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Abstract
An anonymous dynamic network is a network of indistinguishable processes whose communication
links may appear or disappear unpredictably over time. Previous research has shown that determin-
istically computing an arbitrary function of a multiset of input values given to these processes takes
only a linear number of communication rounds (Di Luna–Viglietta, FOCS 2022).

However, fast algorithms for anonymous dynamic networks rely on the construction and transmis-
sion of large data structures called history trees, whose size is polynomial in the number of processes.
This approach is unfeasible if the network is congested, and only messages of logarithmic size can be
sent through its links. Observe that sending a large message piece by piece over several rounds is
not in itself a solution, due to the anonymity of the processes combined with the dynamic nature of
the network. Moreover, it is known that certain basic tasks such as all-to-all token dissemination
(by means of single-token forwarding) require Ω(n2/ log n) rounds in congested networks (Dutta et
al., SODA 2013).

In this work, we develop a series of practical and efficient techniques that make it possible to use
history trees in congested anonymous dynamic networks. Among other applications, we show how
to compute arbitrary functions in such networks in O(n3) communication rounds, greatly improving
upon previous state-of-the-art algorithms for congested networks.
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1 Introduction

Dynamic networks. In recent years, distributed computing has seen a remarkable increase
in research on the algorithmic aspects of networks that constantly change their topology [7,
30, 32]. The study of these dynamic networks is motivated by technologies such as wireless
sensors networks, software-defined networks, and networks of smart devices. Typically, the
distributed system consists of n processes that communicate with each other in synchronous
rounds. At each round, the network topology is rearranged arbitrarily, and communication
links appear or disappear unpredictably.

∗ A preliminary version of this paper appeared as a Brief Announcement in the Proceedings of
PODC 2023 [16].
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49:2 Efficient Computation in Congested Anonymous Dynamic Networks

Anonymity and leadership. There are efficient algorithms for various tasks that work under
the assumption that processes have unique IDs [6, 27, 28, 29, 32, 34]. However, unique
IDs may not be available due to operational limitations [34] or to protect user privacy; for
instance, assigning temporary random IDs to users of COVID-19 tracking apps was not
sufficient to eliminate privacy concerns [40]. Systems where processes are indistinguishable
are called anonymous.

It is known that many fundamental problems for anonymous networks cannot be solved
without additional “symmetry-breaking” assumptions: A notable example is the Counting
problem, i.e., determining the total number of processes n. The most typical symmetry-
breaking choice is assuming the presence of a single distinguished process in the system,
called leader [1, 2, 3, 4, 14, 19, 21, 23, 31, 39, 42]. A leader process may represent a base
station in a sensor network, a super-node in a P2P network, etc.

Disconnected networks. Another common assumption is that the network is connected
at every round [28, 34]. However, this assumption appears somewhat far-fetched when one
considers the highly dynamic nature of some real-world networks, such as P2P networks
of smart devices moving unpredictably. A weaker and more reasonable assumption is that
the union of all the network’s links across any T consecutive rounds induces a connected
(multi)graph on the processes [25, 36]. Such a network is said to be T -union-connected, and
T ≥ 1 is its dynamic disconnectivity [17].

Congested networks. Almost all previous research on anonymous dynamic networks pertains
to models that impose no limit on the size of messages exchanged by processes [11, 15, 21, 22,
23, 24, 26, 34, 36]. Unfortunately, in most mobile networks, sending small-size messages is
not only desirable but also a necessity; for example, in sensor networks, short communication
times significantly increase battery life. A more realistic model assumes the network to be
“congested” and limits the size of every message to O(log n) bits, where n is the number of
processes [38].2

General computation. A recent innovation in the study of anonymous dynamic networks
with leaders was the introduction of history trees in [15], which led to an optimal deterministic
solution to the Generalized Counting problem3 in the non-congested network model. This
problem is “complete” for a large class of functions called multiset-based functions, which
in turn are the only computable functions in this model. The theory of history trees was
extended in [17] to leaderless networks, providing optimal algorithms for the Frequency
problem:4 This problem is complete for the class of frequency-based functions, which are
the only computable functions in leaderless systems. Thus, the computational landscape for
the non-congested network model is fully understood, and optimal linear-time algorithms
are known for anonymous dynamic systems with and without leaders. No previous research
exists on the congested network model, except for a recent preprint that gives a Counting
algorithm in Õ(n2T (1+ϵ)+3) rounds for networks with leaders [25]. Note that its running
time is exponential in the dynamic disconnectivity T and becomes Õ(n5+ϵ) for connected
networks.

2 This O(log n) limit on message sizes does not imply that the processes have a-priori information about
n. The size limit is not explicitly given to the processes, and it is up to the algorithm to automatically
prevent larger messages from being sent.

3 In the Generalized Counting problem, each process starts with a certain input, and the goal is to
determine how many processes have each input. That is, each process has to compute the multiset of
all inputs.

4 In the Frequency problem, the goal is to determine the percentage of processes that have each input.
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1.1 Contributions and Techniques
Contributions. In this paper, we provide a state-of-the-art general algorithmic technique
for T -union-connected anonymous dynamic congested networks, with and without leaders.
The resulting algorithms run in O(Tn3) rounds, where n is the (initially unknown) total
number of processes.

In Section 4 we give a basic and slightly inefficient Counting algorithm that applies to a
limited setting but already contains all of the key ideas of our technique. In Section 5 we
sketch its correctness (the technical details of the proof are found in the arXiv version linked in
the title page), and in Section 6 we discuss optimizations and extensions of the basic algorithm
to several other settings. This includes the computation of all multiset-based functions. Sec-
tion 7 concludes the paper with some directions for future research.

Technical background. Informally, a history tree is a way of representing the history of
a network in the form of an infinite tree. Each node in a history tree represents a set of
anonymous processes that are “indistinguishable” at a certain round, where two processes
become “distinguishable” as soon as they receive different sets of messages (see Section 3).

The theory of history trees developed in [15, 17] yields optimal general algorithms
for anonymous dynamic networks with and without leaders, assuming the network is not
congested. The idea is that processes can work together to incrementally construct the
history tree by repeatedly exchanging and merging together their respective “views” of it.
Once they have a sufficiently large portion of the history tree (i.e., a number of “levels”
proportional to n), each process can locally analyze its structure and perform arbitrary
computations on the multiset of input values originally assigned to the processes.

Challenges. Unfortunately, implementing the above idea requires sending messages con-
taining entire “views” of the history tree. The size of a view is Θ(n3 log n) bits in the worst
case, and is therefore unsuitable for the congested network model [15]. There is a major
difficulty in dealing with this problem deterministically, which stems from the lack of unique
IDs combined with the dynamic nature of the network.

It is worth noting that the “naive” approach of breaking down large messages into smaller
pieces to be sent in different rounds does not work. Indeed, it is not clear how the original
message can then be reconstructed, because the pieces carry no IDs and a process’ neighbors
may change at every round. This may result in messages from different processes being
mixed up and non-existent messages being reconstructed.

Methodology. Our main contribution is a general method that allows history trees to
be transmitted reliably and deterministically between anonymous processes in a dynamic
congested network with a leader. To overcome the fundamental issues outlined above, we
devised a basic protocol combining different techniques, as well as a number of extensions,
including leaderless ones. Although the techniques introduced in this paper are self-contained
and do not rely on the results of [15], they effectively allow us to reduce the congested
network model to the non-congested one, making it possible to apply the Counting algorithm
in [15] as a “black box”.

Firstly, we developed a method for dynamically assigning temporary (non-unique) IDs
to processes; this method is an essential part of the history tree transmission algorithm.
In fact, the nodes of our history trees are now augmented with IDs, meaning that each
node represents the set of processes with a certain ID. When processes with equal IDs get
disambiguated, they get new IDs.

MFCS 2024
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The transmission of history trees occurs level by level, one edge at a time. Since the total
ordering between IDs induces a total ordering on the history tree’s edges, the processes can
collectively transmit sets of edges with a method reminiscent of Token Dissemination [28].

Essentially, all processes participate in a series of broadcasts; the goal of each broadcast
is to transmit the next “highest-value” edge to the whole network. The problem is that no
upper bound on the dynamic diameter of the network is known, and so there is no way of
knowing how many rounds it may take for all processes to receive the edge being broadcast.

We adopt a self-stabilizing approach to ensure that all messages are successfully broadcast.
We give a communication protocol based on acknowledgments by the leader, where failure
to broadcast a message alerts at least one process. Alerted processes start broadcasting
error messages, which eventually cause a reset of the broadcast that caused the error. A
mechanism that dynamically estimates the diameter of the network guarantees that no more
than O(log n) resets are performed.

Finally, in order to achieve a cubic running time, we do not construct the history tree
of the actual network, but a more compact history tree corresponding to a virtual network.
The virtual network is carefully derived from the real one in such a way as to amortize the
number of edges in the resulting history tree and further reduce the final worst-case running
time by a factor of n.

2 Previous Work

Non-congested networks. The study of computation in anonymous dynamic networks has
been mainly devoted to two fundamental problems: The Counting problem in networks with
a leader [11, 12, 13, 21, 22, 23, 24, 26] and the Average Consensus problem in leaderless
networks [5, 8, 9, 10, 24, 33, 35, 37, 41, 43]. This research thread produced a series of
algorithms for these problems; the underlying technique used is a local averaging or mass-
distribution method coupled with refined termination strategies.

A radically different technique based on history trees was recently used to optimally
compute arbitrary multiset-based functions in 3n rounds in networks with a leader [15]. This
approach was successfully extended to multi-leader, leaderless, and disconnected networks [17].

Congested networks. As for the congested model, the only paper that has ever studied
deterministic algorithms for anonymous dynamic networks, to the best of our knowledge, is
the recent preprint [25], which solves the Counting problem in Õ(n2T (1+ϵ)+3) rounds. As
usual, T is the dynamic disconnectivity of the network and ϵ is an arbitrarily small positive
constant. By comparison, our main algorithm has a running time of O(Tn3) rounds; hence,
its dependence on T is linear (as opposed to exponential) and, for connected networks (i.e.,
when T = 1), the improvement is a factor of Θ(n2+ϵ logk n).

Most previous research efforts on congested networks in the dynamic setting have focused
on randomized algorithms or processes with unique IDs [18, 20, 28]. In this context, a
problem similar to Counting is Token Dissemination, where each process starts with a token
and the goal is for every process to collect all tokens. In connected networks, this problem is
solved in O(n2) rounds by a simple token-forwarding algorithm (i.e., no manipulation is done
on tokens other than storing, copying, and individually transmitting them) [28]. Interestingly,
solving the Token Dissemination problem by token-forwarding algorithms requires at least
Ω(n2/ log n) rounds [18].

It is worth remarking that the randomized algorithm in [28] only solves the Counting
problem approximately and assumes a-priori knowledge of an upper bound on n. Moreover,
this algorithm only works with high probability. These are three key differences that make our



G. A. Di Luna and G. Viglietta 49:5

contribution preferable. Furthermore, assuming processes to have unique IDs (or randomly
generating unique IDs) as in [28] defeats the purpose of safeguarding user privacy, which is a
motivation of our work.

3 Definitions and Fundamentals

Computation model. A dynamic network is modeled by an infinite sequence G = (Gt)t≥1,
where Gt = (V, Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn} is a
system of n anonymous processes and Et is a multiset of edges representing links between
processes. Hence, there may be multiple links between two processes, or even from a process
to itself.5

If there is a constant T ≥ 1 such that, for every t ≥ 1, the multigraph G⋆
t =(

V,
⋃t+T −1

i=t Ei

)
is connected, the network is said to be T -union-connected, and the smallest

such T is its dynamic disconnectivity.6
Each process pi starts with an input, which is assigned to it at round 0. It also has an

internal state, which is initially determined by its input. At each round t ≥ 1, every process
composes a message (as a function of its internal state) and sends it to its neighbors in Gt

through all its incident links.7 In the congested network model, only messages of O(log n)
bits can be sent.8 By the end of round t, each process reads all messages coming from its
neighbors and updates its internal state according to a local algorithm A. Note that A is the
same for all processes, and is a deterministic function of the internal state and the multiset
of messages received in the current round.

The input of each process also includes a leader flag. In Section 4, we will assume that
the leader flag of exactly one process is set (this process is the unique leader); in Section 6,
we will discuss the leaderless case, where none of the processes has the leader flag set.

A process may return an output at the end of a round, which must be a function of its
current internal state. A process may also terminate execution after returning an output.
An algorithm A solves the Counting problem if executing A at every round eventually causes
all processes to simultaneously output n and terminate. The (worst-case) running time of A,
as a function of n, is the maximum number of rounds it takes for A to solve the problem,
across all possible dynamic networks of size n and all possible input assignments.

History trees. History trees were introduced in [15] as a tool of investigation for anonymous
dynamic networks; an example is found in Figure 1. A history tree is a representation of a
dynamic network given some inputs to the processes. It is an infinite graph whose nodes
are partitioned into levels Lt, with t ≥ −1; each node in Lt represents a class of processes

5 Each self-loop in Gt represents a single link, hence a single message being sent and received by the same
process.

6 A similar parameter for dynamic networks is the dynamic diameter D, defined as the maximum number
of rounds it may take for a message to be broadcast from a process to all other processes. The parameters
T and D are related by the inequalities T ≤ D ≤ T (n − 1), which are best possible [17].

7 Contrary to static networks, where processes may be allowed to send different messages to different
neighbors, dynamic networks usually require processes to “broadcast” the same message through all
incident links due to the lack of unique port numbers. This is the case, for instance, in wireless
radio communications, where messages are sent to all processes within communication range, and the
anonymity of the network prevents destinations from being specified.

8 We may want to assume that the total number of links in a network multigraph Gt (counted with their
multiplicities) is bounded by a polynomial in n. In fact, when dealing with congested networks, we
explicitly make this assumption, as it ensures that the multiplicity of a link can always fit in a single
O(log n)-sized message.
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Figure 1 The first rounds of a dynamic network with n = 9 processes and the corresponding
levels of the history tree. Level Lt consists of the nodes at distance t + 1 from the root r, which
represent indistinguishable processes after the tth communication round. There are no leaders in
the network, but each process has an input from the set {A, B, C}. Only the nodes in L0 have
explicit labels; all labels of the form ai and bi were added for the reader’s convenience, and indicate
classes of indistinguishable processes (in contrast, the nodes of the virtual history tree introduced in
Section 4 do have IDs). Note that the two processes in b4 are still indistinguishable at the end of
round 2, although they are linked to the distinguishable processes b5 and b6. This is because such
processes were in the same class a5 at round 1. The subgraph induced by the nodes in the green
blob is the view of the two processes in b1. We remark that a history tree does not contain any
explicit information about how many processes each node represents.

that are indistinguishable at the end of round t (with the exception of L−1, which contains a
single node r representing all processes). The definition of distinguishability is inductive:
At the end of round 0, two processes are distinguishable if and only if they have different
inputs. At the end of round t ≥ 1, two processes are distinguishable if and only if they were
already distinguishable at round t − 1 or if they have received different multisets of messages
at round t. (We refer to “multisets” of messages, as opposed to sets, because multiple copies
of identical messages may be received; each message has a multiplicity.)

Each node in level L0 has a label indicating the input of the processes it represents.
There are also two types of edges connecting nodes in adjacent levels. The black edges induce
an infinite tree spanning all nodes, rooted at node r ∈ L−1. The presence of a black edge
{v, v′}, with v ∈ Lt and v′ ∈ Lt+1, indicates that the child node v′ represents a subset of the
processes represented by the parent node v. The red multi-edges represent communications
between processes. The presence of a red edge {v, v′} with multiplicity m, with v ∈ Lt and
v′ ∈ Lt+1, indicates that, at round t + 1, each process represented by v′ receives m (identical)
messages from processes represented by v.

The view of a process p at round t ≥ 0 as the subgraph of the history tree which is
spanned by all the shortest paths (using black and red edges indifferently) from the root r to
the node in Lt representing p (Figure 1 shows an example of a view).

Applications of history trees. As proved in [15], the view of any process at round 3n

contains enough information to determine the multiset of the initial inputs (i.e., how many
processes have each input value). Thus, once a process is able to locally construct a view
spanning 3n levels of a history tree, it can immediately do any computation on the inputs,
and in particular determine n and solve the Generalized Counting problem.
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History trees were adopted in [15, 17], where it is shown how processes can construct their
views of the history tree in real time. For the algorithm to work, each process is required to
repeatedly send its current view to all its neighbors at every round, merging it with all the
views it receives from them.

This approach is not feasible in the congested network model, because a view at round t

has size Θ(tn2 log n) in the worst case, since there may be Θ(n2) red edges in each level. In
the following, we will develop a strategy whereby processes can construct a history tree one
red edge at a time. The core idea is that the nodes of the history tree are assigned unique
IDs, and therefore a single red edge can be encoded in only O(log n) bits as a pair of IDs
and a multiplicity.

4 Basic Counting Algorithm

In this section we describe our deterministic Counting algorithm for congested anonymous
dynamic networks in its most basic version. The algorithm assumes the network to be
connected (T = 1), to have a unique leader, and execution terminates in O(n3 log n) rounds
with the leader reporting the total number of processes in the system, n. The complete
pseudocode is found in the arXiv version of this paper.

In Section 6, we will optimize this basic algorithm, making it terminate in O(n3) rounds.
We will also extend the algorithm in several directions, for instance by making all processes
(as opposed to the leader only) simultaneously output n and terminate. Furthermore, we will
show how to not only count the number of processes, but also compute arbitrary (multiset-
based, cf. [15]) functions, assuming that input values are assigned to the processes. Finally,
we will extend the algorithm to leaderless networks and T -union-connected networks.

4.1 Algorithm Outline
The only input given to each process is whether or not it is the leader. Each process also has
some private memory which is used to permanently store information in the form of internal
variables.

Virtual history tree (VHT). The overall goal of the algorithm is for the processes to
implicitly agree on the first O(n) levels of a particular history tree, called virtual history tree
(VHT), which corresponds to a dynamic network N of n processes. Once the construction
of each new level of the VHT is complete (refer to Section 4.5), the leader locally runs the
Counting algorithm from [15] on the VHT. If this algorithm successfully returns a number
(as opposed to “Unknown”), the leader outputs it; otherwise, the construction of a new level
of the VHT is initiated.

Virtual network (N ). The dynamic network N = (N1, N2, . . . ) represented by the VHT
is in fact a virtual network, in the sense that none of the multigraphs Nt necessarily
coincides with any multigraph of links actually occurring in the real communication network
G = (G1, G2, . . . ). However, each Nt is obtained by carefully adding and removing links
from some Git

(see Figure 2). This manipulation has the purpose of reducing the size of the
resulting VHT by a factor of n (see Section 4.4).

Temporary IDs. To cope with the fact that processes are anonymous and information can
only be sent in small chunks of size O(log n), each process has a temporary ID stored in
a local variable called MyID. Each node v in the VHT also has an ID, indicating that v

MFCS 2024
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represents all processes having that ID. Thus, a red-edge triplet of the form (ID1, ID2, Mult)
can be used to unambiguously represent a red edge of multiplicity Mult between the nodes
of the VHT whose IDs are ID1 and ID2. Since a red-edge triplet has size O(log n), it can be
included in a single message. Note that the variable MyID of each process may be modified
over time as the VHT acquires more nodes.

Broadcast phases. The construction of the VHT is carried out level by level, and is
done through several broadcast phases, which are indirectly coordinated by the leader (see
Section 4.3). At first, each process knows the red edges incident to its corresponding node
of the VHT. Then, ideally every two broadcast phases, the whole network learns a new red
edge of the VHT. The broadcast phases continue until all processes know all red edges in the
level (see Section 4.6).

Estimating the diameter. In order to guarantee the success of a broadcast phase, all
processes must keep sending each other information for a certain number of rounds, which
depends on the dynamic diameter of the network, and is n − 1 in the worst case [28]. Since
the processes do not initially possess any information at all, they can only make estimations
on the dynamic diameter. The current estimate is stored by each process in the variable
DiamEstimate. Its value is initially 1, and it is doubled every time the processes detect an
error in a broadcast.

Error phases. Detecting broadcasting errors and consistently reacting to them is by no
means a trivial task, and is discussed in Section 4.7. Our broadcasting technique ensures
that, if some red-edge triplet fails to be broadcast to the entire network and does not become
part of the local VHT of all processes, at least one process becomes aware of this fact. Such
a process enters an error phase, sending a high-priority message at every round containing
the level number at which the error occurred. Error messages supersede the regular ones and
eventually reach the leader.

Reset phases. When the leader finally receives an error message, it initiates a reset phase,
whose goal is to force the whole network to restore a previous state of the VHT and continue
from there. This is achieved by broadcasting a high-priority reset message. Since the error
must have occurred because DiamEstimate was too small, its value is doubled at the end of
the reset phase.

Note that there is no obvious way for the leader to tell if any level of the VHT is actually
missing some parts: At any time, there may be processes in an error phase unbeknownst
to the leader. One of the challenges of our method is to ensure that the leader will not
terminate with an incorrect guess on n due to the VHT being incomplete.

4.2 Communication and Priority

Counting rounds. The processes have to implicitly synchronize with one another to start
and finish each broadcast phase at the same time. Part of the synchronization is achieved by
the function SendAndReceive, which is called by each process at every communication round.
This function simply sends a given message to all neighbors, collects all messages coming from
the neighbors, and increments the internal variable CurrentRound. Since communications in
the network are synchronous, all processes always agree on the value of CurrentRound.
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Message types. The processes use messages of various types to share information with one
another. Each message has a label describing its type, as well as at most three additional
integer parameters. As it will turn out in the analysis of the algorithm, each parameter has
size O(log n) bits.9 The message types and their parameters are as follows.

Null message. Label: “Null”. No parameters.
Level-begin message. Label: “Begin”. Parameters: ID.
Level-end message. Label: “End”. No parameters.
Done message. Label: “Done”. Parameters: ID.
Red-edge message. Label: “Edge”. Parameters: ID1, ID2, Mult.
Error message. Label: “Error”. Parameters: ErrorLevel.
Reset message. Label: “Reset”. Parameters: ResetLevel, StartingRound, NewDiam.

Priority. Messages have priorities that determine how they are handled during a broadcast.
The priority of a message is defined as follows:

Null < Begin < End < Done < Edge < . . . < Reset k + 1 < Error k < Reset k < . . . < Error 1 < Reset 1

That is, the message with lowest priority is the Null message, followed by all possible Level-
begin messages, then the Level-end message, etc. The priority of a Level-begin message is
independent of its parameter. For all other message types, however, the priority is also a
function of the parameters.

As for Done messages, different ID parameters yield different priorities. Thus, priority
induces a total ordering on the set of all possible Done messages; the precise ordering is
irrelevant, as long as all processes implicitly agree on it. All Done messages have greater
priority than Null, Level-begin and Level-end messages. The same goes for Red-edge messages:
Different parameters yield different priorities, and all processes agree on the priority function.
All Red-edge messages have greater priority than all Done messages, and lower priority than
all Error and Reset messages.

An Error message (respectively, a Reset message) with a smaller ErrorLevel (respectively,
ResetLevel) has a greater priority. Moreover, the priorities of Error and Reset messages are
interleaved: The priority of an Error message with ErrorLevel = k is strictly between the
priority of a Reset message with ResetLevel = k + 1 and the priority of a Reset message
with ResetLevel = k.

4.3 Broadcasting Data
During the execution of the algorithm, a non-leader process may have a particular piece
of information that it wishes to send to the leader. Similarly, the leader may have some
information that it wishes to share with all processes in the network. Both operations are
performed via a broadcast spanning several rounds.

The broadcast technique used to construct the VHT is implemented as follows. It is
assumed that all processes participating in the broadcast are synchronized, i.e., they start at
the same round and continue broadcasting for the same number of rounds (which is equal
to DiamEstimate). Each process is also assumed to have the information it wishes to share
packed in a message of the appropriate type (see Section 4.6), which is passed to the function
BroadcastPhase as the argument Message.

9 As already remarked, the algorithm spontaneously creates O(log n)-sized messages without any a-priori
knowledge on n.

MFCS 2024
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At each broadcast round, each process sends its message to all its neighbors. Then it
examines the messages received from the neighbors, as well as its own message, and keeps
only the message with highest priority, discarding all others (function BroadcastStep). This
is the message the process will send in the next round, and so on.10

Ideally, if the broadcast is continued for a sufficiently large number of rounds, all processes
participating in the broadcast will eventually obtain the message having the highest priority
among the ones initially owned by the processes (note that this may be an Error or Reset
message, as well).

4.4 Defining the Virtual Network
Definition. Recall that the VHT is the history tree of the virtual network N =
(N1, N2, N3, . . . ). We will now define Nt by induction on t. That is, assuming that the mul-
tigraphs N1, N2, . . . , Nt−1 are already known, we will construct Nt based on the multigraph
Git , which represents the real communication network G at a selected round it (Section 4.6
explains how it is selected).

Since the first t − 1 rounds of the virtual network are known, we can construct the
first levels of the VHT up to level Lt−1. By definition of history tree, each node v ∈ Lt−1
represents a class Pv of processes that are indistinguishable after the first t − 1 “virtual
rounds” modeled by the communication networks N1, N2, . . . , Nt−1.

Consider the simple undirected graph H = (V, E), where V = Lt−1 and {u, v} ∈ E if
and only if u ̸= v and there is at least one link in Git between a process in Pu and one in
Pv. Recall that we are assuming that Git

is connected, and therefore H is connected, as
well (disconnected networks will be discussed in Section 6). Let S = (V, E′) be an arbitrary
spanning tree of H.

Now, Nt is the network having the following links (refer to Figure 2):
For every edge {u, v} ∈ E′ of S, the multigraph Nt contains all the links in Git

having
an endpoint in Pu and an endpoint in Pv (with the respective multiplicities).
For every v ∈ V , the multigraph Nt contains a cycle Cv spanning all the processes in Pv.
In the special case where Pv contains exactly two processes p1 and p2, Cv is a double link
between p1 and p2. If Pv contains a single process p, Cv is a double self-loop on p.

Note that, in every case, Cv induces a 2-regular multigraph on Pv. The purpose of these
(possibly degenerate) cycles Cv is to ensure that Nt is connected. On the other hand, the
purpose of using a spanning tree S, as opposed to the full graph H, is to reduce the size of
the VHT.

Implementation. In the actual algorithm, Nt is defined only implicitly in a distributed
manner (because the ultimate goal is merely the construction of the VHT). The implicit
construction of Nt starts at round it, where each process (not in an error phase) invokes
the function SetUpNewLevel and sends a Begin message containing its own ID to each
neighbor. As a result, each process learns the IDs of all its neighbors in Git

, as well as their
multiplicities, and stores this information as a list of pairs of the form (ID, Mult) in the
internal variable ObsList. It should be noted that a process discards all Begin messages
from processes with the same ID as its own. These are replaced by the single pair (MyID, 2),
which accounts for the two edges of the cycle Cv incident to the process in Nt.

10 Note that our broadcasting strategy implements a token-forwarding mechanism, and the sequence of all
broadcast phases is akin to a Token Dissemination algorithm. It is known that any such algorithm must
have a worst-case running time of at least Ω(n2/ log n) rounds [18].
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Figure 2 Construction of the virtual network N2 and level L2 of the virtual history tree (VHT).
The real network Gi2 consists of the n = 9 processes in the upper-left picture, connected by the red
and blue links (not the green ones). Before the construction starts, the IDs in the network are 5, 2,
and 3. Same-colored processes have equal IDs when the construction of L2 starts; the labels indicate
their IDs when the construction finishes. Accordingly, level L1 of the VHT has three nodes with IDs
5, 2, 3. The graph H is a triangle on these three nodes, while its spanning tree S is the same as
LevelGraph. Therefore, to construct N2 we remove the blue edges from Gi2 and keep the red ones
(see Section 4.4). For example, after the triplets (6, 3, 1) and (6, 5, 1) are accepted, any elements
of ObsList corresponding to the two blue edges incident to the yellow process are deleted and are
never broadcast. We also have to add the green edges, which represent the cycles Cv. Note that
failing to add them would result in a disconnected network, because the process with ID 7 would be
isolated. For clarity, the edges of the (temporary) VHT are colored red or green to match the edges
of the virtual network that they represent (although technically they are all red edges).

The choice of links to be included in Nt (which directly reflects on the red edges included
in the VHT) is guided by the construction and maintenance of an auxiliary graph stored in
each process’ internal variable LevelGraph. The auxiliary graph is a graph on V = Lt−1 and
starts with no edges at all; it gradually acquires more edges until it becomes the spanning
tree S (as defined above). This is carried out as part of the function UpdateTempVHT, which is
invoked every time a red-edge triplet (ID1, ID2, Mult) is selected to become a new red edge of
the VHT at the end of a broadcast phase. Among other operations (described in Section 4.5),
this function adds an edge to the auxiliary graph which connects the two nodes corresponding
to ID1 and ID2. Then the function PreventCyclesInLevelGraph is called, which deletes all
the pairs in ObsList whose selection would cause the creation of a cycle in the auxiliary
graph. This guarantees that, eventually, LevelGraph will be a tree (representing S).

4.5 Constructing the Virtual History Tree (VHT)
Initialization. The VHT is initialized by the function InitializeVariables. At first, the
VHT only contains level L−1 (a single root node whose ID is −1) and level L0 (two nodes with
IDs 0 and 1, representing the leader and the non-leader processes, respectively). Accordingly,
the leader initializes its own MyID variable to 0 and the non-leaders to 1.

Temporary VHT. Then, for all t ≥ 1, the level Lt of the VHT is constructed based on the
virtual network Nt as in Figure 2. When the construction begins, all processes (that are not
in an error phase) acquire new pairs of the form (ID, Mult) at the same round it and store
them in ObsList, as explained in Section 4.4. The construction of a new level is not carried
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out directly on the VHT, but in a separate temporary VHT stored in the internal variable
TempVHT. Initially, this is just a copy of level Lt−1 of the VHT, i.e., a set of nodes, each with
a distinct ID, and no edges.

Adding red edges. In order to determine how TempVHT should be updated, several broadcast
phases are performed, allowing the processes to share their red-edge triplets with one another.
Note that a process can transform each element of ObsList of the form (ID, Mult) into a
red-edge triplet by simply adding its own ID as the first element. Every time a red-edge
triplet (ID1, ID2, Mult) has been broadcast by a process to the entire network and has been
“accepted” (see Section 4.6 for details), the function UpdateTempVHT is called. The result
is that the node v of TempVHT whose ID is ID1 gets a new child v′ with a new unique ID.
Pictorially, a black edge is created connecting v′ to v. Also, a red edge with multiplicity
Mult is added to TempVHT, connecting the new node with the node whose ID is ID2.

Updating IDs. By definition, the red-edge triplet (ID1, ID2, Mult) indicates that some
processes whose ID is ID1 have received exactly Mult messages from processes whose ID is
ID2. These processes, which were previously represented by the node v, are now represented
by v′. Therefore, every process whose ID is ID1 that has the pair (ID2, Mult) in its local
ObsList removes it from the list and modifies its own ID from ID1 to the ID of v′.11

Updating the VHT. When a process has no more red-edge triplets to share (that is, its
ObsList is empty), it broadcasts a Done message containing its current ID. Recall that
Done messages have lower priority than Red-edge messages (see Section 4.2). When the final
result of a broadcast is a Done message containing a certain ID, all processes assume that
some processes with that ID have sent all their red-edge triplets. Therefore, the node of the
temporary VHT with that ID is ready to be added to the VHT.

To this end, the function UpdateVHT is called with the ID contained in the Done message.
This function creates a new node v in level Lt of VHT corresponding to the node v′ of TempVHT
whose ID is the one passed to the function (refer to Figure 2). The node v gets the same ID
as v′ and becomes a child of the node u ∈ Lt−1 having the same ID as the root v′′ of the
tree containing v′. Then, v takes all the red edges found along the path from v′ to v′′.

Finalizing the level. When the ObsList of a process is empty and the VHT already contains
a node with its ID, the process broadcasts an Level-end message, which has lower priority
than Done and Red-edge messages. When the result of a broadcast is an Level-end message,
the construction of the level is finished.

4.6 Main Loop
The entry point of the algorithm is the function Main. After initializing the internal variables
as already explained, the function goes through a loop that constructs the VHT level by
level. At several points in this loop there may be errors that cause some of the levels to be
undone and execution to resume from the beginning of the loop; we will discuss errors in
Section 4.7. Next, we will describe an ideal error-free execution.

11 To clarify, the nodes of the VHT have unique IDs. Each node represents a class of “indistinguishable”
processes, all of which have the same ID as the node itself. When processes disambiguate in the virtual
network, they obtain different IDs. However, it is not necessarily true that all processes will have distinct
IDs eventually. For example, if the network is the (static) complete graph, all non-leader processes will
always have the same ID (which is incremented at every virtual round).
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Level initialization. With each iteration of the main loop, a new level of the VHT is
constructed. At the beginning, the function SetUpNewLevel is executed by all processes:
This marks a selected round Git

as defined in Section 4.4 (the non-trivial fact that all
processes always call this function at the same round will become apparent from our analysis
of the algorithm, in Section 5).

VHT broadcast. Then an inner loop is entered; the purpose of each iteration is for all
processes to learn new information, which causes an update of the temporary VHT or the
VHT itself. At first, each process calls the function MakeVHTMessage, which picks an element
from ObsList, converts it into a red-edge triplet by adding its own ID to it, and wraps it
in a Red-edge message. If ObsList is empty, a Done message containing the process’ ID is
generated instead. The resulting message is used in a first broadcast phase which, after a
number of rounds equal to DiamEstimate, returns the highest-priority message circulating
in the network. This message is stored in the variable VHTMessage.

Acknowledgment broadcast. Note that, in the presence of a faulty broadcast, different
processes may end up having different versions of VHTMessage. To ensure that all processes
(that are not in an error phase) update their local copies of the (temporary) VHT in a
consistent way, an “acknowledgment” broadcast phase is performed. Its purpose is for the
leader to inform all other processes of the accepted message; by definition, the accepted
message is the leader’s version of VHTMessage.

In the acknowledgment phase, all non-leader processes broadcast a low-priority Null
message, while the leader broadcasts the accepted message. The message resulting from the
broadcast is then stored in the variable AckMessage.

Updating the level. Now, each process compares the contents of the two messages
VHTMessage and AckMessage. If they are the same (hence not Null), then this is indeed
the accepted message coming from the leader, and the data therein is used to update the
temporary VHT or the VHT. Specifically, if AckMessage is a Red-edge message, the red-edge
triplet therein is used to update the temporary VHT. If it is a Done message, the VHT is
updated instead.

Finalizing the level. When a process is done broadcasting red-edge triplets and the VHT
already contains a node representing it, the process broadcasts a low-priority Level-end
message. As soon as the accepted message is the Level-end message, the level is considered
complete and the inner loop is exited.

Counting processes. Now the leader extracts its own view from the VHT and locally runs
the Counting algorithm from [15] on it (function CountFromView). By “extracts its own
view” we mean that it makes a copy of the VHT and deletes all nodes that are not on a
shortest path from the root to the deepest leader’s node.

If the value returned by CountFromView is a number, this is taken as the correct number
n of processes in the virtual network N (and hence in the real network G) and becomes the
leader’s output. Otherwise, a new iteration of the main loop starts, a new level of the VHT
is constructed, and so on.
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4.7 Handling Errors and Resets
Detecting errors. As mentioned, a broadcast phase lasts a number of rounds indicated by
the variable DiamEstimate. If this number happens to be smaller than the dynamic diameter
of the network, the broadcast may be unsuccessful, in the sense that not all processes may
end up agreeing on the same highest-priority message. Fortunately, the protocol described
in Section 4.6 makes error detection very simple: At the end of every acknowledgment
broadcast, if the contents of a process’ variables VHTMessage and AckMessage are different,
the broadcast was unsuccessful. Any process that detects this event enters an error phase.

Error phase. When a process enters an error phase, it runs the function BroadcastError;
as it turns out, only non-leader processes ever execute this function. During an error phase,
a process continually broadcasts an Error message containing the index of the level of the
VHT where the error was detected. This message is replaced by any other message of higher
priority received by the process during the error phase (see Section 4.2). As soon as the
process receives a Reset message for a level of smaller or equal depth than the one indicated
by the current Error message (i.e., a Reset message of higher priority), it ends the error
phase and enters a reset phase.

Another situation where a non-leader process enters an error phase is when it receives an
Error message from some other process. In this case, it calls the function HandleError and
starts broadcasting a new Error message containing the smaller between the index of the
current level and the one contained in the received Error message. This causes higher-priority
error messages to propagate through the network and eventually reach the leader.

Reset phase. This phase is initiated by the leader at the end of a broadcast phase (or after
sending a Begin message) in case it received an Error message. The leader first waits for
2 ·DiamEstimate+1 rounds, sending only Null messages. This is to ensure that all non-leader
processes finish any broadcast phase and enter an error phase. In turn, this prevents any
possible conflicts between different broadcast phases before and after a reset.

Then the leader creates a Reset message containing the index of the VHT level where the
error occurred, the current round number, and the new estimate on the dynamic diameter,
i.e., twice the current one, since the error occurred because the estimate was too small.

Now the leader calls the function BroadcastReset, where it broadcasts the Reset message;
any process that receives this message starts broadcasting it as well (provided that it has
higher priority than the Error message it is currently broadcasting, as usual). The broadcast
continues for a total number of rounds equal to the new dynamic diameter estimate. All
processes that receive the Reset message are able to synchronize with one another and finish
the reset phase at the same round, thanks to the information contained in the message itself.

At the end of the reset phase, the reset is actually performed: Every process that got
the Reset message deletes the most recent levels of the VHT up to the level where the error
occurred (this information is contained in the Reset message) and reverts its ID to the one it
had at the beginning of the construction of that level. The variable DiamEstimate is also
updated with the new estimate. At this point, the network is ready to resume construction
of the VHT.

5 Proof of Correctness

We will now sketch a proof of correctness for the Counting algorithm in Section 4. The
interested reader may refer to the arXiv version for a detailed and technically rigorous proof.
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We say that two processes agree on a variable at a certain round if their local instances
of that variable are equal. As it turns out, all processes that are not in an error phase must
always agree on the variable DiamEstimate: this can be proved by induction on the number
of reset phases that the leader has completed.

In turn, this implies that all processes (that are not in an error phase) are able to implicitly
synchronize their broadcast phases with the leader, since these phases have a duration of
DiamEstimate rounds. As a consequence, all processes (not in an error phase) also agree on
the variables CurrentLevel, VHT, TempVHT, LevelGraph, and NextFreshID, because these
variables are updated either at the beginning or at the end of a broadcast or reset phase.

Thus, we can unambiguously refer to phases and variables with no explicit mention of any
individual process, because these phases and variables are the same throughout the whole
network (excluding the processes in an error phase).

The goal of the algorithm is to construct the first levels of the VHT, i.e., the history tree of
the virtual network N . However, information on the virtual network is shared by all processes
through several broadcast phases, and there is no guarantee that every broadcast phase
will have the correct outcome (some data may fail to be communicated if DiamEstimate is
smaller than the network’s actual dynamic diameter). Thus, we distinguish between the ideal
VHT, i.e., the “correct” history tree corresponding to N , and the effective VHT, i.e., the one
that is actually being constructed by the processes, which may be missing some information.

It is a byproduct of our protocol that, whenever a node is added to the effective VHT,
then all red edges incident to it (and to nodes in the previous level of the ideal VHT) are
also included. In particular, extracting the leader’s view from the effective VHT yields a
graph isomorphic to the view of the leader in the ideal VHT. This implies that the function
CountFromView is always given as input a view of the history tree of a connected network
of n processes. As proved in [15], this function must return either “Unknown” or n; in
particular, it returns n when the input view spans at least 3n levels.

Hence, our algorithm cannot return an incorrect number. It remains to prove that it does
terminate within the desired number of rounds. Every time a faulty broadcast is detected
and the leader is notified of it, a reset phase is initiated and DiamEstimate is doubled. It
follows that no more than O(log n) reset phases ever occur, and DiamEstimate is always
O(n); this is also the duration of each broadcast phase.

Recall that links are not included in the virtual network if they cause cycles to appear in
LevelGraph (see Section 4.4). Although this strategy may not guarantee that every level of
the VHT has O(n) red edges, it does amortize the total number of red edges over several
levels. In fact, the first O(n) levels of the ideal VHT only contain O(n2) red edges (as
opposed to O(n3), which may be the case for the history tree of a generic network).

Summarizing, it takes O(n2) broadcast phases to construct the first 3n levels of the
VHT, resulting in a total of O(n3) rounds. The construction process is partially undone and
repeated at most O(log n) times due to resets, and so the final running time is O(n3 log n).

It is straightforward to prove that the algorithm works in the congested network model,
because all the data contained in a message are binary representations of values that are
polynomial in n, e.g., round numbers, estimates of the dynamic diameter, or temporary IDs
of processes. Since each message contains at most three of these values, its size is O(log n).

6 Extensions and Improvements

Simultaneous termination. In Section 4 we showed how the leader can determine n. If
we want all processes, not just the leader, to simultaneously output n and terminate, we
can use the following protocol. As soon as the leader knows n, it broadcasts a message of
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maximum priority containing n and the current round number c. Any process that receives
this message keeps forwarding it until round c + n. By this round they all have it, and thus
can output n and terminate simultaneously.

General computation. If each process is assigned an O(log n)-sized input (other than the
leader flag), we can also perform general computations on the multiset of inputs. We only
have to adapt the algorithm of Section 4 to work with history trees whose level L0 contains
one node per input occurring in the system, and then run the algorithm in [15] on this
extended history tree. This can easily be done with the techniques developed in Section 4:
We can construct L0 like any other level, except that we use broadcast phases to transmit
inputs instead of red edges.

Optimized running time. We can sightly speed up our algorithm at the cost of some
additional bookkeeping. The idea is to refine the error and reset mechanism by resuming the
construction of the VHT not from the level that caused an error, but from the broadcast
phase that caused it.

The processes have to remember the order in which the leader accepted Red-edge and
Done messages, as well as the Begin messages received at every begin round. When a process
detects an error, it broadcasts an Error message containing not the current level number, but
the number of messages that the leader has accepted up to that time. The advantage is that
the reset phase can rewind the (temporary) VHT exactly to the desired point without erasing
entire levels. Furthermore, by looking up the Begin messages received in the appropriate
begin round, each process is also able to reconstruct its local ObsList at the desired time.

If a broadcast phase causes an error, the leader receives a notification after less than n

rounds, and so it only has to undo the work done in O(n) rounds. Since there can be at most
O(log n) resets, the total time spent in reset phases or doing work that later gets undone is
O(n log n) rounds. Thus, the new algorithm runs in O(n3) + O(n log n) = O(n3) rounds.

Leaderless computation. It is known that doing any non-trivial computation in a leaderless
network requires some extra assumptions, for example the knowledge of an upper bound D

on its dynamic diameter [17]. However, knowing D allows processes to reliably broadcast
messages in phases of D rounds. This immediately yields an extension of our algorithm to
leaderless networks in O(Dn2) rounds, where no acknowledgment phases or error and reset
phases are needed.

Disconnected networks. We can extend our algorithm to T -union-connected networks,
assuming the parameter T is known. As discussed in [17], the idea is to divide the sequence
of rounds into blocks of size T . Within every block, each process keeps sending the same
message and stores all incoming messages. At the end of a block, each process runs the
algorithm from Section 4 (or its optimization) pretending that all the stored messages arrived
in a single round. This is equivalent to running the algorithm on the dynamic network
G⋆ = (G⋆

1, G⋆
T +1, G⋆

2T +1, . . . ), which is always connected (G⋆
t is defined in Section 3). The

running time is simply O(Tn3) rounds.

7 Concluding Remarks

In this paper we have extended the theory of history trees by introducing the tools necessary
for the distributed construction and transmission of history trees in the congested network
model. This resulted in a new state of the art for general computation in disconnected
anonymous dynamic congested networks, with or without leaders.



G. A. Di Luna and G. Viglietta 49:17

Our history tree construction technique leads to general algorithms whose running time
is cubic in the size of the network. An immediate open problem is whether this running
time can be reduced. Since our algorithm broadcasts information using a token-forwarding
approach, and by virtue of the Ω(n2/ log n) lower bound of [18], we believe that it would be
unlikely to achieve a better running time without a radical change in the technique used.

Understanding whether the Counting problem has as a super-linear lower bound in
congested networks is of special importance, because it would mark a computational difference
between anonymous dynamic networks in the congested and non-congested models.

It would be interesting to do a thorough fine-grained tradeoff analysis of our algorithm.
For instance, it is not difficult to show that, if messages have size O(n log n), the running
time of our algorithm can be reduced to O(n2).
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