Fine-Grained Complexity of Program Analysis

Rupak Majumdar ⊠©

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

— Abstract

There is a well-known "cubic bottleneck" in program analysis and language theory: many program analysis problems can be solved in time cubic in the size of the input but, despite years of effort, there are no known sub-cubic algorithms. For example, context-free reachability (whether there is a path in a labeled graph that is labeled with a word from a context-free language), the emptiness problem for pushdown automata, and the recognition problem for two-way nondeterministic pushdown automata all belong to the cubic class. We survey the status of these problems through the lens of fine-grained complexity.

We study the related *certification* task: given an instance of any of these problems, are there small and efficiently checkable certificates for the existence and for the non-existence of a path? We show that, in both scenarios, there exist succinct certificates $(O(n^2))$ in the size of the problem) and these certificates can be checked in subcubic (matrix multiplication) time. Thus, all these problems lie in nondeterministic and co-nondeterministic subcubic time.

We also study a hierarchy of program analysis problems above the cubic bottleneck. A representative problem here is the recognition problem for two-way nondeterministic pushdown automata with k heads. We show fine-grained hardness results for this hierarchy.

We also discuss purely language-theoretic consequences of these results: for example, we obtain hardest languages accepted by two-way nondeterministic multihead pushdown automata, as well as separations between language classes.

(Joint work with A.R. Balasubramanian, Dmitry Chistikov, and Philipp Schepper.)

2012 ACM Subject Classification Theory of computation \rightarrow Grammars and context-free languages; Theory of computation \rightarrow Problems, reductions and completeness; Software and its engineering \rightarrow Compilers

Keywords and phrases Fine-grained complexity, CFL reachability, 2NPDA recognition, PDA emptiness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.5

Category Invited Talk

Funding This research was partially funded by the DFG project 389792660 TRR 248–CPEC.

