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Abstract
We study half-space separation in the convexity of chordless paths of a graph, i.e., monophonic
convexity. In this problem, one is given a graph and two (disjoint) subsets of vertices and asks
whether these two sets can be separated by complementary convex sets, called half-spaces. While it
is known this problem is NP-complete for geodesic convexity – the convexity of shortest paths – we
show that it can be solved in polynomial time for monophonic convexity.
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1 Introduction

A (finite) convexity space is a pair (V, C) where V is a (finite) groundset and C a collection
of subsets of V , called convex sets, containing ∅, V and closed under taking intersections.
Graphs provide a wide variety of different convexity notions, known as graph convexities.
These are usually defined based on paths and include for instance the geodesic convexity [20],
the monophonic convexity [10, 12, 15], the m3-convexity [11], the triangle-path convexity [5],
the toll convexity [1], or the weakly toll convexity [9].

In this paper, we are interested in the half-space separation problem: with an implicitly
given convexity space (V, C) and two (convex) subsets A, B of V , are there complementary
convex sets H, H – the so-called half-spaces – such that A ⊆ H and B ⊆ H? This problem
is a generalization to abstract convexity of the half-space separation problem in Rd, being
well-studied in machine learning [3, 16, 25]. Half-space separation has motivated the study
of structural separation properties of convexity spaces. Among these properties, two have
received particular attention, notably within graph convexities (see e.g. [2, 7, 14, 18, 23]):
the S3 property stating that any convex set C can be separated from any element of V

not in C; and the S4 or Kakutani property stating that any pair of disjoint convex sets
can be separated. Besides, the study of the half-space separation problem on its own has

© Mohammed Elaroussi, Lhouari Nourine, and Simon Vilmin;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 51; pp. 51:1–51:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5782-4639
https://orcid.org/0000-0003-0195-4132
https://orcid.org/0000-0001-6240-4981
https://doi.org/10.4230/LIPIcs.MFCS.2024.51
https://arxiv.org/abs/2404.17564
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 Half-Space Separation in Monophonic Convexity

recently been brought to the context of graph convexities [21, 22]. In particular, Seiffarth et
al. [21] show that half-space separation is NP-complete for geodesic convexity, the convexity
induced by the shortest paths of a graph. To our knowledge though, the complexity status
of half-space separation for the other aforementioned graph convexities is still unknown.

In our contribution, we follow this latter line of research and study half-space separation
for the monophonic convexity. Given a graph G with vertices V (G), a set C ⊆ V (G) is
monophonically convex if for any two vertices u, v of C, all the vertices on a chordless path
u and v lie in C. We prove that half-space separation can be decided in polynomial time for
monophonic convexity. More formally, our main theorem reads as follows:

▶ Theorem 1. Given a graph G and two subsets A, B of V (G), whether A, B are separated
by monophonic half-spaces can be decided in polynomial time.

Theorem 1 contrasts with the NP-completeness of half-space separation for geodesic
convexity [21] and suggests to study separation in further graph convexities. Besides,
half-space separation also relates to the p-partition problem (in graph convexities). In
the p-partition problem, one is given a graph G and has to decide whether V (G) can be
partitioned into p convex sets, where the meaning of convex depends on the convexity at
hand. For monophonic convexity, Gonzalez et al. [17] show that p-partition is NP-complete
for p ≥ 3, but they leave open the case p = 2. Since 2-partition is possible if and only if
there exists two separable vertices, Theorem 1 proves that 2-partition can be decided in
polynomial time.
▶ Remark 2. In very recent contributions, Chepoi [8] and Bressan et al. [4] also showed that
half-space separation can be decided in polynomial time for monophonic convexity. Their
results have been obtained independently and using different approaches, even though they
share some common points with the technique used in this paper.

Organization of the paper

In Section 2 we provide definitions, notations and we formally define the problem we
investigate in the paper. In Section 3 we prove Theorem 1 by giving an algorithm which
decides whether two sets can be separated by half-spaces. We conclude in Section 4.
▶ Remark 3. Due to space limitations, most proofs are omitted. All of them can found in
the arXiv version of the present contribution [13].

2 Preliminaries

All the objects considered in this paper are finite. Let V be a set. The powerset of V

is denoted 2V . Given X ⊆ V , we write X the complement of X in V , i.e., X = V \ X.
Sometimes, we shall write a set X as the concatenation of its elements, e.g., uv instead of
{u, v}. As a result, X ∪ uv and X ∪ v stands for X ∪ {u, v} and X ∪ {v} respectively.

Graphs

We assume the reader is familiar with standard graph terminology. We consider loopless
undirected graphs. Let G be a graph with vertices V (G) and edge set E(G). A subgraph
of G is any graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). The (open) neighborhood
of a vertex v in G is denoted N(v) and is defined as N(v) = {u ∈ V (G) : uv ∈ E(G)}.
The closed neighborhood of v in G is N [v] = N(v) ∪ v. For X ⊆ V (G), we put similarly
N(X) = {u ∈ V (G)\X : xu ∈ E(G) for some x ∈ X} and N [X] = N(X)∪X. The subgraph
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of G induced by X is G[X] = (X, E(G[X])), where E(G[X]) = {uv ∈ E(G) : u, v ∈ X}.
If this is clear from the context, we identify X with G[X], and we use G − X to denote
G[V (G) − X]. A path in G is a subgraph P of G with V (P ) = {v1, . . . , vk} and such that
vivi+1 ∈ E(P ) for each 1 ≤ i < k. Putting u = v1 and v = vk, P is an uv-path of G. An
induced uv-path or chordless uv-path of G is an induced subgraph of G being an uv-path. A
shortest path is an induced path with the least possible number of vertices. For simplicity
we will identify a path P with the sequence v1, . . . , vk of its vertices. Let A, B ⊆ V (G) be
non-empty. The (inner) frontier of A with respect to B is F (A, B) = A ∩ N [B]. We note
that if A, B are disjoint, we obtain F (A, B) = A ∩ N(B). Remark that for every X ⊆ V (G),
F (X, X) = N(X).

Convexity spaces

We refer the reader to [24] for a thorough introduction to convexity theory. A convexity
space is a pair (V, C), with C ⊆ 2V , such that ∅, V ∈ C and for every C1, C2 ∈ C, C1 ∩ C2 ∈ C.
The sets in C are convex sets. A convexity space (V, C) induces a (convex) hull operator
h : 2V → 2V defined for all X ⊆ V by:

h(X) =
⋂

{C ∈ C : X ⊆ C}

The operator h satisfies, for all X, Y ⊆ V : X ⊆ h(X); h(X) ⊆ h(Y ) if X ⊆ Y ; and
h(h(X)) = h(X). The Carathéodory number of (V, C) is the least integer d such that for every
X ⊆ V and v ∈ V , if v ∈ h(X), there exists a subset Y of X such that v ∈ h(Y ) and |Y | ≤ d.
A half-space of (V, C) is a convex set H whose set complement H is convex, that is, H, H ∈ C.
Let A, B be two subsets of V . We say that A and B are (half-space) separable if there exists
half-spaces H, H satisfying A ⊆ H and B ⊆ H. This is equivalent to h(A) ⊆ H and h(B) ⊆ H.
The shadow of A with respect to B [6, 7] is the set A/B = {v ∈ V : h(B ∪ v) ∩ A ̸= ∅}.
Observe that A ⊆ A/B and B ⊆ B/A.

▶ Remark 4. Usually, A/B is defined for disjoint sets. Here, it is more convenient to extend
this definition to sets that may intersect. If A ∩ B ̸= ∅, then A/B = V vacuously.

Monophonic convexity

We introduce monophonic convexity. We redirect the reader to [24, 20] for further details on
graph and interval convexities. Let G be a graph, and let u, v ∈ V (G). The monophonic closed
interval of u, v is the set of all vertices that lie on a chordless uv-path, denoted by J [u, v]. For
X ⊆ V (G), we put J [X] =

⋃
u,v∈X J [u, v]. A set C is monophonically convex if J [C] = C.

Throughout the paper, if there is no ambiguity, we use the term convex sets as a shortening
for monophonically convex sets. With C = {C ⊆ V (G) : C is monophonically convex}, the
pair (V (G), C) is a convexity space, the monophonic convexity of G. Its convex hull operator
h is defined for all X ⊆ V (G) by:

h(X) =
∞⋃

k=0
Xk

where X0 = X and Xi = J [Xi−1] for i ≥ 1. We now gather existing results regarding
monophonic convexity that will be useful throughout the paper. These statements are
rephrased to match our terminology.

▶ Observation 5 (see also [12]). In a connected graph G, every convex set is connected.

MFCS 2024
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▶ Theorem 6 ([12], Theorem 5.1). The monophonic convexity of a connected graph has
Carathéodory number is 1 if the graph is a clique and 2 otherwise.

▶ Theorem 7 ([10], Theorem 4.1). Let G be a graph and let X ⊆ V (G). Then, h(X) can be
computed in polynomial time in the size of G.

▶ Theorem 8 ([10], Theorem 2.1). Let G be a connected graph and let C ⊆ V . The set C is
convex if and only if for every connected component S of G − C, FG(C, S) is a clique.

▶ Lemma 9 ([17], Lemma 14). Let G be a connected graph, K a clique separator of G, and
X the union of some of the connected components of G − K. Then X ∪ K is convex.

We end these preliminaries by stating the problem we investigate in this paper. It is the
problem of separating two sets of vertices by half-spaces. Its decision version is:

Half-space separation in monophonic convexity
Input: A graph G and two (non-empty and disjoint) subsets A, B of V (G).
Question: Are A and B half-space separable?

Since h can be computed in polynomial time by Theorem 7 and A, B are separable if and
only if h(A), h(B) are separable, we can assume w.l.o.g. that the sets A and B are convex.

3 Half-space separation

In this section, we prove Theorem 1, which we first restate.

▶ Theorem 1. Given a graph G and two subsets A, B of V (G), whether A, B are separated
by monophonic half-spaces can be decided in polynomial time.

Remark that if the input graph is not connected, one just has to solve the problem for
each connected component. Thus, we can consider without loss of generality that the graphs
we consider are connected. Hence, for the section, we fix a connected graph G. Let A, B be
two (disjoint) convex sets of G. To prove Theorem 1, we give a polynomial time algorithm
that decides whether A, B are separable. The algorithm first computes a shortest path
a = v1, . . . , vk = b for some a ∈ A and b ∈ B in polynomial time. We show in Lemma 11 that
A and B are separable if and only if there exists 1 ≤ i < k such that Ai := h(A∪{v1, . . . , vi})
and Bi := h(B ∪ {vi+1, . . . , vk}) are separable. This step is the linkage of A and B. Then,
for each i, the algorithm does the subsequent operations:
(1) It computes the saturation A′

i := S(Ai, Bi), B′
i := S(Bi, Ai) of Ai, Bi (resp.) with

respect to h (see Subsection 3.2). Informally, the saturation step extends Ai and Bi with
vertices that are forced on one of the two sides by the hull operator h. Lemma 13 shows
that Ai, Bi are separable if and only if A′

i, B′
i are separable. Corollary 16 proves that

computing saturation takes polynomial time.
(2) From A′

i and B′
i, it builds an equivalence relation ≡A′

i
B′

i
on A′

i ∪ B′
i and an associated

graph GA′
i
B′

i
. Theorem 31 states that A′

i and B′
i are separable if and only if GA′

i
B′

i

is bipartite and no equivalence class of ≡A′
i
B′

i
contains a so-called forbidden pair of

vertices. Finally, Theorem 32 proves that the conditions of Theorem 31 can be tested in
polynomial time.

The algorithm outputs that A and B are separable if there is an integer i for which step (2)
succeeds. Otherwise, A and B are not separable. The correctness of the algorithm follows
from Lemma 11, Lemma 13 and Theorem 31. The fact that it runs in polynomial time is a
consequence of Corollary 16 and Theorem 32. This proves Theorem 1.

The rest of the section is dedicated to the proof of the aforementioned statements.
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3.1 Linkage along a shortest path
Let A, B be two non-empty disjoint convex subsets of V (G). Assume that A and B are
separable and let H, H be half-spaces separating A and B. Then for each a ∈ A, and each
b ∈ B, all the vertices on the shortests ab-paths are distributed among H and H. We show
that, in fact, for each shortest ab-path, there is a vertex before which all vertices are assigned
one half-space and all vertices after which are assigned the other half-space.

▶ Proposition 10. Let a ∈ A, b ∈ B and let a = v1, . . . , vk = b be a shortest ab-path. For
every half-space separation H, H of A and B with A ⊆ H and B ⊆ H, there exists 1 ≤ i < k

such that {v1, . . . , vi} ⊆ H and {vi+1, . . . , vk} ⊆ H.

b2

a1

v1

a2

v2

v3

b1

A B

H H̄

Figure 1 A graph G with two disjoint convex sets A = {a1, a2} and B = {b1, b2} (circled in green
and blue resp.). A and B are not linked, but they can be linked along the path a1, v1, v3, b1 (in
bold green / bold blue). Namely, A ∪ v1 and B ∪ v3 are linked and convex. Two half-spaces H, H

separating A ∪ v1 and B ∪ v3 (hence A and B) are drawn.

Following Proposition 10, we say that A and B are linked if there exists a ∈ A, b ∈ B

such that ab ∈ E(G). Linked sets and Proposition 10 are illustrated in Figure 1. The next
lemma is a direct consequence of Proposition 10.

▶ Lemma 11. Let G be a connected graph and let A, B be two non-empty disjoint convex
subsets of V (G). Let a ∈ A, b ∈ B and let a = v1, . . . , vk = b be a shortest ab-path. Then, A

and B are separable if and only if there exists 1 ≤ i < k such that h(A ∪ {v1, . . . , vi}) and
h(B ∪ {vi+1, . . . , vk}) are separable.

Given a ∈ A and b ∈ B, finding a shortest ab-path can be done in polynomial time.
Hence, making A and B linked can be done efficiently. Moreover, if A and B are linked, then
for any disjoint A′, B′ ⊆ V such that A ⊆ A′ and B ⊆ B′, A′ and B′ must be linked too. In
what follows, we will thus consider disjoint, convex and linked subsets of V (G).

3.2 Saturation with the hull operator
Let A, B be two disjoint, linked and convex subsets of V (G). In this part, we use the hull
operator h to define two sets S(A, B) and S(B, A) – the saturation of A and B (see below)
– with A ⊆ S(A, B), B ⊆ S(B, A) and such that A, B are separable if and only if their
saturation is separable. Informally, we use h to identify vertices that will appear in the same
half-space as A in any possible half-space separation of A (and similarly with B), if any. We
use two properties built on h:
(1) Shadow-closing. Remind that A/B, the shadow of A with respect to B, is defined by

A/B = {v ∈ V (G) : h(B ∪ v) ∩ A ̸= ∅}. In particular, A ⊆ A/B.
(2) Forbidden sets. Let X ⊆ A ∪ B and assume that h(X) ∩ A ̸= ∅ and h(X) ∩ B ̸= ∅.

Since h(v) = {v} for all v ∈ V , we have |X| ≥ 2. Thus, separating A, B implies to split
the vertices of X. We say that X is a forbidden set of A and B with respect to G. A

MFCS 2024
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set X is forbidden if and only if it includes an inclusion-wise minimal forbidden set as a
subset. Henceforth, in order to use forbidden sets, we need only consider the family of
inclusion-wise minimal forbidden sets, denoted MFS(A, B). Formally,

MFS(A, B) = min
⊆

{X ⊆ A ∪ B : h(X) ∩ A ̸= ∅ and h(X) ∩ B ̸= ∅}.

u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2

A

B

Figure 2 A graph G in which we seek to separate A and B (in circled green/blue resp.). The
vertex a1 is on a chordless u3b-path (bold blue), so that u3 ∈ A/B. Dually, b is on a chordless
v2a2-path (bold green), i.e., v2 ∈ B/A. Besides, h(v1v3) intersects both A and B (bold red). Thus,
v1, v3 must be separated to separate A and B, and v1v3 ∈ MFS(A, B) holds.

We illustrate shadows and forbidden sets in Figure 2. Now, we use A/B (resp. B/A) and
MFS(A, B) in view of separating A and B. On the one hand, A/B cannot be separated
from A by definition. On the other hand, for each X ∈ MFS(A, B) and every half-spaces
H, H̄ separating A and B with A ⊆ H, there exists at least one x ∈ X such that x ∈ H,
so that,

⋂
x∈X h(A ∪ x) ⊆ H always hold. Based on the previous arguments, we define the

pre-saturation of A with respect to B in G, denoted by σ(A, B), by:

σ(A, B) = h

(
A/B ∪

⋃{⋂
x∈X

h(A ∪ x) : X ∈ MFS(A, B)
})

Observe that if A ∩ B ̸= ∅, then σ(A, B) = σ(B, A) = V (G) as A/B = B/A = V (G). In this
case though, A and B cannot be separated. We prove in the next statement that σ(A, B)
preserves separation. Remark that it holds regardless of the disjointness of A and B.

▶ Lemma 12. Let G be a connected graph, and let A, B be linked and convex subsets of
V (G). Then, A, B are separable if and only if σ(A, B) and σ(B, A) are separable.

Proof. The if part follows from A ⊆ A/B ⊆ σ(A, B) and B ⊆ B/A ⊆ σ(B, A). We show
the only if part. Suppose that A and B are separable and let H, H be half-spaces such that
A ⊆ H, B ⊆ H̄. Let v ∈ A/B. By definition, h(B ∪ v) ∩ A ̸= ∅, hence H ∩ H = ∅ entails
v ∈ H. Now let X ∈ MFS(A, B). By definition of forbidden sets, X ∩ H ̸= ∅ and X ⊈ H.
Thus, there exists x ∈ X such that x ∈ H, which entails h(A ∪ x) ⊆ H as H is convex. Since⋂

x′∈X h(A ∪ x′) ⊆ h(A ∪ x) for each x ∈ X, we deduce

A/B ∪
⋃{⋂

x∈X

h(A ∪ x) : X ∈ MFS(A, B)
}

⊆ H.

As H is convex, we get σ(A, B) ⊆ H. Applying the symmetric reasoning on σ(B, A) yields
σ(B, A) ⊆ H. This concludes the proof. ◀
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u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2

σ(A,B)

σ(B,A)

Figure 3 Pre-saturation applied to the sets A and B of Figure 2. For σ(B, A), u1, u2 ∈ B/A are
added. For σ(A, B), we have u3, u4 ∈ A/B and v4 ∈ h(A ∪ v1) ∩ h(A ∪ v3) (paths in bold green)
with v1v3 ∈ MFS(A, B).

We illustrate pre-saturation in Figure 3, where the operation is applied to the set A and
B of Figure 2. In this example, once pre-saturation has been applied, no further vertices can
be assigned by applying pre-saturation once more. There are cases however where applying
pre-saturation twice yields new vertices to assign. Figure 4 illustrates this situation.

a1

a2

b1

v1

v2

v3

v4

v5

a1

a2

b1

v1

v2

v3

v4

v5

a1

a2

b1

v1

v2

v3

v4

v5

A σ(A,B) σ(σ(A,B), σ(B,A))

B σ(B,A) σ(σ(B,A), σ(A,B))

Figure 4 An example where pre-saturation can be applied twice. For σ(A, B), v2 is obtained
from the forbidden pair v1v3. Once v2 is added, v4, v5 become part of σ(A, B)/σ(B, A). Observe
that B = σ(B, A) = σ(σ(B, A), σ(A, B)). The remaining vertices v1, v3 can be separated in any way.

This suggests to iteratively apply the pre-saturation operator until no more vertices are
added. For A, B ⊆ V , the saturation of A with respect to B, denoted by S(A, B) is defined
as follows:

S(A, B) =
∞⋃

i=0
σ(Ai, Bi)

where A0 = A, B0 = B and for all 1 ≤ i, Ai = σ(Ai−1, Bi−1) and Bi = σ(Bi−1, Ai−1). Given
A, B ⊆ V (G), we say that A and B are saturated if A = S(A, B) and B = S(B, A). Since σ

is increasing, the procedure for computing S(A, B) terminates after |V (G)| steps at most.
Applying Lemma 12 inductively on 1 ≤ i, we get:

▶ Lemma 13. Let G be a connected graph, and let A, B be two linked and convex subsets of
V (G). Then, A, B are separable if and only if S(A, B), S(B, A) are separable.

▶ Remark 14. If Ai ∩ Bi ̸= ∅ for some i, then S(A, B) = S(B, A) = V (G), and no separation
can distinguish S(A, B) and S(B, A). In particular, A, B are thus not separable.

MFCS 2024
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To conclude this paragraph, we argue that S(A, B) can be computed in polynomial time
in the size of G. Since S is at most |V (G)| applications of σ on subsets of V (G), it is sufficient
to show that σ can be computed in polynomial time. The bottleneck of computing σ lies
in finding MFS(A, B). However, the fact that the Carathéodory number of monophonic
convexity is 2 by Theorem 6 makes the sets in MFS(A, B) of constant size.

▶ Proposition 15. Given A, B ⊆ V (G), σ(A, B) can be computed in polynomial time in the
size of G.

▶ Corollary 16. Given A, B ⊆ V (G), S(A, B) can be computed in polynomial time in the
size of G.

We note that saturation is not sufficient to decide separability, as suggested by Figure 5.
This motivates the last step of the algorithm.

u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2A B

a

v1 v2

b

v3

A B

H H̄

Figure 5 Two cases where A and B are linked, convex and saturated. On the left (follow-up of
Figure 3), A and B can be separated (two half-spaces are drawn). On the right, any bipartition
of the vertices will contain one of the forbidden pair v1v2, v1v3 or v2v3. Thus, A and B are not
separable.

3.3 Testing bipartiteness
Let A, B be two linked, disjoint and saturated subsets of V (G). By definition of saturation, A

and B are convex. We characterize the separability of A and B using an equivalence relation
≡AB on A ∪ B and a graph GAB defined from ≡AB . More precisely, we prove in Theorem 31
that A and B are separable if and only if GAB is bipartite and no two ≡AB-equivalent
vertices form a forbidden pair of MFS(A, B).

As a preliminary step though, we give properties of G and N(A ∪ B) in terms of A and
B. We start with a statement that holds for every convex set.

▶ Proposition 17. Let C ⊆ V (G) be a convex set, and let u, v be two distinct vertices of
V (G) \ C. Then:
(1) if u, v are not adjacent, then h(uv) ∩ C ≠ ∅ if and only if there exists u′, v′ ∈ N(C) such

that u′v′ /∈ E(G) and u′, v′ ∈ h(uv);
(2) if u, v are adjacent, then F (C, u) \ F (C, v) ̸= ∅ entails u ∈ h(C ∪ v).

Leveraging from the fact that A, B are linked and saturated, we use Proposition 17 to
show that every vertex in N(A ∪ B) is adjacent to both A and B.

▶ Lemma 18. For every v ∈ N(A∪B), F (A, B)∪F (B, A) ⊆ N(v). Therefore, the following
properties hold for A (and symmetrically for B):
(1) N(A) = F (B, A) ∪ N(A ∪ B);
(2) F (A, A) = F (A, N(A ∪ B)) is a clique.
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Proof. Assume for contradiction there exists v ∈ N(A ∪ B) such that F (A, B) ∪ F (B, A) ⊈
N(v). We have two cases:
(1) F (A, B) ⊈ N(v) and F (B, A) ⊈ N(v). Suppose w.l.o.g. that v ∈ N(A). There exists

b ∈ F (B, A) such that b /∈ N(v). Then, we deduce by Proposition 17 that h(bv) ∩ A ̸= ∅
and v ∈ A/B.

(2) F (A, B) ⊆ N(v) and F (B, A) ⊈ N(v) (w.l.o.g.). Since F (A, B) ⊆ N(v), v ∈ N(A) holds.
Thus, v ∈ A/B again follows from Proposition 17.

In both cases, we obtain v ∈ A/B with v /∈ A. This contradicts A being saturated. We
derive F (A, B) ∪ F (B, A) ⊆ N(v). Therefore, every v ∈ N(A) \ B also lies in N(B) \ A

so that N(A) ∩ N(B) = N(A ∪ B) holds along with N(A) = F (B, A) ∪ N(A ∪ B) and
F (A, A) = F (A, N(A ∪ B)). To see that F (A, A) is a clique, observe that B ∪ N(A ∪ B)
is connected since B is convex. We deduce that B ∪ N(A ∪ B) is included in a connected
component of G − A. Since F (A, A) = F (A, N(A ∪ B)) and A is convex as it saturated, we
obtain from Theorem 8 that F (A, A) is a clique. ◀

Proposition 17 and Lemma 18 have two consequences. First, we can characterize
MFS(A, B) as the set of pairs uv the closure of which contains non-adjacent vertices of
N(A ∪ B), or in other words, a forbidden pair within N(A ∪ B).

▶ Lemma 19. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). The following equality holds:

MFS(A, B) = {uv ⊆ A ∪ B : h(uv) ∩ N(A ∪ B) is not a clique}

In particular, X ⊆ A ∪ B is forbidden if and only if it includes a forbidden pair of MFS(A, B).

As another consequence, we can describe N(A ∪ B) and its interactions with A and B

depending on whether it is a clique or not.

▶ Lemma 20. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). Then either N(A ∪ B) is a clique or for every u, v ∈ N(A ∪ B), F (A, v) =
F (A, u) and F (B, v) = F (B, u).

Proof. Suppose that N(A ∪ B) is not a clique and let u, v be two non-adjacent vertices
of N(A ∪ B). We first prove that F (A, v) = F (A, u) and F (B, v) = F (B, u). Assume for
contradiction that F (A, v) ̸= F (A, u). We have F (A, v)\F (A, u) ̸= ∅ or F (A, u)\F (A, v) ̸= ∅.
By Proposition 17, we deduce v ∈ h(A ∪ u) or u ∈ h(A ∪ v). Since u, v are not adjacent,
uv ∈ MFS(A, B) by Lemma 19 and we obtain h(A ∪ u) ∩ B ̸= ∅ or h(A ∪ v) ∩ B ̸= ∅.
Thus, either u ∈ A/B or v ∈ A/B. This contradicts A being saturated. We obtain
F (A, v) = F (A, u), and F (B, v) = F (B, u) using the same argument on B.

Now, let w ∈ N(A ∪ B) such that w ̸= u, v. If w is not adjacent to u or v, then
F (A, w) = F (A, u) = F (A, v) and F (B, w) = F (B, u) = F (B, v) readily holds by previous
argument. Therefore, suppose that w is adjacent to both u and v. We prove that: (1)
F (A, w) \ F (A, u) = ∅ and (2) F (A, u) \ F (A, w) = ∅.
(1) Assume for contradiction that F (A, w)\F (A, u) ̸= ∅. Then, w ∈ h(A∪u) by Proposition

17. But since, F (A, u) = F (A, v), we deduce F (A, w)\F (A, v) ̸= ∅ and hence w ∈ h(A∪v).
Because uv ∈ MFS(A, B) and w ∈ h(A ∪ u) ∩ h(A ∪ v), w /∈ A is a contradiction with A

being saturated. We deduce that F (A, w) \ F (A, u) = ∅ must hold.
(2) Again, suppose for contradiction that F (A, u) \ F (A, w) ̸= ∅. By Proposition 5, we

obtain u ∈ h(A ∪ w) and since F (A, u) = F (A, v), v ∈ h(A ∪ w) also holds. Since
uv ∈ MFS(A, B), we obtain w ∈ B/A, a contradiction with B being saturated.

We conclude that F (A, w) = F (A, u) holds, and similarly F (B, w) = F (B, u). This concludes
the proof. ◀

MFCS 2024



51:10 Half-Space Separation in Monophonic Convexity

The two situations obtained from Lemma 20 are illustrated in Figure 6. In the case where

N(A ∪B)

B

connected components of G−N [A ∪B]

A

F (A,B) ∪ F (B,A)

F (A, Ā) F (B, B̄)

clique

a4 a3

a2

a1 b1

b2

b3 b4

u1 uj ui uℓ uk N(A ∪B)

v2

B

connected components of G−N [A ∪B]

A

F (A,B) ∪ F (B,A)

F (A, Ā) F (B, B̄)

a4 a3

a2

a1 b1

b2

b3 b4

u1 uj ui uℓ uk

v1 vi vℓv1 v2 vi vℓ

Figure 6 The two possible situations of Lemma 20. On the left, N(A∪B) is a clique. Each vertex
of N(A ∪ B), is connected to each vertex of F (A, B) ∪ F (B, A) (circled in purple), modelled by ui.
However, it needs not be adjacent to all the vertices of the cliques F (A, Ā) and F (B, B̄) (the dotted
line uia4 indicates a non-edge). On the right, N(A ∪ B) is not a clique (for instance, ui, uj are not
adjacent). Each vertex of N(A ∪ B) is complete to F (A, Ā) ∪ F (B, B̄), including F (A, B) ∪ F (B, A).

N(A ∪ B) is not a clique, Lemma 20 together with Lemma 18 yields the subsequent corollary
that will be useful later on.

▶ Corollary 21. If N(A∪B) is not a clique, then for every clique K ⊆ N(A∪B), F (A, A)∪K

(resp. F (B, B) ∪ K) is a clique.

Thanks to Lemmas 19 and 20, we are in position to relate the separability of A, B with
(co)bipartiteness. We first address the case where all the vertices left to assign lie in N(A∪B),
i.e., when A ∪ B = N(A ∪ B). Although restricted, this case gives some insights for the
general one.

If N(A ∪ B) is a clique, then MFS(A, B) = ∅ by Lemma 19. Hence every bipartition
X, Y of N(A ∪ B) readily satisfies h(A ∪ X) ∩ B = ∅ and h(B ∪ Y ) ∩ A = ∅. Therefore, X

and Y need only satisfy h(A ∪ X) ∩ Y = ∅ and h(B ∪ X) ∩ Y = ∅. The trivial bipartition
X = ∅ and Y = N(A ∪ B) vacuously obeys this requirement.

On the other hand, when N(A ∪ B) is not a clique, the subsequent lemma implies that
for any bipartition X, Y of N(A ∪ B) into cliques, A ∪ X and B ∪ Y are convex.

▶ Lemma 22. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G) such that N(A ∪ B) is not a clique. Then for every clique K ⊆ N(A ∪ B),
both A ∪ K and B ∪ K are convex.

Proof. To check that A ∪ K is convex, we verify that J [u, v] ⊆ A ∪ K for every u, v ∈ A ∪ K.
If u, v ∈ A or u, v ∈ K, then the result holds since A is convex and K is a clique. Consider
instead u ∈ A, v ∈ K. Assume for contradiction J [u, v] ⊈ K ∪ A. There exists a chordless
uv-path u = v1, . . . , vk = v such that vi /∈ K ∪ A for some 1 < i < k. Consider the least
such i. By assumption vi ∈ N(A) and vi−1 ∈ F (A, vi). Morever, since A, B are saturated,
vi ∈ N(A ∪ B) must hold. As N(A ∪ B) is not a clique, we obtain by Lemma 20 that
F (A, vi) = F (A, v), meaning that vi−1 is adjacent to v. This contradicts vi being on a
chordless uv-path. We deduce that J [u, v] ⊆ A ∪ K and A ∪ K is convex. ◀

We finally arrive at the following intermediate claim.
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▶ Lemma 23. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G). If A ∪ B = N(A ∪ B), then A and B are separable if and only if N(A ∪ B)
is cobipartite.

Proof. We start with the only if part. Let H = A ∪ X, H = B ∪ Y be half-spaces separating
A and B. By assumption, X contains no forbidden pair of MFS(A, B). Since X ⊆ N(A ∪ B),
we deduce from Lemma 19 that X is a clique. In the same way, we deduce that Y is a clique.
As X, Y is a bipartition of A ∪ B = N(A ∪ B), we deduce that N(A ∪ B) is cobipartite.

We proceed to the if part. If N(A ∪ B) is cobipartite, we have two cases: either N(A ∪ B)
is a clique or it is not. If N(A ∪ B) is a clique, then (resp. A ∪ N(A ∪ B) and B) are
half-spaces separating A and B. If N(A ∪ B) is not a clique, the fact that A ∪ X and B ∪ Y

are half-spaces for all bipartitions X, Y of N(A ∪ B) into cliques follows from Lemma 22. ◀

Let us consider now that there are vertices outside of N(A ∪ B), i.e., N(A ∪ B) ⊂ A ∪ B.
First, if N(A ∪ B) is a clique, MFS(A, B) = ∅ still holds by Lemma 19. In this case, the
same reasoning as before applies, and A, B ∪ A ∪ B is a half-space separation of A, B.
Suppose on the other hand that N(A ∪ B) is not a clique. If it is not cobipartite, then any
bipartition of N(A ∪ B) will contain a pair of non-adjacent vertices, and hence a forbidden
pair, again due to Lemma 19. In other words, if N(A ∪ B) is not cobipartite, A and B are
not separable. However, there are also cases where N(A ∪ B) is cobipartite, yet A and B

are not separable. This is the case for the graphs of Figure 7, that we will use to illustrate
the steps of the upcoming discussion. This happens because when picking an element v in a

a b

v1

v2

v3 v4

u1

u2

u3

A

B

v5

v6

a b

v1

v2 v3

v4

u1

u2

u3

A

B

Figure 7 Two examples where A and B are linked and saturated, yet not separable despite
N(A ∪ B) being cobipartite. For readability, the edges incident to a and b are clearer. Remark that
since N(A ∪ B) is not a clique, both a and b are complete to N(A ∪ B) in virtue of Lemma 20.

connected component S of G − N [A ∪ B], h(A ∪ v) and h(B ∪ v) will share elements from
N(S), regardless of the structure of N(A ∪ B) (clique or not).

▶ Lemma 24. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). Let S be a connected component of G − N [A ∪ B]. Then, for every v ∈ S,
N(S) ⊆ h(A ∪ v) ∩ h(B ∪ v) ∩ N(A ∪ B).

Using Lemma 24, we define an equivalence relation on A ∪ B that will help us characterize
the separability of A and B. Every half-space separation H, H of A and B, if any, can be
written as H = A∪X and H = B ∪Y where X, Y is a bipartition of A ∪ B. Since H ∩H̄ = ∅,
we have H ∩ Y = h(A ∪ X) ∩ Y = ∅ and similarly H ∩ X = h(B ∪ Y ) ∩ X = ∅. As a direct
application of Lemma 24, we deduce:
(1) For each connected component S of G − N [A ∪ B], either N [S] ⊆ X or N [S] ⊆ Y ;
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(2) If S1, . . . , Sk is a sequence of (not necessarily distinct) connected components of G −
N [A ∪ B] such that N(Si) ∩ N(Si+1) ̸= ∅ for each 1 ≤ i < k, then

⋃k
i=1 N [Si] must be

included in one of X or Y . We call such a sequence an intersecting sequence of connected
components.

Given an intersecting sequence S1, . . . , Sk of connected components of G − N [A ∪ B], we say
for brevity that u, v belongs to the sequence S1, . . . , Sk if there exists 1 ≤ i, j ≤ k such that
u ∈ N [Si] and v ∈ N [Sj ]. Let us define the equivalence relation ≡AB on A ∪ B such that,
for all u, v ∈ A ∪ B:

u ≡AB v ⇐⇒ u = v or u, v belong to an intersecting sequence of
connected components of G − N [A ∪ B]

▶ Proposition 25. The relation ≡AB is an equivalence relation.

▶ Remark 26. The definition of ≡AB encompasses the vertices that do not belong to the
closed neighborhood of any connected component of G − N [A ∪ B], i.e., those vertices v

in N(A ∪ B) such that N [v] ⊆ N [A ∪ B]. By definition of ≡AB, they are equivalent to
themselves only.

a b

v1

v2 v3

v4

u1

u2

u3

A

B

a b

v1

v2

v3 v4

u1

u2

u3

A

B

v5

v6

[u1]AB [u3]AB

[u2]AB

Figure 8 The equivalence relation ≡AB applied to the graphs of Figure 7. The classes are circled
(purple). On the left, there is a unique equivalence class. Remark that, as a consequence, v1v4 is a
forbidden pair all the while v1 ≡AB v4. On the right, there are three classes, [u1]AB, [u2]AB, and
[u3]AB .

For u ∈ A ∪ B, let [u]AB be the equivalence class of u: [u]AB = {v ∈ A ∪ B : u ≡AB v}.
In Figure 8, we give the equivalence classes induced by ≡AB on the graphs of Figure 7. The
next lemma is a direct yet important consequence of the above discussion and Lemma 24.

▶ Lemma 27. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G). For every bipartition X, Y of A ∪ B, we have h(A ∪ X) ∩ Y = ∅ and
h(B ∪ Y ) ∩ X = ∅ only if for each v ∈ A ∪ B, either [v]AB ⊆ X or [v]AB ⊆ Y .

We consider ≡AB together with MFS(A, B). Remind that MFS(A, B) consists in pairs
of vertices only, thanks to Lemma 19. Hence, a forbidden pair uv ∈ MFS(A, B) falls into
exactly one of the following cases regarding equivalence classes:
(1) Either u ≡AB v so that the equivalence class [u]AB prevents separation of A and B on

its own (see Proposition 28 below). This case happens for instance in the graph on the
left of Figure 8: v1 ≡AB v4 yet v1v4 ∈ MFS(A, B).

(2) Or u ̸≡AB v, so that [u]AB and [v]AB cannot be taken together in any separation of
A and B. For example in the graph on the right of Figure 8 we have v1 ̸≡AB v3 and
v1v3 ∈ MFS(A, B), which makes [u1]AB and [u2]AB incompatible for separating A and B.
In this example, all equivalence classes are incompatible, so that A and B not separable.
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As for the first case, we have the direct property:

▶ Proposition 28. If uv ∈ MFS(A, B) and u ≡AB v, then A, B are not separable.

For the second case, we can build a graph GAB on the equivalence classes of ≡AB that
makes adjacent every two distinct equivalence classes sharing a forbidden pair. More formally:

V (GAB) ={[v]AB : v ∈ A ∪ B}
E(GAB) ={[u]AB [v]AB : u ̸≡AB v and uv ∈ MFS(A, B)}.

For the graph on the right of Figure 8, the corresponding graph GAB will be a clique. Figure 9
illustrates the graph GAB on an other example.
▶ Remark 29. In the case where A ∪ B = N(A ∪ B), the equivalence classes [v]AB are
precisely the singletons {v} for all v ∈ N(A ∪ B). Identifying [v]AB with v, GAB turns out
to be precisely the complement of G[N(A ∪ B)].

a b

v5

v4

v3

v2

v1

u2

u1

u3

A B

[v3]AB

[v5]AB

[v4]AB

[v5]AB

[v4]AB

[v3]AB

Figure 9 On the left, a graph with linked A and B where the equivalence class are highlighted.
Again, the edges incident to a and b are clearer for readability. On the right, the corresponding
graph GAB .

Before characterizing the separability of A and B we give a lemma extending Lemma 22.

▶ Lemma 30. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G) such that N(A∪B) is not a clique. Then, for every collection X of equivalence
classes of ≡AB, if

⋃
X ∩ N(A ∪ B) is a clique, then both A ∪

⋃
X and B ∪

⋃
X are convex.

Proof. Let X be a collection of equivalences classes such that
⋃

X ∩N(A∪B) is a clique and
let C = A ∪

⋃
X . We show that C is convex. We put K = F (A, Ā) ∪ (N(A ∪ B) ∩ C). Now,

by assumption, N(A ∪ B) ∩ C is a clique, A and B are linked and saturated and N(A ∪ B) is
not a clique. Therefore, K is a clique by Corollary 21. In view of Lemma 9, we show that K

is a clique separator of G and that C \ K is a union of connected components of G − K. First,
since F (A, Ā) ⊆ K and K is a clique, we have that G − K disconnects A \ K from A ∪ B \ K.
Hence K is a clique separator of G and moreover, A \ K is indeed a union of connected
components of G − K since F (A, Ā) ⊆ K. Now we consider C \ (K ∪ A). If C \ (K ∪ A) = ∅,
we deduce C ⊆ A ∪ K and the result holds by Lemma 22. Assume that C \ (K ∪ A) ̸= ∅
and let S1, . . . , Sk be the connected components of G − N [A ∪ B] such that C ∩ Si ≠ ∅ for
each 1 ≤ i ≤ k. We have C \ (A ∪ K) ⊆

⋃k
i=1 Si. We show that

⋃k
i=1 Si ⊆ C \ (A ∪ K). Let

v ∈ Si for some 1 ≤ i ≤ k. By definition of ≡AB, S ⊆ [v]AB and since X is a collection of
equivalence classes, we obtain S ⊆ [v]AB ⊆ C \ (K ∪ A). We deduce C \ (A ∪ K) ⊆

⋃k
i=1 Si

and hence C \ (A ∪ K) =
⋃k

i=1 Si. It remains to show that Si is a connected component of
G − K. Since Si is a connected component of G − N [A ∪ B], it is a connected component of
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G − N(Si). Moreover, N(Si) ⊆ N(A ∪ B) by construction. Finally, again by definition of C

and ≡AB , N(Si) ⊆ C. Henceforth, N(Si) ⊆ N(A ∪ B) ∩ C from which we deduce that Si is
a connected component of G − K. Hence, C = K ∪ (A \ K) ∪ (C \ (K ∪ A)) is the union
of a clique separator K of G and connected components of G − K. Applying Lemma 9, we
deduce that C is convex, which concludes the proof. ◀

We can characterize the separability of A, B by generalizing Lemma 23.

▶ Theorem 31. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V . Then A and B are separable if and only if the next conditions hold:
(1) for every v ∈ A ∪ B, [v]AB contains no forbidden pairs;
(2) GAB is bipartite.

Proof. We start with the only if part. Assume A and B are separable and let H, H̄ be
a half-space separation of A and B with A ⊆ H and B ⊆ H̄. Put X = H \ A and
Y = H \ B. By assumption, H ∩ Y = h(A ∪ X) ∩ Y = ∅. Hence, by Lemma 27, for each
v ∈ A ∪ B, either [v]AB ⊆ X or [v]AB ⊆ Y . Let X = {[v]AB ∈ V (GAB) : [v]AB ⊆ X} and
Y = {[v]AB ∈ V (GAB) : [v]AB ⊆ Y }. Since H, H are half-spaces separating A and B, and
X ⊆ H, Y ⊆ H, we deduce that neither X nor Y contain a forbidden pair of MFS(A, B).
We derive:
(1) for each [v]AB , [v]AB contains no forbidden pair, i.e., item (1) holds;
(2) for each pair of distinct classes [u]AB , [v]AB in X (resp. Y ), [u]AB and [v]AB are not

adjacent in GAB, i.e., that X (resp. Y) is an independent set of GAB. Since X , Y is a
partition of GAB into two independent sets, we conclude that GAB is bipartite, and that
item (2) of the theorem holds.

We move to the if part. Assume both items (1) and item (2) are satisfied. In particular,
if N(A ∪ B) is a clique, MFS(A, B) = ∅ by Lemma 19. Hence, A ∪ N(A ∪ B) and B

(resp. B ∪ N(A ∪ B) and A) are half-spaces separating A and B. Assume N(A ∪ B) is not
a clique and let X , Y be any bipartition of V (GAB) into two independent sets. We show
that

⋃
X contains no forbidden pair. Assume for contradiction there exists a forbidden pair

uv ∈
⋃

X . We have two cases:
(1) u ≡AB v, but this would contradict item (1) of the statement;
(2) u ̸≡AB v, but this would contradict XA being an independent set of GAB by definition

of GAB .
By Lemma 19 we deduce that

⋃
X contains no forbidden pair, and hence that

⋃
X ∩N(A∪B)

is a clique. Applying Lemma 30, A ∪
⋃

X is convex. The same reasoning on B ∪ Y yields
that A ∪

⋃
X and B ∪ Y are half-spaces separating A and B. This concludes the proof. ◀

Figure 10 illustrate the conditions of Theorem 31 on the example of Figure 9. We
finally argue that the conditions of Theorem 31 can be checked in polynomial time. Since
MFS(A, B) consists in pairs only, it can be computed in polynomial time. Then, we identify
the connected components of G − N [A ∪ B] in polynomial time by traversing G − N [A ∪ B].
We then identify the equivalence relation ≡AB and build GAB accordingly. Testing that no
equivalent class contains a forbidden pair can be done in polynomial as well as checking that
GAB is bipartite. We deduce:

▶ Theorem 32. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V . Whether A, B can be separated by half-spaces can be checked in polynomial
time in the size of G.
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Figure 10 Illustration of Theorem 31 on the graph of Figure 9. A half-space separation of A and
B is drawn. Observe that it corresponds to a bipartition of GAB into independent sets.

4 Conclusion

We proved that half-space separability can be tested in polynomial time for monophonic
convexity. Using Lemma 30, the algorithm we propose can be adapted to generate a pair of
half-spaces separating two sets of vertices, if any. Moreover, we deduce as a corollary that
the 2-partition problem can be solved in polynomial time for monophonic convexity, thus
answering an open problem in [17].

To decide separability, we used the underlying graph together with the fact that the
Carathéodory number is constant for monophonic convexity (Theorem 6, [12]). A natural
question is then to investigate to what extent the Carathéodory number can be used to
decide separability. However, relying on the problem of 2-coloring 3-uniform hypergraphs [19],
we can show that already with Carathéodory number 3, half-space separation in general
convexity spaces is out of reach.

▶ Theorem 33. Half-space separation is NP-complete for convexity spaces (V, C) given by V

and a hull operator h that computes h(X) in polynomial time in the size of V for all X ⊆ V ,
even if (V, C) has Carathéodory number 3.

Theorem 33 together with Theorem 1 motivate the next intriguing open problem.

▶ Open Problem 34. Find a natural (graph) convexity with Carathéodory number 2 (e.g.
triangle-path convexity [5]) where half-space separation is hard, or show that for all such
convexities, half-space separation is tractable.
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