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Abstract
Romeo and Juliet is a two player Rendezvous game played on graphs where one player controls two
agents, Romeo (R) and Juliet (J ) who aim to meet at a vertex against k adversaries, called dividers,
controlled by the other player. The optimization in this game lies at deciding the minimum number
of dividers sufficient to restrict R and J from meeting in a graph, called the dynamic separation
number. We establish that Romeo and Juliet is EXPTIME-complete, settling a conjecture of
Fomin, Golovach, and Thilikos [Inf. and Comp., 2023] positively. We also consider the game for
directed graphs and establish that although the game is EXPTIME-complete for general directed
graphs, it is PSPACE-complete and co-W[2]-hard for directed acyclic graphs.
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1 Introduction

The study of Rendezvous Games was initiated by Alpern [2] where two agents, that are
randomly placed in some known search region and move at unit speed, aim to meet each other
in least expected time. Since then, several variants of rendezvous games have been considered
on graphs [3, 10, 24]. Fomin, Golovach, and Thilikos [12] introduced the rendezvous game on
graph with adversaries where a team of dividers aim to prevent the meeting of two passionate
lovers, say Romeo and Juliet. We refer to this game as Romeo and Juliet.

Romeo and Juliet is played on finite, connected, and undirected graphs between two
players: facilitator and divider. The facilitator has two agents, Romeo, denoted by R, and
Juliet, denoted by J , that start the game at two designated vertices s and t of G, respectively.
The divider has k agents, D1, . . . Dk, and their starting position is selected by the divider
from vertices in V (G)\{s, t}. Several divider agents can occupy the same vertex. Afterwards,
the divider player and the facilitator player make alternate moves, starting with the facilitator.
In a move, a player, for each of its agents, either moves the agent to an adjacent vertex not
occupied by any agent of the other player or keeps it on the same vertex. A situation where
R and J are on the same vertex is a meet. The facilitator wins if R and J meet, and the
divider wins if it succeeds in preventing the meet of R and J forever. Accordingly, we have
the following decision version of the problem. We define the game formally in Section 2.

Romeo and Juliet
Input: A graph G with two specified vertices s and t, and an integer k ∈ N.
Question: Can the facilitator win on G starting from s and t against the divider with k agents?
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54:2 Romeo and Juliet Is EXPTIME-Complete

We consider the computational complexity of this game and establish that Romeo and
Juliet is EXPTIME-complete, resolving a conjecture of Fomin, Golovach, and Thilikos [12]
positively. We further define the game for directed graphs and extend our EXPTIME-
completeness result to directed graphs as well. We then establish that the game stays
PSPACE-complete for directed acyclic graphs.

Rules of Romeo and Juliet are very similar to the rule of classical Cops and Robber
game introduced by Nowakowski and Winkler [20], and Quilliot [21]. Cops and Robber
fall in the broad range of Graph Searching, where a a set of agents, called pursuers, plan
to catch one or multiple evaders in a graph under some movement rules. We refer to the
annotated bibliography by Fomin and Thilikos [13] and recent monographs [6, 7] for further
references on this topic.

Observe that if s = t or s and t are adjacent vertices, then the facilitator wins trivially. For
distinct non-adjacent vertices s and t, let s, t-dynamic separation number be the minimum k

such that k dividers have a winning strategy against R and J starting at s and t, respectively.
Since the dividers have a winning strategy by placing a divider on each vertex of a minimum
size s, t-vertex cut (for distinct and non-adjacent vertices), the s, t-dynamic separation number
is a well-defined graph invariant for s, t.

Fomin, Golovach, and Thilikos [12] proved that Romeo and Juliet is PSPACE-hard
for general graphs. They conjectured that the game is, in fact, EXPTIME-complete. We
resolve their conjecture positively by providing the following theorem.

▶ Theorem 1. Romeo and Juliet is EXPTIME-complete for undirected graphs.

Fomin, Golovach, and Thilikos [12] gave a backtracking based nO(k) time algorithm
for Romeo and Juliet, which is also a 2O(n log n) time algorithm. Hence, to prove the
EXPTIME-completeness, we only need to prove EXPTIME-hardness of Romeo and Juliet.
To this end, we provide a non-trivial reduction from GuardUndir (a guarding game on
undirected graphs), which is known to be EXPTIME-complete [22].

Several graph-searching games have a natural generalization to directed graphs and are
well-studied [4, 5, 8, 9, 15, 16, 17]. Romeo and Juliet can also be considered on directed
graphs where the agents can only move along the orientations of the arcs. We begin by
establishing that the Romeo and Juliet game stays EXPTIME-complete on directed
graphs. To this end, we provide a rather easy and straightforward reduction from Guard
(a guarding game on directed graphs), which is known to be EXPTIME-complete [23], to
Romeo and Juliet on directed graphs.

▶ Theorem 2. Romeo and Juliet is EXPTIME-complete for oriented graphs.

Next, we consider Romeo and Juliet on directed acyclic graphs (DAGs). Fomin,
Golovach, and Thilikos [12] also considered a variant of this game, Romeo and Juliet in
Time, where the question is whether R and J can meet in at most τ rounds. They established
that this game is PSPACE-hard and co-W[2]-hard parameterized by k (for undirected graphs).
We provide a general framework to establish computational complexity results for Romeo
and Juliet on DAGs. In particular, we define a relaxation of the game –Relaxed Romeo
and Juliet– where the dividers have an added relaxation that they can move to a vertex
occupied by R or J , but R or J cannot finish a move by occupying the same vertex as a
divider. We present a reduction from Romeo and Juliet in Time on general graphs to
Romeo and Juliet on directed acyclic graphs. This helps us to translate the hardness
results proved for Romeo and Juliet in Time on general graphs to Romeo and Juliet
on DAGs. In particular, this establishes that Romeo and Juliet remains PSPACE-hard
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and co-W[2]-hard parameterized by k even on DAGs. To prove PSPACE-completeness for
DAGs, we also provide a polynomial-space algorithm for Romeo and Juliet on DAGs. We
show the following results.

▶ Theorem 3. Romeo and Juliet is PSPACE-complete when restricted to directed acyclic
graphs.

▶ Theorem 4. Romeo and Juliet is co-W[2]-hard parameterized by k when restricted to
directed acyclic graphs.

Brief Survey. The study of rendezvous games with adversaries was initiated by Fomin,
Golovach, and Thilikos [12] and they conducted an extensive study of the computational
complexity of this problem and established the following results. Romeo and Juliet, as
well as Romeo and Juliet in Time, are PSPACE-hard and co-W[2]-hard parameterized by
k, and both of these problems admit a nO(k) algorithm. This algorithm is optimal in the
sense that, assuming ETH , none of these problems can be solved in no(k) time. Moreover,
Romeo and Juliet in Time is co-NP-complete even for τ = 2, and admit a FPT algorithm
parameterized by τ and the neighbourhood diversity of the graph, combined. Interestingly,
for chordal graphs and P5-free graphs, the s, t-dynamic separation number is same as the
minimum size of a s, t-vertex cut, which establishes that Romeo and Juliet is polynomial
time solvable for these classes.

Misra et al. [18] conducted further analysis of this game from a parameterized complexity
perspective and established the following interesting results. Romeo and Juliet is co-
para-NP-hard parameterized by the treewidth of the input graph. Further, Romeo and
Juliet remains co-W[1]-hard when parameterized by the feedback vertex set number and
the solution size (combined), and when parameterized by the pathwidth and the solution size
(combined). On the positive side, they established that Romeo and Juliet is FPT when
parameterized by the vertex cover number and solution size (combined) by the design of an
exponential kernel, and complemented this result by proving that it is unlikely to obtain
a polynomial kernel by these parameters. Finally, Romeo and Juliet can be solved in
polynomial time for treewidth-2 graphs and grids.

An important part of our result is related to the so-called guarding game, introduced by
Fomin et al. [11], is played on a graph G by two alternating players, the cop-player and the
robber-player, each having their pawns (c cops and one robber, respectively). The vertex set
V (G) is partitioned into a cop region C and a robber region R = V (G) \ C, and the goal of
the cops is to prevent the robber, who starts at some vertex of R, from entering a vertex
of C. The computational complexity of the guarding game depends heavily on the chosen
restrictions on the graph G. In particular, if Robber’s region (R) is only a path, then the
problem can be solved in polynomial time, and when robber moves in a tree (or even in a
star), then the problem is NP-complete, and if Robber is moving in a DAG, the problem
becomes PSPACE-complete [11]. Later Fomin, Golovach and Lokshtanov [14] studied the
reverse guarding game with the same rules as in the guarding game, except that the cop-player
plays first. They proved that the related decision problem is PSPACE-hard on undirected
graphs. Nagamochi [19] has also shown that that the problem is NP-complete even if C

induces a 3-star and that the problem is polynomially solvable if R induces a cycle. Also,
Reddy, Krishna and Rangan [25] proved that if the robber-region is an arbitrary undirected
graph, then the decision problem is PSPACE-hard. Šámal and Valla established that the
guarding game is, in fact, ETIME-complete under log-space reductions for both directed [23]
as well undirected graphs [22].

MFCS 2024
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Organization. We begin with formal preliminaries and definitions in Section 2. In Section 3
we establish the EXPTIME-completeness of Romeo and Juliet for undirected graphs. In
Section 4, we extend our EXPTIME-completeness result to directed graphs. We conclude in
Section 5. To respect the space restrictions the section concerning Romeo and Juliet on
DAGs has been omitted.

2 Preliminaries

For ℓ ∈ N, let [ℓ] = {1, . . . , ℓ}.

Graph Theory. For a graph G, we denote its vertex set by V (G) and edge set by E(G).
We denote the size of V (G) by n and size of E(G) by m. In this paper, we consider finite,
connected, and simple graphs. Let v be a vertex of a graph G. Then, by N(v) we denote the
open neighbourhood of v, that is, N(v) = {u | uv ∈ E(G)}. By N [v] we denote the closed
neighbourhood of v, that is, N [v] = N(v) ∪ {v}. For X ⊆ V (G), we define NX(v) = N(v) ∩ X

and NX [v] = N [v]∩X. The length of a path or cycle is the number of edges in it. A u, v-path
is a path with endpoints u and v. For u, v ∈ V (G), let d(u, v) denote the length of a shortest
u, v-path. A path is isometric if it is a shortest path between its endpoints.

Computational complexity. The complexity class PSPACE is the set of all decision problems
that can be solved by a Turing machine using a polynomial amount of space. The class
EXPTIME (sometimes denoted EXP) is the set of all decision problems that are solvable by
a deterministic Turing machine in the O(2p(n)) time where p(n) is a polynomial of n.

Romeo and Juliet. Romeo and Juliet is played on a graph G, where the input prescribes
the number of dividers k, and the starting positions s0 and t0 of R and J , respectively. The
game starts with R and J occupying the initial vertices s0, and t0, respectively. Then, the
divider player places its agents D1, . . . , Dk on vertices d1

0, . . . , dk
0 , respectively, such that

{d1
0, . . . , dk

0} ∩ {s0, t0} = ∅. We call this state S0 = (s0, t0, d1
0, . . . , dk

0). For i ≥ 0, let Di

denote the set {d1
i , . . . , dk

i }. Multiple dividers may occupy the same vertex, and |Di| may be
less than k. After this, the game proceed in rounds, where each round consists of a divider
move, followed by a facilitator move. In round i, i ≥ 1, first the facilitator moves R to a
vertex si ∈ N [si−1] \ Di−1 and J to a vertex ti ∈ N [ti−1] \ Di−1. Then, the divider moves
each divider Dp, p ∈ [k], to a vertex dp

i ∈ N [dp
i−1] \ {si, ti}. This gives us a game state

Si = (si, ti, d1
i , . . . , dk

i ). If the facilitator can ensure that for some i ≥ 0, si = ti, we say that
the facilitator has a winning strategy. On the other hand, if the divider player can ensure
that for each i ≥ 0, si ̸= ti, then the divider player has a winning strategy. For directed
graphs, the rules are exactly the same with the only difference that the agents can only
move along the orientations of the arcs. Fomin et al. [12] gave an algorithm for Romeo
and Juliet with running time O(2O(n log n)). It is easy to see that the algorithm works for
directed graphs as well. Hence, we have the following proposition.

▶ Proposition 5 ([12]). Romeo and Juliet is in class EXPTIME on directed as well as
undirected graphs.

We have the following trivial observation that shall be useful to us.

▶ Observation 6. Let Si = (si, ti, d1
i , . . . , dk

i ) be a game state in some graph G, and let
y ∈ V (G). If there is a si, y-path (resp., ti, y-path) P such that (i) P is an isometric path of
length ℓ, (ii) and for each vertex v ∈ V (P ) and u ∈ Di, d(si, v) ≤ d(u, v) (resp., d(ti, v) ≤
d(u, v)), then the facilitator player can ensure that Si+ℓ = (si+ℓ = y, ti+ℓ, d1

i+ℓ, . . . , dk
i+ℓ)

(resp., Si+ℓ = (si+ℓ, ti+ℓ = y, d1
i+ℓ, . . . , dk

i+ℓ)).
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Guarding Game. The GuardUndir game is played on an undirected graph G, where V (G)
is partitioned into two regions: Cop region C ⊂ V (G), and Robber region R = V (G) \ C.
There is a prescribed vertex r0 ∈ R, where the robber starts. The games begins with the
robber occupying the vertex r0. Then, k cops occupy vertices c1

0, . . . , ck
0 such that for each

j ∈ [k], cj
0 ∈ C. More than one cop may occupy the same vertex. This gives us game state

G0 = (r0, c1
0, . . . , ck

0). Let Ci denote the set of vertices {ci
0, . . . , ci

k}. Then, the game proceeds
in rounds. In round i, i > 0, first the robber moves to a vertex ri ∈ N [ri−1] \ Ci−1. Then,
the cop player moves the cop Cj , j ∈ [k], to a vertex cj

i ∈ NC [cj
i−1] \ {ri}. If the robber can

ensure that for some i ≥ 0, ri ∈ C, then the robber has a winning strategy. Otherwise, if the
cops can ensure that for each i ≥ 0, ri /∈ C, then the cop player has a winning strategy.

It is worth noting that the GuardUndir game where the starting position of the robber
is not specified is also studied. But for our purposes, we consider the variant where the
starting position of the robber, i.e., r0 is fixed. Furthermore, we assume that G[C] as well as
G[R] are connected subgraphs of G.

The Guard game is analog of GuardUndir on directed graphs. The rules of the game
are exactly the same as the undirected case with the only change that the agents can only
move along the orientations of the arcs. Šámal and Valla [22, 23] proved the following.

▶ Proposition 7 ([23, 22]). Guard and GuardUndir are EXPTIME-complete.

3 Romeo and Juliet is EXPTIME-complete

In this section, we establish that Romeo and Juliet is EXPTIME-complete for undirected
graphs. To prove this, we provide a non-trivial reduction from GuardUndir to Romeo
and Juliet on undirected graphs. We begin by providing an overview of our reduction.

Overview. First, we make two copies of the cop region C as CR and CJ , and two copies of
the robber region R as RR and RJ such that R starts in RR and J starts in RJ . We will
have 2k dividers. Moreover, we use some gadgets, that we call secret gardens, which ensure
that after each round, if each of CR and CJ does not host at least k dividers each, R and
J will meet in one of the secret gardens after a finite number of rounds. Moreover, given
that both CR and CJ host at least k dividers each, if R and J are able to enter the vertices
of CR and CJ , respectively, then they will be able to meet in the next round. Hence, for
dividers to win, the game is, more or less, similar to restricting R and J to enter CR and
CJ , respectively, where both CR and CJ host exactly k dividers each. Below, we provide
our construction in detail.

Construction. Let (H, k, r) be an instance of the GuardUndir, where r is the starting
position of the robber and V (H) consists of the cop region C and the robber region R =
V (H) \ C. We assume that H[C] as well as H[R] is connected. We will construct an instance
(G, 2k) of Romeo and Juliet in the following manner. Since the construction has several
components, we will define the components of our construction (reduction) individually. Our
graph G will have following components.

1. CR, CJ , RR, and RJ . We begin by constructing two copies of the graph H as GR
and GJ , corresponding to R and J , respectively. See Figure 1 for an illustration. More
specifically, GR (resp., GJ ) contains a copy CR (resp., CJ ) of C and RR (resp., RJ ) of
R. Formally, V (GR) = {uR | u ∈ V (H)} and, V (GJ ) = {uJ | u ∈ V (H)}. Moreover,

MFCS 2024
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W

RR RJ

CR CJ

GR GJ

Figure 1 The graphs G[RR ∪ CR] (i.e., GR) as well as G[RJ ∪ CJ ] (i.e., GJ ) are isomorphic to
H. Here, we do not display edges in GR and GJ to ease the illustration.

E(GR) = {uRvR | uv ∈ E(H)} and E(GJ ) = {uJ vJ | uv ∈ E(H)}. Finally, the starting
position of R is rR and J is rJ (where r is the starting position of the robber in the
GuardUndir), i.e., s0 = rR and t0 = rJ .

2. Connecting CR to CJ . For each vertex x ∈ CR and each vertex y ∈ CJ , we connect
x and y using a path Pxy = xwxyy of length 2. Let W be the set of vertices that lie in
the middle of these paths, i.e., W = {wxy | x ∈ CR, y ∈ CJ }. Moreover, each vertex of W

has degree exactly 2 in G. See Figure 1 for an illustration. We have the following trivial
observation, which follows from the fact that each vertex in W have degree exactly 2.

▶ Observation 8. Consider a game state Si = {si, ti, d1
i , . . . , d2k

i ), i > 0, such that si ∈ CR
and ti ∈ CJ , and wsiti

/∈ Di−1, then R and J can meet at wsiti
in the next round.

Proof. The proof follows from the fact that if wsiti /∈ Di−1, then wsiti /∈ Di since wsiti is
connected only to si and ti and {si, ti} ∩ Di = ∅. ◀

3. Secret Gardens. Next, we construct 2k + 2 secret gardens S1, . . . , S2k+2, the goal of
which is to ensure that after each round, both CR and CJ must host exactly k dividers each.
See Figure 2 for an illustration. Each Si, i ∈ [2k + 2] , consists of k independent vertices.

4. Bridges. Next, we construct 2k + 2 divider bridges B1, . . . B2k+2, where each Bi (i ∈
[2k + 2]) consists of k independent vertices, and 2k + 2 lover bridges L1, . . . , L2k+2, where
each Li consists of two independent vertices ai and bi. See Figure 2 for an illustration.

5. Connecting bridges and gardens. For each i ∈ [2k + 2], G[Si ∪ Bi] induces a complete
bipartite graphs. Next, for i ∈ [k + 1], we connect each vertex of Si to ai via an edge and
each vertex of bi to Si via a path of length 2. Symmetrically, for k + 2 ≤ i ≤ 2k + 2, we
connect each vertex of Si to ai via a path of length 2 and each vertex of Si to bi via an edge.

6. Connecting bridges to rest of the graph. Let βH , βC , and βR be the diameter of graph
H, graph H[C], and graph H[R], respectively. Then, let α = max(βH , βC , βR). For each
vertex x ∈ CR and each vertex y ∈

⋃
i∈[k+1] Bi, we connect x and y using a path of length

α. Similarly, for each vertex x ∈ CJ and each vertex y ∈
⋃

k+1<i≤2k+2 Bi, we connect x

and y using a path of length α. Next, for i ∈ [k + 1], we connect each vertex x ∈ RR to
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RR RJ

L1 Lk+1 Lk+2
L2k+2

S1
Sk+1 Sk+2 S2k+2

B1

Bk+1

Bk+2 B2k+2

CR CJ

Figure 2 Illustration of secret gardens and bridges. Each black connection signifies an edge, blue,
red, green, and violet connections signify paths of length α + 2, α + 1, α, and 2, respectively. Note
that, due to our choice of α, no shortcuts are created in the original graph.

ai using a path of length α + 1 and each vertex y ∈ RJ to bi using a path of length α + 2.
Symmetrically, for k + 2 ≤ i ≤ 2k + 2, we connect each vertex x ∈ RR to ai using a path of
length α + 2 and each vertex y ∈ RJ to bi using a path of length α + 1. See Figure 2 for an
illustration. This completes our construction of G.

Subgraphs of G. For the ease of exposition, we name some of the induced subgraphs of
G. Consider the induced subgraph G′ = G[V (G) \ (RR ∪ RJ ∪ W )]. Observe that G′ has
two connected components: one containing CR, say G′

R, and the other containing CJ , say
G′

J . Moreover, consider the induced subgraph G′′ = G′[V (G′) \ (CR ∪ CJ )]. Observe that
G′′ contains exactly 2k + 2 connected components, say G1, . . . , G2k+2, and let Gi be the
connected component containing Si (and hence, Bi and Li).

The following observation follows directly from the construction of G

▶ Observation 9. The following statements follow from the construction.
1. For distinct i, j ∈ [2k + 2], for a vertex x ∈ V (Gi) and y ∈ Sj, d(x, y) > α + 1.
2. Let x ∈ Si for i ∈ [k + 1]. For each vertex y ∈ CR, there is a x, y-path of length α + 1,

and for each vertex z ∈ CJ , there is a x, z-path of length α + 3.
3. Let x ∈ Si for k + 2 ≤ i ≤ 2k + 2. For each vertex y ∈ CR, there is a x, y-path of length

α + 3, and for each vertex z ∈ CJ , there is a x, z-path of length α + 1.

The following lemma establishes that if R and J are in RR and RJ , respectively, then
both G′

R and G′
J must host at least k dividers, else R and J meet in at most α + 2 rounds.

▶ Lemma 10. Consider a game state Si = (si, ti, d1
i , . . . , d2k

i ) for i ≥ 0. If si ∈ RR and
ti ∈ RJ , and at least one of G′

R or G′
J hosts less than k dividers, then si+α+3 = ti+α+3.

Proof. Without loss of generality, let us assume that G′
R hosts at most k − 1 dividers at the

end of round i (i.e., Di ∩ V (G′
R) < k). Therefore, at least one of G1, . . . , Gk+1 does not host

any divider (as G1, . . . , Gk+1 are disjoint subgraphs of G′
R). Let Gp, p ∈ [k + 1], be such a

component, i.e., V (Gp) ∩ Di = ∅. To ease the presentation, let x = si and y = ti. Moreover,
let Px be the unique isometric x, ap-path of length α + 1, and let Py be the unique isometric

MFCS 2024
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y, bp-path of length α + 2. Furthermore, let the vertices of Sp be marked as v1, . . . , vk and
let, for j ∈ [k], the (degree-2) vertex connecting vj and bp be uj . We have the following
crucial claim that proves our lemma.

▷ Claim 11. R and J can move along the paths Px and Py such that si+α+2 ∈ Sp, ti+α+2 = bp.
Moreover, if si+α+2 = vj , where j ∈ [k], then uj /∈ Di+α+2.

Proof of Claim. First, we establish that R can move to the vertex ap in α + 1 rounds. Due
to Observation 6, to show that R can ensure that si+α+1 = ap, it is sufficient to show that
for each vertex v ∈ V (Px), d(x, v) ≤ minu∈Di

(d(u, v)). We distinguish the following cases
depending on where u is in G.
1. u ∈ CR ∪ CJ ∪ W : Observe that for each vertex u ∈ CR ∪ CJ ∪ W and each vertex

v ∈ V (Px), d(u, v) ≥ α + 1 and d(x, v) ≤ α + 1. Hence, d(x, v) ≤ minu∈Di
(d(u, v)).

2. u ∈ RR ∪ RJ : Observe that for each vertex u ∈ RR ∪ RJ and each vertex v ∈ V (Px), any
u, v-path contains either x or ap. In the former case, trivially d(x, v) ≤ d(u, v), and in
the latter case, observe that d(u, v) ≥ α + 1 ≥ d(x, v). Hence, d(x, v) ≤ minu∈Di(d(u, v)).

3. u ∈ Gj , for some j ∈ [2k + 2]: Due to our choice of p, clearly u /∈ V (Gp) (since we
choose Gp such that V (Gp) ∩ Di = ∅). Hence, j ̸= p. Since Gj and Gp are disjoint
components in G[V (G) \ {CR ∪ CJ ∪ RR ∪ RJ }], each u, v-path passes through a vertex
of u′ ∈ CR ∪ CJ ∪ RR ∪ RJ , and hence this case is implied by the previous two cases.

Thus, the facilitator can ensure that si+α+1 = ap. Finally, since G′
R hosts at most k − 1

dividers and for each vertex u ∈ V (G) \ V (G′
R) and v ∈ Sp, d(u, v) > α + 1, at most k − 1

dividers can reach the vertices of Sp in α + 1 moves of dividers. Therefore, |Di+α+1 ∩ Sp| < k.
Hence, there is at least one j ∈ [k] such that vj ∈ Sp \ Di+α+1, and hence R can move to vj

in this round, i.e., si+α+2 = vj ∈ Sp.
The proof that of the claim ti+α+2 = bp is symmetric to the proof that si+α+1 = ap.
Next, we establish that uj /∈ Di+α+2. Recall that vj /∈ Di+α+1 and, due to our choice of p,

V (Gp) ∩ Di = ∅. It follows from our construction that for each vertex w ∈ V (G) \ (Gp ∪ CR),
d(w, uj) > α+2 and for w′ ∈ CR, d(w′, uj) = α+2 and each w′, uj-path of length α+2 passes
through vj . Since Di ∩ V (Gp) = ∅, if a divider, say Dℓ, has to ensure that dℓ

i+α+2 = uj , Dℓ

has to ensure that dℓ
i+α+1 = vj , which is not possible since vj /∈ Di+α+1. Hence, uj /∈ Di+α+2.

This completes the proof of our claim. ◁

Finally, since si+α+2 = vj ∈ Sp (for some j ∈ [k]), ti+α+2 = bp and uj /∈ Di+α+2
(Claim 11), the facilitator can ensure that R and J meet in the next round at uj . ◀

Next, we have the following lemma which establishes that as long as R and J are in RR
and RJ , respectively, both CR and CJ must host exactly k dividers each.

▶ Lemma 12. Consider a game state Si = (si, ti, d1
i , . . . , d2k

i ) for i ≥ 0 such that si ∈ RR
and ti ∈ RJ . If |Di ∩ CR| ≠ k or |Di ∩ CJ | ≠ k, then the facilitator can ensure that
si+α+3 = ti+α+3.

Proof. The proof is similar to the proof of Lemma 10. Due to Lemma 10, we know that
both G′

R and G′
J host exactly k dividers, and thus, |Di ∩ CR| ≤ k and |Di ∩ CJ | ≤ k, else

R and J meet in α + 3 rounds. At this point, let one of CR or CJ hosts less that k dividers.
Without loss of generality, let |Di ∩CR| < k. In this case, similarly to the proof of Lemma 10,
there is at least one Gp, p ∈ [k + 1], such that Gp does not contain any divider . Moreover,
similarly to the proof of Lemma 10, only the dividers on CR can reach Sp in α + 2 rounds
and hence at most k − 1 dividers can reach the vertices of Sp in α + 2 rounds. Therefore,
R and J have a strategy to ensure that si+α+2 = z ∈ Sp and ti+α+2 = bp such that the
unique vertex on the isometric si+α+2, ti+α+2-path does not any divider in this round. Hence,
si+α+3 = ti+α+3. ◀
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Next, we prove the following lemma which implies one side of our reduction.

▶ Lemma 13. If the robber has a winning strategy in H against k cops, then R and J have
a winning strategy in G against 2k dividers.

Proof. The game starts with R and J placed on rR and rJ , respectively. Due to Lemma 12,
we can assume that as long as R and J are in RR and RJ , respectively, both CR and
CJ must host exactly k dividers each, else R and J win. First, we will show that after a
finite number of rounds R can enter CR. Observe that any move of dividers in CR (in G)
corresponds to a valid move of cops in C (in H) and R can make any move in G[CR ∪ RR]
against dividers in G that is accessible to the robber in H against the corresponding position
of the cops. Hence, using the winning strategy of the robber, R can enter CR after a finite
number of rounds (since CR hosts exactly k dividers). Similarly, J can move to CJ in a
finite number of rounds.

But, observe that since the dividers in CR and CJ may be using different strategies,
R and J may not be able to simultaneously move to CR and CJ , respectively. Hence, we
distinguish the following two cases.

1. R and J move simultaneously to x ∈ CR and y ∈ CJ , respectively. Due to Lemma 12,
we may assume that when R and J made this move, both CR and CJ hosted exactly k

dividers each, and hence no vertex of W was occupied by any divider. Hence, R and J

can meet in the next round due to Observation 8.
2. R moves to x ∈ CR while J is on some vertex y ∈ RJ . Similarly to the previous case,

due to Lemma 12, we may assume that when R and J made this move, both CR and CJ
hosted exactly k dividers each. In the next move of the dividers, observe that there will
be at least one Gp, p ∈ [k + 1], such that Gp does not contain any dividers. In the next
α + 2 rounds, J moves towards the vertex bp and R moves first towards a vertex in Sp,
and then to a neighbour of bp. We note that R and J can make these moves following
the same arguments presented in the proof of Lemma 10. Hence, R and J meet in the
next round since they are they are at adjacent vertices.

3. J moves to x ∈ CJ while R is on some vertex y ∈ RR. This case is symmetric to Case 2.
This completes our proof. ◀

To complete our reduction, we need to establish that if k cops have a winning strategy in
H, then 2k dividers have a winning strategy in G. To aid the presentation of the proof of
this lemma, we need the following notion of safe states.

Safe states. Consider the GuardUndir on graph H and consider some game state
Gi = (ri, c1

i , . . . , ck
i ) such that ri ∈ R. We say that Gi is a safe state if the cops have a strategy

to ensure that robber cannot enter C in any round i′ > i. Similarly, consider the game
Romeo and Juliet on graph G and some game state Sj = (sj , tj , d1

j , . . . , d2k
j ). We say that

Sj is R-safe state (resp., J -safe state) if (1) sj ∈ RR (resp., tj ∈ RJ ), (2) {dj
1, . . . , dj

k} ⊆ CR
(resp., {dk+1

j , . . . , d2k
j } ⊆ CJ ), and (3) the dividers D1, . . . , Dk (resp., Dk+1, . . . , D2k) can

ensure that if R (resp., J ) is restricted to GR (resp., GJ ), then R (resp., J ) cannot enter a
vertex of CR (resp., CJ ) in any round j′ > j. We say that a game state Sj is almost-R-safe
state if R is in some Gi, i ∈ [2k + 2], and the dividers D1, . . . , Dk have a strategy that ensures
that if for some j′ > j, sj′ ∈ V (GR) ∪ V (GJ ) (i.e., R enters a vertex in V (GR) ∪ V (GJ )),
then Sj′ is a R-safe state. We define almost-J -safe state analogously. We have the following
easy, but useful, observations.
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▶ Observation 14. Consider a game state Sj = (sj , tj , d1
j , . . . , d2k

j ) of Romeo and Juliet
on G such that sj ∈ RR and {d1

j , . . . , dk
j } ⊆ CR. Now, consider a corresponding game state

Gi = (ri, c1
i , . . . , ck

i ) of GuardUndir on H such that if sj = uR, then ri = u, and if, for
ℓ ∈ [k], dℓ

j = vR, then cℓ
j = v. If Gi is a safe state then Sj is a R-safe state.

Proof. To prove our statement, we need to show that if R is restricted to GR, then the
dividers have a strategy to ensure that, for j′ > j, R cannot enter a vertex of CR. The
dividers D1, . . . , Dk can do so by mimicking the winning strategy of the cops from H in the
following manner. Whenever R moves from a vertex uR to wR in GR, we move the robber in
H from u to w, and then each cop Cℓ, for ℓ ∈ [k], moves as per its winning strategy. Notice
that this gives us a safe state Si+1. Then, each divider Dℓ, for ℓ ∈ [k], copies the move of Ci

such that if Ci moved from v to x, then Di moves from vR to xR. Using this strategy, the
dividers D1, . . . , Dk can ensure that, as long as R is restricted to GR, R can never enter a
vertex of CR. Hence, Sj is a R-safe state. ◀

Analogously, we can have the following observation for J -safe states.

▶ Observation 15. Consider a game state Sj = (sj , tj , d1
j , . . . , d2k

j ) of Romeo and Juliet
on G such that tj ∈ RJ and {dk+1

j , . . . , d2k
j } ⊆ CJ . Now, consider a corresponding game

state Gi = (ri, c1
i , . . . , ck

i ) of GuardUndir on H such that if tj = uJ , then ri = u, and if,
for k + 1 ≤ ℓ ≤ 2k, dℓ

j = vJ , then cℓ−k
j = v. If Gi is a safe state then Sj is a J -safe state.

▶ Observation 16. Let k cops have a winning strategy in H against the robber starting at r.
Then, for each vertex v ∈ R (⊆ V (H)), there exists a set of (not necessarily distinct) vertices
u1, . . . , uk ∈ C such that the game state G = (v, u1, . . . , uk) is a safe state.

Proof. Targeting contradiction, let there be a vertex v ∈ C such that for every u1, . . . , uk ∈ C

(possibly ui = uj for distinct i, j), G = (v, u1, . . . , uk) is a not a safe state. Let d(r, v) = ℓ ≤ α.
Then, the robber have a strategy to reach a game state Gℓ = (rℓ = v, c1

ℓ , . . . , ck
ℓ ), which is

not a safe state (by our contradiction assumption). Hence, the cops do not have any strategy
that can restrict the robber to R for each round ℓ′ > ℓ, a contradiction to the fact that k

cops have a winning strategy in H against the robber starting at r. ◀

Next, we have the following lemma.

▶ Lemma 17. Let k cops have a winning strategy in H against the robber starting at r.
Moreover, let Sj = (sj , tj , d1

j , . . . , d2k
j ) be a game state in G. Then, the following are true.

1. If sj = ap for some p ∈ [k + 1] and each vertex of Sp is occupied by a divider from
D1, . . . , Dk, then Sj is an almost-R-safe state.

2. If sj = ap for some k + 2 ≤ p ≤ 2k + 2, and each vertex of Bp is occupied by some divider
from D1, . . . , Dk, then Sj is an almost-R-safe state.

Proof. First, we will show that if sj = ap for some p ∈ [k + 1] and each vertex of Sp is
occupied by a divider from D1, . . . , Dk, then Sj is an almost-R-safe state. Let the vertices
of Sp be marked v1, . . . , vk, and without loss of generality, let us assume that di

j = vi, for
i ∈ [k]. The dividers will maintain the following invariant for ℓ ≥ j: d(di

ℓ, vi) = d(sℓ, ap).
(We have that d(di

j , vi) = d(sj , ap) = 0.) This invariant will ensure that whenever R is at the
vertex ap, each vertex of Sp is occupied by some divider, and hence, R can never access a
vertex of Sp. Let j′ > j be the smallest integer such that sj′ ∈ V (GR) ∪ V (GC). If no such
j′ exists, then Sj is trivially almost-R-safe state, and hence we assume that j′ exists. To
establish that Sj is an almost-R-safe state, we need to show the following:
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1. sj′ ∈ RR: This is easy to see since Sp ∪RR separates ap from each vertex in RJ ∪CR ∪CJ
and whenever R is at ap, all vertices of Sp are occupied by the dividers.

2. Sj′ is a R-safe state: To ensure this, the dividers implement the following strategy which
maintains the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). Let γ ≥ j be
the least integer such that sγ = ap and sγ+1 ≠ ap. Observe that there is a unique
vertex vR in RR such that d(sγ+1, vR) = α. (For every other vertex wR ∈ RR \ {vR},
α + 1 ≤ d(sγ+1, vR) ≤ α + 2). Since k cops have a winning strategy in H, due to
Observation 16, we know that there exists a safe state G = (v, u1, . . . , uk) in H such
that u1, . . . , uk ∈ C. Moreover, due to Observation 14, we know that, a game state
Sj′′ = (sj′′ = vR, tj′′ , d1

j′′ , . . . , d2k
j′′) such that, for i ∈ [k], di

j′′ = uiR is a R-safe state.
Now, each divider Di chooses chooses a vi, uiR-path, say Pi, of length α + 1 and move
on this path to maintain the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). Now,
we distinguish the following two cases:
a. For γ < γ′ < j′, sγ′ ̸= ap. In this case, observe that sj′ = vR and di

j′ = uiR, for
i ∈ [k], which gives a R-safe state.

b. There is some γ < γ′ < j′, such that sγ′ = ap. Observe that the game state Sγ′

is identical to the state Sj from the perspective of R and D1, . . . , Dk (due to our
invariant). Hence, the dividers D1, . . . , Dk can restart their strategy that they had
starting from Sj .

Second, we will establish that if sj = ap for some k + 2 ≤ p ≤ 2k + 2 and each vertex of Bp is
occupied by a divider from D1, . . . , Dk, then Sj is an almost-R-safe state. It follows directly
from our construction of G that for each vertex y ∈ CR and z ∈ Bp, there is a y, z-path of
length α + 2 (that passes through W and CJ ). Similarly, for each vertex z ∈ RR, there is
a ap, z-path of length α + 2. The proof is similar to the proof of the first case and hence
we will provide the proof in a succinct manner. Let the vertices of Bp be marked v1, . . . , vk,
and without loss of generality let us assume that di

j = vi (for i ∈ [k]). Furthermore, let the
vertices of Sp be marked x1, . . . , xk and let the unique vertex connected ap and xi be yi.
Now, the dividers will use the following strategy for j′ ≥ j while always maintaining the
invariant: d(sj′ , ap) = d(di

j′ , vi) for i ∈ [k].
If sj′ = yq for some q ∈ [k], then for each i ∈ [k], the divider Di moves to the vertex xi,
i.e., di

j′ = xi. Observe that this ensures that R can never reach a vertex of Sp, and hence,
whenever R will enter a vertex of CR ∪ CJ ∪ RR ∪ RJ , it will do so at a vertex of RR.
If sj′−1 = ap and sj′ /∈ {ap} ∪ {y1, . . . , yp}. Then, let v be the unique vertex in
RR such that d(v, sj′) = α + 1. Since k cops have a winning strategy in H, due to
Observation 16, we know that there exists a safe state G = (v, u1, . . . , uk) in H such
that u1, . . . , uk ∈ C. Moreover, due to Observation 14, we know that, a game state
Sj′′ = (sj′′ = vR, tj′′ , d1

j′′ , . . . , d2k
j′′) such that, for i ∈ [k], di

j′′ = uiR is a R-safe state.
Now, each divider Di chooses chooses a vi, uiR-path, say Pi, of length α + 2 and move
on this path to maintain the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). If R

reaches the vertex vR, then observe that we have reached a safe state. Otherwise, if R

reaches to ap in some round γ > j′, then we restart our strategy.
This completes our proof. ◀

Next, we have the following lemma, whose proof is identical to the proof of Lemma 17.

▶ Lemma 18. Let k cops have a winning strategy in H against the robber starting at r.
Moreover, let Sj = (sj , tj , d1

j , . . . , d2k
j ) be a game state in G. Then, the following are true.

1. If tj = ap for some p ∈ [k + 1] and each vertex of Bp is occupied by a divider from
Dk+1, . . . , D2k, then Sj is an almost-J -safe state.

2. If sj = ap for some k + 2 ≤ p ≤ 2k + 2, and each vertex of Sp is occupied by some divider
from Dk+1, . . . , D2k, then Sj is an almost-J -safe state.
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The following observation is directly implied by our construction.

▶ Observation 19. Consider the connected components of the graph G[V (G) \ (CR ∪ CJ ∪
S1 ∪ · · · ∪ S2k)]. The components containing RR and the component containing RJ are
disjoint, and let them be named FR and FJ , respectively.

Due to Observation 19, if we can show that k of the dividers, say D1, . . . , Dk, can restrict
R from entering any vertex of CR ∪ CJ ∪ S1 ∪ · · · ∪ S2k, and the other k dividers, say
Dk+1, . . . , D2k can restrict J from entering any vertex of CR ∪ CJ ∪ S1 ∪ · · · ∪ S2k, then R

and J never be able to meet as they will be restricted to disjoint subgraphs FR and FJ ,
respectively, of G. We use a similar strategy to prove the following lemma, which proves the
other side of our reduction.

▶ Lemma 20. If k cops have a winning strategy in H against the robber starting at r, then
2k dividers have a winning strategy in G against R and J starting at rR and rJ , respectively.

Proof. Since k cops have a winning strategy against the robber starting at r in H, there is a
safe state G0 = (r0 = r, c1

0, . . . , ck
0). Now, we begin Romeo and Juliet on G with the game

state S0 = (s0 = rR, t0 = rJ , d1
0, . . . , d2k

0 ) such that if cℓ
0 = v, for ℓ ∈ [k], then dℓ

0 = vR and
dℓ+k

0 = vJ . It follows from Observations 14 and 15 that S0 is R-safe state as well as J -safe
state. Therefore, as long as R (resp., J ) is restricted to GR (resp., GJ ), they cannot enter a
vertex of CR (resp., CJ ). Hence, unless at least one of R or J leaves GR or GJ , respectively,
to move to some Gi, for i ∈ [2k + 2], they cannot meet. First, we prove the following claim.

▷ Claim 21. Let Sj be a R-safe state such that sj+1 /∈ RR. Then, for j′ > j, the dividers
D1, . . . , Dk have a strategy that can ensure the following:
1. sj′ ∈ FR.
2. If sj′ ∈ RR, then Sj′ is a R-safe state.

Proof of Claim. Let Px be the unique x, ap-path that contains sj+1. For ℓ ∈ [k], let dℓ
j = yℓ

(i.e., in round j, the divider Dℓ occupies the vertex yℓ ∈ CR). We distinguish the following
two cases depending on whether p ≤ k or p > k.

Case 1: p ≤ k. Let the vertices of Sp be marked v1, . . . , vk. It follows from the construction
that d(yℓ, vℓ) = α + 1 and d(x, ap) = α + 1. Each Dℓ chooses a yℓ, vℓ-path of length α + 1, say
Pℓ, and move along it to maintain the following invariant for j′ > j: d(sj′ , ap) = d(dℓ

j′ , vℓ).
Again, we have the following cases depending on the moves of R.
1. R never reaches the vertex ap: In this case observe that when R moves to RR, say in

round j′, it can only move to the vertex x (i.e., sj′ = x). In this case, observe that
dℓ

j′ = yℓ. Since this state is identical to Sj with respect to the placement of R and the
dividers D1, . . . Dk, Sj′ is a R-safe state. Moreover, it is easy to see that R was restricted
to FR for each round j ≤ j′′ ≤ j′.

2. R reaches the vertex ap in some round j′′: In this case, observe that each vertex vℓ of
Sp is occupied by the divider Dℓ (due to our invariant), and hence, R cannot move to a
vertex of Sp in round j′′ + 1. Observe that the game state Sj′′ is an almost-R-safe state
due to Lemma 17. Therefore R is restricted to FR and whenever R reaches a vertex of
RR in some round j′, then Sj′ is a R-safe state due to the definition of almost-R-safe
state.
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Case 2: p > k. The proof of this case is similar to the proof of Case 1. Let the vertices
of Bp be marked v1, . . . , vk. It follows from the construction that d(yℓ, vℓ) = α + 2 and
d(x, ap) = α + 2. Each Dℓ chooses a yℓ, vℓ-path of length α + 2, say Pℓ, and move along it
to maintain the following invariant for j′ > j: d(sj′ , ap) = d(dℓ

j′ , vℓ). If R never reaches the
vertex ap, then our invariant implies that whenever R will enter RR, it will enter at a safe
state. If R reaches the vertex ap, then each vertex of Bp is occupied by a divider (due to our
invariant), which is an almost-R-safe state due to Lemma 17. Hence, if R enters a vertex RR
in some round j′, then Sj′ is a R-safe state. Further, observe that in all these rounds, R is
restricted to FR. This completes the proof of this case. ◁

Next, we have the following claim whose proof is symmetric to the proof of Claim 21.

▷ Claim 22. Let Sj be a J -safe state such that tj+1 /∈ RJ . Then, for j′ > j, the dividers
Dk+1, . . . , D2k have a strategy that can ensure the following:
1. tj′ ∈ FJ .
2. If tj′ ∈ RJ , then Sj′ is a J -safe state.

Finally, our proof follows from the following facts. Since we start from a state that is
R-safe state as well as J -safe state, as long as R (resp., J ) is restricted to GR (resp., GJ ),
they cannot enter a vertex of CR (resp., CJ ). Moreover, even if R (resp., J ) leave GR (resp.,
GJ ), it is restricted to FR (resp. FJ ), and whenever R (resp., J ) return to GR (resp., GJ ),
it returns to a R-safe state (resp., J -safe state), due to Claim 21 (resp., Claim 22). Since
this strategy restricts R and J to two disjoint subgraphs FR and FJ , respectively, of G, R

and J will never be able to meet. Hence, 2k dividers have a winning strategy in G against R

and J starting at rR and rJ , respectively. This completes our proof. ◀

Finally, we haven the following theorem due to our construction of G from H, Proposi-
tions 5 and 7, and Lemmas 13 and 20.

▶ Theorem 1. Romeo and Juliet is EXPTIME-complete for undirected graphs.

4 EXPTIME-Completeness for Directed Graphs

In this section, we establish that Romeo and Juliet is EXPTIME-complete on directed
graphs. Due to Proposition 5, to complete our proofs, we only need to establish that Romeo
and Juliet is EXPTIME-hard. To this end, we will reduce Guard to Romeo and Juliet
on directed graphs. This is a rather straightforward and easy construction.

Construction. Let (−→G, k, r) be an instance of Guard (where r is the starting position of
the robber and V (−→G) consists of the C ∪ R). We construct an instance (−→H, k, s, t) in the
following manner. Let V (−→H ) = V (−→G) ∪ {s, t, d1, . . . , dk}, and let D = {d1, . . . , dk}. Next,
E(−→H ) = E(−→G) ∪ {−→sr,

−→
sd1, . . . ,

−→
sdk,

−→
d1t, . . . ,

−→
dkt}. Moreover, for each di, i ∈ [k], and v ∈ C,

we add an arc
−→
dic. Furthermore, for each vertex u ∈ C, we add an arc −→

ut. See Figure 3 for
an illustration. Finally, the starting position for R is s and for J is t. This completes the
construction. The following observation follows directly from our construction.

▶ Observation 23. The following statements are true.
1. The vertex t is a sink, and hence J cannot move throughout the game.
2. If at any point in the game R is on a vertex in C, then R and J meet in the next step.
3. If there are less than k dividers, then R and J meet in at most 2 rounds.
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dk

t

Figure 3 Here, we do not show edges of −→
G to ease the presentation.

Proof. The proof of (1) and (2) follows directly from the construction and the game definition.
To see the proof of (3), observe that if there are less than k dividers, there is at least one
vertex in D, say x, that is not occupied by any of the dividers (since |D| = k). Hence, R can
move to x in the first round, and since −→

xt is an edge, R and J meet in the next round. ◀

The following lemma proves the soundness of our reduction.

▶ Lemma 24. In −→
G , k cops have winning strategy against the robber starting at r if and only

if k dividers have a winning strategy in −→
H against R and J starting at s and t, respectively.

Proof. In one direction, let k cops have a strategy to prevent the robber, who starts at r,
from entering C. Then, we prove that k dividers have a winning strategy −→

H against R and J

starting at s and t, respectively. The k dividers begin with occupying each vertex of D. This
restricts R from entering a vertex of D. Recall that J cannot move throughout the game
(due to Observation 23). Now, the only move possible for R is to move to vertex r from s.
Whenever R moves to r, the dividers move to the vertices in C where the cops begin in their
winning strategy in −→

G . Now, observe that R cannot access s or any vertex in D. Hence, the
dividers can restrict R and J from meeting by simply restricting R to ever enter C. Note
that the the dividers can do so following the winning strategy for the cops as the rules of
movement are the same for both of the games. Hence, k dividers have a winning strategy in−→
H against R and J starting at s and t, respectively.

In the other direction, let the robber has a strategy to enter C in G starting from r. In
this case, observe that in the beginning, k dividers have to occupy the vertices of D, else
R and J meet in at most two steps (R moves to a vertex in D and then meet J in the
next round). Now, R moves to r from s. Now, at most k dividers move to C. Since the
dividers can make the same moves as cops and the robber have a winning strategy against
any strategy of k cops to enter C starting from r, R can use the same strategy to enter C.
Hence, R can enter C after a finite number of rounds, and then meet J in the next round at
t (due to Observation 23). ◀

Hence, we have the following theorem as a consequence of our reduction, Propositions 5
and 7, and Lemma 24.

▶ Theorem 2. Romeo and Juliet is EXPTIME-complete for oriented graphs.
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5 Conclusion

In this work, we considered Romeo and Juliet on directed as well as undirected graphs
and established that the game is EXPTIME-complete in both cases, and that the game
remains PSPACE-complete even for directed acyclic graphs. Moreover, we defined a game
Relaxed Romeo and Juliet that provides a framework for extending the hardness results
of Romeo and Juliet in Time on undirected graphs to Romeo and Juliet on DAGs.

It may be an interesting question to figure out if Romeo and Juliet in Time is also
EXPTIME-complete as conjectured by Fomin, Golovach, and Thilikos [12]. Moreover, it is
known that, assuming ETH, Romeo and Juliet cannot be solved in no(k) (i.e., 2o(k log n))
time [12]. It might be interesting to see if this result can be extended to a lower bound of
the form 2o(n). Note that this result will be incomparable to the current known bound as k

can be O(n). Aigner and Fromme [1] established that the cop number for planar graphs is
at most 3 by the use of a guarding lemma that states that 1 cop can guard the vertices of
an isometric path. It is easy to see that the dynamic separation number of planar graphs
is unbounded, for eg., consider K2,n and let s, t be the vertices of the partition with two
vertices. It might be interesting to figure out the computational complexity of Romeo and
Juliet on planar graphs, and more generally, graphs on surfaces.
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