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Abstract
We revisit the work studying homomorphism preservation for first-order logic in sparse classes of
structures initiated in [Atserias et al., JACM 2006] and [Dawar, JCSS 2010]. These established that
first-order logic has the homomorphism preservation property in any sparse class that is monotone
and addable. It turns out that the assumption of addability is not strong enough for the proofs given.
We demonstrate this by constructing classes of graphs of bounded treewidth which are monotone
and addable but fail to have homomorphism preservation. We also show that homomorphism
preservation fails on the class of planar graphs. On the other hand, the proofs of homomorphism
preservation can be recovered by replacing addability by a stronger condition of amalgamation
over bottlenecks. This is analogous to a similar condition formulated for extension preservation in
[Atserias et al., SiCOMP 2008].
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1 Introduction

Preservation theorems have played an important role in the development of finite model
theory. They provide a correspondence between the syntactic structure of first-order sentences
and their semantic behaviour. In the early development of finite model theory it was noted
that many classical preservation theorems fail when we limit ourselves to finite structures.
An important case in point is the Łoś-Tarski or extension preservation theorem, which asserts
that a first-order formula is preserved by embeddings between all structures if, and only
if, it is equivalent to an existential formula. Interestingly, this was shown to fail on finite
structures [15] much before the question attracted interest in finite model theory [12]. On the
other hand, the homomorphism preservation theorem, asserting that formulas preserved by
homomorphisms are precisely those equivalent to existential-positive ones, was remarkably
shown to hold on finite structures by Rossman [14], spurring applications in constraint
satisfaction and database theory.

However, even before Rossman’s celebrated result, these preservation properties were
investigated on subclasses of the class of finite structures. In the case of both the extension
and homomorphism preservation theorems, the direction of the theorem stating that the
syntactic restriction implies the semantic closure condition is easy and holds in restriction to
any class of structures. It is the other direction that may fail and, restricting to a subclass
weakens both the hypothesis and the conclusion, therefore leading to an entirely new question.
Thus, while the class of all finite structures is combinatorially wild, it contains tame classes
which are both algorithmically and model-theoretically better behaved [6]. A study of
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47:2 Preservation Theorems on Sparse Classes Revisited

preservation properties for such restricted classes of finite structures was initiated in [3]
and [2], which looked at homomorphism preservation and extension preservation respectively.
The focus was on tame classes defined by sparsity conditions, which allows for methods based
on the locality of first-order logic. In particular, the sparsity conditions were based on what
have come to be called wideness conditions.

We recall the formal definition of wideness in Section 4 below but, informally, a class of
structures C is called wide if in any large enough structure in C we can find a large set of
elements that are pairwise far away from each other. The class C is almost wide if there is a
constant s so that in any large enough structure in C, removing at most s elements gives a
structure in which we can find a large set of elements that are pairwise far away from each
other. Finally, C is said to be quasi-wide if there is a function s so that in any large enough
structure in C, removing at most s(d) elements gives a structure in which we can find a large
set of elements that are pairwise at distance d from each other. In the latter two cases, we
refer to a set of elements whose removal yields a large scatterd set as a bottleneck set.

The main result asserted in [3] is that homomorphism preservation holds in any class
C which is almost wide and is monotone (i.e. closed under substructures) and addable (i.e.
closed under disjoint unions). From this, it is concluded that homomorphism preservation
holds for any class C whose Gaifman graphs exclude some graph G as a minor, as long as C
is monotone and addable. The result was extended from almost wide to quasi-wide classes
in [7], from which homomorphism preservation was deduced for classes that locally exclude
minors and classes that have bounded expansion, again subject to the proviso that they are
monotone and addable. Quasi-wide classes were later identified with nowhere dense classes,
which are now central in structural and algorithmic graph theory [13].

The main technical construction in [3] is concerned with showing that classes of graphs
which exclude a minor are indeed almost wide. The fact that homomorphism preservation
holds in monotone and addable almost wide classes is deduced from a construction of Ajtai
and Gurevich [1] which shows the “density” of minimal models of a first-order sentence
preserved by homomorphisms, and the fact that in an almost wide class a collection of such
dense models must necessarily be finite. While the Ajtai and Gurevich construction is carried
out within the class of all finite structures, it is argued in [3] that it can be carried out in any
monotone and addable class because of “the fact that disjoint union and taking a substructure
are the only constructions used in the proof” [3, p. 216]. This argument is sketched in a bit
more detail in [7, Lemma 7]. The starting point of the present paper is that this argument is
flawed. The construction requires us to take not just disjoint unions, but unions that identify
certain elements: in other words amalgamations over sets of points. On the other hand, we
can relax the requirement of monotonicity to just hereditariness (i.e. closure under induced
substructures). The conclusion is that homomorphism preservation holds in any class C that
is quasi-wide, hereditary and closed under amalgamation over bottleneck points. The precise
statement is given in Theorem 9 below. We also show that the requirements formulated in [3]
are insufficient by constructing a class that is almost wide (indeed, has bounded treewidth),
is monotone and addable, but fails to have the homomorphism preservation property.

Interestingly, the requirement of amalgamations over bottlenecks is similar to that used
to define classes on which the extension preservation property holds in [2], even though the
construction uses rather different methods. The result there can be understood, in our terms,
as showing that the extension preservation theorem holds in any almost wide, hereditary
class with amalgamation over bottlenecks. As we observe below (in Corollary 3), this implies
that homomorphism preservation holds in all such classes. Our Theorem 9 then strengthens
this to quasi-wide classes, where we do not know if extension preservation holds. The class
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of planar graphs is an interesting case as it is used in [2] as an example of a hereditary,
addable class with excluded minors in which extension preservation fails. We show here that
homomorphism preservation also fails in this class, strengthening the result of [2].

In the rest of this paper, we introduce notation and necessary background in Section 2.
We construct a monotone, addable class of graphs of small treewidth in Section 3, providing
the first counterexample to the claims of [3]. Section 4 states and proves the corrected version
of the preservation theorems and Section 5 shows the failure of homomorphism preservation
in the class of planar graphs.

2 Preliminaries

We assume familiarity with the standard notions of finite model theory and structural graph
theory, and refer to [10] and [13] for reference. We henceforth fix a finite relational vocabulary
τ ; by a structure we implicitly mean a τ -structure. We often abuse notation and do not
distinguish between a structure and its domain. Given two structures A,B, a homomorphism
f : A → B is a map such that for all relation symbols R and tuples ā from A we have
ā ∈ RA =⇒ f(ā) ∈ RB. If moreover f(ā) ∈ RB =⇒ ā ∈ RA then f is said to be strong.
An injective strong homomorphism is called an embedding. We also call a homomorphism
f : A → B full if it is surjective and for any relation symbol R and tuple b̄ from B we have
b̄ ∈ RB =⇒ ∃ā ∈ RA with f(ā) = b̄.

A structure B is said to be a weak substructure of a structure A if B ⊆ A and the inclusion
map ι : B ↪→ A is a homomorphism. Likewise, B is an induced substructure of A if the
inclusion map is an embedding. Given a structure A and a subset S ⊆ A we write A[S] for
the unique induced substructure of A with underlying set S. An induced substructure B
of A is said to be free in A if there is some structure C such that A is the disjoint union
B + C. Finally, a substructure B of A is said to be proper if the inclusion map is not full.
We say that a class of structures is monotone if it is closed under weak substructures, and it
is hereditary if it is closed under induced substructures. Moreover a class is called addable
if it is closed under taking disjoint unions. We often consider classes of undirected graphs.
Seen as a relational structure, this is a set with an irreflexive symmetric relation E on it.
A weak substructure of such a graph need not be a graph. However, when we speak of a
monotone class of undirected graphs, we mean it in the usual sense of a class of graphs closed
under the operations of removing edges and vertices.

Given a structure A and an equivalence relation E ⊆ A×A we define the quotient structure
A/E as the structure whose domain A/E = {[a]E : a ∈ A} is the set of E-equivalence classes
and such that for every relation symbol R of arity n we have RA/E = {([a1], . . . , [an]) ∈
A/E : (a1, . . . , an) ∈ RA}. Clearly, the quotient map πE : A↠ A/E is a full homomorphism
which we call the quotient homomorphism. Given structures A,B and a set S ⊆ A ∩B such
that A[S] = B[S], we write A⊕S B for the free amalgam of A and B over S. This can be
defined as the quotient of the disjoint union A+ B by the equivalence relation generated
by {(ιA(s), ιB(s)) : s ∈ S}, where ιA : S → A and ιB : S → B are the inclusion maps.
Evidently, there is an injective homomorphism A → A⊕SB given by composing the inclusion
A → A + B with the quotient A + B → A ⊕S B, and a full homomorphism A + A → A

which descends to a full homomorphism A⊕S A → A.
By the Gaifman graph of a structure A we mean the undirected graph Gaif(A) with

vertex set A such that two elements are adjacent if, and only if, they appear together in
some tuple of a relation of A. Given a structure A, r ∈ N, and a ∈ A, we write Br

A(a) for
the ball of radius r around a in A, that is, the set of elements of M whose distance from a
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47:4 Preservation Theorems on Sparse Classes Revisited

in Gaif(A) is at most r; we shall often abuse notation and write Br
A(a) to mean the induced

substructure A[Br
A(a)] of A, possibly with a constant for the element a. A set S ⊆ A is said

to be r-independent if b /∈ Br
A(a) for any a, b ∈ S.

For r ∈ N, let dist(x, y) ≤ r be the first-order formula expressing that the distance between
x and y in the Gaifman graph is at most r, and dist(x, y) > r its negation. Evidently, the
quantifier rank of dist(x, y) ≤ r less than r. A basic local sentence is a sentence

∃x1, . . . , xn(
∧
i ̸=j

dist(xi, xj) > 2r ∧
∧

i∈[n]

ψBr(xi)(xi)),

where ψBr(xi)(xi) denotes the relativisation of ψ to the r-ball around xi, i.e. the formula
obtained from ψ by replacing every quantifier ∃x θ with ∃x(dist(xi, x) ≤ r ∧ θ), and likewise
every quantifier ∀x θ with ∀x(dist(xi, x) ≤ r → θ). We call r the locality radius, n the width,
and ψ the local condition of ϕ. Recall the Gaifman locality theorem [10, Theorem 2.5.1].

▶ Theorem 1 (Gaifman Locality). Every first-order sentence of quantifier rank q is equivalent
to a Boolean combination of basic local sentences of locality radius 7q.

We say that a formula ϕ is preserved by homomorphisms (resp. extensions) over a class of
structures C if for all A,B ∈ C such that there is a homomorphism (resp. embedding) from A

to B, A |= ϕ implies that B |= ϕ. We say that a class of structures C has the homomorphism
preservation property (resp. extension preservation property) if for every formula ϕ preserved
by homomorphisms (resp. extensions) over C there is an existential-positive (resp. existential)
formula ψ such that M |= ϕ ⇐⇒ M |= ψ for all M ∈ C.

Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced
model of ϕ in C if M |= ϕ and for any proper induced substructure N of M with N ∈ C
we have N ̸|= ϕ. The relationship between minimal models and preservation theorems is
highlighted by the following lemma, which is standard, and combines [3, Theorem 3.1] and [2,
Lemma 2.1]

▶ Lemma 2. Let C be a hereditary class of finite structures. Then a sentence preserved
by homomorphisms (resp. extensions) in C is equivalent to an existential-positive (resp.
existential) sentence over C if and only if it has finitely many minimal induced models in C.

▶ Corollary 3. Let C be a hereditary class of finite structures. If C has the extension
preservation property, then C has the homomorphism preservation property.

Proof. If a formula ϕ is preserved by homomorphisms then, in particular, it is preserved
by extensions. It follows that ϕ is equivalent to an existential sentence over C, and so by
Lemma 2 it has finitely many minimal induced models in C. Consequently, the same lemma
implies that ϕ is equivalent to an existential-positive sentence over C as required. ◀

Another immediate consequence of the above is that both preservation properties hold
over any class C that is well-quasi-ordered by the induced substructure relation, i.e. for every
infinite subclass {Mi : i ∈ I} ⊆ C there are i ̸= j ∈ I such that either Mi is an induced
substructure of Mj or vice versa. In fact, any property (i.e. not necessarily definable by
a first-order formula) preserved by homomorphisms (resp. extensions) is equivalent to an
existential positive (resp. existential) formula over a well-quasi-ordered class. In particular,
this applies to classes of cliques or more generally classes of bounded shrub-depth [11].
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3 Preservation can fail on classes of small treewidth

Theorem 4.4 of [3] can be paraphrased in the language of this paper as saying that homo-
morphism preservation holds over any monotone and addable class of bounded treewidth. In
this section we provide a simple counterexample to this, exhibiting a monotone and addable
class of graphs of treewidth 3 where homomorphism preservation fails. More generally, this
contradicts Corollary 3.3 of [3] and Theorem 9 of [7]. To witness failure of preservation, we
must exhibit the relevant class, a formula preserved by homomorphisms over this class, and
an infinite collection of minimal induced models in the class. We then conclude by Lemma 2.

▶ Definition 4. Fix k ∈ N and ni ≥ 3 for every i ∈ [k]. We define the bouquet of cycles of
type (n1, . . . , nk), denoted by Wn1,...,nk

, as the graph obtained by taking the disjoint union of
k cycles of length n1, . . . , nk respectively, and adding an apex vertex, i.e. a vertex adjacent to
every vertex in these cycles. When k = 1, we refer to the graph Wn as the wheel of order n.

Figure 1 The bouquet of cycles of type (6, 9, 10) and the wheel of order 9 respectively.

▶ Lemma 5. Fix n,m ∈ N odd. Then the wheel Wn has chromatic number 4, while its proper
subgraphs have chromatic number 3. Consequently, any homomorphism Wn → Wm is full.

Proof. Fix n,m ∈ N odd. Clearly, any proper colouring of Wn must use a unique colour for
the apex as it is adjacent to every other node in Wn. Moreover, we require an additional
three colours to colour the vertices in the odd-length cycle of Wn. It follows that χ(Wn) = 4.
Now, let W be a proper subgraph of Wn. It follows that there is at least one edge (u, v)
present in Wn which is not in W . If u and v are both in the cycle of odd length then we may
define a proper 3-colouring of W by giving u and v the same colour, alternating between
this and a second colour along the cycle, and using a final third colour for the apex. If one
of u or v is the apex of Wn, then we once again colour u and v with the same colour and use
an additional two colours to alternate between along the cycle. In particular, it follows that
the chromatic number of any homomorphic image of Wn is at least 4, and so it cannot be a
proper substructure of Wm. This implies that any homomorphism f : Wn → Wm is full. ◀

The advantage of working with bouquets of cycles is that, unlike single cycles, there is a
formula that asserts the existence of such a structure as a free induced subgraph. Indeed, let

ϕ := ∃x∃y[E(x, y) ∧ ∀z(z ̸= x ∧ dist(x, z) ≤ 2 → E(x, z) ∧ ψ(x, z)], where

ψ(x, z) := ∃u∃v[u ̸= v∧u ̸= x∧v ̸= x∧E(z, u)∧E(z, v)∧∀w(E(w, z) → w = u∨w = v∨w = x)]

Intuitively, ϕ asserts the following: “there is a vertex x of degree at least one such that every
other vertex reachable from x by a path of length two is adjacent to x and has exactly two
distinct neighbours which are not x”.

MFCS 2024



47:6 Preservation Theorems on Sparse Classes Revisited

▶ Lemma 6. Let G be an arbitrary finite graph. Then G |= ϕ if, and only if, it contains a
bouquet of cycles as a free induced subgraph.

Proof. Suppose that G contains a bouquet W as a free induced subgraph. Then the apex of
the bouquet is a vertex of degree at least one, while every vertex reachable from the apex by
a path of length two must be in one of the cycles, since W is free in G. Since all vertices in
the cycles have degree exactly two, not considering the apex itself, it follows that G |= ϕ.

Conversely, suppose that G |= ϕ, and let x be the vertex that is guaranteed to exist by
ϕ. Let S ⊆ V (G) be the vertices that are adjacent to x. Since x has degree at least one it
follows that S is non-empty. Partition S into k classes S1, . . . , Sk, by putting two vertices
in the same class if, and only if, there is a path between them in G \ {x}. We argue that
for each i ∈ [k], Si is a free induced cycle in G \ {x}. First, notice that since every vertex
reachable from x by a path of length two has degree exactly two in G \ {x}, it follows that Si

induces a cycle in G \ {x}. Moreover, there is no y ∈ G \ ({x} ∪ Si) which is adjacent to Si.
Indeed, if y ̸= x is adjacent to some v ∈ Si then y is reachable from x by a path of length
two. It follows that y is itself adjacent to x, and therefore y is in S; in particular, y and v

are in the same class and so y ∈ Si. Consequently each Si is a free induced cycle in G \ {x},
and so the connected component of x is a free induced bouquet of cycles in G. ◀

It is evident that ϕ is not preserved by homomorphisms in general as every Wn maps
homomorphically to the structure Wn ∪ {c} with an additional vertex adjacent to the apex,
and while the latter contains a bouquet as an induced subgraph, it does not contain a bouquet
as a free induced subgraph. However, when restricting to subgraphs of disjoint unions of
wheels we no longer have non-free-occurring bouquets. This is the core of the next argument.

▶ Theorem 7. Let C be the monotone and addable closure of {W2n+1 : n ∈ N}. Then
homomorphism preservation fails over C.

Proof. Let ϕ be as above; we argue that it is preserved by homomorphisms over C. Indeed,
if some G ∈ C is such that G |= ϕ then by Lemma 6 it contains a bouquet of cycles as a free
induced subgraph. By the choice of C, this necessarily implies that G contains Wn as a free
induced subgraph for some odd n. Let H ∈ C and f : G → H be a homomorphism. Then
f restricts onto a homomorphism Wn → H which, by the connectivity of Wn and the fact
that H ∈ C, descends to a homomorphism f̂ : Wn → Wm for some odd m ∈ N. It follows by
Lemma 5 that f̂ is full, and therefore H contains Wm as a subgraph. The choice of C once
again ensures that Wm is a free induced subgraph of H, and so Lemma 6 implies that H |= ϕ

as required. Finally, Lemma 6 implies that every Wn is a model of ϕ, while every proper
subgraph of Wn cannot possibly contain a bouquet of cycles as a free induced subgraph,
and so it cannot model ϕ. Consequently, each Wn is a minimal model of ϕ in C, and so we
conclude by Lemma 2 that ϕ is not equivalent to an existential-positive formula over C. ◀

Finally, observe that each graph Wn has treewidth 3 (in fact even pathwidth 3). Indeed,
taking a tree decomposition of the cycle Cn of width 2, and adding the apex to every bag in
the decomposition gives the required tree decomposition of Wn.

4 Preservation under bottleneck amalgamation

The results of [3] were later extended to classes that are quasi-wide. Recall that a class is
called quasi-wide if for every r ∈ N there exist kr ∈ N and fr : N → N such that for all m ∈ N
and M ∈ C of size at least fr(m) there are disjoint sets A,S ⊆ M with |A| ≥ m, |S| ≤ kr

and such that A is r-independent in M \S. Intuitively, quasi-wideness ensures that, for every
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choice of distance, we may find in suitably large structures a large set of elements that are
pairwise far away after removing a small set of bottleneck points. This notion was introduced
for the purpose of extending the arguments of [3] to more general sparse classes, such as
classes of bounded expansion, or classes that locally exclude a minor. Paraphrased into the
language of this paper, Theorem 9 of [7] asserts that: homomorphism preservation holds over
any monotone and addable quasi-wide class. Evidently, this is violated by Theorem 7 above.
Nonetheless, we may salvage the proof by replacing additivity by the stronger assumption of
closure under amalgamation over the bottleneck points that witness quasi-wideness.

The proof proceeds by arguing that any suitably large model M of a sentence ϕ preserved
by homomorphisms over a class C satisfying our assumptions, has a proper induced substruc-
ture N which also models ϕ. We thus obtain a concrete bound on the size of minimal models
of ϕ, and conclude by Lemma 2. The existence of this bound is guaranteed by quasi-wideness,
as any large enough structure contains a large scattered set after removing a small number
of bottleneck points. To isolate the bottleneck points p̄ of M we consider a structure p̄M in
an expanded language which is bi-interpretable with M , and work with the corresponding
interpretation ϕk of ϕ; in particular p̄M contains a large scattered set itself and it models
ϕk. Then, by removing a carefully chosen point from the scattered set of p̄M , we obtain a
proper induced substructure p̄N of p̄M such that N ∈ C by hereditariness. To argue that
this still models ϕk, we use a relativisation of the locality argument of Ajtai and Gurevich
from [1]. While in its original version the argument only considers disjoint copies of M ,
working with the interpretation p̄M of M corresponds to taking free amalgams of M over
the set of bottleneck points; this is precisely the subtlety that was missed in [3] and [7].

We now define the structure p̄M ; in the following we only consider the case of undirected
graphs for simplicity. For arbitrary relational structures the idea is analogous, in that we
isolate the tuple p̄ by forgetting any relation that contains some pi, and introduce new
relation symbols of smaller arities to recover the forgotten relations.

▶ Definition 8. Fix k ∈ N, and let σ = {E,P1, . . . , Pk, Q1, . . . , Qk} be the expansion of the
language of graphs with 2k unary predicates. Given a graph G = (V,E) and a tuple p̄ ∈ V k,
define the σ-structure p̄G on the same domain V such that for all i ∈ [k] :

Ep̄G = {(u, v) ∈ E : u, v /∈ {p1, . . . , pk}};
P p̄G

i = {pi};
Qp̄G

i = {v ∈ V : (pi, v) ∈ E}.

Consider the formula ϵ(x, y) :=
∨

i∈[k](Pi(x)∧Qi(y))∨E(x, y). Given a sentence ϕ, write
ϕk for the σ-sentence obtained by ϕ by replacing every atom E(x, y) by (ϵ(x, y) ∨ ϵ(y, x)). It
is then clear that for every G = (V,E) and p̄ ∈ V k as above G |= ϕ ⇐⇒ p̄G |= ϕk.

With this, we turn to our main theorem in this section. Instead of proving a base case
and invoking that for the interpretation step as in [2], [3], and [7], we opt for a direct proof
to illustrate the relevance of our assumptions on the class.

▶ Theorem 9. Let C be hereditary such that for every r ∈ N there exist kr ∈ N and fr : N → N
so that for every m ∈ N and M ∈ C of size ≥ fr(m) there are disjoint sets A,S ⊆ M with:

|A| ≥ m and |S| ≤ kr;
A being r-independent in M \ S;
⊕n

SM := M ⊕S M ⊕S · · · ⊕S M︸ ︷︷ ︸
n times

∈ C for every n ∈ N.

Then homomorphism preservation holds over C.

MFCS 2024



47:8 Preservation Theorems on Sparse Classes Revisited

Proof. Let C be as above, and fix ϕ which is preserved by homomorphisms over C. Denote
the quantifier rank of ϕ by q, and let r = 2 · 7q. It follows that there is some k ∈ N and
some f : N → N such that for every m ∈ N and every M in C of size at least f(m), there
are disjoint sets A,S ⊆ M such that |A| ≥ m, |S| ≤ k, |A| is r-independent in M \ S, and
⊕n

SM ∈ C for every n ∈ N. We consider the formula ϕk: by Gaifman locality, there is a set
{ϕ1, . . . , ϕs} of basic local sentences such that ϕk is equivalent to a Boolean combination
of these. For i ∈ [s], let ri and ni be the radius and width of locality respectively of ϕi,
and ψi its local condition. Observe that ϕ and ϕk have the same quantifier rank, and so
2 · maxi∈[s] ri ≤ r. Set n := maxi∈[s] ni and m := 2s + 1. We argue that every minimal model
M ∈ C of ϕ has size < f(m).

Let M be a minimal model of ϕ, and assume for a contradiction that |M | ≥ f(m). It
follows that there is a set S ⊆ M of size k such that M \ S contains an r-independent set
A of size m. Let p̄ ∈ Mk be an enumeration of S; this implies that p̄M |= ϕk and A is an
r-independent set in p̄M . For each i ∈ [s] define

Ψi(x) := ∃y(dist(x, y) ≤ ri ∧ ψ
Bri (y)
i (y)).

Since |A| ≥ m = 2s + 1, it follows that there are at least two vertices u, v ∈ A satisfying

B2ri

p̄M (u) |= Ψi(u) ⇐⇒ B2ri

p̄M (v) |= Ψi(v)

for all i ∈ [s]. Let N ′ be the substructure of p̄M induced on p̄M \ {u}. Since A does
not intersect the vertices in S, the substructure N of M induced on M \ {u} satisfies that
N ′ = p̄N . We shall argue that p̄N |= ϕk and so N |= ϕ, contradicting that M is a minimal
induced model of ϕ.

By our closure assumptions on C, Nn := ⊕n
SN and Mn := M ⊕S (⊕n

SN) are both in C, as
the latter is an induced substructure of ⊕n+1

S M . Since there is a homomorphism M → Mn

we obtain that Mn |= ϕ and thus p̄Mn |= ϕk. We shall argue that

p̄Mn |= ϕi ⇐⇒ p̄Nn |= ϕi

for all basic local sentences ϕi of ϕk. In particular, this implies that p̄Nn |= ϕk, and so
Nn |= ϕ. Since there is a homomorphism Nn → N , the preservation of ϕ implies that N |= ϕ

as claimed.
Clearly, if p̄Nn |= ϕi then p̄Mn |= ϕi by the fact that ϕi is a local sentence and p̄Nn a

free induced substructure of p̄Mn. Conversely, if p̄Mn |= ϕi then there is a 2ri-independent
subset X of size ni such that Bri

p̄Mn
(x) |= ψi(x) for every x ∈ X. Observe that if X ⊆ S then

clearly p̄Nn |= ϕi. So, since S is isolated in p̄Mn and p̄Nn, we focus on elements of X \ S,
which we may assume to be non-empty. We therefore distinguish two cases.

If |X \S| > 1 then, by the 2ri-independence of X, there is at least one x ∈ X \S such that
u /∈ Bri

p̄Mn
(x). It follows that the ri-ball centered at x is isomorphic to an ri-ball centered at

an element in a disjoint copy of N \S. Since p̄Nn contains n ≥ ni such copies, it follows that
there is a 2ri-independent subset Y of Nn of size ni such that Bri

p̄Nn
(y) |= ψi(y) for every

y ∈ Y , i.e. p̄Nn |= ϕi.
On the other hand if |X \ S| = 1, let x be the unique element of X \ S. Clearly if

u /∈ Bri

p̄Mn
(x) then the ri-ball centered at x is isomorphic to the ri-ball centered at an element

in p̄Nn, and so p̄Nn |= ϕi. If u ∈ Bri

p̄Mn
(x), then p̄M |= Ψi(u), and so by the choice of u

and v, p̄M |= Ψi(v). Consequently, there is some y ∈ Bri

p̄M (v) such that Bri

p̄M (v) |= ψi(v).
Observe that because v and u are 2ri-independent, u /∈ Bri

p̄Mn
(y). As before, this implies

that p̄(Bn) |= ϕi.
The above implies that there are finitely many minimal induced models of ϕ in C, and so

we conclude that ϕ is equivalent to an existential-positive formula over C by Lemma 2. ◀
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Going back to bouquets of cycles, it is easy to see that if a bouquet has more than
m2 · (r + 1) vertices then after removing the apex it either contains m disjoint cycles or
it contains a cycle of size at least m · (r + 1); in either case it contains an r-independent
set of size m. In this case the apex is the only bottleneck point, and so amalgamating
over this corresponds to adding more cycles to the bouquet. Consequently, homomorphism
preservation holds for the hereditary closure of the class of bouquets of cycles by Theorem 9
above.

Closure under amalgamation over bottlenecks is a technical condition and one might
consider if it could be replaced by more natural conditions. For example, we could strengthen
it by considering closure under arbitrary amalgamation. However, this is a condition that
does not sit well with sparsity requirements. Indeed, any hereditary class of undirected graphs
that is also closed under arbitrary amalgamation contains arbitrarily large 1-subdivided
cliques, and hence, cannot be quasi-wide. Nonetheless, there are naturally defined sparse
families of structures that satisfy the conditions of Theorem 9. One such class is known
to exist by [2], that is, the class Tk of all graphs of treewidth bounded by k, for any value
of k ∈ N. Indeed, for any suitably large graph of bounded treewidth we may pick a set of
bottleneck points that comes from the same bag in a tree decomposition of the graph, and
so amalgamating over this set of points does not increase the treewidth. Another naturally
defined such class is the class of outerplanar graphs. For our purposes, we may define
outerplanar graphs as those omitting K4 and K2,3 as minors [4]. The quasi-wideness of this
class follows by the following fact, which moreover permits some control over the bottleneck
points.

▶ Theorem 10 ([3]). For every k, r,m ∈ N there is an N = N(k, r,m) ∈ N such that if G is
a graph of size at least N excluding Kk as a minor, then there are disjoint sets A,S ⊆ V (G)
with |A| ≥ m and |S| ≤ k− 2 such that A is 2r-independent in G \S. Moreover, the bipartite
graph KA,S with parts A and S defined by putting an edge between a ∈ A and s ∈ S if and
only if there is some u ∈ Br

G\S(a) such that (u, s) ∈ E(G) is complete.

▶ Theorem 11. Homomorphism preservation holds for the class of outerplanar graphs.

Proof. Since outerplanar graphs are K4-minor-free, it follows by Theorem 10 that for every
r,m ∈ N there exists an N = N(r,m) ∈ N such that if G is an outerplanar graph of size at
least N , then there are disjoint sets A,S ⊆ V (G) with |A| ≥ m, |S| ≤ 2, A r-independent
in G \ S, and KA,S complete. Since outerplanar graphs also forbid K2,3 as a minor, this
implies that |S| ≤ 1. It is then clear that for any such G and S ⊆ V (G), the graph ⊕n

SG is
still outerplanar for all n ∈ N, as no 1-point free amalgams can create K4 or K2,3 minors.
We thus conclude by Theorem 9. ◀

Interestingly, the examples exhibited above are in fact almost-wide, that is, the number of
the bottleneck points does not depend on the radius of independence. It would be interesting
to find natural quasi-wide classes which are not almost-wide, and which are closed under
bottleneck amalgamation. One potential candidate might be the class of all graphs whose
local treewidth is bounded by the same constant.

5 Homomorphism preservation fails on planar graphs

In this section we witness that homomorphism preservation fails on the class of planar
graphs. Previously, it was established [2] that the extension preservation property fails
on planar graphs. Since extension preservation implies homomorphism preservation on
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hereditary classes by Corollary 3, our result strengthens the above. Recall that by Wagner’s
theorem [16] a graph is planar if and only if it omits K3,3 and K5 as minors. Our construction,
in fact, also reveals that homomorphism preservation fails on the class of K5-minor-free
graphs.

▶ Definition 12. Fix n ∈ N. Define Gn as the undirected graph on vertex set V (Gn) =
{v1, v2} ∪ {ai : i ∈ [n]} ∪ {bi : i ∈ [n]} and edge set

E(Gn) = {(v1, ai) : i ∈ [n]} ∪ {(v2, bi) : i ∈ [n]} ∪ {(ai, bi) : i ∈ [n]}

∪{(ai, ai+1) : i ∈ [n− 1]} ∪ {(bi, bi+1) : i ∈ [n− 1]} ∪ {(ai+1, bi) : i ∈ [n− 1]}.

We define Dn as the extension of Gn on the same vertex set, with

E(Dn) = E(Gn) ∪ {(a1, an), (b1, bn), (a1, bn)}.

We also define An as the graph obtained from Gn by taking the quotient over the equivalence
relation generated by (a1, an), and we write αn : Gn → An for the corresponding quotient
homomorphism. Likewise, we let Bn := Gn/(a1, bn) and Cn := Gn/(b1, bn), and write
βn : Gn → Bn and γn : Gn → Cn for the respective quotient homomorphisms.

v1

v2

v1

v2

Figure 2 Planar embeddings of G9 and D9 respectively.

Consider the following observations. First, for every n ≥ 3 the graphs Gn, Dn, An, Bn, Cn

are all planar and 4-chromatic. In particular Dn, Bn, Cn are maximal planar. For n = 3 the
graphs Dn and Bn contain a copy of K4, while for n ≥ 4 they are K4-free. Likewise, for
n ∈ {3, 4} the graphs An and Cn contain a copy of K4, while for n ≥ 5 they are K4-free.
Finally, for 3 ≤ m ≤ n there is a homomorphism δn,m : Gn → Dm that “wraps” Gn around
Dm. Labelling their vertices as above, this satisfies

δn,m(v1) = v1, δn,m(v2) = v2, δn,m(ai) = ai mod m and δn,m(bi) = bi mod m,

for all i ∈ [n].
We proceed to characterise the K5-minor-free homomorphic images of Dn. We argue that

these either contain K4, or an induced copy of Dm for some m with m|n. The proof proceeds
by first characterising the K5-minor-free homomorphic images of Gn by induction, and then
using that Gn is a subgraph of Dn. While this requires a fair amount of book-keeping, it is
not conceptually difficult. The base case of the induction is the following lemma.
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Figure 3 Planar embeddings of A6, B6, and C6 respectively.

▶ Lemma 13. Let f : G3 → H be a homomorphism. If H is K4-free then f is injective.

Proof. Let H be a K4-free graph, and f : G3 → H a homomorphism. Label the vertices of
G3 as in the picture below; we shall argue that f is injective.

v1

v2

a1 a2 a3

b1 b2 b3

First, notice that f is injective on {v2, b1, b2} since they form a triangle in G3.
If f(a2) = f(v2) then the set {f(v2), f(b2), f(a3), f(b3)} induces K4 in H; it follows
that f(a2) ̸= f(v2), and so f is injective on {v2, b1, b2, a2}. Likewise, f(b3) ̸= f(a2)
as otherwise {f(b1), f(b2), f(b3), f(v2)} induce K4 in H. Moreover, f(b3) ̸= f(b1)
as {f(b1), f(b2), f(a2), f(a3)} would otherwise induce K4 in H. It follows that f

is injective on {v2, b1, b2, b3, a2}. From this we deduce that f(a3) ̸= f(b1) as oth-
erwise {f(v2), f(b1), f(b2), f(b3)} would induce K4 in H, and that f(a3) ̸= f(v2) as
otherwise {f(v2), f(b1), f(b2), f(a2)} would also induce K4. Hence, f is injective on
{v2, b1, b2, b3, a2, a3}. By symmetry, it follows that f is also injective on {v1, a1, a2, a3, b1, b2}.
Notice that f(a1) ̸= f(b3) and f(v1) ̸= f(b3) since otherwise {f(a2), f(a3), f(b2), f(b3)}
would induce K4 in H. Finally, f(a1) ̸= f(v2) and f(v1) ̸= f(v2) as otherwise
{f(a2), f(b1), f(b2), f(v2)} would induce K4 in H. Putting all the above together, we
conclude that f is injective on all of G3 as required. ◀

We now proceed to the general case.
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▶ Lemma 14. Fix n ≥ 3. Let f : Gn → H be a homomorphism, where H is K4-free and
K5-minor-free. Then one of the following is true:
1. f is injective;
2. there is some m ∈ [4, n− 1] and an embedding f̂ : Dm → H such that f = f̂ ◦ δn,m;
3. n ≥ 5 and there is an injective homomorphism f̂ : An → H such that f = f̂ ◦ αn;
4. n ≥ 4 and there is an embedding f̂ : Bn → H such that f = f̂ ◦ βn;
5. n ≥ 5 and there is an embedding f̂ : Cn → H such that f = f̂ ◦ γn;

Proof. We prove the claim by induction on n. The base case n = 3 follows by Lemma 13.
So, fix a K4-free and K5-minor-free graph H and consider a homomorphism f : Gn+1 → H.
Evidently, this restricts to a homomorphism f ′ : Gn → H. By the induction hypothesis, we
may assume that f ′ satisfies one of the five conditions of this proposition.

Assume that f ′ satisfies (1), i.e. f is injective on Gn = Gn+1 \ {an+1, bn+1}. We consider
the images of the vertices an+1 and bn+1 under f . Observe that (an+1, bn+1) ∈ E(Gn+1) so
f(an+1) ̸= f(bn+1). Clearly, if f(an+1) and f(bn+1) are not any of the vertices in f [Gn],
then f is itself injective and (1) holds. We hence distinguish three cases.

First, suppose that f(an+1) ∈ f [Gn] and f(bn+1) /∈ f [Gn]. Since there are edges
(v1, an+1), (an, an+1), and (bn, an+1), it follows that f(an+1) /∈ {f(v1), f(an), f(bn)}.
Moreover, f(an+1) ̸= f(v2) as otherwise {f(bn−1), f(bn), f(an), f(v2)} would induce K4
in H. Similarly, f(an+1) ̸= f(an−1), as otherwise {f(an−1), f(bn−1), f(an), f(bn)} would
induce K4, and f(an+1) ̸= f(bn−1), as otherwise {f(v1), f(an−1), f(an), f(bn−1)} would
induce K4. In addition, f(an+1) /∈ {f(ai) : 2 ≤ i ≤ n − 2} as otherwise an edge
(f(ai), f(an)) for some i ∈ [2, n − 2] would produce a K5-minor in H, namely the minor
arising from S1 = {f(v1)}, S2 = {f(ai)}, S3 = {f(an)}, S4 = {f(aj) : i + 1 ≤ j ≤
n − 1}, S5 = {f(v2), f(b1), f(a1), f(bi), f(bi+1), f(bn)}. A similar argument reveals that
f(an+1) /∈ {f(bi) : 2 ≤ i ≤ n − 2}. It follows that f(an+1) = f(b1) or f(an+1) = f(a1).
The former case would produce a copy of K4, namely {f(v1), f(a1), f(a2), f(b1)}, leading
to a contradiction. Hence f(an+1) = f(a1). Since f(bn+1) /∈ f [Gn], it follows that f factors
through the quotient homomorphism αn, i.e. case (3) is true.

Next, suppose that f(an+1) ∈ f [Gn] and f(bn+1) ∈ f [Gn]. As before, we deduce from
the first assumption that f(an+1) = f(a1). This implies that there are edges (f(a1), f(an))
and (f(a1), f(bn)) in H. Since there are edges (an+1, bn+1), (bn, bn+1), (v2, bn+1) in Gn+1 we
deduce that f(bn+1) /∈ {f(a1), f(bn), f(v2)}. Moreover, f(bn+1) ̸= f(v1) as otherwise the
edge (f(v1), f(v2)) would produce a K5-minor in H, namely S1 = {f(v1)}, S2 = {f(a1)}, S3 =
{f(an)}, S4 = {f(aj) : j ∈ [2, n−1]}, S5 = {f(v2), f(b1), f(b2), f(bn)}. Similarly, a K5-minor
arises in H if f(bn+1) ∈ {f(ai), f(bi) : i ∈ [2, n− 1]}. We thus deduce that f(bn+1) = f(b1),
from which we conclude that f [Gn+1] induces a copy of Dn in H, and more precisely, case
(2) holds.

So, suppose that f(an+1) /∈ f [Gn] and f(bn+1) ∈ f [Gn]. We consider the possible
images of bn+1 under f . Since there are edges (an+1, bn+1), (v2, bn+1), (bn, bn+1) in Gn+1
we deduce that f(bn+1) /∈ {f(an+1), f(v2), f(bn)}. Moreover, f(bn+1) ̸= f(v1) as oth-
erwise {f(v1), f(an), f(an+1), f(bn)} would induce K4 in H. Likewise, f(bn+1) ̸= f(an)
as otherwise {f(v2), f(ab−1), f(bn), f(an)} would induce K4 in H. Moreover f(bn+1) /∈
{f(ai) : i ∈ [2, n − 1]} as otherwise the edge (f(ai), f(an+1)) would produce a K5-
minor in H, namely S1 = {f(v1)}, S2 = {f(ai)}, S3 = {f(an+1)}, S4 = {f(aj) : j ∈
[i + 1, n]}, S5 = {f(v2), f(b1), f(a1), f(bi), f(bi+1), f(bn)}. Very similarly, we deduce that
f(bn+1) /∈ {f(bi) : i ∈ [2, n− 1]}. It follows that f(bn+1) = f(a1) or f(bn+1) = f(b1). In the
former case, it follows that f factors through the quotient homomorphism βn, and so (4) is
true, while in the latter case, it follows that f factors through γn, and so (5) is true.
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Next, assume that f ′ satisfies (2), i.e. there is some m ∈ [4, n− 1] and and an embedding
f̂ : Dm → H such that f ′ = f̂ ◦δn,m. Arguing as before, it is easy to see that the assumptions
on H force f(an+1) to be equal to f̂(an+1 mod m), and likewise f(bn+1) = f̂(bn+1 mod m),
implying that f = f̂ ◦ δn+1,m. Hence f also satisfies (2).

Finally, we argue that f ′ cannot satisfy any of (3), (4), and (5). Indeed, assume for a
contradiction that f ′ satisfies (3) and write f ′ as f̂ ◦ αn for some injective homomorphism
f̂ : An → H. In particular, we know that n ≥ 5. Consider the image of an+1 under f ; this
is some vertex adjacent to f(an) = f(a1), f(v1), and f(bn). If f(an+1) /∈ f [Gn], then we
obtain a K5-minor in H, namely S1 = {f(v1)}, S2 = {f(a1)}, S3 = {f(an−1)}, S4 = {f(ai) :
i ∈ [2, n − 1]}, S5 = {f(v2), f(b1), f(b2), f(bn−1), f(bn), f(an+1)}. So f(an+1) ∈ f [Gn]. If
f(an1) = f(ai) for some i ∈ [2, n − 2] then we obtain a K5-minor in H by picking some
j ∈ [2, n − 2] \ {i} and letting S1 = {f(v1), f(aj)}, S2 = {f(a1)}, S3 = {f(an−1)}, S4 =
{f(bi) : i ∈ [n − 1]}, S5 = {f(v2), f(bn), f(ai)}. Likewise, if f(an+1) = f(an−1) then we
obtain the K5-minor S1 = {f(v1)}, S2 = {f(a1)}, S3 = {f(bn−1), f(bn−2), f(an−2)}, S4 =
{f(ai) : i ∈ [2, n − 3]}, S5 = {f(v2), f(bn), f(an−1)}. Consequently, f(an+1) = f(bi) for
some i ∈ [1, n− 1]. This produces an edge (f(v1), f(bi)) and thus gives rise to the K5-minor
S1 = {f(v1)}, S2 = {f(aj) : j ∈ [1, i−1]}, S3 = {f(ai)}, S4 = {f(aj) : j ∈ [i+1, n−1]}, S5 =
{f(v2), f(b1), f(bi), f(bn−1)}. It follows that f ′ cannot satisfy (3); via very similar reasoning,
we exclude cases (4) and (5). ◀

Having established the above, our characterisation of the K5-minor-free homomorphic
images of Dn follows easily.

▶ Proposition 15. Fix n ≥ 4. Then any K4-free and K5-minor-free homomorphic image of
Dn contains an induced copy of Dm for some m ≥ 4 such that m|n.

Proof. Consider a homomorphism f : Dn → H where H is K4-free and K5-minor-free. Then
f descends to a homomorphism f ′ : Gn → H. It follows that one of the five cases of Lemma 14
holds. If f ′ is injective, then in particular f is injective; since the addition of any edge in Dn

creates a K5-minor, it follows that f is in fact an embedding as required. Suppose that case
(2) is true, and let m ∈ [4, n− 1] and f̂ : Dm → H be such that f ′ = f̂ ◦ δn,m. In particular,
Dm is an induced subgraph of H and m|n. Finally, case (3) leads to a contradiction as the
edge (a1, an) in Dn implies that f(a1) ̸= f(an), case (4) leads to a contradiction as the edge
(a1, bn) implies that f(a1) ̸= f(bn), and likewise, case (5) leads to a contradiction as the edge
(b1, bn) implies that f(b1) ̸= f(bn). ◀

We also define G∞ as the countably infinite analogue of Gn, i.e. the graph on the vertex
set V (G∞) = {v1, v2} ∪ {ai : i ∈ N>0} ∪ {bi : i ∈ N>0} and edge set

E(Gn) = {(v1, ai) : i ∈ N>0} ∪ {(v2, bi) : i ∈ N>0} ∪ {(ai, bi) : i ∈ N>0}

∪{(ai, ai+1) : i ∈ N>0} ∪ {(bi, bi+1) : i ∈ N>0} ∪ {(ai+1, bi) : i ∈ N>0}.

Likewise, we define the homomorphism δ∞,m : G∞ → Dm in analogy to the homomorphisms
δn,m : Gn → Dm. Lemma 14 allows us to also characterise the finite K5-minor-free
homomorphic images of G∞.

▶ Lemma 16. Let f : G∞ → H be a homomorphism where H is finite, K4-free, and
K5-minor-free. Then there is some m ≥ 4 and an embedding f̂ : Dm → H such that
f = f̂ ◦ δ∞,m.
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Proof. Fix f as above and let n := |H|. It follows that f restricts to a homomorphism
f ′ : Gn → H; this satisfies one of the five cases of Lemma 14. Clearly, cases (1),(3),(4),
and (5) are ruled out due to size restrictions. Consequently, case (2) holds and the claim
follows. ◀

With the above, we show that the existence of the graphs Dn as induced subgraphs is
definable among K4-free K5-minor-free graphs by a simple first-order formula. Indeed, let

χ(x1, x2, y1, z1, y2, z2) = E(x1, y2)∧E(y1, y2)∧E(z1, y2)∧E(z1, z2)∧E(y2, z2)∧E(z2, x2), and

ϕ = ∃x1, x2, y, z[E(x1, y) ∧ E(y, z) ∧ E(z, x2) ∧ ∀a, b(E(x1, a) ∧ E(a, b) ∧ E(b, x2))

→ ∃c, d χ(x1, x2, a, b, c, d))]

▶ Lemma 17. Let H be a finite K4-free and K5-minor free graph. If H |= ϕ then there is
some n ≥ 4 such that H contains Dn as an induced subgraph.

Proof. Fix a graph H as above, and suppose that G |= ϕ. We inductively define a chain of
partial homomorphisms f1 ⊆ f2 ⊆ f3 ⊆ . . . from G∞ → H such that dom(fn) = Gn. Then
the map f = ∪∞

n=1fn is a homomorphism G∞ → H, and hence Lemma 16 implies that H
contains some Dn as an induced subgraph.

Since H |= ϕ it follows that there are x1, x2, y, z ∈ V (H) such that

H |= E(x1, y) ∧ E(y, z) ∧ E(z, x2).

Consequently, the map f1 : G1 → H given by f(v1) = x1, f(v2) = x2, f(a1) = y, f(b1) = z is
a homomorphism as required. So, suppose that fn has been defined. Since

H |= E(x1, f(an)) ∧ E(f(an), f(bn)) ∧ E(f(bn), x2)

it follows that

H |= ∃c, d χ(x1, x2, f(an), f(bn), c, d).

We consequently extend fn : Gn → H to fn+1 : Gn+1 → H by letting fn+1(an+1) = c and
fn+1(bn+1) = d; this is easily seen to be a valid homomorphism by the choice of χ. ◀

▶ Lemma 18. Let H be a K5-minor-free graph. If H contains some Dn for n ≥ 3 as an
induced subgraph then H |= ϕ.

Proof. Let Dn ≤ H be as above. Clearly, H |= E(v1, a1) ∧ E(a1, b1) ∧ E(b1, v2) So, let
a, b ∈ V (H) be arbitrary vertices such that H |= E(v1, a) ∧ E(a, b) ∧ E(b, v2); we first
argue that a ∈ {ai : i ∈ [n]} and b ∈ {bi : i ∈ [n]}. Towards this, observe first that
b /∈ {ai : i ∈ [n]} ∪ {v1} as otherwise the edge (v2, ai) or (v2, v1) would contradict that Dn

is induced in H. So, assume for a contradiction that a /∈ {ai : i ∈ [n]}. Since there is an
edge (v1, a) it follows that a ̸= v1, and so in particular the sets S1 = {v1}, S2 = {a1}, S3 =
{an}, S4 = {aj : j ∈ [2, n − 1]}, S5 = {v2, b1, bn, a, b} produce a K5-minor in H. With a
symmetric argument we obtain that b ∈ {bi : i ∈ [n]}. Now, since there is an edge (a, b) it
follows that there is some i ∈ [n] such that a = ai and b = bi or b = bi−1 mod n. In these two
respective cases we have that

H |= χ(v1, v2, a, b, ai+1 mod n, bi+1 mod n), or H |= χ(v1, v2, a, b, ai−1 mod n, bi−2 mod n).

In either case, H |= ∃c, d χ(v1, v2, a, b, c, d), and since the choice of a, b ∈ V (H) was arbitrary
we obtain that H |= ϕ as required. ◀
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Putting all the above together, we deduce the main theorem of this section.

▶ Theorem 19. The class of planar graphs does not have the homomorphism preservation
property.

Proof. Let ϕ̂ be the disjunction of ϕ with the formula that induces a copy of K4, i.e.

ϕ̂ := ϕ ∨ ∃x1, x2, x3, x4
∧
i̸=j

E(xi, xj).

We argue that ϕ̂ is preserved by homomorphisms over the class of planar graphs. Indeed, let
f : G → H be a homomorphism with G,H planar such that G |= ϕ̂. Clearly, if H contains
a copy of K4 then H |= ϕ̂. So, without loss of generality we may assume that G |= ϕ and
G,H are K4-free. It follows by Lemma 17 that there exists some n ≥ 4 such that G contains
Dn as a subgraph. Consequently, Proposition 15 implies that there is some m ≥ 4 such that
H contains Dm as a subgraph. Lemma 18 then implies that H |= ϕ, and thus H |= ϕ̂ as
required. To conclude, observe that the minimal models of ϕ̂ over the class of planar graphs
are K4 and the graphs Dn for n ≥ 4; since these are infinitely many Lemma 2 implies that ϕ̂
is not equivalent to an existential-positive formula over the class of planar graphs. ◀

Since we only use exclusion of K5-minors in the above, we additionally obtain the
following.

▶ Theorem 20. The class of all K5-minor-free graphs does not have the homomorphism
preservation property.

Finally, while we have not referred to topological minors to simplify our arguments, an
easy check reveals that the above are still valid when considering graphs that forbid K5 as
a topological minor, implying that homomorphism preservation also fails on the class of
K5-topological-minor-free graphs.

6 Conclusion

Much work in finite model theory explores tame classes of finite structures. In [6], two related
notions of tameness are identified: algorithmic tameness and model-theoretic tameness. The
former is centred around the tractability of model-checking for first-order logic while the
latter is illustrated by preservation theorems and it was argued that these occurred together
in sparse classes of structures. More recently, algorithmic tameness has been explored
extensively for dense classes as well (see [8] for example). On the other hand, the results
here show that the status of preservation theorems on sparse classes is more subtle and relies
on closure properties that are not always present in natural classes such as planar graphs.
Nonetheless, it is an interesting question whether the recent understanding of tame dense
classes, such as monadically stable and more generally monadically dependent classes, can
also cast light on preservation theorems. The arguments for homomorphism and extension
preservation rely on quasi-wideness and almost-wideness respectively. Similar wideness
phenomena occur for dense classes, by replacing deletion of bottleneck points with performing
flips, that is, edge-complementations within subsets of the domain (see Table 1 in [9]). A
question inspired by this is whether, for every k ∈ N, the class of all graphs of cliquewidth at
most k has the extension preservation property. For k ≤ 2 this follows from the fact that
cographs are well-quasi-ordered by the induced subgraph relation [5].
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