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Abstract
The goal of local certification is to locally convince the vertices of a graph G that G satisfies a
given property. A prover assigns short certificates to the vertices of the graph, then the vertices
are allowed to check their certificates and the certificates of their neighbors, and based only on this
local view and their own unique identifier, they must decide whether G satisfies the given property.
If the graph indeed satisfies the property, all vertices must accept the instance, and otherwise at
least one vertex must reject the instance (for any possible assignment of certificates). The goal is to
minimize the size of the certificates.

In this paper we study the local certification of geometric and topological graph classes. While it
is known that in n-vertex graphs, planarity can be certified locally with certificates of size O(log n),
we show that several closely related graph classes require certificates of size Ω(n). This includes
penny graphs, unit-distance graphs, (induced) subgraphs of the square grid, 1-planar graphs, and
unit-square graphs. These bounds are tight up to a constant factor and give the first known examples
of hereditary (and even monotone) graph classes for which the certificates must have linear size. For
unit-disk graphs we obtain a lower bound of Ω(n1−δ) for any δ > 0 on the size of the certificates,
and an upper bound of O(n log n). The lower bounds are obtained by proving rigidity properties of
the considered graphs, which might be of independent interest.
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1 Introduction

Local certification is an emerging subfield of distributed computing where the goal is to assign
short certificates to each of the nodes of a network (some connected graph G) such that the
nodes can collectively decide whether G satisfies a given property (i.e., whether it belongs
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48:2 Local Certification of Geometric Graph Classes

to some given graph class C) by only inspecting their unique identifier, their certificate and
the certificates of their neighbors. This assignment of certificates is called a proof labeling
scheme, and its complexity is the maximum number of bits of a certificate (as a function of
the number of vertices of G, which is usually denoted by n in the paper). If a graph class
C admits a proof labeling scheme of complexity f(n), we say that C has local complexity
f(n). Proof labelling schemes are distributed analogues of traditional non-deterministic
algorithms, and graph classes of logarithmic local complexity can be considered as distributed
analogues of classes whose recognition is in NP [7]. The notion of proof labeling scheme was
formally introduced by Korman, Kutten and Peleg in [17], but originates in earlier work on
self-stabilizing algorithms (see again [7] for the history of local certification and a thorough
introduction to the field). While every graph class has local complexity O(n2) [17],1 the
work of [13] identified three natural ranges of local complexity for graph classes:

Θ(1): this includes k-colorability for fixed k, and in particular bipartiteness;
Θ(log n): this includes non-bipartiteness and acyclicity; and
Θ(poly(n)): this includes non-3-colorability and problems involving symmetry.

It was later proved in [19] that any graph class which can be recognized in linear time (by
a centralized algorithm) has an “interactive” proof labeling scheme of complexity O(log n),
where “interactive” means that there are several rounds of interaction between the prover
(the entity which assigns certificates) and the nodes of the network (see also [16] for more on
distributed interactive protocols). A natural question is whether the interactions are necessary
or whether such graph classes have classical proof labeling schemes of complexity O(log n) as
defined above, that is, without multiple rounds of interaction. This question triggered the
work of [9] on planar graphs, which have a well-known linear time recognition algorithm. The
authors of [9] proved that the class of planar graphs indeed has local complexity O(log n), and
asked whether the same holds for any proper minor-closed class.2 This was later proved for
graphs embeddable on any fixed surface in [10] (see also [6]) and in [2] for classes excluding
small minors, while it was proved in [12] that classes excluding a planar graph H as a minor
have local complexity O(log2 n). The authors of [12] also proved the related result that any
graph class of bounded treewidth which is expressible in second order monadic logic has
local complexity O(log2 n) (this implies in particular that for any fixed k, the class of graphs
of treewidth at most k has local complexity O(log2 n)). Similar meta-theorems involving
graph classes expressible in some logic were proved for graphs of bounded treedepth in [8]
and graphs of bounded cliquewidth in [11].

Closer to the topic of the present paper, the authors of [14] obtained proof labeling schemes
of complexity O(log n) for a number of classes of geometric intersection graphs, including
interval graphs, chordal graphs, circular-arc graphs, trapezoid graphs, and permutation
graphs. It was noted earlier in [15] (which proved various results on interactive proof labeling
schemes for geometric graph classes) that the “only” classes of graphs for which large lower
bounds on the local complexity are known (for instance non-3-colorability, or some properties
involving symmetry) are not hereditary, meaning that they are not closed under taking
induced subgraphs. It turns out that an example of a hereditary class with polynomial local
complexity had already been identified in [4] a couple of years earlier: triangle-free graphs
(the lower bound on the local complexity given there was sublinear). It was speculated in [15]

1 Give to every vertex the adjacency matrix of the graph.
2 Note that it is easy to show that for any minor-closed class C, the complement of C has local complexity

O(log n), using Robertson and Seymour’s Graph Minor Theorem [21].



O. Defrain, L. Esperet, A. Lagoutte, P. Morin, and J.-F. Raymond 48:3

that any class of geometric intersection graphs has small local complexity, as such classes are
both hereditary and well-structured.

Results

In this paper we identify a key rigidity property in graph classes and use it to derive a number
of linear lower bounds on the local complexity of graph classes defined using geometric or
topological properties. These bounds are all best possible, up to no(1) factors. So our main
result is that for a number of classical hereditary graph classes studied in structural graph
theory, topological graph theory, and graph drawing, the local complexity is Θ(n). These are
the first non-trivial examples of hereditary classes (some of our examples are even monotone)
with linear local complexity. Interestingly, all the classes we consider are very close to the
class of planar graphs (which is known to have local complexity Θ(log n) [9, 6]): most of these
classes are either subclasses or superclasses of planar graphs. Given the earlier results on
graphs of bounded treewidth [12] and planar graphs, it is natural to try to understand which
sparse graph classes have (poly)logarithmic local complexity. It would have been tempting
to conjecture that any (monotone or hereditary) graph class of bounded expansion (in the
sense of Nešetřil and Ossona de Mendez [20]) has polylogarithmic local complexity, but our
results show that this is false, even for very simple monotone classes of linear expansion.

We first show that every class of graphs that contains at most 2f(n) unlabeled graphs of
size n has local complexity f(n) + O(log n). This implies all the upper bounds we obtain in
this paper, as the classes of graphs we consider usually contain 2O(n) or 2O(n log n) unlabeled
graphs of size n.

We then turn to lower bounds. Using rigidity properties in the classes we consider, we
give a Ω(n) bound on the local complexity of penny graphs (contact graphs of unit-disks
in the plane), unit-distance graphs (graphs that admit an embedding in R2 where adjacent
vertices are exactly the vertices at Euclidean distance 1), and (induced) subgraphs of the
square grid. We then consider 1-planar graphs, which are graphs admitting a planar drawing
in which each edge is crossed by at most one edge. This superclass of planar graphs shares
many similarities with them, but we nevertheless prove that it has local complexity Θ(n)
(while planar graphs have local complexity Θ(log n)).

Next, we consider unit-square graphs (intersection graphs of unit-squares in the plane).
We obtain a linear lower bound on the local complexity of triangle-free unit-square graphs
(which are planar) and of unit-square graphs in general. Finally, we consider unit-disk graphs
(intersection of unit-disks in the plane), which are widely used in distributed computing as a
model of wireless communication networks. For this class we reuse some key ideas introduced
in the unit-square case, but as unit-disk graphs are much less rigid we need to introduce
a number of new tools, which might be of independent interest in the study of rigidity in
geometric graph classes. In particular we answer questions such as: what is asymptotically
the minimum number of vertices in a unit-disk graph G such that in any unit-disk embedding
of G, two given vertices u and v are at Euclidean distance at least n and at most n + 1? Or
at distance at least n and at most n + ε, for ε ≪ n? Using our constructions we obtain a
lower bound of Ω(n1−δ) (for every δ > 0) on the local complexity of unit-disk graphs. As
there are at most 2O(n log n) unlabelled unit-disk graphs on n vertices [18], our first result
implies that the local complexity of unit-disk graphs is O(n log n), so our results are nearly
tight.

MFCS 2024



48:4 Local Certification of Geometric Graph Classes

Techniques
All our lower bounds are inspired by the set-disjointness problem in non-deterministic com-
munication complexity. This approach was already used in earlier work in local certification,
in order to provide lower bounds on the local complexity of computing the diameter [3], or
for certifying non-3-colorability [13]. Here the main challenge is to translate the technique
into geometric constraints. The key point of the set-disjointness problem is informally the
following: let A, B ⊆ {1, . . . , N} be the input of some kind of “two-party system” that must
decide whether A and B are disjoint, given that one party knows A and the other knows B;
then at least N bits of shared (or exchanged) information are necessary for them to decide
correctly. Otherwise, there are fewer bit combinations than the 2N entries of the form (A, A),
hence the two parties can be fooled to accept a negative instance built from two particular
positive instances sharing the same bit combination. In the setting of non-deterministic
communication complexity, the two parties are Alice and Bob; in our setting, the two parties
will be two subsets of vertices covering the graph and with small intersection (the intersection
must be a small cutset of the whole graph): in the following, we refer to those two connected
subsets of vertices as respectively the “left” part and the “right” part of the graph. The
“shared” bits of information will be the certificates given to their intersection (and to its
neighborhood). To express the sets A, B and their disjointness, the left (resp. right) part of
the graph will be equipped with a path PA (resp. PB) of length Ω(N), such that PA and PB

only intersect in their endpoints.3 The crucial rigidity property which we will require is that
in any embedding of G as a geometric graph from some class C, the two paths PA and PB

will be very close, in the sense that if PA = a1, . . . , aℓ and PB = b1, . . . , bℓ, then ai is close to
bi for any 1 ≤ i ≤ ℓ. Using this property, we will attach some gadgets to the vertices of the
path PA (resp. PB) depending on A (resp. B), in such a way that the resulting graph lies in
the class C if and only if A and B are disjoint. As there is little connectivity between the left
and the right part, the endpoints of the paths will have to contain very long certificates in
order to decide whether A and B are disjoint, hence whether G ∈ C or not.

We present the results in increasing order of difficulty. Subgraphs or induced subgraphs
of infinite graphs such as grids are perfectly rigid in some sense, with some graphs having
unique embeddings up to symmetry. Unit-square graphs are much less rigid but we can use
nice properties of the ℓ∞-distance and the uniqueness of embeddings of 3-connected planar
graphs. We conclude with unit-disk graphs, which is the least rigid class we consider. The
Euclidean distance misses most of the properties enjoyed by the ℓ∞-distance and we must
work much harder to obtain the desired rigidity property.

Outline
We start with some preliminaries on graph classes and local certification in Section 2. We
prove our general upper bound result in Section 3. Section 4 introduces the notion of
disjointness-expressing class of graphs, highlighting the key properties needed to derive our
local certification lower bounds. We deduce in Section 5 linear lower bounds on the local
complexity of subgraphs of the grid, penny graphs, and 1-planar graphs. Section 6 is devoted
for the linear lower bound on the local complexity of unit-square graphs, while Section 7
contains our main result, a quasi-linear lower bound on the local complexity of unit-disk
graphs. We conclude in Section 8 with a number of questions and open problems.

Due to the limit on the number of pages of the submission, most of the proofs have been
omitted in this version. They are available in the full version of the paper [5].

3 We note here that the proof for 1-planar graphs diverges from this approach, but it is the only one.
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2 Preliminaries

In this paper logarithms are binary, and graphs are assumed to be simple, loopless, undirected,
and connected. The length of a path P , denoted by |P |, is the number of edges of P . The
distance between two vertices u and v in a graph G, denoted by dG(u, v) is the minimum
length of a path between u and v. The neighborhood of a vertex v in a graph G, denoted by
NG(v) (or N(v) if G is clear from the context), is the set of vertices at distance exactly 1
from v. The closed neighborhood of v, denoted by NG[v] := {v} ∪ NG(v), is the set of vertices
at distance at most 1 from v. For a set S of vertices of G, we define NG[S] :=

⋃
v∈S NG[v].

2.1 Local certification

The vertices of any n-vertex graph G are assumed to be assigned distinct (but otherwise
arbitrary) identifiers (id(v))v∈V (G) from {1, . . . , poly(n)}. When we refer to a subgraph H

of a graph G, we implicitly refer to the corresponding labeled subgraph of G. Note that the
identifiers of each of the vertices of G can be stored using O(log n) bits, where log denotes
the binary logarithm. We follow the terminology introduced by Göös and Suomela [13].

Proofs and provers

A proof for a graph G is a function P : V (G) → {0, 1}∗ (as G is a labeled graph, the proof
P is allowed to depend on the identifiers of the vertices of G). The binary words P (v) are
called certificates. The size of P is the maximum size of a certificate P (v), for v ∈ V (G). A
prover for a graph class G is a function that maps every G ∈ G to a proof for G.

Local verifiers

A verifier A is a function that takes a graph G, a proof P for G, and a vertex v ∈ V (G) as
inputs, and outputs an element of {0, 1}. We say that v accepts the instance if A(G, P, v) = 1
and that v rejects the instance if A(G, P, v) = 0.

Consider a graph G, a proof P for G, and a vertex v ∈ V (G). We denote by G[v] the
subgraph of G induced by N [v], the closed neighborhood of v, and similarly we denote by
P [v] the restriction of P to N [v].

A verifier A is local if for any v ∈ G, the output of v only depends on its identifier and
P [v].

Note that our lower bounds hold in the stronger model of locally checkable proofs of Göös
and Suomela [13], where in addition the output of v is allowed to depend on G[v], that is
A(G, P, v) = A(G[v], P [v], v) for any vertex v of G.

Proof labeling schemes

A proof labeling scheme for a graph class G is a prover-verifier pair (P, A) where A is local,
with the following properties.

Completeness: If G ∈ G, then P := P(G) is a proof for G such that for any vertex v ∈ V (G),
A(G, P, v) = 1.

Soundness: If G ̸∈ G, then for every proof P ′ for G, there exists a vertex v ∈ V (G) such
that A(G, P ′, v) = 0.

MFCS 2024



48:6 Local Certification of Geometric Graph Classes

In other words, upon looking at its closed neighborhood (labeled by the identifiers and
certificates), the local verifier of each vertex of a graph G ∈ G accepts the instance, while if
G ̸∈ G, for every possible choice of certificates, the local verifier of at least one vertex rejects
the instance.

The complexity of the proof labeling scheme is the maximum size of a proof P = P(G)
for an n-vertex graph G ∈ G, and the local complexity of G is the minimum complexity of a
proof labeling scheme for G. If we say that the complexity is O(f(n)), for some function f ,
the O(·) notation refers to n → ∞. See [7, 13] for more details on proof labeling schemes
and local certification in general.

2.2 Geometric graph classes
In this section we collect some useful properties that are shared by most of the graph classes
we will investigate in the paper.

A unit-disk graph (respectively unit-square graph) is the intersection graph of unit-disks
(respectively unit-squares) in the plane. That is, G is a unit-disk graph if every vertex of G

can be mapped to a unit-disk in the plane so that two vertices are adjacent if and only if the
corresponding disks intersect, and similarly for squares. A penny graph is the contact graph
of unit-disks in the plane, i.e., in the definition of unit-disk graphs above we additionally
require the disks to be pairwise interior-disjoint. A unit-distance graph is a graph whose
vertices are points in the plane, where two points are adjacent if and only if their Euclidean
distance is equal to 1. Unit-distance graphs clearly form a superclass of penny graphs.

A drawing of a graph G in the plane is a mapping from the vertices of G to distinct
points in the plane and from the edges of G to Jordan curves, such that for each edge uv in
G, the curve associated to uv joins the images of u and v and does not contain the image
of any other vertex of G. A graph is planar if it has a drawing in the plane with no edge
crossings (such a drawing will also be called a planar graph drawing in the remainder). Every
planar graph drawing of a graph G gives a clockwise cyclic ordering of the neighbors around
each vertex of G. We say that that two planar graph drawings of G are equivalent if the
corresponding cyclic orderings are the same. A planar graph embedding of a graph G is an
equivalence class of planar graph drawings of G. Given a planar graph embedding of a graph
G, all the corresponding (equivalent) planar drawings of G have the same set of faces (but
different choices of outerface yield different planar drawings).

A graph is 1-planar if it has a drawing in the plane such that for each edge e of G, there
is at most one edge e′ of G distinct from e such that the interior of the curve associated to e

intersects the interior of the curve associated to e′.

Figure 1 Triangle-free intersection graphs of unit-disks and unit-squares in the plane, and the
associated planar graph embeddings.
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The following well-known proposition will be useful (see Figure 1 for an illustration).

▶ Proposition 2.1. Consider a family of unit-disks or a family of unit-squares in the plane,
and assume that the intersection graph G of the family is connected and triangle-free. Then G

is planar, and moreover each representation of G as such an intersection graph of unit-disks
or unit-squares in the plane gives rise to a planar graph embedding of G in a natural way
(see for instance Figure 1). Furthermore, the representation of G as an intersection graph
(of unit-disks or unit-squares) and the resulting planar graph embedding are equivalent, in
the sense that the clockwise cyclic ordering of the neighbors around each vertex is the same.

We will often need to argue that some planar graphs have unique planar embeddings.
The following classical result of Whitney will be crucial.

▶ Theorem 2.2 ([22]). If a planar graph G is 3-connected (or can be obtained from a
3-connected simple graph by subdividing some edges), then it has a unique planar graph
embedding, up to the reversal of all cyclic orderings of neighbors around the vertices.

We note that the reversal of all cyclic orderings in the statement of Theorem 2.2 corre-
sponds to a reflection of the corresponding planar drawings.

3 Linear upper bounds for tiny classes

Given a class of graphs C and a positive integer n, let Cn be the set of all unlabeled graphs
of C having exactly n vertices (i.e., we consider graphs up to isomorphism).

If there is a constant c > 0 such that for every positive integer n, |Cn| ≤ cn, then the
class C is said to be tiny. This is the case for all proper minor-closed classes (for instance
planar graphs). On the other hand, unit-interval graphs and unit-disk graphs do not form
tiny classes as proved in [18]. The local complexity and the number of unlabeled graphs in a
class are related by the following simple result.

▶ Theorem 3.1 ([5]). Any class C of connected graphs has local complexity at most log(|Cn|)+
O(log n). In particular if C is a tiny class, then the local complexity is O(n).

Proof (sketch). The prover gives each vertex v the same description of G (as an unlabelled
graph, so using log(|Cn|) bits), together with the name of the image of v in this description,
and the number n of vertices of G. Each vertex checks that its neighborhood is consistent
with its image in the description of G, and if so the graph under consideration must have a
locally bijective homomorphism to G. The vertices then check that the number of vertices of
the graph is indeed n = |V (G)|, which implies that this locally bijective homomorphism is
an isomorphism to G, as desired. ◀

As a consequence, we immediately obtain the following.

▶ Corollary 3.2. The following classes have local complexity O(n): the class of all (induced)
subgraphs of the square grid, penny graphs, 1-planar graphs, triangle-free unit-square graphs,
and triangle-free unit-disk graphs.

The next result directly follows from a bound of order 2O(n log n) on the number of
unit-square graphs and unit-disk graphs [18], and on the number of unit-distance graphs [1].

▶ Corollary 3.3. The classes of unit-distance graphs, unit-square graphs, and unit-disk graphs
have local complexity O(n log n).

MFCS 2024



48:8 Local Certification of Geometric Graph Classes

The remainder of the paper consists in proving lower bounds of order Ω(n) (or Ω(n1−δ),
for any δ > 0), for all the classes mentioned in Corollaries 3.2 and 3.3, except triangle-free
unit-disk graphs (our quasi-linear lower bound only applies to unit-disk graphs).

4 Disjointness-expressing graph classes

In this section we describe the framework relating the disjointness problem to proof labeling
schemes. Our main source of inspiration is [13], where a lower bound on the local complexity
of non-3-colorability is proved using a similar approach, and [3] where an explicit reduction
to the non-deterministic communication complexity of the disjointness problem is used.

Here we adapt the disjointness problem to fit in our local certification setting. A class
C of graphs is said to be (s, κ)-disjointness-expressing if for some constant α > 0, for every
positive integer N and every X ⊆ {1, . . . , N}, one can define graphs L(X) (referred to as
the “left part”) and R(X) (“right part”), each containing a labeled set S of special vertices
such that for every A, B ⊆ {1, . . . , N} the following holds:
1. the graph g(L(A), R(B)) obtained by identifying vertices of S in L(A) to the corresponding

vertices of S in R(B) is connected and has at most αN1/κ vertices;
2. the subgraph of g(L(A), R(B)) induced by the closed neighborhood Ng(L(A),R(B))[S] of

S is independent4 of the choice of A and B and has at most s vertices; and
3. g(L(A), R(B)) belongs to C if and only if A ∩ B = ∅.

The idea is that S is a small cutset between vertices of L(A), having information on A,
and vertices of R(B), having information on B. Deciding whether the graph g(L(A), R(B))
belongs to C amounts to deciding whether A and B are disjoint, which requires N bits of
information even in a non-deterministic setting, thus the small cutset at the frontier between
L(A) and R(B) must receive long certificates. Otherwise, there are fewer bit combinations
at the frontier than the 2N entries of the form (A, A), hence the vertices can be fooled to
accept a negative instance built from two particular positive instances sharing the same bit
combination.

The role of s and κ is explained by the result below.

▶ Theorem 4.1 ([5]). Let C be a (s, κ)-disjointness-expressing class of graphs. Then any
proof labeling scheme for the class C has complexity Ω

(
nκ

s

)
. In particular if s is a constant

and κ = 1, the complexity is Ω(n).

Proof (sketch). Let (P, A) be a proof labeling scheme for the class C and let p : N → N be
its complexity. For every A ⊆ {1, . . . , N}, let GA = g(L(A), R(A)). Clearly GA ∈ C so the
verifier A accepts the proof PA = P (GA) on every vertex of GA. Let n denote the maximum
order of GA for A ⊆ {1, . . . , N}.

There are 2N choices for the set A. On the other hand, in GA there are at most 2s·p(n)

different ways to assign certificates to the vertices of N [S]. By the Pigeonhole Principle, if
2N > 2sp(n) there are two sets A, A′ ⊆ {1, . . . , N} such that the proofs PA and PA′ coincide
on the subgraph of GA and GA′ induced by N [S]. Since A ≠ A′, we may assume without
loss of generality that A ∩ A′ ̸= ∅. So the graph G = g(L(A), R(A′)) does not belong to C.
We now consider a proof P for G defined as follows: if v ∈ V (L(A)) then P (v) := PA(v)
and if v ∈ V (R(A′)) then P (v) := PA′(v). The verifier A will accept P on every vertex
of G, contradiction. Therefore 2N ≤ 2s·p(n). Recall that n ≤ αN1/κ, by the definition of
disjointness-expressibility. Hence p(n) = Ω(nκ/s), as claimed. ◀

4 i.e., for every A, A′, B, B′ ⊆ {1, . . . , N} there is an isomorphism from g(L(A), R(B))[Ng(L(A),R(B))[S]]
to g(L(A′), R(B′))[Ng(L(A′),R(B′))[S]] that is the identity on S.
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5 Linear lower bounds in rigid classes

In this section we obtain linear lower bounds on the local complexity of several graph classes
using the framework described in Section 4. We only sketch the argument in the case of
penny graphs.

a2

a1

h

h = 3N + 1

c1

c2

x2

x′
2

x1

x′
1

b2

b1

h

h = 3N + 1

c1

c2

y2

y′2

y1

y′1

a2

a1

b2

b1

c1

c2

x2

x′
2

x1

x′
1

y2

y′2

y1

y′1

Figure 2 Construction of L, R and g for penny graphs in the case where N = 2, with A, B ⊆
{1, . . . , N}. Color red highlights vertices and edges that depend on the choice of A, and color blue
highlights vertices and edges that depend on the choice of B.

▶ Theorem 5.1 ([5]). The class of penny graphs is (6, 1)-disjointness-expressing.

Proof (sketch). The proof is illustrated in Figure 2. The graph g(L(A), R(B)) (on the right)
is obtained by identifying each ci (i = 1, 2) in L(A) with the corresponding vertex in R(B).
The graphs L(A) and R(B) are depicted on the left. Vertices aj , xj , x′

j are added to the
graph L(A) if and only if j ∈ A, and similarly vertices bj , yj , y′

j are added to the graph R(B)
if and only if j ∈ B. The crucial properties of the construction are that (1) the graph without
the added gadgets has a unique embedding as a penny graph, and (2) there is a small cut
separating the left and right parts ({c1, c2}, which is far from the gadgets on both sides),
and (3) if two gadgets ai, xi, x′

i and bj , yj , y′
j are added with i = j , then the graph is not a

penny graph. The last item follows from the fact that ai and bj would be mapped to the
same point in the plane, and thus ai would also need to be adjacent to yj and y′

j in the
graph (which they are not). ◀

From Theorems 5.1 and 4.1, together with Corollary 3.2, we immediately deduce the
following.

▶ Theorem 5.2. The local complexity of the class of penny graphs is Θ(n).

Using our framework we obtain the following results (whose proofs are available in
appendix).
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▶ Theorem 5.3. The class of unit-distance graphs is (6, 1)-disjointness-expressing.

▶ Theorem 5.4 ([5]). The class of subgraphs of the square grid is (6, 1)-disjointness-expressing.

▶ Theorem 5.5 ([5]). The class of 1-planar graphs is (20, 1)-disjointness-expressing.

We immediately deduce the following.

▶ Theorem 5.6. The classes of subgraphs of the square grid, unit-distance graphs and
1-planar graphs all have local complexity Θ(n).

6 Unit-square graphs

≥ n ∈ [n, n+O(1)]

v1
v1

v2
v2 v2

v1

L(A)

R(B)

Figure 3 A sketch of the general approach to prove Theorems 6.1 and 7.1.

The graph we constructed in the previous section had some perfect rigidity properties: if
the images of a constant number of vertices in the plane were fixed, then the whole graph
had at most one embedding in the plane. This does not hold in unit-square graphs, but for
our framework it is enough to make sure that once a constant number of vertices are fixed,
each vertex of the graph can only be mapped to a small fixed region in any embedding. More
precisely, we construct for any n a unit-square graph with O(n) vertices with two specific
vertices v1, v2 that are at ℓ∞-distance at least n in any embedding. We add a shortest path
connecting v1 and v2, so that the resulting graph is still a unit-square graph with O(n)
vertices, and the ℓ∞-distance between v1 and v2 is at least n and at most n + O(1) in any
embedding. This is illustrated in Figure 3 above, where the path between v1 and v2 is close
from being mapped to the line segment between the image of v1 and the image of v2. This
path is then used as an interface to add gadgets expressing any set A for part L(A) and any
set B for part R(B), very much as in the proof of Theorem 5.1. The difficulty lies in proving
this approximate rigidity property, which follows from the rigidity of the ℓ∞ norm.

▶ Theorem 6.1 ([5]). The classes of triangle-free unit-square graphs and unit-square graphs
are both (6, 1)-disjointness-expressing.

Using Theorem 4.1, together with Corollaries 3.2 and 3.3, we immediately deduce the
following.

▶ Theorem 6.2. The local complexity of the class of triangle-free unit-square graphs is Θ(n),
and the local complexity of the class of unit-square graphs is Ω(n) and O(n log n).

We note that the proof approach of Theorem 6.1 naturally extends to higher dimension.
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n

√
n

n+O(1)
n

n+O(1)

O(1)

Figure 4 The difference between the ℓ∞-distance (left) and the ℓ2-distance (right).

7 Unit-disk graphs

We would like to prove a variant of Theorem 6.1 for unit-disk graphs, but there are two major
obstacles. The first is that there does not seem to be a simple unit-disk graph with O(n)
vertices with two specified vertices that are at Euclidean distance at least n in any unit-disk
embedding. Our construction of such a graph will be significantly more involved (and thus
the number of vertices will be only upper bounded by O(n1+ε) for any ε > 0, rather than
O(n)). The second obstacle comes from Pythagoras’ theorem: In the unit-square case, if we
consider a path P of length n + O(1) between two vertices u, v embedded in the plane such
that their x- and y-coordinates both differ by exactly n, then in any unit-square embedding
of P , the vertices of P deviate by at most a constant from the line segment [u, v] between
u and v. This is what we used in the proof of Theorem 6.1 to make sure that L(A) and
R(B) are so close that the i-th gadget cannot exist both on L(A) and R(B) simultaneously
when i ∈ A ∩ B. However, as illustrated in Figure 4, Pythagoras’ theorem implies that in
the Euclidean case, when the Euclidean distance between u and v is equal to n, the vertices
of P can deviate by Θ(

√
n) from the line segment [u, v], which is too much for our purpose

(we need a constant deviation). So we need different ideas to make sure the gadgets are
embedded sufficiently close to each other.

Figure 5 A summary of the construction used in the proof of Theorem 7.1.

The main result of this paper is the following.

▶ Theorem 7.1 ([5]). For any δ > 0, the class of unit-disk graphs is (O(log n), 1 − δ)-
disjointness-expressing.

Proof (sketch). A summary of our construction is depicted in Figure 5. The first component
of the construction is the arch-shaped part, which is defined recursively and has the property
that its endpoints lie at Euclidean distance Ω(n) in any unit-disk embedding, while the

MFCS 2024
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graph only contains O(n1+ε) vertices (for any ε > 0). We then add a shortest possible path
P between the endpoints of the arch (with the condition that the resulting graph is still a
unit-disk graph) and we would like to argue that the path P is tight, in the sense that in any
embedding, all the unit-disks corresponding to the vertices of P lie at distance O(1) from
the line segment between the endpoints of P . For this we need to add a number of paths
connecting P to the arch to make P even tighter. These paths delimit subpaths of P and the
construction forces at least one of those subpaths to be tight. Since we do not know which
subpath will be tight, we add gadgets, called decorated corridors, along all these subpaths.
When a subpath is tight, the corresponding corridor is sufficiently narrow so that gadgets of
L(A) and R(B) along the corridor can emulate the disjointness problem between A and B,
as in the proof of Theorem 5.1. There is a gadget of L(A) at position j of every corridor if
and only if j ∈ A and similarly for R(B), and the gadgets of L(A) and R(B) intersect at
position j of some corridor if and only if j ∈ A ∩ B. Since these gadgets are not adjacent
in the graph, this shows that the graph is a unit-disk graph if and only if A ∩ B = ∅, as
desired. ◀

Using Theorem 4.1, together with Corollary 3.3, we immediately deduce the following.

▶ Theorem 7.2. The local complexity of the class of unit-disk graphs is O(n log n) and
Ω(n1−δ) for any δ > 0.

8 Open problems

In this paper we have obtained a number of optimal (or close to optimal) results on the local
complexity of geometric graph classes. Our proofs are based on a new notion of rigidity. It is
natural to ask which other graph classes enjoy similar properties. A natural candidate is
the class of segment graphs (intersection graphs of line segments in the plane), which have
several properties in common with unit-disk graphs. In particular the recognition problems
for these classes are complete for the existential theory of the reals, and the minimum bit size
for representing an embedding of some of these graphs in the plane is at least exponential in
their number of vertices. We believe that the local complexity of segment graphs (and that
of the more general class of string graphs) is at least polynomial in their number of vertices.
More generally, is it true that all classes of graphs for which the recognition problem is hard
for the existential theory of the reals have polynomial local complexity?

It might also be interesting to investigate the smaller class of circle graphs (intersection
graphs of chords of a circle). The authors of [14] proved that the closely related class of
permutation graphs has logarithmic local complexity. It is quite possible that the same holds
for circle graphs. See [15] for results on interactive proof labeling schemes for this class and
related classes.

We proved that 1-planar graphs have local complexity Θ(n). What can we say about
the local complexity of other graph classes defined with constrained on their drawings in
the plane? For instance is it true that for every k ≥ 2, the local complexity of the class of
graphs with queue number at most k is polynomial? What about graphs with stack number
at most k?

We have given the first example of non-trivial hereditary (and even monotone) classes
of local complexity Ω(n). Can this be improved? Are there hereditary (or even monotone)
classes of local complexity Ω(nc) for c > 1?
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