step,
the number of projection networks used to replace the leaf piece, and their combinations
with its parent piece will remain bounded by a constant number.

Once we have the decision version of EvenPath, we show a poly-time self-reduction using
the decision oracle of EvenPath to construct a solution, in the full version of the paper.

Necessity of a two phased approach

We mention why we have two phases and different technical ingredients for each.
Instead of a single parity mimicking network, we need a set of projection networks for
the leaf piece in the second phase because it can have upto four terminals (three vertices
of the separating clique and the vertex t), and we do not yet know how to find (or even
the existence of) parity mimicking networks with the constraints we desire, for graphs
with four terminals.
We cannot however use a set of networks for each piece in phase I because of the
unbounded degree of TG. Suppose a branch piece Gi is connected to its parent piece
by clique c, and suppose Gi has child pieces L1, L2, . . . , Lℓ, attached to Gi via disjoint
cliques c1, c2, . . . , cℓ, respectively. An even s-t path can enter Gi via a vertex of c, then
visit any of L1, L2, . . . , Lℓ in any order and go back to the parent of Gi via another vertex
of c. If we store information regarding parity configurations of L1, L2, . . . , Lℓ as sets of
projection networks, we could have to try exponentially many combinations to compute
information of parity configurations between vertices of c in the subtree rooted at Gi

(note that ℓ could be O(n)). Therefore, we compress the information related to parity
configurations of Li into a single parity mimicking network L′

i, while preserving solutions,
so that the combined graph (((Gi ⊕c1 L′

1)⊕c2 L′
2 . . .)⊕cℓ

L′
ℓ) is either planar or of bounded

treewidth.
We will now describe these ingredients formally in the remaining part of this section.



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:7

s

t

v1

v3

v2

v3

v2

v1

a)

s

t

v1

v3

v2

v3

v2

v1

b)

L L′

Figure 3 Figure a) shows the input graph and b) shows the graph with L replaced by an erroneous
mimicking network L′. Suppose the original graph in a) has no s-t even path but does have an s-t
even walk as shown in the figure, using vertex v2 twice. If we query for a path from v1 to v3 in L,
and add a direct v1 to v3 path of that parity in L′, we end up creating a false solution since v2 is
freed up to be used outside L′. Hence there must be equality between corresponding direct sets.

3.1 Parity Mimicking Networks
We first define the parity configuration of a graph, which consists of subsets of {0, 1} for each
pair, triplet of terminals, depending on whether there exists “direct” or “via” paths of parity
even, odd, or both (we use 0 for even parity and 1 for odd). We formalise this below.

▶ Definition 4. Let L be a directed graph and T (L) = {v1, v2, v3} be the set of terminal
vertices of L. Then, ∀i, j, k ∈ {1, 2, 3}, such that i, j, k are distinct, we define the sets
DirL(vi, vj), and ViaL(vi, vk, vj) as:

DirL(vi, vj) ={p | there exists a path of parity p from vi to vj in L − vk }
ViaL(vi, vk, vj) ={p | there exists a path of parity p from vi to vj via vk and
there does not exist a path of parity p from vi to vj in L − vk}

We say that the DirL, ViaL sets constitute the parity configuration of the graph L with respect
to T (L). We call the paths corresponding to elements in DirL, ViaL sets as Direct paths and
Via paths, respectively.

The parity configuration of a graph can be visualised as a table. We have defined it for three
terminals, it can be defined in a similar way for two terminals. It is natural to ask the question
that given a parity configuration P independently with respect to some terminal vertices,
does there exist a graph with those terminal vertices, realising that parity configuration. If
not, we say that P is unrealisable. It is easy to see that the number of parity configurations
for a set of three terminals is bounded by 412, many of which are unrealizable. We now
define parity mimicking networks.

▶ Definition 5. A graph L′ is a parity mimicking network of a another graph L (and vica
versa), if they share a common set of terminals, and have the same parity configuration, P,
w.r.t. the terminals. We also call them parity mimicking networks of parity configuration P.

The reason we differentiate between direct paths and via paths while defining parity config-
urations is to ensure that no false solutions are introduced on replacing a leaf piece of TG by
its mimicking network (see Figure 3). Note that in our definition of Via sets, we exclude
parity entries of via paths between two terminals if that parity is already present in Dir set
between the same terminals. We do so because this makes the parity configurations easier to
enumerate in our construction of parity mimicking networks. In Figure 4, we describe why
doing this will still preserve solutions.

MFCS 2024



43:8 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

We also need to consider the case where multiple leaf pieces, in TG are attached to a
common parent piece via a shared clique (as seen in Figure 2). In this case, we will replace
the entire subgraph corresponding to the clique sum of the sibling leaf pieces by one parity
mimicking network. To compute the parity configuration of the combined subgraph of leaf
pieces, we make the following observation:

▶ Observation 6. Let L1, L2, . . . , Lℓ be leaf branch pieces that are pairwise disjoint except
for a common set of terminal vertices, say {v1, v2, v3}. Let L = L1 ⊕ L2 ⊕ . . . ⊕ Lℓ. Then
the parity configuration of L with respect to {v1, v2, v3} can be computed by:

DirL(vi, vj) =
ℓ⋃

a=1
DirLa

(vi, vj) (1)

ViaL(vi, vk, vj) = ℓ⋃
a=1

ViaLa(vi, vk, vj) ∪
ℓ⋃

a,b=1
(DirLa(vi, vk) ⊞ DirLb

(vk, vj))

 \DirL(vi, vj) (2)

where A ⊞ B denotes the set formed by addition modulo 2 between all pairs of elements in
sets A, B, and i, j, k ∈ {1, 2, 3} are distinct.

The intuition behind the observation is simple. Any direct path in L from vi to vj must
occur as a direct path in one of L1, L2 . . . Lℓ since they are disjoint except for terminal
vertices. Any via path in L from vi to vj via vk can occur in two ways, either as a vi-vk-vj

via path in one of L1, L2 . . . Lℓ, or as a concatenation of two direct paths, one from vi to vk

in some piece Li, and another from vk to vj in another piece Lj . Note that although the
observation is for the case when all L1, L2, . . . , Lℓ share a common 3-clique {v1, v2, v3}, it is
easy to see it can be tweaked easily to handle the cases when some of the L′

is are attached
via a 2-clique that is a subset of the 3-clique.

The next lemma states that replacing leaf piece nodes in TG by parity mimicking networks
obeying some planarity conditions, will preserve the existence of s-t paths of any particular
parity, and also preserve conditions on treewidth and planarity for the combined piece.

▶ Lemma 7. Let G be a graph with clique sum decomposition tree TG, and let L1, L2 . . . , Lℓ

be set of leaf branch pieces of TG, attached to their parent piece G1 via a common clique c.
Let L′ be a parity mimicking network of L1 ⊕ L2 ⊕ . . . Lℓ with respect to c, such that L′ is
planar, and vertices of c lie on a common face in L′. Then:
1. There is a path of parity p from s to t in G iff there is a path of parity p from s to t in

G[L1 ⊕ L2 ⊕ . . . Lℓ → L′].
2. If G1 is planar, then G1 ⊕ L′ is also planar.
3. If G1 has treewidth τH , and L′ has treewidth τL′ , then G1 ⊕ L′ has treewidth max(τH , τL′)

Proof.
1. The proof essentially follows from the definition of parity mimicking networks and

observation 6, since we can replace the snapshot of any s-t path P in Li by a path of
corresponding parity in L′

i and vice-versa.
2. This follows since in the decomposition, vertices of separting cliques in every piece lie on

the same face, and so is the case for L′ by assumption. Therefore we can embed L′ inside
the face in G1, on the boundary of which v1, v2, v3 lie.

3. This follows since we can merge tree decompositons of G1, L′ along bags consisting of the
common clique. ◀



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:9

s

t

v1

v3

v2

v3

v2

v1

a)

L

s

t

v1

v3

v2

v3

v2

v1

b)

L

s

t

v1

v3

v2

v3

v2

v1

c)

L′

Figure 4 Figure a) denotes the original graph which has both a direct path, as well as a via path
of even parity from v1 to v3. Suppose the via path is part of an even s-t path solution, as marked
by blue. Then in L itself, we could replace the via path by the direct path and it would still be a
valid even s-t path, as marked in blue in b). Hence in the mimicking network L′, too (shown in c)),
we could use the direct v1 to v3 path of the same parity. Therefore we do not need to put the parity
of the v1-v2-v3 path in ViaL(v1, v2, v3), since the same parity is already present in DirL(v1, v3), and
DirL(v1, v3) = DirL′ (v1, v3).

Now we will show how to compute parity mimicking networks that are small in size (and
hence of bounded treewidth), and also planar, with terminal vertices lying on the same face,
for a given parity configuration of a graph L.

▶ Lemma 8. Suppose L is a graph with terminals T (L) = {v1, v2, v3}, and suppose we know
the parity configuration of L with respect to {v1, v2, v3}. We can in polynomial-time, find a
parity mimicking network L′ of L, with respect to {v1, v2, v3} which consists of at most 18
vertices, and is also planar, with v1, v2, v3 lying on a common face.

Proof. We give a brief idea of the proof and defer the full proof to the full version of this
paper.As noted above, the number of possible parity configurations are finite (bounded by
412 for three terminals), but the number is too large to enumerate over all of them and
individually construct the mimicking networks. We use some observations to make the
case analysis tractable. We refer to elements of sets DirL(vi, vj) as entries. But we abuse
notation slightly and distinguish them from the boolean values 0, 1. For example, we always
distinguish between an entry of DirL(v1, v2), and an entry of DirL(v2, v3), even if they have
the same value (0 or 1). A natural constructive approach would be to iteratively do the
following step for all i, j, p : add a path of length 2 − p from vi to vj in L′, disjoint from
existing paths of L′, if there is an entry of parity p present in DirL′(vi, vj). Its easy to check
that this will result in a planar L′ with terminals on a common face. However, this could lead
to wrong parity configurations in L′. For example, L could have a direct paths of parity 1
from v1 to v2, and a direct path of parity 0 from v2 to v3, but no path of parity 1 from v1 to
v3, either direct or via v2 (see Figure 5). We will call pairs of such entries as bad pairs. The
entries that are part of any bad pair are called bad entries. Though the example in Figure 5
has a simple fix for the bad pair, it becomes more complicated to maintain the planarity
conditions as the number of bad pairs increase. Let PL be the parity configuration of L. The
idea of the proof is to define a bad kernel of PL, as the sub-configuration consisting of all
the bad entries of PL. The closure of the bad kernel is defined as the parity configuration
obtained from it by adding “minimal” number of entiries to make it realizable. We observe
that the closure remains a sub-configuration of PL. Suppose that we can somehow construct
a planar mimicking network for the closure of the bad kernel of PL, with terminals lying on a

MFCS 2024



43:10 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Bad Kernel

v1

v2 v3

v1

v2 v3

v1

v2 v3

a) b) c)

DirL(v1, v2) DirL(v2, v3)

1 0

DirL(v3, v1)

−

V iaL(v1, v2, v3)

−

DirL′(v1, v2) DirL′(v2, v3)

1 0

DirL′(v3, v1)

−

V iaL′(v1, v2, v3)

1

Good Paths

L L′

DirL(v2, v1)

1

DirL′(v2, v1)

1
V iaL(v2, v1, v3)

1

V iaL′(v2, v1, v3)

1

L′

DirL(v3, v2)

−
DirL(v1, v3)

0

DirL′(v3, v2)

−
DirL′(v1, v3)

0

Figure 5 Fig a) denotes a graph L with its parity configuration table (only relevant sets). Fig b)
denotes a “parity mimicking network”, if for each pair of terminals, we just independently put paths
of correct parity, disjoint from each other. It leads to an extra path (highlighted in red) from v1 to
v3 via v2 in L′, of odd parity. Pairs of such entries, for which we cannot add disjoint paths are called
bad entries as marked by the dashed red line in the parity configuration table in a). Fig c) outlines
the approach used to construct the correct mimicking network. The two paths corresponding to bad
pair entries, form the bad kernel, for which we construct a mimicking network by enumerating cases.
The remaining paths can be added iteratively, disjoint from all existing paths, on the outer face.

DirP(v1, v2) DirP(v2, v3) DirP(v3, v1)

0
1

0 0
1 1

DirP(v2, v1) DirP(v3, v2) DirP(v1, v3)

1 0

V iaP(v3, v1, v2)

0
1

v1

v2 v3

a b c d

e f

g h i j

−

Figure 6 An example of a more non-trivial bad kernel, and a mimicking network realising its
closure. This is a subcase of case (4, 0) described in the full proof. We give a list of paths along with
their lengths, for ease of reader to check that the network obeys the parity configuration.

common face. Then we show that paths corresponding to leftover parity entries of L can be
safely added using the constructive approach described above. Hence it suffices to construct
parity mimicking networks for closures of all possible bad kernels. We use some observations
to show that the number of possible types of bad kernels cannot be too large, and enumerate
over each type, explicitly constructing the parity mimicking networks of their closures. ◀

3.2 Disjoint Paths with Parity Problem
In this section, we will define and solve the DisjPathsTotalParity problem for some special
cases and types of graphs. We define the problem for three paths between four terminals.

▶ Definition 9. Given a graph G and four distinct terminals v1, v2, v3, and v4 in V (G), the
DisjPathsTotalParity problem is to find a set of three pairwise disjoint paths, from v1 to v2,
v2 to v3, and from v3 to v4, such that the total parity is even, if such a set of paths exist,
and output no otherwise.



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:11

The problem where total parity must be odd can be easily reduced to this by adding a dummy
neighbour to v4. The problem is NP-hard in general graphs since the even path problem
trivially reduces to this. We show that the above problem can be solved in polynomial time
in following two cases:

▶ Lemma 10. Let G be a graph, and v1, v2, v3, v4 be four vertices of G. Both decision as well
as search versions of DisjPathsTotalParity for these vertices as defined above can be solved in
polynomial time in the following cases:
1. If G has constant treewidth.
2. If G is planar and v1, v2, v3 lie on a common face of G.

Proof. Proofs of both parts can be found in the full version of the paper. We give a high
level idea of the proof of the second part. The argument of Nedev for EvenPath uses two
main lemmas. One lemma states that if there are two paths P1, P2, of different parities
from s to t, then their union forms a (at least one) structure, which they call an odd list
superface. It (roughly) consists of two internally disjoint paths of different parities, with a
common starting vertex, say b and a common ending vertex, say e. Let F denote such a
superface. They show that there exist two disjoint paths in P1 ∪ P2 − F , one from s to b,
and one from e to t. This provides a “switch” in P1 ∪ P2, and if we can find this switch
efficiently, then we can use existing 2-disjoint path algorithms to connect s and t via this
switch. But the number of odd list superfaces in a graph can be exponential. The second
lemma of Nedev says that we can exploit the structure of planarity and show that each of
the odd list superfaces formed by P1 ∪ P2, “contain” a “minimal” odd list superface, which
they call a simple odd list superface, that obeys the same conditions. The set of simple odd
list superfaces is small and can be enumerated in polynomial time. In our setting, we start
from the case that two instances of three disjoint paths between the specified terminals exist,
such that they have different total parity. Say the instances are P1, P2, P3, and P ′

1, P ′
2, P ′

3.
At least one of Pi, P ′

i must be of different parity. We show that using the constraints of
three terminals on a face, and using ideas of leftmost (and rightmost) paths of Pi ∪ P ′

i , for
each case of i ∈ {1, 2, 3}, there does exist an analogous structure: a simple odd list super
face, and four disjoint path segments connecting the required vertices. A point to note is
that in Nedev’s argument, any odd list superface formed by P1, P2 could be trimmed to a
simple odd list superface that would give a valid solution. That does not hold true here.
We generalise their lemma, and argue that there does exist at least one odd list superface
between Pi, P ′

i that will work in our setting. ◀

4 Main Algorithm

We now explain the two phases of the algorithm.

4.1 Phase 1
1. Find the 3-clique sum decomposition tree TG. Mark the piece that contains the vertex s

as the root of TG.
2. Pick any maximal set of leaf branch pieces of TG, say L1, L2, . . . , Lℓ, which are attached

to a parent piece Gi via a common clique. Compute their parity configurations using
Nedev’s algorithm, or using Courcelle’s theorem.Then compute the parity configuration
of L1 ⊕ L2 ⊕ . . . ⊕ Lℓ using observation 6.

3. Compute the parity mimicking network, L′, of L1 ⊕ L2 ⊕ . . . ⊕ Lℓ using lemma 8. Replace
L1 ⊕ L2 ⊕ . . . ⊕ Lℓ by L′ and merge it with Gi.

4. Since Gi ⊕ L′ is either of bounded treewidth or is planar by lemma 7, we can repeat this
step until no branch pieces remain.

MFCS 2024



43:12 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

4.2 Phase II
Let G′ denote the graph after phase I. After phase I, the modified tree TG′ looks like a path
of pieces, G1, G2, . . . , Gm, joined at cliques c1, c2 . . . cm−1.4 The vertex s is in root piece G1,
and t in leaf piece Gm (we use G1, Gm instead of S, T here for notational convenience). We
can write G′ = G1 ⊕c1 G2 ⊕c2 . . . ⊕cm−1 Gm. Since it is clear in this phase that ci is the
clique joining Gi, Gi+1, we will omit the subscript for notational convenience and just write
G1 + G2 + . . . + Gm instead. Let cm−1 = {v1, v2, v3} and let i, j, k ∈ {1, 2, 3} be distinct. The
snapshot of any even s-t path P in Gm, can be one of the following four types (see figure 7):

Type 1 : A path from vi to t without using vj , vk.
Type 2 : A path from vi to t via vj , without using vk.
Type 3 : A path from vi to t via vj , vk.
Type 4 : A path from vi to vj and a path from vk to t, both disjoint from each other.

We call any path/set of paths in Gm of one of the above types as a potential snapshot of Gm.
We now construct the projection networks of potential snapshots of Gm.

▶ Definition 11. Let Gm be the leaf piece as described above with clique cm−1 = {v1, v2, v3},
and vertex t present in Gm.

For each of the types described above, for all i ∈ {1, 2, 3}, and for all p ∈ {0, 1}, find a
potential snapshot (if it exists) in Gm from vi to t, of total parity p, using lemma 10.
Let J be a potential snapshot found in the previous step, Its projection network, is defined
as the graph obtained from J by keeping terminal vertices intact, and replacing every
terminal to terminal path in J by a path of length 2 − p.

The type of the projection network is the type of the corresponding potential snapshot.
The set of projection networks of Gm, denoted by N (Gm), is the set of all projection networks
obtained for Gm by the above procedure.

See Figure 7 for an example. Since the total number of terminals is at most 4 (with one
fixed as t), it is easy to see that the number of possible projections networks for Gm is
bounded. Therefore N (Gm) can be computed in polynomial time. Note that N (Gm) is not
uniquely defined. But it is sufficient for our purpose, to compute any one of the various
possible choices of the set N (Gm) as explained in Figure 7. The next lemma shows that the
projection networks of Gm preserve solutions, and also maintain invariants on planarity and
treewidth, when merged with the parent piece.

▶ Lemma 12. Given G′ = G1 + . . . + Gm as described above.
1. Given a N (Gm), there is an s-t path in G′ of parity p iff ∃N ∈ N (Gm) such that

G′[Gm → N ] has an s-t path of parity p.
2. If Gm−1 is planar/of bounded treewidth, then for any projection network N ∈ N (Gm),

Gm−1 + N is planar/of bounded treewidth, respectively.

Proof.
1. This follows from the definition of projection networks. The only minor technical point to

note is that N (Gm) is not unique. For example, suppose there are two potential snaphots
in Gm of type 4. One is J1, consisting of a path P1 from v1 to v2 of even parity, and a
path P2 from v3 to t of odd parity. The other is J2, consisting of a path P ′

1 from v1 to v2

4 Note that the vertices of a clique, say ci need no longer lie on the same face of Gi after phase I, since
we might have merged the parity mimicking network of the branch pieces incident at ci into the face
corresponding to ci.



A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:13

v1 v2 v3

t

s

v1 v2 v3

t

v1 v2 v3

t

v1 v2 v3

t

v1 v2 v3

t

1)

Type 1 Type 2 Type 4 Type 3

Gm

G2

G1

G2 +G2 . . .+Gm

v1 v2 v3

t

Type 4

Figure 7 Fig 1) Denotes the decomposition tree after phase 1, with G1, G2 . . . , Gm denoting
the pieces. We skip drawing clique nodes here. On the right are examples of projection networks
of different types. In fig 1), the snapshot of the s-t path in Gm is of type 4. The two projection
networks of type 4 drawn on the right have same total parity, but different parities of individual
segments. It is sufficient for our purpose to find any one of them since they are interchangeable.

of odd parity, and a path P ′
2 from v3 to t, of even parity. Since the total parity of J1 and

J2 is same, Lemma 10 could output either one of them. We don’t have control over it
to find both. But finding any one of them is sufficient for us, since if J1 is a snapshot
of an actual solution, then replacing J1 by J2 would also give a valid solution and vice
versa.(See Figure 7)

2. Suppose cm1 = {v1, v2, v3} is the clique where Gm−1, Gm are attached. The argument
of treewidth bound is same as that of Lemma 7 in previous phase, when we attached
mimicking networks to parent pieces. However if Gm−1 is planar, there could have been a
parity mimicking network L′ attached to Gm−1 via cm−1 during phase I. Hence v1, v2, v3
might not lie on a common face in Gm−1 after phase I. We observe however, since L′ was
attached at a 3-clique, cm−1, every pair vi, vj of vertices of cm−1, must share a common
face in Gm−1. Now, the projection networks consist of at most three paths, two between
v1, v2, v3, and one from them to t. For any vi, vj , we can embed the path between vi, vj

in N , in the face in Gm−1 shared by vi, vj , and finally just add the path leading to t.
Therefore if Gm−1 is planar, all projection networks of Gm can be embedded in their
parent nodes. ◀

We make the following observation to compute a N (Gi + . . . Gm) recursively:

N (Gi + . . . Gm) =
⋃

N∈N (Gi+1+...Gm)

N (Gi + N) (3)

Thus we can proceed as follows:

1. Compute N (Gm) using lemma 10

2. For all N ∈ N (Gm), compute Gm−1 + N , and hence compute N (Gm + Gm−1) using the
observation above.

3. For all N ∈ N (Gm + Gm−1), compute Gm−2 + N , and hence compute N (Gm + Gm−1 +
Gm−2). Repeat until we reach G1.

MFCS 2024



43:14 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

References
1 Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in nc. J. ACM, 67(4),

May 2020. doi:10.1145/3397504.
2 Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari. Derandomizing isolation

lemma for K3,3-free and K5-free bipartite graphs. In Symposium on Theoretical Aspects of
Computer Science, 2014. URL: https://api.semanticscholar.org/CorpusID:1484963.

3 Andreas Björklund, Thore Husfeldt, and Petteri Kaski. The shortest even cycle problem
is tractable. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2022, pages 117–130, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3519935.3520030.

4 Glencora Borradaile and Philip Klein. An o(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM, 56(2), April 2009. doi:10.1145/1502793.1502798.

5 Diptarka Chakraborty and Raghunath Tewari. Simultaneous time-space upper bounds for
red-blue path problem in planar dags. In M. Sohel Rahman and Etsuji Tomita, editors,
WALCOM: Algorithms and Computation - 9th International Workshop, WALCOM 2015,
Dhaka, Bangladesh, February 26-28, 2015. Proceedings, volume 8973 of Lecture Notes in
Computer Science, pages 258–269. Springer, 2015. doi:10.1007/978-3-319-15612-5_23.

6 Erin Wolf Chambers and David Eppstein. Flows in one-crossing-minor-free graphs. Journal of
Graph Algorithms and Applications, 17(3):201–220, 2013. doi:10.7155/jgaa.00291.

7 Shiva Chaudhuri, K. Subrahmanyam, Frank Wagner, and Christos Zaroliagis. Computing
mimicking networks. Algorithmica, 26:31–49, January 2000. doi:10.1007/s004539910003.

8 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

9 Marek Cygan, Daniel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed
k-vertex-disjoint paths problem is fixed-parameter tractable. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 197–206, 2013. doi:10.1109/FOCS.
2013.29.

10 Samir Datta, Arjun Gopalan, Raghav Kulkarni, and Raghunath Tewari. Improved bounds
for bipartite matching on surfaces. In Christoph Dürr and Thomas Wilke, editors, 29th
International Symposium on Theoretical Aspects of Computer Science, STACS 2012, February
29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 254–265. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.254.

11 Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. Graph isomorphism
for k_{3, 3}-free and k_5-free graphs is in log-space. Electron. Colloquium Comput. Complex.,
TR10, 2009. URL: https://api.semanticscholar.org/CorpusID:7978883.

12 Erik D Demaine, MohammadTaghi Hajiaghayi, Naomi Nishimura, Prabhakar Ragde, and
Dimitrios M Thilikos. Approximation algorithms for classes of graphs excluding single-
crossing graphs as minors. Journal of Computer and System Sciences, 69(2):166–195, 2004.
doi:10.1016/j.jcss.2003.12.001.

13 David Eppstein and Vijay V. Vazirani. Nc algorithms for computing a perfect matching and a
maximum flow in one-crossing-minor-free graphs. SIAM Journal on Computing, 50(3):1014–
1033, 2021. doi:10.1137/19M1256221.

14 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980. doi:10.1016/0304-3975(80)
90009-2.

15 Anna Galluccio and Martin Loebl. Even/odd dipaths in planar digraphs. Optimization Methods
and Software, 3(1-3):225–236, 1994. doi:10.1080/10556789408805566.

16 Martin Grohe, Ken-ichi Kawarabayashi, and Bruce Reed. A simple algorithm for the graph
minor decomposition: logic meets structural graph theory. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 414–431, USA, 2013.
Society for Industrial and Applied Mathematics.

https://doi.org/10.1145/3397504
https://api.semanticscholar.org/CorpusID:1484963
https://doi.org/10.1145/3519935.3520030
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1007/978-3-319-15612-5_23
https://doi.org/10.7155/jgaa.00291
https://doi.org/10.1007/s004539910003
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.4230/LIPIcs.STACS.2012.254
https://api.semanticscholar.org/CorpusID:7978883
https://doi.org/10.1016/j.jcss.2003.12.001
https://doi.org/10.1137/19M1256221
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1080/10556789408805566


A. Chauhan, S. Datta, C. Gupta, and V. R. Sharma 43:15

17 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Characterizing
multiterminal flow networks and computing flows in networks of small treewidth. Journal of
Computer and System Sciences, 57(3):366–375, 1998. doi:10.1006/jcss.1998.1592.

18 Ken-ichi Kawarabayashi, Bruce Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pages 27–36, 2011. doi:10.1109/FOCS.2011.52.

19 Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for the
graph minor decomposition. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 451–458, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1993636.1993697.

20 Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Information Processing Letters, 114(7):365–371, 2014. doi:10.1016/j.ipl.
2014.02.011.

21 Samir Khuller. Coloring algorithms for k5-minor free graphs. Information Processing Letters,
34(4):203–208, 1990. doi:10.1016/0020-0190(90)90161-P.

22 Samir Khuller. Extending planar graph algorithms to k3,3-free graphs. Information and
Computation, 84(1):13–25, 1990. doi:10.1016/0890-5401(90)90031-C.

23 Robert Krauthgamer and Inbal Rika. Mimicking Networks and Succinct Representations of
Terminal Cuts, pages 1789–1799. SIAM, 2013. doi:10.1137/1.9781611973105.128.

24 Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984. doi:10.1002/net.3230140403.

25 Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav Zehavi.
An exponential time parameterized algorithm for planar disjoint paths. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
1307–1316, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3357713.3384250.

26 James F. Lynch. The equivalence of theorem proving and the interconnection problem. SIGDA
Newsl., 5(3):31–36, September 1975. doi:10.1145/1061425.1061430.

27 William McCuaig, Neil Robertson, P. D. Seymour, and Robin Thomas. Permanents, pfaffian
orientations, and even directed circuits (extended abstract). In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 402–405, New York, NY,
USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258625.

28 Zhivko Prodanov Nedev. Finding an even simple path in a directed planar graph. SIAM J.
Comput., 29(2):685–695, 1999. doi:10.1137/S0097539797330343.

29 Bruce Reed, Neil Robertson, Alexander Schrijver, and Paul Seymour. Finding dsjoint trees in
planar graphs in linear time. In Graph Structure Theory, Proceedings of a AMS-IMS-SIAM
Joint Summer Research Conference on Graph Minors held June 22 to July 5, 1991, at the
University of Washington, Seattle, USA, volume 147 of Contemporary Mathematics, pages
295–302, January 1991. doi:10.1090/conm/147/01180.

30 N. Robertson and P.D. Seymour. Excluding a graph with one crossing. Graph struc- ture
theory (Seattle, WA, 1991), 1993. doi:10.1090/conm/147.

31 N. Robertson and P.D. Seymour. Graph minors .xiii. the disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

32 Neil Robertson and P.D Seymour. Graph minors. xvi. excluding a non-planar graph. Journal
of Combinatorial Theory, Series B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-X.

33 Neil Robertson and P.D. Seymour. Graph minors. xx. wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. Special Issue Dedicated to Professor
W.T. Tutte. doi:10.1016/j.jctb.2004.08.001.

34 Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM J. Comput.,
23(4):780–788, 1994. doi:10.1137/S0097539792224061.

MFCS 2024

https://doi.org/10.1006/jcss.1998.1592
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1145/1993636.1993697
https://doi.org/10.1016/j.ipl.2014.02.011
https://doi.org/10.1016/j.ipl.2014.02.011
https://doi.org/10.1016/0020-0190(90)90161-P
https://doi.org/10.1016/0890-5401(90)90031-C
https://doi.org/10.1137/1.9781611973105.128
https://doi.org/10.1002/net.3230140403
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1145/258533.258625
https://doi.org/10.1137/S0097539797330343
https://doi.org/10.1090/conm/147/01180
https://doi.org/10.1090/conm/147
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1137/S0097539792224061


43:16 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

35 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect
matchings in k5-free graphs. In 2014 IEEE 29th Conference on Computational Complexity
(CCC), pages 66–77, 2014. doi:10.1109/CCC.2014.15.

36 Thomas Thierauf and Fabian Wagner. Reachability in k3,3-free graphs and k5-free graphs is
in unambiguous log-space. In Mirosław Kutyłowski, Witold Charatonik, and Maciej Gębala,
editors, Fundamentals of Computation Theory, pages 323–334, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

37 Vijay V. Vazirani. Nc algorithms for computing the number of perfect matchings in k3,3-free
graphs and related problems. Information and Computation, 80(2):152–164, 1989. doi:
10.1016/0890-5401(89)90017-5.

38 Klaus Von Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570–590, 1937. URL: https://api.semanticscholar.org/CorpusID:123534907.

39 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on Discrete
Mathematics, 10(2):209–222, 1997.

https://doi.org/10.1109/CCC.2014.15
https://doi.org/10.1016/0890-5401(89)90017-5
https://doi.org/10.1016/0890-5401(89)90017-5
https://api.semanticscholar.org/CorpusID:123534907

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Overview and Technical Ingredients
	3.1 Parity Mimicking Networks
	3.2 Disjoint Paths with Parity Problem

	4 Main Algorithm
	4.1 Phase 1
	4.2 Phase II


