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Abstract
Families of DFAs (FDFAs) are a computational model recognizing ω-regular languages. They were
introduced in the quest of finding a Myhill-Nerode theorem for ω-regular languages and obtaining
learning algorithms. FDFAs have been shown to have good qualities in terms of the resources required
for computing Boolean operations on them (complementation, union, and intersection) and answering
decision problems (emptiness and equivalence); all can be done in non-deterministic logarithmic
space. In this paper we study FDFAs with a new type of acceptance condition, duo-normalization,
that generalizes the traditional normalization acceptance type. We show that duo-normalized FDFAs
are advantageous to normalized FDFAs in terms of succinctness as they can be exponentially smaller.
Fortunately this added succinctness doesn’t come at the cost of increasing the complexity of Boolean
operations and decision problems — they can still be preformed in NLOGSPACE.

An important measure of the complexity of an ω-regular language is its position in the Wagner
hierarchy (aka the Rabin Index). It is based on the inclusion measure of Muller automata, and for
the common ω-automata there exist algorithms computing their position. We develop a similarly
robust measure for duo-normalized (and normalized) FDFAs, which we term the diameter measure.
We show that the diameter measure corresponds one-to-one to the position in the Wagner hierarchy.
We show that computing it for duo-normalized FDFAs is PSPACE-complete, while it can be done in
NLOGSPACE for traditional FDFAs.
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1 Introduction

Regular languages of finite words possess a natural canonical representation — the unique
minimal DFA. The essence of the representation lies in a right congruence relation for a
language L saying that two words x and y are equivalent, denoted x ∼L y, if and only if
xz ∈ L ⇐⇒ yz ∈ L for every finite word z ∈ Σ∗. The famous Myhill-Nerode theorem [20, 21]
relates the equivalence classes of ∼L to the set of words reaching a state of the minimal DFA.

For regular languages of infinite words the situation is more complex. First, there is no
unique minimal automaton for any of the common ω-automata acceptance conditions (Büchi,
Muller, Rabin, Streett and parity). Second, one can indeed define two finite words x and y to
be equivalent with respect to an ω-regular language L, denoted x ∼L y, if xz ∈ L ⇐⇒ yz ∈ L
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for every infinite word z ∈ Σω. However, there is no one-to-one correspondence between these
equivalence classes and a minimal ω-automaton for L. Consider for instance the language L1
stipulating that aab occurs infinitely often. The right congruence relation ∼L1 has only one
equivalence class, yet clearly an automaton for L1 needs more than one state.

A quest for a characterization of an ω-regular language L, relating equivalence classes of
a semantic definition of L to states of an automaton for L, has led to the development of
families of right concurrences (FORCs) [19] and families of DFAs (FDFAs) [14, 2]. Several
canonical FDFAs were introduced over the years, the periodic FDFA [7], the syntactic
FDFA [19], the recurrent FDFA [2], and the limit FDFA [17]. All these representations have
a one-to-one correspondence between the equivalence classes of semantic right congruence
relations and the states of the respective automata. This is very satisfying in the sense
that they induce a semantic canonical representation, ie one that is agnostic to a particular
automaton; and this is a beneficial property when it comes to learning [2, 18]. FDFAs have
additional good qualities — computing Boolean operations on them (complementation, union,
and intersection) and answering decision problems (emptiness and equivalence) can all be
done cheaply, in non-deterministic logarithmic space [1].

Loosely speaking, an FDFA is composed of a leading automaton Q and a family of progress
DFAs {Pq}, one for each state q of Q. FDFAs consider only ultimately periodic words, ie
words of the form u(v)ω for u ∈ Σ∗ and v ∈ Σ+. Since two ω-regular languages recognize the
same language if and only if they agree on the set of ultimately periodic words [6, 7], this is
not really a limitation. Exact acceptance of an ultimately periodic word (u, v) representing
uvω is determined by checking acceptance of v in the progress DFA corresponding to the
state reached in the leading automaton by reading u. Normalized acceptance is done by first
normalizing the word wrt the leading automaton — this means considering a decomposition
(uvi, vj) of uvω such that vj loops on the state of the leading automaton reached by reading
uvi. This normalization was introduced as it leads to an exponential save in the number of
states [2]. In this paper we consider a new acceptance condition for FDFAs, which we term
duo-normalization, which considers decompositions (uvi, vj) where in addition vj closes a
loop on the state it arrives at in the respective progress DFA. We term FDFAs with this new
type of acceptance duo-normalized FDFAs. The notion of duo-normalization has appeared
in the literature before [27, 9, 1, 5] and was suggested as an acceptance condition for FDFAs
in the future work of [5].

We show that duo-normalized FDFAs also enjoy the good qualities of computing Boolean
operations and answering decision problems in non-deterministic logarithmic space. In terms
of succinctness we show that they can be exponentially smaller than normalized FDFAs.

We are also interested in the problem of finding their position in the Wagner hierarchy,
a hierarchy reflecting the complexity of ω-regular properties, that often correlates to the
complexity of algorithms on ω-regular languages and games [29, 13, 3]. It is noted in [10,
Sec. 5] that while for ω-automata there are algorithms for computing their position in the
Wagner hierarchy, there is no clear way to relate the structure of a particular FDFA to its
Wagner position.

In [26] Wagner defined a complexity measure on Muller automata: the inclusion measure.
Wagner showed that the inclusion measure is robust in the sense that any two Muller
automata for the same language (minimal or not) have the same inclusion measure. This
is thus a semantic property of the language. Since the inclusion measure is unbounded it
induces an infinite hierarchy. The position on the Wagner hierarchy has been shown to be
tightly related to the minimal number of colors required in a parity automaton, and the
minimal number of pairs required in a Rabin/Street automaton. Deterministic Büchi and
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coBüchi (which are less expressive than deterministic Muller/Rabin/Streett/parity automata,
that are capable of recognizing all the ω-regular languages) lie in the bottom levels of the
hierarchy. Given a deterministic ω-automaton (Büchi, coBüch, Muller, Rabin, Streett, or
parity), its position in the Wagner hierarchy can be computed in polynomial time [28, 8, 22].

We develop a syntactic notion of a measure on FDFAs, that we term the diameter measure.
Loosely speaking it relates to chains of prefixes v1 ≺ v2 ≺ . . . ≺ vk such that u(vi)ω ∈ L iff
u(vi+1)ω /∈ L, and moreover, each of the words vi is persistent in the progress DFA of some
u ∈ Σ∗. The precise definition of the term persistent and persistent chains is deferred to § 4.
We show there that this measure is robust in the sense that computing it on two FDFAs for
the same language will give the same result. The proof is by relating it to the position on the
Wagner hierarchy. We show that computing the Wagner position of a duo-normalized FDFA
can be done in PSPACE and it is PSPACE-complete, whereas for normalized FDFAs this
computation can be done in NLOGSPACE. So this is one place where the added succinctness
of duo-normalized FDFAs comes at a price.

The rest of the paper is organized as follows. We give some basic definitions and explain
the Wagner hierarchy in § 2. We introduce duo-normalized FDFAs in § 3 where we show that
it is not more expensive to compute the Boolean operations on them, or to answer emptiness
and equivalence about them. § 4 is devoted to defining the diameter measure and proving
that its computation is PSPACE-complete. § 5 provides several succinctness results relating
duo-normalized FDFAs and normalized FDFAs, including results regarding succinctness of
previously studied canonical FDFAs and the Colorful FDFA, a canonical duo-normalized
FDFA. We conclude with a short discussion in § 6. Due to space limitations, proofs are
deferred to the appendix of the full version [12].

2 Preliminaries

We use [i..j] for the set {i, i + 1, . . . , j}. A (complete deterministic) automaton structure is a
tuple A = (Σ, Q, q0, δ) consisting of an alphabet Σ, a finite set Q of states, an initial state q0,
and a complete transition function δ : Q × Σ → Q. A run of an automaton on a finite word
v = a1a2 · · · an is a sequence of states q0, q1, . . . , qn, starting with the initial state, such that
for each i ≥ 0, qi+1 = δ(qi, ai). A run on an infinite word is defined similarly and results in
an infinite sequence of states. Let A = (Σ, Q, q0, δ) be an automaton structure. We say that
a word w ∈ Σ∗ reaches state q if the run of A on w ends in q, and use A(w) to denote q.

By augmenting an automaton structure with an acceptance condition α, obtaining a
tuple (Σ, Q, q0, δ, α), we get an automaton, a machine that accepts some words and rejects
others. An automaton accepts a word if the run on that word is accepting. For finite words
the acceptance condition is a set F ⊆ Q and a run on a word v is accepting if it ends in an
accepting state, ie a state q ∈ F . For infinite words, there are various acceptance conditions
in the literature. The common ones are Büchi, coBüchi, Muller, Rabin, Streett and parity.
They are all defined with respect to the set of states visited infinitely often during a run. For
a run ρ = q0q1q2 . . . we define inf(ρ) = {q ∈ Q | ∀i∈N. ∃j >i. qj = q}. We focus here on the
most common types — Büchi, coBüchi, Muller and parity.

A Büchi (resp. coBüchi) acceptance condition is a set F ⊆ Q. A run of a Büchi (resp.
coBüchi) automaton is accepting if it visits F infinitely (resp. finitely) often. That is, if
inf(ρ) ∩ F ̸= ∅ (resp. inf(ρ) ∩ F = ∅).
A parity acceptance condition is a mapping κ : Q → {0, 1, . . . , k} of a state to a number
(referred to as a color). For a subset Q′ ⊆ Q, we use κ(Q′) for the set {κ(q) | q ∈ Q′}. A
run ρ of a parity automaton is accepting if the minimal color in κ(inf(ρ)) is even.

MFCS 2024
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A Muller acceptance condition is a set α = {F1, . . . , Fk} where Fi ⊆ Q for all 1 ≤ i ≤ k.
A run ρ of a Muller automaton is accepting if inf(ρ) ∈ α. That is, if the set of states
visited infinitely often by the run ρ is exactly one of the sets Fi specified in α.

We use DBA, DCA, DPA, and DMA as acronyms for deterministic (complete) Büchi, coBüchi,
parity, and Muller automata, respectively. We use JAK to denote the set of words accepted
by a given automaton A. Two automata A and B are equivalent if JAK=JBK. Let A = (Σ,

Q, q0, δ, F ) be a DFA and q ∈ Q. We use A[q for (Σ, Q, q, δ, F ), namely a DFA for the words
exiting state q of A.

The syntactic right congruence relation for an ω-language L relates two finite words
x and y if there is no infinite suffix z differentiating them, that is, for x, y ∈ Σ∗, x ∼L y

if ∀z ∈ Σω(xz ∈ L ⇐⇒ yz ∈ L). We use [u]∼L (or simply [u]) for the equivalence
class of u induced by ∼L. A right congruence ∼ can be naturally associated with an
automaton structure (Σ, Q, q0, δ) as follows: the set of states Q are the equivalence classes of
∼. The initial state q0 is the equivalence class [ϵ]. The transition function δ is defined by
δ([u], σ) = [uσ]. We use A[∼] to denote the automaton structure induced by ∼.

2.1 The Wagner Hierarchy
Let M = (Σ, Q, q0, δ, α) be a complete deterministic Muller automaton, where all states
are reachable. We use the term strongly connected component (SCC) for a set of states
S ⊆ Q such that there is a non-empty path between every pair of states in S. Thus, if S

is a singleton {q} we require a self-loop on q for S to be an SCC. We use the term MSCC
for a maximal SCC, that is, an SCC S such that no set S′ ⊃ S is an SCC. We say that
an SCC S ⊆ Q is accepting iff S ∈ α. Otherwise we say that S is rejecting. We define the
positive inclusion measure of M, denoted |M|+⊂, to be the maximal length of an inclusion
chain S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sk of SCCs with alternating acceptance where S1 is accepting.
(Therefore for each 1 ≤ i ≤ k if i is odd then Si is accepting, and if it is even then Si is
rejecting.) Likewise, we define the negative inclusion measure of M, denoted |M|−⊂, to be
the maximal length of an inclusion chain where the first SCC is rejecting. Note that for any
M the difference between |M|+⊂ and |M|−⊂ may be at most one, since by omitting the first
element of a chain we remain with a chain shorter by one, and of the opposite sign. We use
L∞aa∧¬∞bb in Ex. 2.2 to illustrate the concepts explained throughout this section.

Wagner [26] showed that this measure is robust in the sense that any two DMAs that
recognize the same language have the same positive and negative inclusion measures.

▶ Theorem 2.1 (Robustness of the inclusion measures [26]). Let M1, M2 be two DMAs where
JM1K = JM2K. For i ∈ {1, 2}, let |Mi|+⊂ = pi and |Mi|−⊂ = ni. Then p1 = p2 and n1 = n2.

Since this measure is robust and since one can construct DMAs with arbitrarily long
inclusion chains, the inclusion measure yields an infinite hierarchy of ω-regular languages.
Formally, the classes of the Wagner hierarchy are defined as follows for a positive integer k:

DM+
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ ≤ k and |M|−⊂ < k}

DM−
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ < k and |M|−⊂ ≤ k}

DM±
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ ≤ k and |M|−⊂ ≤ k}

The hierarchy is depicted in Fig. 3.1 (left). Note that if A is an ω-automaton, for any
of the ω-automata types, then it can be recognized by a Muller automaton on the same
structure. Transforming a Büchi B automaton with accepting states F to a Muller automaton
MB yields an acceptance condition αB = {F ′ | F ′ ∩ F ̸= ∅}. Note that for any F ′ ∈ αB and
F ′′ ⊇ F ′ it holds that F ′′ ∈ αB. Therefore |MB|+⊂ = 1 and |MB|−⊂ = 2 (unless JBK = Σω or
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JBK = ∅). Hence all languages recognized by a DBA are in DM−
2 . Dually, one can see that

all languages recognized by a DCA are in DM+
2 . It can be shown that a parity automaton

for a language in DM−
k can suffice with colors {1, . . . , k} if k is odd and {0, . . . , k−1} if it is

even [22]. Likewise, a DPA for a language in DM+
k can suffice with colors {0, . . . , k−1} if k

is odd and with {1, . . . , k} otherwise. A DPA in DM±
k requires k + 1 colors starting with 0.

▶ Example 2.2. Fig.3.1 (middle) shows a Muller automaton M for the language L∞aa∧¬∞bb.
The inclusion chain {q1, q2} ⊂ {q1, q2, q3} ⊂ {q1, q2, q3, q4} is a negative inclusion chain of
length 3 (since {q1, q2} is rejecting, {q1, q2, q3} is accepting, and {q1, q2, q3, q4} is rejecting).
There are no negative inclusion chains of length 4, and there are no positive inclusion chains
of length 3. (Note that {q3} ⊂ {q2, q3} ⊂ {q1, q2, q3} is not an inclusion chain since {q2, q3} is
not an SCC.) We can thus conclude that L∞aa∧¬∞bb ∈ DM−

3 . Consider the parity automaton
P for L∞aa∧¬∞bb defined on the same structure as M. It uses the three colors {1, 2, 3} in
accordance with our conclusion that L∞aa∧¬∞bb ∈ DM−

3 .

3 FDFAs with duo-normalized acceptance condition

As already mentioned, none of the common ω-automata has a unique minimal automaton,
and the number of states in the minimal automaton may be bigger than the number of
equivalence classes in ∼L. For example, L2 = (Σ∗abc)ω has one equivalence class under ∼L2 ,
since for any finite word x, an infinite extension xw for w ∈ Σω is in the language iff w ∈ L2.

The quest for finding a correspondence between equivalence classes of the language and
an automaton model led to the development of Families of Right Congruences (FORCs) [19]
and Families of DFAs (FDFAs) [2]. These definitions consider only ultimately periodic words
(ie words of the form uvω) building on the well-known result that two ω-regular languages
are equivalent if and only if they agree on the set of ultimately periodic words [6, 7]. We
also consider only such words, and represent them as pairs (u, v) for u ∈ Σ∗ and v ∈ Σ+.

Several canonical FDFAs were introduced over the years, the periodic FDFA [7], the
syntactic FDFA [19], the recurrent FDFA [2], and the limit FDFA [17]. We do not go into
the details of their definition but summarize the succinctness relations among them. It was
shown in [2] that the syntactic and recurrent FDFAs can be exponentially more succinct
than the periodic FDFA, while the translations in the other direction are at most polynomial.
Further, the recurrent FDFA is never bigger, and can be quadratically more succinct, than
the syntactic FDFA [2]. Limit FDFAs are the duals of recurrent FDFAs and similarly can
also be at most quadratically bigger than the syntactic; and there are examples of quadratic
blowups in the transformation from the recurrent to the limit and vice versa [17].

The gain in succinctness in going from the syntactic to the recurrent (or limit) FDFAs
originates from removing the requirement that x ≈u y implies that ux ∼ uy, which comes
from the definition of a FORC.1 The gain in succinctness of the syntactic/recurrent/limit
FDFAs compared to the periodic FDFA is due to the use of a different type of acceptance
condition.

An FDFA is a pair F = (Q, {Pq}q∈Q) consisting of a leading automaton structure Q and
of a progress DFA Pq for each state q of Q. There are a few ways to define acceptance on
FDFAs. They differ on what decompositions (u, v) of an infinite word w are considered. We

1 A FORC is a pair F = (∼, {≈u}) where ∼ is a right congruence, ≈u is a right congruence for every
equivalence class u of ∼, and it satisfies that x ≈u y implies ux ∼ uy. An ω-language L is recognized by
F if it can be written as a union of sets of the form [u]([v]u)ω s.t. uv ∼L u. Every FORC corresponds to
an FDFA, but the other direction many not hold. This is since there is no requirement on the relation
between the progress DFAs and the leading automaton in an FDFA, while there is in a FORC.

MFCS 2024
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Figure 3.1 Left: The Wagner hierarchy. Middle: A DMA M and a DPA D for the language
L∞aa∧¬∞bb. Right: Two FDFAs F s = (Q, {Ps

ϵ}) and FQ = (Q, {PQ
ϵ }) for the language L∞aa∧¬∞bb

where Q is a one-state leading automaton. F s uses normalized acceptance, FQ uses duo-normalized
acceptance.

provide a definition for such decompositions in Def. 3.1. Once an α-decomposition is defined,
an ω-word w is accepted by an FDFA using α-acceptance if there exists an α-decomposition
(u, v) of w which is accepted. That is, the word v is accepted by PQ(u) where PQ(u) is
the progress DFA corresponding to the state Q(u) reached by the leading automaton after
reading u. We henceforth use Pu for PQ(u).

In exact acceptance, that is used in the periodic FDFA, any decomposition of the ω-word
into an ultimately periodic word is considered. In normalized acceptance, used by the other
three canonical FDFAs, only decompositions (u, v) in which the periodic part v loops in the
leading automaton (ie Q(u) = Q(uv)) are considered.

As shown in [2] this acceptance condition, termed normalization, can yield an exponential
save in the number of states. The intuition is that some periods are easier to verify as good
periods if one considers some repetitions of them. For instance, in the language (121 + 212)ω

it is harder to figure out that (ϵ, 12) should be accepted than it is for (ϵ, 121·212) though
both represent the same ω-word.

For similar reasons, one may wonder if considering only decompositions that also close a
loop in the progress automaton might lead to an exponential save as well. In the following
we define FDFAs with such an acceptance condition, which we term duo-normalization. The
notion of duo-normalization has appeared in the literature before. In particular, it resembles
the notion of a linked-pair in ω-semigroups and Wilke-algebras [27, 9], it is used in [1, Proof
of Thm. 5.8] and it is termed idempotent in [5].

▶ Definition 3.1 (ω-words decomposition wrt an FDFA). Let u ∈ Σ∗, v ∈ Σ+ and w ∈ Σω.
Let F = (Q, {Pq}q∈Q) be an FDFA.

(u, v) is a decomposition of w if uvω = w.
A decomposition (u, v) is normalized if Q(u) = Q(uv).
A normalized decomposition is duo-normalized if Pu(v) = Pu(vv).

▶ Definition 3.2 (Exact, Normalized, and Duo-Normalized acceptance). Let F = (Q, {Pq}q∈Q)
be an FDFA, u ∈ Σ∗, v ∈ Σ+. We define three types of acceptance conditions: We say that
(u, v) ∈ JFK using exact acceptance if v ∈ JPuK. We say that (u, v) ∈ JFK using normal-
ized (resp. duo-normalized) acceptance if there exists a normalized (resp. duo-normalized)
decomposition (x, y) of uvω such that y ∈ JPxK.
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An FDFA F is said to be α-saturated if for every ultimately periodic word w, all its
α-decompositions agree on membership in F . Assuming saturation, and an efficient α-
normalization process (as suggested by Claim 3.3) we can alternatively define α-acceptance
as in [2] using the efficient procedure that given any (u, v) returns a particular (x, y) that is
α-normalized and satisfies uvω = xyω. Henceforth, all FDFAs are presumed to be saturated.

▷ Claim 3.3. Let x ∈ Σ∗ and y ∈ Σ+. The word xyω has an α-decomposition of the form
(xyi, yj) for i and j quadratic in the size of F for all α ∈ {exact, normalized, duo-normalized}.

Clearly, if F is saturated using exact acceptance and it recognizes L then it is also
saturated and recognizes L when using normalized acceptance instead. The same is true
when going from normalized acceptance to duo-normalized acceptance.

▶ Corollary 3.4. Duo-normalized FDFAs recognize all ω-regular languages.

▶ Example 3.5. Fig.4.1 (left) shows two FDFAs. The FDFA F1 = (Q, {Pϵ, Pb}) has a leading
automaton with two states [ϵ] and [b], and the corresponding progress automata are Pϵ and
Pb. Consider the ultimately periodic word aω; since (ϵ, a) is a normalized decomposition of
aω and a ∈ JPϵK, the word aω is accepted by F1 using normalized acceptance. The FDFA
F2 = (Q, {P ′

ϵ, Pb}) uses duo-normalization and P ′
ϵ as the progress DFA for [ϵ]. The pair (ϵ, aa)

is a duo-normalized decomposition of aω wrt F2 and it holds that a ∈ JP ′
ϵK thus the word aω

is accepted by F2. Observe that the normalized (rather than duo-normalized) decomposition
(ϵ, a) is not accepted by P ′

ϵ. In this example the FDFA using duo-normalization has more
states. Later on we provide an example where an FDFA using duo-normalization has fewer
states, and even exponentially fewer.

▶ Theorem 3.6. The following holds for saturated FDFAs using duo-normalized acceptance:
complementation can be computed in constant space; intersection, union and membership can
be computed in logarithmic space; emptiness, universality, containment and equivalence can
be computed in non-deterministic logarithmic space.

From now on, unless stated otherwise, we work with duo-normalization. That is, when
we say (u, v) ∈ JFK or w ∈ JFK we mean according to duo-normalized acceptance condition.

As we later show duo-normalized FDFAs can be exponentially more succinct than all
previously defined FDFAs. This is essentially because it considers fewer or more specific
decompositions. One might wonder if considering even more specific decompositions will lead
to more succinct FDFAs, and can this still be done in the same complexity as for normalized
and duo-normalized FDFAs. We come back to this point in the next section, see Prop. 4.3.

4 The Diameter Measure — A Robust Measure on FDFAs

In the following section we define a measure on FDFAs that is tightly related to the inclusion
measure of the Wagner hierarchy. The defined measure is robust among FDFAs in the same
way that the inclusion measure is robust among DMAs. That is, every pair of FDFAs F1
and F2 recognizing the same language agree on this measure.

To devise this measure we would like to understand what the inclusion measure entails
on an FDFA for the language. If a DMA has an inclusion chain S1 ⊂ S2 ⊂ S3 then there
is a state qu in S1 reachable by some word u from which there are words v1, v2, v3 looping
on qu while traversing the states of S1, S2 and S3, respectively (all and only these states).
We term this state a pivot state. Assume S1 is rejecting, then u(v1)ω /∈ L, u(v2)ω ∈ L and

MFCS 2024
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u(v3)ω /∈ L. Since they all loop back to qu, we have that u(v1v2)ω also loops in S2 and is
thus accepted and u(v1v2v3)ω also loops in S3 and is thus rejected. Since v1 ≺ v1v2 ≺ v1v2v3
(where ≺ denotes the prefix relation) tracing the run on v1v2v3 in a progress DFA for u we
expect the state reached after v1 to be rejecting, the one after v1v2 to be accepting and the
one after v1v2v3 to be rejecting. To be precise, we should expect this only if the words v1,
v1v2 and v1v2v3 are α-normalized, where α is the normalization used by the FDFA.

Let’s inspect this on our running example L∞aa∧¬∞bb with the DMA in Fig. 3.1 (middle)
and the inclusion chain S1 = {q1, q2}, S2 = {q1, q2, q3}, and S3 = {q1, q2, q3, q4}. We can
choose q1 for the pivot state qu of S1 and the words v1 = ba, v2 = aba and v3 = abba, that
loop respectively in S1, S2 and S3. Fig. 3.1 (right) provides two FDFAs for this language.
The FDFA F s uses normalization and FQ uses duo-normalization. Looking at Ps

ϵ , we see
that v1, v1v2 and v1v2v3 are normalized and the states reached after reading them (qba, qbaa,
qbb) are rejecting or accepting as expected. The same is true for PQ

ϵ .
Should we entail from this discussion and example that the maximal number of alternations

between rejecting and accepting states along any path in an FDFA for a language in DM−
k is

at most k − 1? This is true in the progress DFA PQ
ϵ , but the progress DFA Ps

ϵ clearly refutes
it, since it has strongly connected accepting and rejecting states (eg, qa and qab) and so we
can create paths with an unbounded number of alternations between them.

Take such a path with say k + 1 prefixes z1 ≺ z2 ≺ . . . ≺ zk+1 alternating between
accepting and rejecting states. Are the words zi normalized? They can be. Take for instance
z1 = a, z2 = ab, and so on (zk+1 = zk · b if k is even and zk+1 = zk · a otherwise).

Can they all be duo-normalized? They can be as we show in Fig. 4.1 (right). It shows a
progress DFA Pϵ for an FDFA using duo-normalization and a one-state leading automaton.
The FDFA recognizes the language ∞aa. The words a ≺ ab ≺ abaa are all duo-normalized
and reach alternating accepting/rejecting states though the language is in DM−

2 . To fix this
issue we introduce the notion of a persistent decomposition.

▶ Definition 4.1 (persistent decomposition wrt an FDFA). Let u ∈ Σ∗, v ∈ Σ+. Let F =
(Q, {Pq}q∈Q) be an FDFA. A duo-normalized decomposition (u, v) is persistent if for every
z ∈ Σ∗ there exists i > 1 such that Pu(zv) = Pu(zvi).

As in Claim 3.3 there exist i and j quadratic in the size of F such that (uvi, vj) is persistent.

▷ Claim 4.2. For every x∈Σ∗ and y∈Σ+ the word xyω has a persistent decomposition of
the form (xyi, yj) where i and j are of size quadratic in F .

One might try to define an additional acceptance condition using the persistent decom-
position as was done above, but as stated by the following claim this is futile.

▶ Proposition 4.3. Every FDFA defined with persistent acceptance recognizes the same
language when defined with duo-normalized acceptance instead.

Back to the issue of finding the position on the Wanger hierarchy, we can look for chains
of prefixes with alternating acceptance such that each prefix in the chain is persistent.

▶ Definition 4.4 (Persistent Chain). Let F be an FDFA and u ∈ Σ∗. We say that v1 ≺ v2 ≺
. . . ≺ vk for vi ∈ Σ∗ is a u-persistent chain of length k wrt F if (u, vi) is persistent for
every 1 ≤ i ≤ k and (u, vi+1) ∈ JFK iff (u, vi) /∈ JFK for every 1 ≤ i < k. We say the chain
is positive (resp. negative) if (u, v1) ∈ JFK (resp. (u, v1) /∈ JFK). We use simply persistent
chain when u is clear from the context.

We can now state the measure on FDFAs that relates them to the Wagner hierarchy.
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Figure 4.1 Left: Two FDFAs F1 = (Q, {Pϵ, Pb}) and F2 = (Q, {P ′
ϵ, Pb}) for the language

(Σ∗b)ω ∪ (bb)∗aω using normalized and duo-normalized acceptances, respectively. Right: The
progress DFA Pϵ for an FDFA accepting ∞aa that uses duo-normalization and a one-state leading
automaton.

▶ Definition 4.5 (The Diameter Measure). Let F be an FDFA and u ∈ Σ∗. We define the
positive (resp. negative) diameter measure of the progress DFA Pu, denoted |Pu|+⇝ (resp.
|Pu|−⇝), as the maximal k for which there exists a positive (resp. negative) persistent chain
of length k in Pu. We define |F|+⇝ as max{|Pq|+⇝ : q ∈ Q} and |F|−⇝ as max{|Pq|−⇝ : q ∈ Q}.

We show that the diameter measure is robust among all FDFAs for the language by
relating it to the Wagner hierarchy as formally stated below.

▶ Theorem 4.6 (Correlation to Wagner’s hierarchy). Let F be an FDFA using any of the
acceptance types α ∈ {exact, normalized, duo-normalized}.

JFK ∈ DM±
k iff |F|+⇝ ≤ k and |F|−⇝ ≤ k

JFK ∈ DM+
k iff |F|+⇝ ≤ k and |F|−⇝ < k

JFK ∈ DM−
k iff |F|−⇝ < k and |F|−⇝ ≤ k

In the proof of Thm. 4.6, given a persistent chain v1 ≺ v2 ≺ . . . ≺ vk in Pu in some
FDFA, we would like to find an inclusion chain of length k in some DMA recognizing the
same language. The SCCs visited infinitely often by the words u(v1)ω, . . . , u(vk)ω might not
correspond to an inclusion chain in the DMA. Roughly speaking, to obtain a persistent chain
for which this does hold, we make sure every element of the chain has already reached its
final SCC and traversed it. Using the following lemma we can create such a persistent chain.

▶ Lemma 4.7 (Pumping Persistent Periods). Let A be an automaton and let v ∈ Σ+ be
A-persistent.2 For every n ∈ N there exists l ≥ n such that for every extension z ∈ Σ∗, if vz

is A-persistent then vlz is also A-persistent.
Following [10] a word v ∈ Σ∗ is said to be a suffix-invariant of u ∈ Σ∗ (in short u-

invariant) with respect to L if u ∼L uv. That is, no suffix distinguishes between u and the
word obtained by concatenating v to u.

Proof of Thm. 4.6. We prove the claim regarding the positive measure. The claim regarding
the negative measure is proven symmetrically. We show that
1. |L|+⊂ ≥ k implies |F|+⇝ ≥ k and
2. |F|+⇝ ≥ k implies |L|+⊂ ≥ k.
The two claims together entail that |F|+⇝ = |L|+⊂.

2 We say that v is A-persistent if A(v) = A(vv) and for every z ∈ Σ∗ there exists an i > 1 such that
A(zv) = A(zvi).
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1. We start by showing that if |L|+⊂ ≥ k then |F|+⇝ ≥ k. Let M be a DMA for L. From
|L|+⊂ ≥ k we know that there exists an MSCC of M subsuming SCCs S1, S2, . . . , Sk such
that S1 ⊊ S2 ⊊ . . . ⊊ Sk and Si is an accepting component if and only if i is odd. Pick
a state s in S1. For 1 ≤ i ≤ k let vi be a word that loops on s while traversing all
the states of Si and no other states. Let u be a word reaching s from the initial state.
Consider the progress DFA of u, Pu. By Claim 4.2 there exists l1 such that y1 = (v1)l1 is
Pu-persistent. Similarly, there exists l2 such that y2 = (y1v2)l2 is Pu-persistent. In the
same way we define yi = (yi−1vi)li for all i ∈ [2..k]. Consider the words wi = u(yi)ω for
i ∈ [1..k]. Since the set of states visited infinitely often when reading wi is exactly Si, it
follows that wi is in L if and only if i is odd. Since all the infixes yi loop back to s it
follows that all the yi’s are u-invariants and thus the (u, yi) are persistent in F . Since
y1 ≺ y2 ≺ . . . ≺ yk we have found a positive alternating persistent chain in Pu of length
k. Hence, |Pu|+⇝ ≥ k, which in turn gives that |F|+⇝ ≥ k.

2. Next we show that if |F|+⇝ ≥ k then |L|+⊂ ≥ k. Let u be such that |Pu|+⇝ ≥ k. Then
there exists a persistent chain v1 ≺ v1v2 ≺ . . . ≺ v1v2 · · · vk of length k in Pu, starting
with an accepting state. For i ∈ [1..k] let qi be the state reached after reading v1v2 · · · vi.
Note that qi is accepting iff i is odd.
Let M be a DMA for L and let n be its number of states. Let l1 ≥ n be the number
promised by Lemma 4.7 for v1. Consider (v1)l1v2. As v1 and v1v2 are both Pu-persistent,
it follows from the lemma that (v1)l1v2 is Pu-persistent as well. Since v1 is Pu-persistent
it loops on q1 and it holds that (v1)l1v2 reaches and loops on q2. Continuing in the same
manner, let y1 = v1 and yi = (yi−1)li−1 · vi for i ∈ [2..k] where li−1 ≥ n is the number
from Lemma 4.7 for yi−1. Then yi is Pu-persistent, reaching and looping on qi. Moreover
u(v1v2 · · · vi)ω ∈ L iff u(yi)ω ∈ L iff x(yi)ω ∈ L for any x ∼L u. Let xi = u ·yn

k ·yn
k−1 · · · yn

i

for i ∈ [1..k]. As the vi’s are u-invariant it holds that the xi’s are ∼L u. For i ∈ [1..k] let
wi = xi(yi)ω. Thus, wi is in L iff i is odd. For every such i, consider the run of M on
wi, and let inf(wi) = Si be the states of the SCC that M eventually traverses in. Since n

bounds the number of states of M it follows that after reading xi the automaton already
traversed the SCC Si and reading yi again, it will stay in Si. Because xi−1 = xi · yn

i−1
and yn

i−1 ≺ yi it holds that S1 ⊆ S2 ⊆ . . . ⊆ Sk.
From the acceptance of the words wi we conclude Si is accepting iff i is odd. Therefore
the inclusions are strict, namely S1 ⊊ S2 ⊊ . . . ⊊ Sk. This proves |L|+⊂ ≥ k. ◀

With Thm. 4.6 in place we conclude the robustness of the diameter measure.

▶ Corollary 4.8. Let F1 and F2 be two FDFAs recognizing the same language. Then
|F1|+⇝ = |F2|+⇝ and |F1|−⇝ = |F2|−⇝.

Next we show that given an FDFA we can compute its diameter measure in polynomial
space. The proof shows that with each progress DFA Pu we can associate a DFA Pu, which
we term the persistent DFA. Broadly speaking, Pu is the product of the leading automaton
and copies of the progress automaton, starting from each of its states. The states of Pu

can be classified into significant and insignificant where significant states are those that are
reached by persistent words and only such words. The classification can easily be done by
inspecting the “state vector”. The persistent DFA need not be built, instead a persistent
chain can be non-deterministically guessed and verified in polynomial space.

▶ Theorem 4.9. The diameter measure of a duo-normalized FDFA can be computed in
PSPACE.

Since normalized and exact FDFAs are also duo-normalized, this upper bound holds for
them as well. However, in Prop. 4.12 we show that for normalized (and exact) FDFAs the
diameter measure can be computed in NLOGSPACE. For the case of duo-normalized FDFAs,
we provide a matching lower bound.
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▶ Theorem 4.10. The problem of determining whether the diameter measure of a duo-
normalized FDFA is at least k is PSPACE-hard.

Proof sketch. The proof uses a reduction from non-emptiness of intersection of DFAs, which
is known to be PSPACE-hard [15]. Let D1, D2, . . . , Dk be k DFAs over Σ. We construct an
FDFA with a one-state leading automaton and a progress DFA P over Σ′ = Σ∪{1, . . . , k}∪{♯}
as depicted in Fig. 5.1 (left), see the full version for a complete description. To see that
the FDFA is saturated, we show in the full version that not only every two duo-normalized
decompositions (u, v) and (u′, v′) of the same ultimately periodic word w agree on acceptance,
but their periods also traverse the same MSCC in P.

We claim that if there is a word v ∈ Σ in the intersection of all Di’s, then ♯v ≺ ♯v1 ≺
♯v12 ≺ ♯v123 ≺ . . . ≺ ♯v12 · · · k ≺ ♯v12 · · · k♯♯ is a persistent chain in P of length k + 2. Let
y0 = ♯v, yi = ♯v12 · · · i for i ∈ [1..k], and yk+1 = yk♯♯. Then yi reaches si

i, and reading yi

from si
i reaches si

i again. Thus yi is duo-normalized and yi is accepted iff i is even. To see
that yi is persistent it remains to show that from any state q reading yi and reading (yi)2

the automaton reaches the same state q′ for some q′. Observe that reading yi from any state
sj

j for j ≤ i will still reach si
i. If yi is read from sj

j for i < j ≤ k + 1 or any other state (as
there are no other outgoing ♯-transitions) it will reach sk+1

k+1 and stay there forever. Thus yi

is persistent for any i. Hence, y0 ≺ y1 ≺ y2 ≺ . . . ≺ yk ≺ yk+1 is a persistent chain in P of
length k + 2.

For the other direction, we claim that if there exists a persistent chain of length k + 2 in
P , then the intersection of all Di’s is non-empty. Let w0 ≺ w2 ≺ . . . ≺ wk+1 be such a chain.
First, we note that from the structure of P, since the MSCCs corresponding to the Di’s are
of alternating acceptance, it follows that w0 reaches s0

0, wk+1 reaches sk+1
k+1 and all other wi

reach some state in the i-th MSCC. Second, if reading wi reaches a state in the i-th MSCC,
then since wi is duo-normalized, reading wi for the second time must loop back to the same
state. For i ∈ [1..k] this can only occur if wi is a rotation of v112 · · · i♯v212 · · · i♯ · · · vm12 · · · i♯

for some v1, . . . , vm ∈ Di. This is since wi must contain the letter 1 and it can only be read
from final states of Di. Note that there can’t be an infix of any wi for 1 ≤ i ≤ k where the
letter ♯ appears after a letter lower than i, as this would lead from the i-th MSCC to sk+1

k+1.
As the wi’s form a chain, w1 is a prefix of all the wi’s for 1 < i ≤ k. It follows that w1 is
exactly of the form ♯v1, and as v is common to all the following wi’s, v is in the intersection
of all the Di’s. ◀

The following proposition shows that there exists FDFAs where the smallest elements of
a persistent chain are inevitably of exponential length. The idea is to take the construction
of the FDFA in the proof of Thm. 4.10 and let the DFA Di count modulo the i-th prime.

▶ Proposition 4.11. There exists a family of languages {Ln} with an FDFA with number of
states polynomial in n where any persistent chain of maximal length must include a word of
length exponential in n.

Computing the Wagner position on normalized (rather than duo-normalized) FDFAs, can
be done more efficiently, specifically in NLOGSPACE.

▶ Proposition 4.12. The position in the Wagner hierarchy of an FDFA using normalized
acceptance can be computed in NLOGSPACE.

For the sake of the proof we define two sub-classes of normalized FDFAs. The smallest
one is a generalization studied in [5] of the syntactic FDFA for a language L [19].
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▶ Definition 4.13 (∼-syntactic FDFA). Let L ⊆ Σω and let ∼ be a right congruence refining
the syntactic right congruence ∼L. The ∼-syntactic FDFA, denoted (Q∼, P∼

u ), is defined as
follows. The leading automaton Q∼ is A[∼], and the progress automaton P∼

u is A[≈u] where
x ≈u y if (a) ux ∼ uy and (b) for every z ∈ Σ∗ it holds that uxz ∼ u implies u(xz)ω ∈ L iff
u(yz)ω ∈ L.3

It is shown in [5, Lemma 21] that if x is duo-normalized wrt ∼ and ≈u then for every
y ≈u x we have that y is also duo-normalized. We can thus refer to a state as being
duo-normalized. It is then showed that two duo-normalized states in the same SCC of
a ∼-syntactic progress DFA agree on acceptance [5, Lemma 23]. These properties allow
defining a polynomial procedure that associates with every state of a ∼-syntactic FDFA a
color that tightly correlates to position on the Wagner hierarchy [5].

It follows that on ∼-syntactic FDFAs the Wagner position can be determined in polynomial
time. The proof can be generalized to any FDFA using normalization in which the right
congruence x ≈u y implies x ∼L y. We call such FDFAs projective FDFAs.

▶ Definition 4.14. An FDFA (A[∼], {A[≈u]}) is termed projective if for every progress
DFA, the respective right congruence ≈u satisfies that x ≈u y implies x ∼L y.

Fig. 5.1 (left) depicts the inclusions among these classes. (In the meantime ignore the text
in blue, and the arrow; we will come back to this in the next section.) Since any FDFA
using normalization can be transformed with a quadratic blowup into a projective FDFA (by
multiplying the progress DFAs by the leading automaton) we have that the Wagner position
on normalized FDFAs can be computed in polynomial time. In the full version of the paper
we show that it can also be computed in NLOGSPACE.

5 Succinctness Results

We turn to provide some succinctness results regarding FDFAs with duo-normalized ac-
ceptance. The results compare duo-normalized FDFAs with normalized FDFAs, as well as
canonical FDFAs using these acceptance conditions. We already mentioned four canonical
FDFAs: the periodic FDFA [7] that uses exact acceptance; and the syntactic [19], recur-
rent [2] and limit FDFAs [17] that use normalized acceptance. A canonical FDFA that uses
duo-normalization can be extracted from notions of [5]. We term it the Colorful FDFA, since
it relies on the notion of natural colors [10].

Loosely speaking, [10] shows that given an ω-regular language L one can associate with
every word w ∈ Σω a natural color. If w is given color k wrt L, then there is no parity
automaton for L that would visit a color lower than k infinitely often when reading w.
Consider again the language L∞aa∧¬∞bb requiring infinitely many aa and finitely many bb

for which a DPA is given in Fig. 3.1 (middle). The colors of (ab)ω, (a)ω, (aab)ω, (aabb)ω

and (b)ω are 3, 2, 2, 1 and 1, resp. The intuition is that the color is 1 if bb occurs infinitely
often, it is 2 if aa occurs infinitely often but bb occurs only finitely often, and it is 3 if neither
aa nor bb occur infinitely often. We use Color(w) for the natural color of w. Note that the
language L is implicit in the notation.

A related definition provided in [5, Def 2.] can be viewed as giving colors for finite words
v wrt to an ω-regular language L and an equivalence class [u]. We use Coloru(v) to denote
the color of the finite word v ∈ Σ+ wrt a finite word u ∈ Σ∗. The definition satisfies that

3 Canonical FORC is the term used in [5] for the FORC underlying the ∼-syntactic FDFA.
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Figure 5.1 Left: The progress DFA P used in the proof of Thm. 4.10. Its alphabet is Σ′ =
Σ ∪ {1, . . . , k, k+1} ∪ {♯} where Σ is the alphabet of the DFAs D1, . . . , Dk. Transitions to the sink
state sk+1

k+1 are omitted. The figure assumes k is odd; for j ∈ [1..k], ιj is initial and fj is accepting.
Middle: The inclusions among these classes of FDFAs (in black), as well as the placement of the
canonical FDFAs in these classes (in blue). The letters p,s,r,l,c abbreviate periodic, syntactic,
recurrent, limit, and colorful, resp. Right: Picture summarizing succinctness results on proper
FDFAs. A double-line (resp. one-line) arrow from c to d indicates that c can be exponentially (resp.
quadratically) more succinct than d.

Coloru(v) returns max{Color(u(vz)ω) | z ∈ Σ∗}. Note that it is possible that u(v′)ω = u(v′′)ω

for some u ∈ Σ∗ and v′, v′′ ∈ Σ+, though Coloru(v′) ̸= Coloru(v′′). Indeed in the example of
L∞aa∧¬∞bb we have (a)ω = (aa)ω, yet Colorϵ(a) = 3 while Colorϵ(aa) = 2.

The reason is that if the period contains a followed by some z the resulting color may be
3 or 2 or 1 while if the period contains aa followed by some z the color can be 2 or 1 but it
cannot be 3 since aa surely occurs infinitely often.

These colors can be used to define equivalence classes ≈Q
u for each word u ∈ Σ∗ by

differentiating between words x and y if there is a word z such that the respective extensions
xz and yz disagree on the color (wrt u).4 The Colorful FDFA uses the automaton for ∼L

for the leading automaton as the other canonical FDFAs do. For the progress DFA for u it
takes a DFA whose automaton structure is derived by the equivalence relation ≈Q

u, and the
accepting states are those with an even color. The acceptance type of the Colorful FDFA is
duo-normalization.

▶ Definition 5.1 (The Colorful FDFA). Let u, x, y ∈ Σ∗. We define x ≈Q
u y if for every z ∈ Σ∗

we have Coloru(xz) = Coloru(yz). The colorful FDFA for a language L, denoted FQ(L),
uses duo-normalized acceptance and consists of (A[∼L], {PQ

u }) where PQ
u is a DFA with the

automaton structure A[≈Q
u] where state qv is accepting if coloru(v) is even.

The Colorful FDFA FQ = (Q, {PQ
ϵ }) for our running example L∞aa∧¬∞bb is given in

Fig. 3.1 (right).
We are now ready to discuss the succinctness results. Recall that the canonical FDFAs

using normalized acceptance have been shown to be exponentially more succinct than the
canonical model using exact acceptance [2]. We first show that using duo-normalization a
similar succinctness gain is achieved, namely that the Colorful FDFA can be exponentially
more succinct than all other canonical representations.

4 These equivalence classes correspond to the precise family of weak priority mappings wrt to ∼L from [5,
Def. 17].
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▶ Theorem 5.2. The Colorful FDFA can be exponentially more succinct than the syn-
tactic/recurrent/limit FDFA.

The proof uses the family of languages {Ln}n∈N over Σ = {a, b, ⟨, ⟩} defined as follows.

Ln =
{

w ∈ {a, b, ⟨, ⟩}ω

∣∣∣∣ w has inf. many occurrences of ⟨akbm⟩ for some k ∈ [1..n]
and m that is divisible by the k-th prime.

}
The idea is that using duo-normalization the Colorful FDFA can look only for prefixes of

the form ⟨akbm⟩, whereas the syntactic/recurrent/limit FDFA must also answer correctly for
prefixes of the form bm⟩⟨ak due to using normalized acceptance. Recognizing prefixes of the
latter form is much harder.

Next we show that the Colorful FDFA is not the most succinct among the duo-normalized
FDFAs. The essence of the proof is that the Colorful FDFA must keep track of all infixes
of interest seen in order to maintain the real color of the word. On the other hand, a
duo-normalized FDFA, similarly to a DBA, can choose an arbitrary order to look for such
infixes. The proof uses the family {L′

n}n∈N over Σ = {a1, . . . , an} defined as follows.5

L′
n = {w ∈ {a1, . . . , an}ω | for all i ∈ [1..n] the letter ai appears inf. often in w }

▶ Theorem 5.3. Duo-normalized FDFAs can be exponentially more succinct than the Colorful
FDFA.

An FDFA in general can use any leading automaton A[∼] for a right congruence ∼ that
refines ∼L. We note that all the canonical models (the periodic, syntactic, recurrent, limit
and colorful) use A[∼L] for the leading automaton, we term such FDFAs, proper.

▶ Definition 5.4 (Proper FDFAs). An FDFA recognizing a language L is termed proper if its
leading automaton is A[∼L].

The FDFA used in the proof of Thm. 5.3 is proper. We can thus strengthen the claim as
follows.

▶ Corollary 5.5. Proper duo-normalized FDFAs can be exponentially more succinct than the
Colorful FDFA.

Surprisingly, Klarlund has shown that non-proper normalized FDFAs may be exponentially
more succinct than proper normalized FDFAs [14]. One may thus wonder if non-proper
normalized FDFAs can be as succinct as duo-normalized FDFAs. That is, if duo-normalization
adds succinctness when considering non-proper FDFAs. The following theorem shows that
duo-normalization does add succinctness even relative to non-proper normalized FDFAs (and
even when limiting duo-normalized FDFAs to proper ones).

▶ Theorem 5.6. (Proper) duo-normalized FDFAs can be exponentially more succinct than
(not necessarily proper) normalized FDFAs.

The proof uses the following family of languages {L′′
n}n∈N over Σ = Σa ∪ Σs where

Σa = {a1, . . . , an} and Σs = {s1, . . . , sn}.

L′′
n =

{
w ∈ (Σ∗Σa)ω

∣∣∣∣ Let m = max{j | aj ∈ Σa ∩ inf(w)}.

Then sm ∈ Σs appears inf. often in w.

}
.

5 This family is used in [4] to show DBAs can be exponentially more succinct than combinations of DFAs.
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The challenge in the language can be observed in periods where sm occurs before am was seen
(for m being the maximal index of an ai letter in the period). The duo-normalized FDFA
has the privilege of looking for duo-normalized decompositions in which sm is observed after
the maximal am is seen. As the normalized FDFA has to consider all prefixes, specifically
prefixes for every subset of Σs, it must grow to an exponential size.

6 Discussion

We have shown that FDFAs with duo-normalized acceptance can be exponentially more
succinct than FDFAs using (standard) normalization. At the same time the common
operations procedures and decision problems on them can still be done in NLOGSPACE.
Fig. 5.1 (right) summarizes the results regarding succinctness among the canonical FDFAs
suggested thus far. It shows that the Colorful FDFA can be exponentially more succinct
than all other canonical models. At the same time, a minimal duo-normalized FDFA can be
exponentially more succinct than the Colorful FDFA.

The figure might raise the question whether a duo-normalized FDFA can be doubly-
exponentially more succinct than the periodic FDFA (the least succinct canonical repres-
entation). However this cannot be since a duo-normalized FDFA can be translated into a
non-deterministic Büchi automaton (NBA) using exactly the same procedure as the one
transforming a normalized FDFA into an NBA [1]. The reason is that the construction
actually looks for a duo-normalized decomposition (which by saturation exists).

▶ Proposition 6.1. If L has a duo-normalized FDFA F then it has an NBA of size polynomial
in the number of states of F .

Since an NBA can be converted into a periodic FDFA in an exponential blowup [7, 16] we
get an overall exponential translation from duo-normalized FDFAs to the periodic FDFA,
showing no doubly-exponential lower bound can be achieved. Since NBAs can be converted to
DPAs with an exponential blow up [24, 23, 25, 11] and DPAs can be polynomially converted
into non-proper FDFAs [1] we can conclude the following.

▶ Corollary 6.2. The periodic FDFA and the minimal (non-proper) normalized FDFAs and
DPAs of a language L are at most exponentially larger than a duo-normalized FDFA for L.

We also answer a question posed by [10] regarding the relation of the structure of an
FDFA to its position in the Wagner hierarchy. Specifically, we have provided a measure on
FDFAs that corresponds to the Wagner hierarchy. We have shown that its computation
is PSPACE-complete for duo-normalized FDFAs, and is in NLOGSPACE for normalized
FDFAs. The measure is based on the notion of a persistent chain. Since the Wagner hierarchy
correlates to the minimal color required by a parity automaton, we can define a notion of
chains that relates to natural colors of [10, 5], and is thus a semantic notion (defined wrt to
the language regardless of a particular acceptor for it). In the full version we show that the
existence of one type of chain implies the existence of the other type of chain, and vice versa.

The notion of duo-normalization decomposition seems to be related to the notion of a
linked-pair in ω-semigroups and Wilke-algebras [27, 9], in which (s, e) is a linked pair if
se = s and e is idempotent. It seems that there are two main differences; the first is that a
linked pair relates to one relation ∼, while a duo-normalized decomposition relates to a pair
of relations (∼, ≈) (one for the leading automaton and one for the respective progress DFA).
The second is that the relation ∼ used in Wilke-algebras is a two-sided congruence, while
the relations used by FDFAs are one-sided. Both differences suggest that duo-normalized
FDFAs would be more succinct, but this deserves further study.

MFCS 2024
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