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Abstract
We present a new technique to encode Post’s Correspondence Problem into automaton semigroups
and monoids. The encoding allows us to precisely control whether there exists a relation in the
generated semigroup/monoid and thus show that the freeness problems for automaton semigroups
and for automaton monoids (listed as open problems by Grigorchuk, Nekrashevych and Sushchansk̆ıi)
are undecidable. The construction seems to be quite versatile and we obtain the undecidability of
further problems: Is a given automaton semigroup (monoid) (left) cancellative? Is it equidivisible
(which – together with the existence of a (proper) length function – characterizes free semigroups and
monoids)? Does a given map extend into a homomorphism between given automaton semigroups?
Finally, our construction can be adapted to show that it is undecidable whether a given automaton
generates a free monoid whose basis is given by the states (but where we allow one state to act as
the identity). In the semigroup case, we show a weaker version of this.
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1 Introduction

In the 1980s, Grigorchuk solved a famous question by Milnor (see [20] for a nice introduction)
by presenting the first group with intermediate growth: the number of elements that can
be written as a word of length at most 𝑛 over the generators grows sub-exponentially but
super-polynomially. The group has even more noteworthy properties. It is amenable but
not elementary amenable (e. g. [24]) and an infinite 2-group (giving a counter-example to
Burnside’s problem, e. g. [33, 3]). Its peculiar properties stirred interest in Grigorchuk’s group
and groups of similar form where it soon became important that Grigorchuk’s group has a nice
description using what is simply called an automaton in this context (e. g. [33] or [3]). The
simplicity of this presentation (the automaton only uses a binary alphabet and four states –
with an additional identity state) contrasts the complex nature of the group. An “automaton”
here is what more precisely is called a finite-state letter-to-letter transducer (i. e. an automaton
with input and output). The idea is that in such an automaton every state induces a mapping
of input to output words and the closure of these functions under composition forms a
semigroup. If the automaton is additionally invertible, the functions are bijections and
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44:2 The Freeness Problem for Automaton Semigroups

we may consider the generated group. This leads to the classes of automaton semigroups
and groups, which contain further noteworthy examples (e. g. Gupta-Siki 𝑝-groups [22], the
lamplighter group [21] and more general lamplighter-like groups [37, 38]).

Being able to finitely describe groups without classical finite presentations (consisting of
generators and relations) additionally highlights the usefulness of considering (semi)groups
generated by automata. Starting from Grigorchuk’s group, the study of automaton groups
and semigroups is nowadays a thriving research field with important connections to many
neighboring areas (such as geometry, dynamical systems and symbolic dynamics; see e. g. [33,
3] for more background information). The extensive research in Mathematics and Computer
Science on the semigroup (and monoid) case (e. g. [9, 26, 7, 34, 1, 15]) arises naturally
from the group case for example via the dual automaton where states and input/output
letters swap places. The connection between an automaton and its dual has been exploited
algebraically and algorithmically (e. g. [18, 41, 42, 26, 27, 11]).

In this work, we look further at the algorithmic aspects of this interesting class by showing
that its freeness problem is undecidable. This problem asks whether a given automaton
generates a free semigroup (or monoid). It has been studied extensively for other classes
of groups and semigroups. Since freeness is a Markov property, the problem is undecidable
for classical finite group (and, thus, semigroup) presentations (see e. g. [29]). Further
important results include the undecidability of the freeness problem for matrix semigroups,
originally shown using a reduction from Post’s Correspondence Problem [25], which has been
improved and contrasted in many further publications (e. g. [31, 10, 4]). Interestingly, matrix
(semi)groups and automaton (semi)groups are connected in the sense that the former can be
presented as subgroups of the latter [8] (see also [40, 12, 43]) but this does not help to prove
the freeness problem undecidable for automaton (semi)groups [13].

With our result, we continue this line of research but also further contribute to the study
of freeness in self-similar (i. e. generated by infinite automata) and automaton structures as
well as their algorithmic aspects. For the former, we refer the reader to the survey [36] and
only point out that, while it is known that free groups are automaton groups [41, 42, 39],
these constructions are usually deemed rather difficult. For automaton semigroups and
monoids, the situation seems to be simpler: every free semigroup of (finite) rank at least two
can be generated by an automaton (see [9] or Example 2.5) but the free semigroup of rank
one cannot [9]. All free monoids of finite rank are automaton semigroups, though.

Regarding algorithmic questions for automaton (semi)groups, we point out that, while
one may easily be misled into believing that using a finite automaton as the generating
combinatorial object should be rather simple, the situation is actually quite complex and
only a few natural algorithmic problems are known to be undecidable while many others
notoriously remain open problems. An exception here seems to be that the word problem
for automaton (semi)groups is PSpace-complete. Interestingly, this was first known for
semigroups [14] and was later extended to groups [43]. Some subclasses have simpler word
problems. For example, using finitary automata to present finite groups results in a coNP-
complete word problem [28] and the word problem of an automaton group of polynomial
activity is in polylogarithmic space [5] (see [44] for more information). On the other hand,
there is an automaton group with an undecidable conjugacy problem [40] (“are two given
group elements conjugate in the group?”). The construction used there also shows that
the isomorphism problem for automaton groups (“are the groups generated by two given
automata isomorphic?”) and, thus, automaton semigroups is undecidable.1 There are two
constructions for an automaton group with undecidable order problem (“has a given group

1 Unfortunately, this does not seem to be written down explicitly anywhere.
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element finite or infinite order?”) [17, 2]. The latter of the two even yields a contracting
automaton. The undecidability was also first known for automaton semigroups [16] and the
problem is decidable for bounded automaton groups [6] and monoids [1].

All these constructions encoding Turing machines in automaton (semi)groups make
a statement about individual (semi)group elements. Since the interaction between the
generating automaton and generated algebraic structure is often surprising and still not well
understood, it is much more challenging to construct reductions where the entire generated
(semi)group (or monoid) has a certain property (based on whether we input a positive or
negative problem instance). The only known result of this kind seems to be that the finiteness
problem for automaton semigroups (“Is the semigroup generated by a given automaton
finite?”) is undecidable [16]. The corresponding group problem is still open [19].

Our reduction from Post’s Correspondence Problem [35] to the freeness problems for
automaton semigroups and for monoids in this paper is a second result of this form. It solves
the corresponding open problem by Grigorchuk, Nekrashevych and Sushchansk̆ıi [19, 7.2 b)]
and, despite previous attempts [12, 13] and a positive result for semigroups generated by
invertible and reversible automata with two states [26] as well as a negative result on testing
for relations of the form 𝑤 = 1 [12], the problem had remained open quite a while for groups
and for semigroups. The main challenge seems to be that we need very precise control over
the relations in the generated semigroup (which seems to be much more difficult than, e. g.,
ensuring that the semigroup is finite or infinite) while the interaction between the structure
of the generating automaton and the semigroup/monoid relations is highly non-obvious.

Our construction yields further results beyond the freeness problem(s). Namely, testing
whether a given automaton generates a (left) cancellative semigroup/monoid and whether
the semigroup/monoid generated by a given automaton is equidivisible (a notion strongly
related to freeness by Levi’s lemma, see Fact 2.2) are undecidable. We also obtain that it
is undecidable whether a given automaton generates a free semigroup with a given basis
and whether a given map between the state sets of two given automata can be extended
into an iso- or homomorphism. The latter problem is connected to the (undecidable, see
above) isomorphism problem for automaton semigroups in the sense that it asks whether all
relations of the first automaton semigroup also hold in the second one.

Finally, the construction seems to be flexible enough to be adapted to similar problems,
which gives us hope that our results could also contribute towards showing that the freeness
problem is undecidable in the group case. For example, it can be adapted to show that the
free presentation problem for automaton monoids is undecidable: does a given automaton
generate a free monoid whose rank is equal to the number of its states (minus an identity
state)? In other words, we cannot test whether a given automaton monoid contains any
relations (although this is semi-decidable as the word problem is decidable, see above).

Adapting our construction for this is necessary because the construction in the semigroup
case always yields semigroup relations since we need to use a result on the closure of the class
of automaton semigroups under (certain) free products [30] in order to construct some kind
of “partial” powers of the generating automaton. However, no details of this construction will
be required to understand our results. More generally, the presentation in this work is meant
to be self-contained (although the construction may be considered to be rather technical).

2 Preliminaries

Fundamentals, Semigroups and Monoids. We write 𝐴 ⊎𝐵 for the disjoint union of sets
and consider the set of natural numbers N to contain 0. We assume the reader to be familiar
with fundamental notions of semigroup theory (see e. g. [23]). We write 1𝑀 for the neutral
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44:4 The Freeness Problem for Automaton Semigroups

element of a monoid 𝑀 or, if 𝑀 is clear from the context, simply 1. For a monoid 𝑀 , we let
𝑀1 = 𝑀 and, if 𝑆 is a semigroup but not a monoid, we may adjoin a neutral element 1 ̸∈ 𝑆

to 𝑆 by letting 11 = 1 and 1𝑠 = 𝑠 = 𝑠1 for all 𝑆 and denote the resulting monoid by 𝑆1.

Words, Free Semigroups and Free Monoids. Let 𝐵 be a finite, non-empty set, which
we call an alphabet. A word 𝑤 over 𝐵 is a finite sequence 𝑎1 . . . 𝑎𝑛 with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐵,
whose length is |𝑤| = 𝑛. We denote the unique word of length 0 (i. e. the empty word) by
𝜀. The set of all words over 𝐵 is denoted by 𝐵*. Words have the natural operation of
juxtaposition (where we let 𝑢𝑣 = 𝑎1 . . . 𝑎𝑚𝑏1 . . . 𝑏𝑛 for 𝑢 = 𝑎1 . . . 𝑎𝑚 and 𝑣 = 𝑏1 . . . 𝑏𝑛 with
𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑛 ∈ 𝐵), which turns 𝐵* into a monoid with the neutral element 𝜀. This
monoid 𝐵* is the free monoid with basis 𝐵 (or over 𝐵) and a monoid 𝑀 is free (with basis
𝐵) if it is isomorphic to 𝐵* (for some alphabet 𝐵). Closely related to the free monoid is the
free semigroup 𝐵+, which is formed by the set of all non-empty words (i. e. 𝐵+ = 𝐵* ∖ {𝜀})
and (again) juxtaposition as operation. Similarly, a semigroup 𝑆 is free (with basis 𝐵) if
it is isomorphic to 𝐵+ (for some alphabet 𝐵). Note that 𝐵* is (isomorphic to) (𝐵+)1 and
that the basis of a free monoid or semigroup is unique (see e. g. [23, Proposition 7.1.3]). The
rank of a free monoid or semigroup is the cardinality |𝐵| of its basis 𝐵. We will use common
conventions from formal language theory and, e. g., write 𝑞+ and 𝑞* for {𝑞}+ and {𝑞}*.

Properties of Free Semigroups and Monoids. We will need some properties of free
semigroups and monoids. A (general) semigroup 𝑆 is left cancellative if 𝑠𝑡 = 𝑠𝑡′ implies
𝑡 = 𝑡′ for all 𝑠, 𝑡, 𝑡′ ∈ 𝑆. Symmetrically, it is right cancellative if 𝑠𝑡 = 𝑠′𝑡 implies 𝑠 = 𝑠′ for all
𝑠, 𝑠′, 𝑡 ∈ 𝑆 and, finally, it is cancellative if it is both left and right cancellative. It is easy to
see that 𝐵* and, thus, 𝐵+ are cancellative (see, e. g. [23, Proposition 7.1.1]).

▶ Fact 2.1. Free semigroups and free monoids are cancellative.

A length function of a semigroup 𝑆 is a homomorphism 𝑆 → N>0 where N>0 is the
additive semigroup of strictly positive natural numbers. A monoid 𝑀 has a proper length
function if there is a monoid homomorphism 𝑀 → N (where N is the additive monoid of the
natural numbers including 0) such that 1 is the only pre-image of 0 (i. e. only 1 has length 0,
all other elements have strictly positive length). A semigroup 𝑆 that is not a monoid has a
length function if and only if 𝑆1 has a proper one and free semigroups and monoids do have
(proper) length functions (mapping a word to its length).

A semigroup (or monoid) 𝑆 is equidivisable if, for all 𝑠1, 𝑠2, 𝑠
′
1, 𝑠

′
2 ∈ 𝑆 with 𝑠1𝑠2 = 𝑠′

1𝑠
′
2,

there is some 𝑥 ∈ 𝑆1 with 𝑠1 = 𝑠′
1𝑥 and 𝑥𝑠2 = 𝑠′

2 or with 𝑠1𝑥 = 𝑠′
1 and 𝑠2 = 𝑥𝑠′

2. It
is not difficult to see that free semigroups and monoids are equidivisible (see e. g. [23,
Proposition 7.1.2]). Together with having a (proper) length function, this turns out to
characterize free semigroups and monoids (see e. g. [23, Proposition 7.1.8]).

▶ Fact 2.2 (Levi’s Lemma). A semigroup (monoid) 𝑆 is free if and only if it is equidivisible
and has a (proper) length function.

Free Products of Semigroups. A semigroup presentation is a pair ⟨𝑄 | ℛ⟩S of a set of
generators 𝑄 and a (possibly infinite) set of relations ℛ ⊆ 𝑄+ ×𝑄+. We will only consider
presentations where 𝑄 is finite and non-empty. If we denote by 𝒞 the smallest congruence
𝒞 ⊆ 𝑄+ × 𝑄+ with ℛ ⊆ 𝒞, the semigroup presented by such a presentation is 𝑆 = 𝑄+/𝒞
formed by the congruence classes [·] of 𝒞 with the (well-defined!) operation [𝑢] · [𝑣] = [𝑢𝑣].
Every semigroup generated by a finite, non-empty set 𝑄 is presented by some semigroup
presentation of this form.
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𝑎

𝑝 𝑞

𝑏

(a) Single transition
cross diagram.

𝑎0,1 . . . 𝑎0,𝑚

𝑞1,0 𝑞1,1 . . . 𝑞1,𝑚−1 𝑞1,𝑚

𝑎1,1 𝑎1,𝑚...
...

...
...

𝑎𝑛−1,1 𝑎𝑛−1,𝑚

𝑞𝑛,0 𝑞𝑛,1 . . . 𝑞𝑛,𝑚−1 𝑞𝑛,𝑚

𝑎𝑛,1 . . . 𝑎𝑛,𝑚

(b) Multiple crosses combined in one diagram.

𝑢

𝑝 𝑞

𝑣

(c) Abbreviated cross
diagram.

Figure 1 Combined and abbreviated cross diagrams.

The free product of the semigroups 𝑆 = ⟨𝑄 | 𝒮⟩S and 𝑇 = ⟨𝑃 | ℛ⟩S is the semigroup
𝑆 ⋆ 𝑇 = ⟨𝑄 ⊎ 𝑃 | 𝒮 ∪ ℛ⟩S . For example, we have {𝑝, 𝑞}+ = 𝑝+ ⋆ 𝑞+.
▶ Remark. Of course, there is also the free product of monoids (and monoid presentations).
However, we will only consider free products of semigroups (in particular: {𝑝, 𝑞}* ̸≃ 𝑝* ⋆ 𝑞*).

Automata. In the current context, an automaton is a triple 𝒯 = (𝑄,Σ, 𝛿) consisting of a
non-empty, finite set of states 𝑄, an alphabet Σ and a set 𝛿 ⊆ 𝑄× Σ × Σ ×𝑄 of transitions.
▶ Remark. What we simply call an automaton here would rather be called a finite-state,
letter-to-letter transducer in more general automaton-theoretic terms. However, simply using
the term “automaton” is standard terminology in the area. We also do not use initial or
final states as they do not interact nicely with the self-similar nature of the semigroups and
monoids generated by automata we are about to define.

For transitions, we will use the graphical notation 𝑝 𝑞𝑎/𝑏 to denote (𝑝, 𝑎, 𝑏, 𝑞) ∈
𝑄 × Σ × Σ × 𝑄. Such a transition starts in 𝑝, ends in 𝑞, its input is 𝑎 and its output is 𝑏.
This reflects the common way of depicting automata (see e. g. Figure 2). When dealing with
an automaton 𝒯 = (𝑄,Σ, 𝛿), we are actually dealing with two alphabets (𝑄 and Σ). In order
to avoid confusion, we call the elements of 𝑄 states and the elements of 𝑄* state sequences,
while reserving the terms letters and words for the elements of Σ and Σ*, respectively.

Another somewhat graphical tool that we will make heavy use of are cross diagrams. Here,
a cross diagram as given in Figure 1a indicates the existence of a transition 𝑝 𝑞𝑎/𝑏 in the
automaton. Cross diagrams can be stacked together in order to create larger ones. For exam-
ple, the diagram in Figure 1b indicates the existence of the transition 𝑞𝑖,𝑗−1 𝑞𝑖,𝑗

𝑎𝑖−1,𝑗/𝑎𝑖,𝑗

for all 0 < 𝑖 ≤ 𝑛 and 0 < 𝑗 ≤ 𝑚. When combining cross diagrams, we will sometimes omit
unnecessary states and letters. Additionally, we will also abbreviate them: for example, if
we let 𝑝 = 𝑞𝑛,0 . . . 𝑞1,0, 𝑢 = 𝑎0,1 . . . 𝑎0,𝑚, 𝑣 = 𝑎𝑛,1 . . . 𝑎𝑛,𝑚 and 𝑞 = 𝑞𝑛,𝑚 . . . 𝑞1,𝑚, the cross
diagram in Figure 1c is an abbreviation of the cross diagram in Figure 1b. It is important
here to note the order we write the state sequences in: in our example, 𝑞1,0 is the first state
in the top left of the cross diagram but it is the rightmost state in the sequence 𝑝. This
order will later be more natural as we will define a left action based on cross diagrams.

An automaton 𝒯 = (𝑄,Σ, 𝛿) is called complete and deterministic if, for every 𝑝 ∈ 𝑄 and
every 𝑎 ∈ Σ, there is exactly one 𝑞 ∈ 𝑄 and exactly one 𝑏 ∈ Σ such that the cross diagram
in Figure 1a holds (i. e. in every state 𝑝 and for every letter 𝑎 ∈ Σ, there is exactly one
transition starting in 𝑝 with input 𝑎). We call such an automaton a complete S-automaton
(as they naturally generate semigroups).

An automaton 𝒮 = (𝑃,Σ, 𝜎) is a subautomaton of another automaton 𝒯 = (𝑄,Γ, 𝛿) if
𝑃 ⊆ 𝑄, Σ ⊆ Γ and 𝜎 ⊆ 𝛿. In this case, any cross diagram of 𝒮 is also valid for 𝒯 .
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44:6 The Freeness Problem for Automaton Semigroups

Automaton Semigroups and Monoids. Let 𝒯 = (𝑄,Σ, 𝛿) be a complete S-automaton. By
induction, there is exactly one 𝑣 ∈ Σ+ and exactly one 𝑞 ∈ 𝑄+ for every 𝑝 ∈ 𝑄+ and 𝑢 ∈ Σ+

such that the cross diagram in Figure 1c holds. This allows us to define a left action of 𝑄+

on Σ+ by letting 𝑝 ∘ 𝑢 = 𝑣 and to define a right action of Σ+ on 𝑄+, called the dual action,
by letting 𝑝 · 𝑢 = 𝑞. The reader may verify that this indeed defines well-defined actions by
the way cross diagrams work. We may extend these into an action of 𝑄* on Σ* and an action
of Σ* on 𝑄* by letting 𝜀 ∘ 𝑢 = 𝑢 for all 𝑢 ∈ Σ*, 𝑝 ∘ 𝜀 = 𝜀 for all 𝑝 ∈ 𝑄*, 𝜀 · 𝑢 = 𝜀 again for
all 𝑢 ∈ Σ* and, finally, 𝑝 · 𝜀 = 𝑝 for (again) all 𝑝 ∈ 𝑄*.

By the way cross diagrams work, there is an interaction between the two actions: for all
𝑝, 𝑞 ∈ 𝑄* and all 𝑢, 𝑣 ∈ Σ*, we have 𝑝 ∘𝑢𝑣 = (𝑝 ∘𝑢)[(𝑝 ·𝑢) ∘ 𝑣] and 𝑞𝑝 ·𝑢 = [𝑞 · (𝑝 ∘𝑢)](𝑝 ·𝑢).

The action 𝑝 ∘ 𝑢 allows us to define the congruence =𝒯 ⊆ 𝑄* × 𝑄* by 𝑝 =𝒯 𝑞 ⇐⇒
∀𝑢 ∈ Σ* : 𝑝 ∘ 𝑢 = 𝑞 ∘ 𝑢. We denote the class of 𝑝 ∈ 𝑄* with respect to =𝒯 by [𝑝]𝒯 . The set
M (𝒯 ) = 𝑄*/=𝒯 of these classes forms a monoid, which is called the monoid generated by
𝒯 . In other words, it is the faithful quotient of 𝑄* with respect to the action 𝑞 ∘ 𝑢. Note
that 𝜀 acts like the identity on all 𝑢 ∈ Σ* and the class of 𝜀, thus, forms the neutral element
of M (𝒯 ). A monoid arising in this way is called a complete automaton monoid.

Similarly, the semigroup generated by 𝒯 is the semigroup S (𝒯 ) = 𝑄+/=𝒯 and any such
semigroup is a complete automaton semigroup. Note that monoid and semigroup generated
by a complete S-automaton coincide if there is a non-empty state sequence acting trivially.

▶ Remark 2.3. We only consider complete S-automata in this work but will make this
explicit by talking about complete S-automata and complete automaton semigroups and
monoids. In the literature, these objects are often simply called “automaton semigroups”
(the term “automaton monoid” is less common). This is a convention that we could also
follow here but choose not to since the concepts generalize naturally also to non-complete
automata, yielding (partial) automaton semigroups and monoids. It is not known whether
the two classes coincide (see [15] for more details).

▶ Remark 2.4. There is a subtle difference between an automaton monoid and an automaton
semigroup which happens to be a monoid. In the latter, the neutral element not necessarily
acts as the identity map. In fact, it is not known whether the two classes coincide (see [9,
Proposition 3.1] for the analogue for groups).

Free Semigroups (Monoids) as Automaton Semigroups (Monoids). As examples of
complete automaton semigroups and monoids, we will next look at how to generate free
semigroups and monoids. The free monoid of rank one is generated by an automaton known
as the adding machine (see e. g. [33] or [3]), which turns it into both a complete automaton
monoid and a complete automaton semigroup. The free semigroup of rank one, on the other
hand, is neither [9, Proposition 4.3] (see also [7, Theorem 15], [15, Theorem 19] and [43,
Theorem 1.2.1.4]).

However, free semigroups of higher rank (and their monoid counter-parts) are indeed
complete automaton semigroups [9, Proposition 4.1]:

▶ Example 2.5. Let 𝑅 be a finite set with |𝑅| ≥ 2. Consider the automaton ℛ = (𝑅,𝑅, 𝜌)
with 𝜌 = {𝑎 𝑏𝑏/𝑎 | 𝑎, 𝑏 ∈ 𝑅} (see Figure 2 for the binary case). One easily verifies that
ℛ is a complete S-automaton and we claim that it generates 𝑅+. For this, it suffices to
show that, for every 𝑝, 𝑞 ∈ 𝑅+ with 𝑝 ̸= 𝑞, there is some 𝑢 ∈ 𝑅* with 𝑝 ∘ 𝑢 ̸= 𝑞 ∘ 𝑢. We may
assume |𝑝| ≥ |𝑞| and there needs to be some 𝑎 ∈ 𝑅 with 𝑝 ̸= 𝑞𝑎|𝑝|−|𝑞| (we just need to take
𝑎 different to the last letter of 𝑝 if the lengths differ). Now, observe that, for all 𝑛 ≥ 1 and
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𝑎 𝑏𝑎/𝑎

𝑏/𝑎

𝑏/𝑏

𝑎/𝑏

Figure 2 A complete S-automaton generat-
ing {𝑎, 𝑏}+.

𝑏1 . . . 𝑏𝑛

𝑎1 𝑏1 . . . 𝑏𝑛−1 𝑏𝑛

𝑎1 𝑏𝑛−1...
...

...
...

𝑎𝑛−1 𝑏1
𝑎𝑛 𝑎𝑛−1 . . . 𝑎1 𝑏1

𝑎𝑛 . . . 𝑎1

Figure 3 Cross diagram of ℛ.

all 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛 ∈ 𝑅, we have the cross diagram in Figure 3 by the construction of
ℛ. This shows, in particular, 𝑝 ∘ 𝑎|𝑝| = 𝑝 and 𝑝 · 𝑎|𝑝| = 𝑎|𝑝|. By a similar cross diagram, we
obtain 𝑝 ̸=ℛ 𝑞 (since 𝑞 ∘ 𝑎|𝑝| = (𝑞 ∘ 𝑎|𝑞|)(𝑎|𝑞| ∘ 𝑎|𝑝|−|𝑞|) = 𝑞𝑎|𝑝|−|𝑞| ̸= 𝑝 = 𝑝 ∘ 𝑎|𝑝|).

There is no state sequence which acts like the identity and this means that M (ℛ) is
S (ℛ)1 ≃ 𝑅*, which shows that 𝑅* is a complete automaton monoid.

The construction presented in Example 2.5 is clearly computable and we obtain:

▶ Fact 2.6. For every finite set 𝑅 with |𝑅| ≥ 2, one can compute an S-automaton ℛ =
(𝑅,𝑅, 𝜌) with S (ℛ) ≃ 𝑅+ and M (ℛ) ≃ 𝑅*.

Automaton Operations. The union of two automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
is the automaton 𝒯1 ∪ 𝒯2 = (𝑄1 ∪𝑄2,Σ1 ∪ Σ2, 𝛿1 ∪ 𝛿2). If 𝒯1 and 𝒯2 are both complete S-
automaton with non-intersecting state sets (𝑄1 ∩𝑄2 = ∅) but a common alphabet Σ1 = Σ2,
their union 𝒯1 ∪𝒯2 is also a complete S-automaton (which allows us, for example, to consider
the semigroup S (𝒯1 ∪ 𝒯2)). Similarly, the union of two complete S-automata with the same
state set but disjoint alphabets is again a complete S-automaton. This operation basically
adds the transitions of 𝒯2 to the existing transitions of 𝒯1.

The composition of two automata 𝒯2 = (𝑄2,Σ, 𝛿2) and 𝒯1 = (𝑄1,Σ, 𝛿1) over a common
alphabet Σ is the automaton 𝒯2 ∘ 𝒯1 = (𝑄2𝑄1,Σ, 𝛿2 ∘ 𝛿1) with

𝛿2 ∘ 𝛿1 =
{︁
𝑝2𝑝1 𝑞2𝑞1

𝑎/𝑐
⃒⃒⃒
∃𝑏 ∈ Σ : 𝑝1 𝑞1

𝑎/𝑏 ∈ 𝛿1 and 𝑝2 𝑞2
𝑏/𝑐 ∈ 𝛿2

}︁
(where 𝑄2𝑄1 = {𝑞2𝑞1 | 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2} is the cartesian product of 𝑄2 and 𝑄1). If 𝒯2 and
𝒯1 are complete S-automata, also their composition is.

The 𝑘-th power 𝒯 𝑘 of an automaton 𝒯 is the 𝑘-fold composition of 𝒯 with itself. It is
computable and, if 𝒯 (and, thus, 𝒯 𝑘) is a complete S-automaton, the actions of some 𝑝 ∈ 𝑄*

of length |𝑝| = 𝑘 seen as a state of 𝒯 𝑘 or seen as a state sequence over 𝒯 coincide. Thus
(and by an analogue for the dual action), the notations 𝑝 ∘ 𝑢 and 𝑝 · 𝑢 remain unambiguous
and we have S (𝒯 ) = S (𝒯 ∪ 𝒯 𝑘) for all 𝑘 ≥ 1, which is usually used to ensure that any
fixed state sequence 𝑝 ∈ 𝑄+ may be assumed to be congruent to a single state under =𝒯
(i. e. equal in the semigroup or monoid).

Finally, the dual of an automaton 𝒯 = (𝑄,Σ, 𝛿) is the automaton 𝜕𝒯 = (Σ, 𝑄, 𝜕𝛿) with
𝜕𝛿 =

{︁
𝑎 𝑏𝑝/𝑞

⃒⃒⃒
𝑝 𝑞𝑎/𝑏 ∈ 𝛿

}︁
(i. e. we swap the roles of the states 𝑄 and the letters Σ).

Clearly, the dual of a complete S-automaton is again a complete S-automaton.
The dual automaton can make it sometimes more accessible to understand how a letter is

transformed by a state sequence: we just have to follow a path in the graphical representation
of the dual automaton. For example, from Figure 5, it is obvious that the only way for
𝑝 ∘ 𝛼 = 𝑞 ∘ 𝛽 to hold is for both of them to be equal to 𝑓 .
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Adding Free Generators. For our results, we will need to add new free generators to existing
automaton semigroups 𝑆 computationally (in the sense that we do not change the behavior
of existing state sequences but add a new state 𝑞 such that the new automaton generates the
(semigroup) free product 𝑆 ⋆ 𝑞+). More precisely, we will use the following statement, which
follows from the construction used for [30, Theorem 13].

▶ Proposition 2.7. On input of a complete S-automaton 𝒮 = (𝑃,Σ, 𝜎), one can compute a
complete S-automaton 𝒯 = (𝑄,Γ, 𝛿) with 𝑄 = 𝑃 ⊎ {𝑞} such that the identity on 𝑄 extends
into a well-defined isomorphism S (𝒯 ) → S (𝒮) ⋆ 𝑞+ (for the free product of semigroups).

3 The Freeness Problem for Semigroups

We reduce Post’s Correspondence Problem2 PCP

Constant: an alphabet Λ
Input: homomorphisms 𝜙,𝜓 : 𝐼 = {1, . . . , 𝑛} → Λ+

Question: ∃𝑖 ∈ 𝐼+ : 𝜙(𝑖) = 𝜓(𝑖)?

to (the complement of) the freeness problem for automaton semigroups. For this, we fix an
instance 𝜙,𝜓, 𝐼 for PCP3 over an alphabet Λ and describe how to map it to a complete S-
automaton 𝒯 = (𝑄,Σ, 𝛿) in such a way that 𝒯 can be computed and the PCP instance has a
solution if and only if S (𝒯 ) is not a free semigroup.

Starting from the free semigroup, we will construct 𝒯 (in steps) such that the semigroup
has a relation #1𝑖#1 =𝒯 #1𝑖#2 for 𝑖 ∈ 𝐼+ if and only if 𝑖 belongs to a PCP solution (if there
is no solution, S (𝒯 ) is free). Throughout this process, the reader may find it convenient to
refer to Table 1 for the various symbols we are going to use.

The rough idea is to add an input symbol 𝜄 whose dual action turns 𝑖#1 into 𝜙(𝑖) and
𝑖#2 into 𝜓(𝑖). But we also have to be careful not to introduce any unwanted relations and
to keep the underlying free semigroup structure intact.

Without loss of generality, we may assume |𝐼| = 𝑛 ≥ 1, |Λ| ≥ 2 and 𝐼 ∩ Λ = ∅. In the
following, we let 𝐿 = max{|𝜙(𝑖)|, |𝜓(𝑖)| | 𝑖 ∈ 𝐼}, Λ̂ = ∪𝐿

ℓ=1Λℓ, 𝑅 = Λ ∪ 𝐼 and �̂� = Λ̂ ∪ 𝐼.

Definition of ℛ̂. First, we compute a complete S-automaton ℛ̂ with state set �̂� generating
the free semigroup over 𝑅:

▶ Proposition 3.1. On input 𝐼, Λ and 𝐿, one can compute a complete S-automaton
ℛ̂ = (�̂�,Γ, 𝜌) with state set �̂� = Λ̂ ∪ 𝐼 (for Λ̂ = ∪𝐿

ℓ=1Λℓ) and S (ℛ̂) ≃ 𝑅+ = (Λ ∪ 𝐼)+ (where
the isomorphism is given by �̂� ↦→ �̂� for all �̂� ∈ Λ̂ and 𝑖 ↦→ 𝑖 for all 𝑖 ∈ 𝐼).

Proof. Let ℛ1 be an S-automaton with state set Λ generating the free semigroup Λ+ (see
Fact 2.6) and let ℛ̂1 =

⋃︀𝐿
ℓ=1 ℛℓ

1 be the union of the first 𝐿 powers of ℛ1. Note that the
state set of ℛ̂1 is Λ̂ = ∪𝐿

ℓ=1Λℓ and that we still have S (ℛ̂1) ≃ Λ+ (where an isomorphism is
induced by Λ̂ ∋ �̂� ↦→ �̂� ∈ Λ+). Now, we may apply Proposition 2.7 sequentially for every
element of 𝐼 = {1, . . . , 𝑛}, which yields the sought automaton ℛ̂ with state set �̂� = Λ̂ ∪ 𝐼

whose generated semigroup is isomorphic to Λ+ ⋆⋆𝑖∈𝐼 𝑖
+ = Λ+ ⋆ 𝐼+ = (Λ ∪ 𝐼)+. ◀

2 Post’s statement of the problem [35] is equivalent to ours. In particular, we may assume 𝜙(𝑖), 𝜓(𝑖) ̸= 𝜀.
3 It is worth mentioning that we may assume 𝐼 to only contain five elements [32] and Λ to be a binary

alphabet (using standard encoding techniques). Note that we may only allow non-empty entries,
however.
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The states in �̂� of ℛ̂ do not form a basis of the free semigroup. To simplify working with
this fact, we make the following definition(s).

▶ Definition 3.2 (natural projection). There is a natural projection 𝜋 : Λ̂* → Λ* where
Λ̂ =

⋃︀𝐿
ℓ=1 Λℓ, which interprets a letter �̂� ∈ Λ̂ as the corresponding word over Λ. We extend

this projection into a homomorphism 𝜋 : �̂�* → 𝑅* by setting 𝜋(𝑖) = 𝑖 for all 𝑖 ∈ 𝐼. Two
elements 𝑟1, 𝑟2 ∈ �̂�* are 𝑅-equivalent (written as 𝑟1 =𝑅 𝑟2) if 𝜋(𝑟1) = 𝜋(𝑟2). Finally, |𝑟|𝑅
for 𝑟 ∈ �̂�* is |𝑟|𝑅 = |𝜋(𝑟)|.

Note that we have 𝑟1 =𝑅 𝑟2 if and only if 𝑟1 =ℛ̂ 𝑟2 for all 𝑟1, 𝑟2 ∈ �̂�* as S (ℛ̂) ≃ 𝑅+.

Definition of 𝒮. We use the automaton ℛ̂ = (�̂�,Γ, 𝜌) as a building block for our target
automaton 𝒯 = (𝑄,Σ, 𝛿) for the reduction. We fix some arbitrary element 𝜆# ∈ Λ ⊆ �̂�.
To compute 𝒮 from ℛ̂, we duplicate the state 𝜆# twice and call these copies #1 and #2.
Formally, we have 𝒮 = (𝑄,Γ, 𝜎) where 𝑄 = �̂� ⊎ {#1,#2} for the new symbols #1 and #2
and 𝜎 = 𝜌 ∪ {#1 𝑞𝑐/𝑑 ,#2 𝑞𝑐/𝑑 | 𝜆# 𝑞𝑐/𝑑 ∈ 𝜌}. Thus, the new states #1 and #2
act in the same way as 𝜆# and we have S (𝒮) = S (ℛ̂) ≃ 𝑅+.

Definition of 𝒯 . The next step is to fix another 𝜆𝑅 ∈ Λ ⊆ 𝑄 arbitrarily but different to
𝜆# and take 𝒯1 = (𝑄,Γ ∪ {𝑎, 𝑏}, 𝛿1) = 𝒮 ∪ 𝒯 ′

1 where 𝒯 ′
1 is given via its dual in Figure 4 (i. e.

we add two new letters 𝑎, 𝑏 to the alphabet and some additional transitions). Note that we
have the transitions 𝜆# 𝜆𝑅

𝑎/𝑎 and the self-loops 𝜆ℓ
𝑅 𝜆ℓ

𝑅
𝑎/𝑎 for all 1 ≤ ℓ ≤ 𝐿 in 𝒯1.

The idea for this part is that we may factorize a state sequence 𝑞 ∈ 𝑄* into blocks from
�̂�* and symbols #1 and #2 and then remove the blocks one after another using the letter 𝑎.
We will explain this precisely later in Fact 3.3.

Finally, we let 𝒯 = (𝑄,Σ, 𝛿) = 𝒯1 ∪ 𝒯2 where 𝒯2 is given via its dual in Figure 5. Note,
in particular, that we have 𝜙(𝑖), 𝜓(𝑖) ∈

⋃︀𝐿
ℓ=1 Λℓ = Λ̂ ⊆ �̂�.

In other words, we obtain 𝒯 from 𝒯1 by adding new symbols to the alphabet resulting in
Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓} and adding the transitions depicted in Figure 5 for
all 𝑖 ∈ 𝐼 and �̂� ∈ Λ̂. Clearly, 𝒯 can be computed and is a complete S-automaton.

The Role of 𝑎 and 𝑏 in 𝒯 . As already mentioned above, we may use the letter 𝑎 to remove
a block from a certain factorization of a state sequence (the proof is by induction on 𝜇):

▶ Fact 3.3. Let 𝑝 ∈ 𝑄* and factorize it as 𝑝 = (𝑝𝑠#𝑥𝑠
) . . . (𝑝1#𝑥1) 𝑝0 for 𝑝0, . . . ,𝑝𝑠 ∈ �̂�*

and 𝑥1, . . . , 𝑥𝑠 ∈ {1, 2}. Then, for any 1 ≤ 𝜇 ≤ 𝑠, we have (in 𝒯 ):

𝑝 · 𝑎𝜇 = (𝑝𝑠#𝑥𝑠
) . . . (𝑝𝜇+1#𝑥𝜇+1) 𝑝𝜇 𝜆#𝜆

𝜇−1+|𝑝𝜇−1...𝑝0|𝑅

𝑅

Correctness. It remains to show that the PCP instance 𝜙,𝜓, 𝐼 has a solution if and only if
S (𝒯 ) is not a free semigroup. We start with the (easier) “only if” direction and show that
the additional transitions from 𝒯1 and 𝒯2 do not affect the subautomaton ℛ̂: if two state
sequences are 𝑅-equivalent, they are also equal with respect to 𝒯 .

▶ Lemma 3.4. Let 𝑟1, 𝑟2 ∈ �̂�* with 𝑟1 =𝑅 𝑟2. Then, we have 𝑟1 =𝒯 𝑟2.

Proof Sketch. We need to show 𝑟1 ∘ 𝑢 = 𝑟2 ∘ 𝑢 for all 𝑢 ∈ Σ* and this can be done by
induction on 𝑢. Thus, write 𝑢 = 𝑐𝑢′ for some 𝑐 ∈ Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓}
and 𝑢′ ∈ Σ*.

Most cases for 𝑐 are straight-forward (for example, for 𝑐 ∈ Γ – the alphabet of ℛ̂
– we inherit this property from ℛ̂) and we only demonstrate the case 𝑐 ∈ {𝛼, 𝛼′, 𝛽, 𝛽′}.
Here, we factorize 𝑟1 = 𝑠1�̂�1𝑖1 with 𝑖1 ∈ 𝐼* maximal, �̂�1 ∈ Λ̂ ∪ {𝜀} and 𝑠1 ∈ �̂�* with
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Table 1 Various symbols in the order of their definition.

symbol usage

Λ : PCP base alphabet, |Λ| ≥ 2
𝐼 : PCP index set, |𝐼| ≥ 1, 𝐼 ∩ Λ = ∅

𝜙,𝜓 : 𝐼 → Λ+ PCP homomorphisms
𝐿 = max{|𝜙(𝑖)|, |𝜓(𝑖)| | 𝑖 ∈ 𝐼}
Λ̂ =

⋃︀𝐿

ℓ=1 Λℓ

𝑅 = Λ ∪ 𝐼

�̂� = Λ̂ ∪ 𝐼 : state set of ℛ
ℛ̂ = (�̂�,Γ, 𝜌) : complete S-automaton generating 𝑅+ = (Λ ∪ 𝐼)+

𝜌 : transition set of ℛ̂
Γ : alphabet of ℛ̂ and 𝒮
𝜋 : Λ̂* → Λ, �̂�* → 𝑅* natural projection with 𝜋(𝑖) = 𝑖 for all 𝑖 ∈ 𝐼

|𝑟|𝑅 : length of 𝜋(𝑟) for 𝑟 ∈ �̂�*

𝜆# ∈ Λ ⊆ �̂� : arbitrarily chosen element
#1,#2 : copies of 𝜆#

𝒮 = (𝑄,Γ, 𝜎) : complete S-automaton, extension of ℛ̂ still generating 𝑅+

𝑄 = �̂� ⊎ {#1,#2} : state set of 𝒮 and 𝒯
𝜎 : transition set of 𝒮

𝜆𝑅 ∈ Λ ⊆ 𝑄 : arbitrarily chosen element with 𝜆𝑅 ̸= 𝜆#

𝑎, 𝑏 ̸∈ Γ : new letters for 𝒯1

𝒯 ′
1 = (𝑄, {𝑎, 𝑏}, 𝛿′

1) : complete S-automaton, additional transitions for 𝒯1, see Figure 4
𝒯1 = (𝑄,Γ ⊎ {𝑎, 𝑏}, 𝛿1) = 𝒮 ∪ 𝒯 ′

1 : complete S-automaton, extension of 𝒮 by 𝒯 ′
1

𝛿1 : transition set of 𝒯1

𝒯 = (𝑄,Σ, 𝛿) = 𝒯1 ∪ 𝒯2 : complete S-automaton with 𝑒 =𝒯 𝜀, result of the reduction
𝒯2 : complete S-automaton with new transitions for 𝒯 , see Figure 5
Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓} : alphabet of 𝒯
𝜋# : 𝑄* → {#1,#2}* homomorphism with 𝜋#(#𝑥) = #𝑥 but 𝜋#(𝑟) = 𝜀 for 𝑟 ∈ �̂�

𝜋′ : 𝑄* → (𝑅 ∪ {#1,#2})* homomorphism extending 𝜋 with 𝜋′(#𝑥) = #𝑥 for 𝑥 ∈ {1, 2}

𝑎 𝑏𝑟/𝜆
|𝑟|𝑅

𝑅

#𝑥/𝜆#
𝑞/𝑞

Figure 4 The dual 𝜕𝒯 ′
1 . The transitions exist for all 𝑟 ∈ �̂�, 𝑥 ∈ {1, 2} and 𝑞 ∈ 𝑄.

𝜄

𝛼 𝛼′

𝑓𝛼

𝛽 𝛽′

𝑓𝛽

𝑓𝑟/𝜆
|𝑟|𝑅

𝑅

#1/𝜆#

#2/𝜆#

𝑖/𝜙(𝑖)

#𝑥/𝜆#

�̂�/𝜆
|�̂�|𝑅

𝑅

𝑖/𝜙(𝑖)
�̂�/𝜆

|�̂�|𝑅

𝑅

#𝑥/𝜆#

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

𝑖/𝜓(𝑖)

�̂�/𝜆
|�̂�|𝑅

𝑅

#𝑥/𝜆#

𝑖/𝜓(𝑖)
�̂�/𝜆

|�̂�|𝑅

𝑅

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

#𝑥/𝜆#

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

Figure 5 The dual 𝜕𝒯2. The transitions exist for all 𝑖 ∈ 𝐼, 𝑟 ∈ �̂�, �̂� ∈ Λ̂ and 𝑥 ∈ {1, 2}.
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𝛼′

𝑖 𝜙(𝑖)

𝛼′

�̂�1 𝜆
|�̂�1|𝑅

𝑅

𝑓𝛼

𝑠1 𝜆
|𝑠1|𝑅

𝑅

𝑓𝛼

and

𝛼′

𝑖 𝜙(𝑖)

𝛼′

�̂�2 𝜆
|�̂�2|𝑅

𝑅

𝑓𝛼

𝑠2 𝜆
|𝑠2|𝑅

𝑅

𝑓𝛼

Figure 6 Cross diagrams for Lemma 3.4.

𝜄

#1 𝜆#
𝛼

𝑖1 𝜙(𝑖1)
𝛼′

𝑖2 𝜙(𝑖2)
𝛼′

...
...

𝛼′

𝑖𝐾 𝜙(𝑖𝐾)
𝛼′

#1 𝜆#
𝑓

and

𝜄

#2 𝜆#
𝛽

𝑖1 𝜓(𝑖1)
𝛽′

𝑖2 𝜓(𝑖2)
𝛽′

...
...

𝛽′

𝑖𝐾 𝜓(𝑖𝐾)
𝛽′

#1 𝜆#
𝑓

Figure 7 Cross diagrams for Lemma 3.5.

𝜆1 = 𝜀 =⇒ 𝑠1 = 𝜀. Analogously, we factorize 𝑟2 = 𝑠2�̂�2𝑖2. Observe that, since we have
𝑟1 =𝑅 𝑟2, we must have 𝑖1 = 𝑖2 = 𝑖, 𝑠1�̂�1 =𝑅 𝑠2�̂�2 and �̂�1 = 𝜀 ⇐⇒ �̂�2 = 𝜀. This yields
the cross diagrams in Figure 6 where the shaded parts only exist if �̂�1, �̂�2 ̸= 𝜀 and where
we have 𝛼′ after applying 𝑖 if 𝑖 ̸= 𝜀. In both diagrams, we have the same state sequence on
the right hand side (because of 𝑠1�̂�1 =𝑅 𝑠2�̂�2) and, thus, are done. The case 𝑐 ∈ {𝛽, 𝛽′} is
analogous (using 𝜓). ◀

Finally, we show that a solution for the PCP instance implies a proper relation in the
semigroup generated by 𝒯 and, thus, that it is not free.

▶ Lemma 3.5. If 𝑖 ∈ 𝐼+ is a solution for the PCP instance, then we have #1𝑖#1 =𝒯 #1𝑖#2.

Proof Sketch. We show #1𝑖#1 ∘ 𝑢 = #1𝑖#2 ∘ 𝑢 for all 𝑢 ∈ Σ*. For 𝑢 = 𝜀, there is
nothing to show. So, let 𝑢 = 𝑐𝑢′ for some 𝑐 ∈ Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓}
and 𝑢′ ∈ Σ*. Again, we only fully demonstrate the most interesting case 𝑐 = 𝜄 (the
other cases may be found in Figure 8 where Figure 8e requires induction). Writing 𝑖 =
𝑖𝐾 . . . 𝑖2𝑖1 for 𝑖1, . . . , 𝑖𝐾 ∈ 𝐼, we obtain the diagrams in Figure 7. Since 𝑖 = 𝑖𝐾 . . . 𝑖2𝑖1 is a
solution, we have 𝜙(𝑖𝐾) . . . 𝜙(𝑖2)𝜙(𝑖1) =𝑅 𝜓(𝑖𝐾) . . . 𝜓(𝑖2)𝜓(𝑖1). Thus, Lemma 3.4 implies
𝜆#𝜙(𝑖𝐾) . . . 𝜙(𝑖2)𝜙(𝑖1)𝜆# =𝒯 𝜆#𝜓(𝑖𝐾) . . . 𝜓(𝑖2)𝜓(𝑖1)𝜆#. ◀

𝛼/𝛽

#𝑥 𝜆#
𝑓𝛼/𝑓𝛽

𝑖 𝜆
|𝑖|
𝑅

𝑓𝛼/𝑓𝛽

#1 𝜆#
𝑓𝛼/𝑓𝛽

(a) 𝑐 ∈ {𝛼, 𝛽}

𝛼′/𝛽′

#𝑥 𝜆#
𝑓

𝑖 𝜆
|𝑖|
𝑅

𝑓

#1 𝜆#
𝑓

(b) 𝑐 ∈ {𝛼′, 𝛽′}

𝑓𝛼/𝑓𝛽/𝑓

#𝑥 𝜆#
𝑓𝛼/𝑓𝛽/𝑓

𝑖 𝜆
|𝑖|
𝑅

𝑓𝛼/𝑓𝛽/𝑓

#1 𝜆#
𝑓𝛼/𝑓𝛽/𝑓

(c) 𝑐 ∈ {𝑓𝛼, 𝑓𝛽 , 𝑓}

𝑎

#𝑥 𝜆#
𝑏

𝑖 𝑖

𝑏

#1 #1
𝑏

(d) 𝑐 = 𝑎

𝑏

#𝑥 #𝑥

𝑏

𝑖 𝑖

𝑏

#1 #1
𝑏

(e) 𝑐 = 𝑏

Figure 8 Various cases for 𝑐 ∈ Σ. The cross diagrams hold for 𝑥 ∈ {1, 2}.
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▶ Proposition 3.6. If the PCP instance has a solution, S (𝒯 ) is not (left) cancellative and,
thus, not a free semigroup.

Converse Direction. To show that the PCP instance has a solution if the semigroup is not
free, we introduce the notion of compatibility and observe that every relation is compatible.
The proof relies on Fact 3.3 for removing blocks from the factorization used in Definition 3.7
and that 𝒮 (generating 𝑅+) survives as a subautomaton of 𝒯 . The latter allows us to use
the cancellativity of 𝑅+ to show that the individual blocks are the same in 𝑅+.

▶ Definition 3.7 (compatible state sequences). Factorize 𝑝, 𝑞 ∈ 𝑄* (uniquely) as 𝑝 =
(𝑝𝑠#𝑥𝑠

) . . . (𝑝1#𝑥1) 𝑝0 and 𝑞 = (𝑞𝑡#𝑦𝑡
) . . . (𝑞1#𝑦1) 𝑞0 with 𝑝0, . . . ,𝑝𝑠, 𝑞0, . . . , 𝑞𝑡 ∈ �̂�* and

𝑥1, . . . , 𝑥𝑠, 𝑦1, . . . , 𝑦𝑡 ∈ {1, 2}. They are compatible if 𝑠 = 𝑡 and ∀ 0 ≤ 𝑖 ≤ 𝑠 = 𝑡 : 𝑝𝑖 =𝑅 𝑞𝑖.

▶ Lemma 3.8. Let 𝑝, 𝑞 ∈ 𝑄* with 𝑝 =𝒯 𝑞. Then, we have that 𝑝 and 𝑞 are compatible.

Proof. We factorize 𝑝 and 𝑞 in the same way as in Definition 3.7 and show the statement by
induction on 𝑠+ 𝑡. For 𝑠 = 𝑡 = 0, we have 𝑝0 = 𝑝 =𝒯 𝑞 = 𝑞0. Since ℛ̂ is a subautomaton of
𝒯 , this implies 𝑝0 =ℛ̂ 𝑞0 and, equivalently, 𝑝 = 𝑝0 =𝑅 𝑞0 = 𝑞.

For the inductive step (𝑠+ 𝑡 > 0), we may assume 𝑠 > 0 (due to symmetry) or, in other
words, that 𝑝 contains at least one #1 or #2. We have 𝑝 ∘ 𝑎 = 𝑏 (compare to Figure 4) and,
thus, due to 𝑝 =𝒯 𝑞, also 𝑞 ∘𝑎 = 𝑝 ∘𝑎 = 𝑏. This is only possible (again, compare to Figure 4)
if 𝑞 also contains at least one #1 or #2, i. e. if 𝑡 > 0.

From Fact 3.3 (with 𝜇 = 1), we obtain (for both 𝑝 and 𝑞):

𝑝 · 𝑎 = 𝑝′𝜆#𝜆
|𝑝0|𝑅

𝑅

for 𝑝′ = (𝑝𝑠#𝑥𝑠
) . . . (𝑝2#𝑥2) 𝑝1 and

𝑞 · 𝑎 = 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅

for 𝑞′ = (𝑞𝑡#𝑥𝑡
) . . . (𝑞2#𝑥2) 𝑞1

Now, 𝑝 =𝒯 𝑞 implies 𝑝′𝜆#𝜆
|𝑝0|𝑅

𝑅 = 𝑝 · 𝑎 =𝒯 𝑞 · 𝑎 = 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅 and we may apply the
induction hypothesis, which yields that 𝑝′𝜆#𝜆

|𝑝0|𝑅

𝑅 and 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅 are compatible. This
means that we have 𝑠 = 𝑡, 𝑝𝜇 =𝑅 𝑞𝜇 for all 2 ≤ 𝜇 ≤ 𝑠 = 𝑡 and 𝑝1𝜆#𝜆

|𝑝0|𝑅

𝑅 =𝑅 𝑞1𝜆#𝜆
|𝑞0|𝑅

𝑅 .
Observe that the latter implies 𝑝1 =𝑅 𝑞1 (as we have chosen 𝜆# and 𝜆𝑅 as different elements
of Λ). In particular, we also obtain 𝑝𝑠𝜆#𝑝𝑠−1 . . . 𝜆#𝑝1 =𝑅 𝑞𝑡𝜆#𝑞𝑡−1 . . . 𝜆#𝑞1.

Since 𝒮 is a subautomaton of 𝒯 , 𝑝 =𝒯 𝑞 implies 𝑝 =𝒮 𝑞. As #1 and #2 act in the same
way as 𝜆# in 𝒮 by construction, this shows 𝑝𝑠𝜆# . . .𝑝1𝜆#𝑝0 =𝒮 𝑞𝑡𝜆# . . . 𝑞1𝜆#𝑞0 and, because
of S (𝒮) ≃ 𝑅+, also 𝑝𝑠𝜆# . . .𝑝1𝜆#𝑝0 =𝑅 𝑞𝑡𝜆# . . . 𝑞1𝜆#𝑞0. Now, because 𝑅* as a free monoid
is cancellative (see Fact 2.1) and because we have 𝑝𝑠𝜆#𝑝𝑠−1 . . . 𝜆#𝑝1 =𝑅 𝑞𝑡𝜆#𝑞𝑡−1 . . . 𝜆#𝑞1
(from above), we obtain 𝜆#𝑝0 =𝑅 𝜆#𝑞0 and, finally, 𝑝0 =𝑅 𝑞0, which concludes the proof
that 𝑝 and 𝑞 are compatible. ◀

On the other hand, not every compatible pair forms a semigroup relation. However, this
is true by Lemma 3.4 if, additionally, the subsequence containing only #1 and #2 is the
same in both entries. To formalize this, we introduce the following definition.

▶ Definition 3.9 (projection on {#1,#2}). Let 𝜋# : 𝑄* → {#1,#2}* be the homomorphism
given by 𝜋#(#𝑥) = #𝑥 for both 𝑥 ∈ {1, 2} and 𝜋#(𝑟) = 𝜀 for all other 𝑟 ∈ 𝑄 ∖ {#1,#2} = �̂�.

▶ Lemma 3.10. Let 𝑝, 𝑞 ∈ 𝑄* be compatible with 𝜋#(𝑝) = 𝜋#(𝑞). Then, we have 𝑝 =𝒯 𝑞.
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Combining the last two lemmas, we obtain that S (𝒯 ) is a free semigroup if all its
relations have the same projection under 𝜋#. Most importantly, we will later on apply the
contraposition of the “only if” direction of the following lemma to obtain a relation with
different images under the projection if the semigroup is not free.

▶ Lemma 3.11. Let 𝜋′ : 𝑄* → (𝑅 ∪ {#1,#2})* be the extension of the natural projection 𝜋

(from Definition 3.2) with 𝜋′(#𝑥) = #𝑥 for 𝑥 ∈ {1, 2}. The following are equivalent:
1. For all 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞, we have 𝜋#(𝑝) = 𝜋#(𝑞).
2. The map 𝜋′ induces a well-defined homomorphism S (𝒯 ) → (𝑅 ∪ {#1,#2})+.
3. The map 𝜋′ induces a well-defined isomorphism S (𝒯 ) → (𝑅 ∪ {#1,#2})+.

In particular, S (𝒯 ) is isomorphic to (𝑅 ∪ {#1,#2})+ if we have 𝜋#(𝑝) = 𝜋#(𝑞) for all
𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞.

Now a relation whose sides have different images under 𝜋# yields a PCP solution.

▶ Lemma 3.12. If there are 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞 but 𝜋#(𝑝) ̸= 𝜋#(𝑞), then the PCP
instance has a solution.

Proof. We factorize these 𝑝 and 𝑞 in the same way as in Definition 3.7 and observe that 𝑝

and 𝑞 are compatible by Lemma 3.8. We may assume that there is some 1 ≤ 𝜇0 ≤ 𝑠 = 𝑡

with #𝑥𝜇0
= #1 but #𝑦𝜇0

= #2 (due to symmetry).
We may assume 𝜇0 = 1 without loss of generality. This is because we may substitute 𝑝

by 𝑝′ = 𝑝 · 𝑎𝜇0−1 and 𝑞′ = 𝑞 · 𝑎𝜇0−1 (we still have 𝑝′ =𝒯 𝑞′) by Fact 3.3 (for 𝜇0 > 1).
With these assumptions, we apply 𝑝 and 𝑞 to 𝜄 and obtain (see Figure 5) the cross

diagrams depicted in Figure 9 for 𝑝 = 𝑝𝑠#𝑥𝑠
. . .𝑝3#𝑥3𝑝2, 𝑞 = 𝑞𝑡#𝑦𝑡

. . . 𝑞3#𝑦3𝑞2 and some
𝑝′

1,𝑝
′, 𝑞′

1, 𝑞
′ ∈ 𝑄*, 𝑝′

2, 𝑞
′
2 ∈ 𝑄 and 𝑐1, 𝑐2, 𝑐, 𝑑1, 𝑑2, 𝑑 ∈ Γ. Since we have 𝑝 =𝒯 𝑞, we must

have 𝑐 = 𝑑 and, by the construction of 𝒯 , this is only possible if 𝑐 = 𝑓 = 𝑑 (see Figure 5).
This, in turn, is only possible if we have 𝑝1 = 𝑖 ∈ 𝐼+ and 𝑞1 = 𝑗 ∈ 𝐼+. Since 𝑝 and 𝑞 are
compatible, we must even have 𝑖 = 𝑝1 =𝑅 𝑞1 = 𝑗, which implies 𝑖 = 𝑗. Additionally, we
also obtain 𝑝′

1 =𝑅 𝜙(𝑖), 𝑐1 = 𝛼′, 𝑝′
2 = 𝜆#, 𝑐2 = 𝑓 , 𝑞′

1 =𝑅 𝜓(𝑖), 𝑑1 = 𝛽′, 𝑞′
2 = 𝜆#, 𝑑2 = 𝑓

and 𝑝′ = 𝜆
|𝑝𝑠|𝑅

𝑅 𝜆# . . . 𝜆
|𝑝3|𝑅

𝑅 𝜆#𝜆
|𝑝2|𝑅

𝑅 as well as 𝑞′ = 𝜆
|𝑞𝑡|𝑅

𝑅 𝜆# . . . 𝜆
|𝑞3|𝑅

𝑅 𝜆#𝜆
|𝑞2|𝑅

𝑅 from the
construction of 𝒯 . This shows

𝜆
|𝑝𝑠|𝑅

𝑅 𝜆# . . . 𝜆
|𝑝3|𝑅

𝑅 𝜆#𝜆
|𝑝2|𝑅

𝑅 𝜆#𝜙(𝑖)𝜆# 𝜆
|𝑝0|𝑅

𝑅

=𝒯 𝜆
|𝑞𝑡|𝑅

𝑅 𝜆# . . . 𝜆
|𝑞3|𝑅

𝑅 𝜆#𝜆
|𝑞2|𝑅

𝑅 𝜆#𝜓(𝑖)𝜆# 𝜆
|𝑞0|𝑅

𝑅

𝜄

𝑝0 𝜆
|𝑝0|𝑅

𝑅

𝜄

#1 𝜆#
𝛼

𝑝1 𝑝′
1

𝑐1
#𝑥2 𝑝′

2
𝑐2

𝑝 𝑝′

𝑐

and

𝜄

𝑞0 𝜆
|𝑞0|𝑅

𝑅

𝜄

#2 𝜆#
𝛽

𝑞1 𝑞′
1

𝑑1
#𝑦2 𝑞′

2
𝑑2

𝑞 𝑞′

𝑑

Figure 9 Cross diagrams for Lemma 3.12.
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and, by Lemma 3.8, also that both sides are 𝑅-equivalent. Since 𝑝 and 𝑞 are compatible, we
have 𝜆|𝑝𝜇|𝑅

𝑅 =𝑅 𝜆
|𝑞𝜇|𝑅

𝑅 for all 0 ≤ 𝜇 ≤ 𝑠 = 𝑡. Combining this with the cancellativity of 𝑅*,
we obtain 𝜙(𝑖) =𝑅 𝜓(𝑖) and, thus, that 𝑖 is a solution for the PCP instance. ◀

We have now shown that the PCP instance has a solution if the semigroup generated
by 𝒯 is not free. A careful analysis of the proof yields more, however, which we collect in
Proposition 3.14 (which follows from the lemmas and propositions above). For one part of
this statement, we will first state another consequence of Lemma 3.8:

▶ Proposition 3.13. Mapping 𝑟 to |𝑟|𝑅 for every 𝑟 ∈ �̂� and #𝑥 to 1 for 𝑥 ∈ {1, 2} induces
a well-defined proper length function of M (𝒯 ) (and a well-defined length function of S (𝒯 )).

▶ Proposition 3.14. The following statements are equivalent:
1. The PCP instance has a solution 𝑖 ∈ 𝐼+.
2. We have #1𝑖#1 =𝒯 #1𝑖#2 for some 𝑖 ∈ 𝐼+.
3. There are 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞 but 𝜋#(𝑝) ̸= 𝜋#(𝑞).
4. S (𝒯 ) is not a free semigroup.
5. S (𝒯 ) is not isomorphic to

(𝑅 ∪ {#1,#2})+.
6. S (𝒯 ) is not (left4) cancellative.
7. S (𝒯 ) is not equidivisible.

4’. M (𝒯 ) is not a free monoid.
5’. M (𝒯 ) is not isomorphic to

(𝑅 ∪ {#1,#2})*.
6’. M (𝒯 ) is not (left) cancellative.
7’. M (𝒯 ) is not equidivisible.

Main Theorem and other Consequences. Proposition 3.14 shows that we have reduced
PCP to (the complements of) the freeness problem for (complete) automaton semigroups and
monoids (as the construction of 𝒯 is computable). Since PCP is undecidable [35], we obtain:

▶ Theorem 3.15. The freeness problem for automaton semigroups
Input: a (complete) S-automaton 𝒯
Question: is S (𝒯 ) a free semigroup?

and the freeness problem for automaton monoids
Input: a (complete) S-automaton 𝒯
Question: is M (𝒯 ) a free monoid?

are undecidable.

▶ Theorem 3.16. The following problems are undecidable:
Input: a complete S-automaton 𝒯
Question: is S (𝒯 ) (left) cancellative/equidivisible?

Input: a complete S-automaton 𝒯
Question: is M (𝒯 ) (left) cancellative/equidivisible?

Finally, we obtain that it is undecidable whether a given map on the generators induces a
homomorphism (or an isomorphism) between two automaton semigroups (using 𝒯 from above
as 𝒯1 and an automaton generating (𝑅 ∪ {#1,#2})+ for 𝒯2). Note that the isomorphism
problem for automaton groups (and, thus, also for automaton semigroups and monoids) is
known to be undecidable (as it follows from [40]).

4 Recall that we defined automaton semigroups by a left action here.



D. D’Angeli, E. Rodaro, and J. P. Wächter 44:15

▶ Theorem 3.17. The following two problems are undecidable:

Input: two (complete) S-automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
and a map 𝑓 : 𝑄1 → 𝑄2

Question: does 𝑓 extend into a homomorphism S (𝒯1) → S (𝒯2)?

Input: two (complete) S-automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
and a map 𝑓 : 𝑄1 → 𝑄2

Question: does 𝑓 extend into an isomorphism S (𝒯1) → S (𝒯2)?

For our construction, we need that all 𝜙(𝑖) and 𝜓(𝑖) are states in the automaton. This
immediately yields relations of the form 𝑢 𝑣 =ℛ̂ 𝑢𝑣 for 𝑢, 𝑣, 𝑢𝑣 ∈ Λ̂ that still exist in the
eventual automaton 𝒯 . In the monoid case, however, we may use the neutral element as a
“padding symbol” and thus avoid using a power automaton. This then yields:

▶ Theorem 3.18. The free presentation problem for automaton monoids is undecidable:

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿) with a dedicated state 𝑒 ∈ 𝑄 acting
as the identity map

Question: is M (𝒯 ) ≃ (𝑄 ∖ {𝑒})*?

In the semigroup case, we only get a weaker form of this result (using 𝑃 = 𝑅 ∪ {#1,#2}):

▶ Theorem 3.19. The following problem is undecidable:

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿) and
a subset 𝑃 ⊆ 𝑄

Question: is S (𝒯 ) ≃ 𝑃+?

4 Open Problems

Theorem 3.18 immediately raises the question whether the corresponding problem for
automaton semigroups is also undecidable:

▶ Open Problem 4.1. Is the following problem decidable?

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿)
Question: is S (𝒯 ) ≃ 𝑄+?

In Theorem 3.16, we have also shown that it is not possible to test whether a given
automaton semigroup (or monoid) is equidivisible. By Levi’s lemma (Fact 2.2) this is one
part of a semigroup (monoid) being free while the other one is the existence of a (proper)
length function. So, the following question naturally arises.

▶ Open Problem 4.2. Is the following problem decidable?

Input: a (complete) S-automaton 𝒯
Question: does S (𝒯 ) (M (𝒯 )) admit a (proper) length function?

We highly suspect this problem to be undecidable and it seems likely that our construction
can be adapted to show this.

Of course, it also remains open whether the freeness problem for automaton groups [19,
7.2 b)] is decidable.
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